Science.gov

Sample records for iter dfll electromagnetic

  1. Analysis of MHD Pressure Drop in Liquid LiPb Flow in Chinese ITER DFLL-TBM with Insulating Coating

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Zhou, Tao; Wang, Hongyan

    2008-08-01

    Magnetohydrodynamic (MHD) pressure drop in the Chinese Dual Functional Liquid Lithium-lead Test Blanket Module (DFLL-TBM) proposed for ITER is discussed in this paper. Electrical insulation between the coolant channel surfaces and the liquid metal is required to reduce the MHD pressure drop to a manageable level. Insulation can be provided by a thin insulating coating, such as Al2O3, which can also serve as a tritium barrier layer, at the channel surfaces in contact with LiPb. The coating's effectiveness for reducing the MHD pressure drop is analysed through three-dimensional numerical simulation. A MHD-based commercial computational fluid dynamic (CFD) software FLUENT is used to simulate the LiPb flow. The effect on the MHD pressure drop due to cracks or faults in the coating layer is also considered. The insulating performance requirement for the coating material in DFLL-TBM design is proposed according to the analysis.

  2. Computational study of the electromagnetic forces and torques on different ITER first wall designs.

    SciTech Connect

    Kotulski, Joseph Daniel; Garde, Joseph Maurico; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.

  3. Electromagnetic analysis of forces and torques on the ITER shield modules due to plasma disruption.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  4. U.S ITER : electromagnetic analysis of transient forces due to disrupted plasma currents on the ITER shield modules.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis

    2007-06-01

    This paper describes the electromagnetic analysis that has been completed using the OPERA-3d product to characterize the forces on the ITER shield modules as part of the conceptual design. These forces exist due to the interaction of the eddy currents induced in the shield modules and the large magnetic fields present in the tokamak.

  5. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  6. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  7. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  8. The application of contraction theory to an iterative formulation of electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Brand, J. C.; Kauffman, J. F.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  9. Electromagnetic analysis of forces and torques on the baseline and enhanced ITER shield modules due to plasma disruption.

    SciTech Connect

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-08-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma-disruption scenarios using the OPERA-3d software. The models considered include the baseline design as provided by the International Organization and an enhanced design that includes the more realistic geometrical features of a shield module. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  10. 3D electromagnetic optimization of the front face of the ITER ICRF antenna

    NASA Astrophysics Data System (ADS)

    Louche, F.; Dumortier, P.; Messiaen, A.; Durodié, F.

    2011-10-01

    In the framework of the ion cyclotron resonance heating (ICRH) antenna development for ITER, a design based on an external matching concept has been proposed [1]. We present in this work a series of electromagnetic simulations of this design performed with the commercial code CST Microwave Studio [2]. On the one hand, we explore how various geometrical modifications of some parts of the antenna (the straps and the four-port junction) can practically double the RF power coupled to the plasma. This optimization is supported by transmission line analysis. On the other hand, we treat the important question of the opportunity to tilt the straps in the toroidal direction to follow the plasma curvature as close as possible. We show that a configuration with two toroidal segments is sufficient and that further segmentation is not necessary. This work also underlines significant progress in the realism of ICRH antenna modelling and the importance of considering realistic load shaping in the models.

  11. On the convergence of an iterative formulation of the electromagnetic scattering from an infinite grating of thin wires

    NASA Technical Reports Server (NTRS)

    Brand, J. C.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  12. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  13. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by

  14. Coupled mechanical electromagnetic thermal hydraulic effects in Nb3Sn cable-in-conduit conductors for ITER

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Ciazynski, D.; Mitchell, N.; Savoldi Richard, L.

    2005-12-01

    The crucial multi-physics problem of how to extrapolate from the performance of an isolated Nb3Sn strand measured in the laboratory to the performance of a superconducting coil using multi-strand twisted cables is addressed here. We consider the particular case of the path going from the LMI strand to the international thermonuclear experimental reactor (ITER) toroidal field model coil (TFMC), through its associated Full Size Joint Sample, the TFMC-FSJS. Mechanical, electromagnetic and thermal-hydraulic conditions are simulated using the ANSYS, ENSIC and Mithrandir/M&M codes, respectively. At least in this case, the DC performance of the short sample turns out to be relatively close to (considering error bars) but not fully representative of that of the coil, showing higher (less compressive) effective thermal strain but also higher sensitivity to the electromechanical load.

  15. Parallelized Characteristic Basis Finite Element Method (CBFEM-MPI)-A non-iterative domain decomposition algorithm for electromagnetic scattering problems

    SciTech Connect

    Ozgun, Ozlem Mittra, Raj; Kuzuoglu, Mustafa

    2009-04-01

    In this paper, we introduce a parallelized version of a novel, non-iterative domain decomposition algorithm, called Characteristic Basis Finite Element Method (CBFEM-MPI), for efficient solution of large-scale electromagnetic scattering problems, by utilizing a set of specially defined characteristic basis functions (CBFs). This approach is based on the decomposition of the computational domain into a number of non-overlapping subdomains wherein the CBFs are generated by employing a novel procedure, which differs from all those that have been used in the past. Clearly, the CBFs are obtained by calculating the fields radiated by a finite number of dipole-type sources, which are placed hypothetically along the boundary of the conducting object. The major advantages of the proposed technique are twofold: (i) it provides a substantial reduction in the matrix size, and thus, makes use of direct solvers efficiently and (ii) it enables the utilization of parallel processing techniques that considerably decrease the overall computation time. We illustrate the application of the proposed approach via several 3D electromagnetic scattering problems.

  16. Three-Dimensional Electromagnetic Modeling of the ITER ICRF Antenna (External Matching Design)

    SciTech Connect

    Louche, F.; Lamalle, P.U.; Dumortier, P.; Messiaen, A.M.

    2005-09-26

    The present work reports on 3D radio-frequency (RF) analysis of a design for the ITER antenna with the CST Microwave Studio registered software. The four-port junctions which connect the straps in triplets have been analyzed. Non-TEM effects do not play any significant role in the relevant frequency domain, and a well-balanced splitting of current between the straps inside a triplet is achieved. The scattering matrix has also been compared with RF measurements on a scaled antenna mockup, and the agreement is very good. Electric field patterns along the system have been obtained, and the RF optimization of the feeding sections is under way.

  17. Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Xie, Fei; Jin, Huan

    2014-11-01

    The upper vertical stability (VS) feeder is a part connected to the upper VS coil by a welding joint. The function of the feeder is to transfer current and coolant water to the VS coil. A giant electromagnetic force will be generated during normal operation by the current flowing in the VS coils, interacting with the external background field. The Lorentz force will induce Tresca stress in the feeder. The amplitudes of the magnetic field and Lorentz force along the conductor running direction have been calculated based on Maxwell's equations. To extract the Tresca stress in the feeder, a finite element model was created using the software ANSYS and an electromagnetic load was applied on the model. According to the analytical design, the stresses were classified and evaluated based on ASME. In order to reduce the Tresca stress, some optimization works have been done and the Tresca stress has had a significant reduction in the optimized model. This analytical work figured out the stress distribution in the feeder and checked the feasibility of the prototype design model. The ANSYS analysis results will provide a guidance for later improvement and fabrication.

  18. Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.

    2014-10-01

    The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.

  19. Electromagnetic Modelling of Dielectric Loads in front of an ICRH ITER Array using TOPICA and HFSS codes for comparison

    NASA Astrophysics Data System (ADS)

    El Khaldi, M.; Milanesio, D.; Maggiora, R.; Magne, R.; Vulliez, K.

    2009-11-01

    The antenna scattering (S-matrix) or impedance matrix at location where the antenna is connected to the power system is of crucial importance to assess compliance with power handling requirements and to design the tuning-and-matching system. The electrical behaviour of an Ion Cyclotron Resonance Heating (ICRH) ITER antenna in front of an infinite isotropic load was assessed numerically using the HFSSR and TOPICA codes for comparison. The calculations were performed at 45 MHz, for various thicknesses of the vacuum layer, various relative permittivities ɛ' for dielectric medium without losses (ɛ″ = 0), ɛ' ranging from 81 to 1000 and for various conductive losses ɛ″ = σ/ɛ0ṡω, for electrolyte medium (ɛ' = 81), ɛ″ ranging from 0 to 1000. The numerical results obtained with TOPICA and HFSS codes show a good overall agreement in case of vacuum, dielectric and electrolyte mediums. The best absorption of the fast magneto-sonic (Alfven) waves into the loads (i.e. the minimum of the module of antenna input reflection coefficient S11) is obtained around ɛ' = 400 for dielectric medium and around ɛ″ = 400 for electrolyte case.

  20. First-Order Systems Least-Squares Finite Element Methods and Nested Iteration for Electromagnetic Two-Fluid Kinetic-Based Plasma Models

    NASA Astrophysics Data System (ADS)

    Leibs, Christopher A.

    Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.

  1. ITER's woes

    NASA Astrophysics Data System (ADS)

    jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita

    2014-07-01

    In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.

  2. Benchmarking ICRF simulations for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  3. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  4. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  5. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  6. Gyrokinetic Simulations of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike

    2015-11-01

    It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  7. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  8. Electromagnetic fasteners

    SciTech Connect

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  9. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  10. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  11. Electromagnetic Fields

    MedlinePlus

    ... cancer. Some people worry that wireless and cellular phones cause cancer. They give off radio-frequency energy (RF), a form of electromagnetic radiation. Scientists need to do more research on this ...

  12. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  13. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  14. Scattering from a multilayered chiral sphere using an iterative method

    NASA Astrophysics Data System (ADS)

    Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu

    2016-04-01

    An iterative method for electromagnetic scattering from a multilayered chiral sphere is presented based on Lorenz-Mie regime. Electromagnetic fields in each region are expanded in terms of spherical vector wave functions. To calculate the scattering coefficients of the fields in outer space, an iterative form is constructed according to the coefficients equations obtained by the boundary condition on each layer. The iterative relations are expressed in forms of ratios and logarithmic derivatives of Riccati-Bessel functions, which can be calculated conveniently by their recurrence relations. The theory and codes are verified by comparing the scattered fields with those of a multilayered isotropic achiral sphere, and those of a single layered chiral sphere. Scattered fields of multilayered chiral spheres are presented and discussed, including a large sized case and a Gaussian beam incidence case.

  15. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  16. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  17. ITER nominates next leader

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2015-01-01

    Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.

  18. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  19. Challenges and status of ITER conductor production

    NASA Astrophysics Data System (ADS)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  20. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  1. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  2. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  3. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  4. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  5. Iterated multidimensional wave conversion

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  6. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  7. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  8. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  9. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  10. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  11. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  12. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  13. Electromagnetic topology - Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    This paper presents the main principles of a method dealing with the resolution of electromagnetic internal problems: electromagnetic topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of electromagnetic topology. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  14. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-08-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  15. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  16. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  17. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  18. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  19. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  20. ECRH System For ITER

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.

    2009-11-01

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams

  1. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  2. Electromagnetic induction methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electromagnetic induction geophysical methods are finding greater and greater use for agricultural purposes. Electromagnetic induction methods measure the electrical conductivity (or resistivity) for a bulk volume of soil directly beneath the surface. An instrument called a ground conductivity meter...

  3. The electromagnetic spike solutions

    NASA Astrophysics Data System (ADS)

    Nungesser, Ernesto; Lim, Woei Chet

    2013-12-01

    The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors for gravitational spikes. We present new inhomogeneous solutions which we call the EME and MEM electromagnetic spike solutions.

  4. An efficient iterative algorithm for computation of scattering from dielectric objects.

    SciTech Connect

    Liao, L.; Gopalsami, N.; Venugopal, A.; Heifetz, A.; Raptis, A. C.

    2011-02-14

    We have developed an efficient iterative algorithm for electromagnetic scattering of arbitrary but relatively smooth dielectric objects. The algorithm iteratively adapts the equivalent surface currents until the electromagnetic fields inside and outside the dielectric objects match the boundary conditions. Theoretical convergence is analyzed for two examples that solve scattering of plane waves incident upon air/dielectric slabs of semi-infinite and finite thicknesses. We applied the iterative algorithm for simulation of sinusoidally-perturbed dielectric slab on one side and the method converged for such unsmooth surfaces. We next simulated the shift in radiation pattern of a 6-inch dielectric lens for different offsets of the feed antenna on the focal plane. The result is compared to that of the Geometrical Optics (GO).

  5. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  6. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  7. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  8. Mixed Electromagnetic and Circuit Simulations using Higher-Order Elements and Bases

    SciTech Connect

    Champagne, N J; Rockway, J D; Jandhyala, V

    2003-06-18

    In this paper, an approach to couple higher-order electromagnetic surface integral equations to circuit simulations is presented. Terminals are defined that connect circuit elements to contacts modeled on the distributed electromagnetic domain. A modified charge-current continuity equation is proposed for a generalized KCL connection at the contacts. The distributive electromagnetic integral equations are developed using higher-order bases and elements that allow both better convergence and accuracy for modeling. The resulting scheme enables simultaneous solution of electromagnetic integral equations for arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits design iterations and visualization of the interaction between the two domains.

  9. Detailed Modeling of Grounding Solutions for the ITER ICRF Antenna

    NASA Astrophysics Data System (ADS)

    Kyrytsya, V.; Dumortier, P.; Messiaen, A.; Louche, F.; Durodié, F.

    2011-12-01

    The excitation of non-TEM modes around the ITER ICRF antenna plug can considerably increase the level of RF voltages and currents on the ITER plug. First study of these modes and a solution to avoid them in the ITER ion cyclotron range of frequencies were reported in [1]. In this work a detailed analysis of electrical properties of the ITER ICRF antenna with the plug was studied for different grounding solutions with CST Microwave Studio® [2]. Conclusions of an earlier work [ 1 ] were confirmed on the detailed model of the antenna with the plug. Different grounding contacts (capacitive, galvanic and mixed capacitive-galvanic) as well as their distribution inside the plug gap were analyzed. It was shown that capacitive and mixed capacitive-galvanic grounding are less effective because they demand high values of the capacitance and are more sensitive to the frequency and antenna spectrum. In particular a galvanic grounding realized by the contacts put around the perimeter of the plug gap at lm behind the front face of the antenna is the most suitable solution from the electromagnetic point of view. An optimization of the layout and arrangement of the contacts in order to assess and optimize the current distribution on them is under way. Measurements on a scaled mock-up of the complete antenna and the plug are under way for modeling results confirmation.

  10. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  11. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  12. Electromagnetic structure of pion

    SciTech Connect

    Mello, Clayton S.; Cruz Filho, Jose P.; Da Silva, Edson O.; El-Bennich, Bruno; De Melo, J. P.; Filho, Victo S.

    2013-03-25

    In this work, we analyze the electromagnetic structure of the pion, an elementary particle composed by a quark-antiquark bound state, by considering the calculation of its electromagnetic radius and its electromagnetic form factor in low and intermediate energy range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion, in the formalism of the light-front field theory. In particular, it is considered a nonsymmetrical vertex for such a model, in which we have calculated the electromagnetic form factor of the pion in an optimized way, by varying its regulator mass, so that we can obtain the best value for the pion electromagnetic radius when compared with the experimental one. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.

  13. Comments on the iterated knapsack attack

    SciTech Connect

    Brickell, E.F.

    1983-01-01

    L. Adleman has proposed a three step method for breaking the iterated knapsack that runs in polynomial time and is linear in the number of iterations. In this paper, we show that the first step is possibly exponential in the number of iterations, and that the second and third steps are exponential even for only three iterations.

  14. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  15. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  16. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  17. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  18. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  19. Electromagnetic mass revisited

    NASA Astrophysics Data System (ADS)

    Schwinger, Julian

    1983-03-01

    Examples of uniformly moving charge distributions that possess conserved electromagnetic stress tensors are exhibited. These constitute stable systems with covariantly characterized electromagnetic mass. This note, on a topic to which Paul Dirac made a significant contribution in 1938, is dedicated to him for his 80th birthday.

  20. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  1. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  2. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  3. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  4. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  5. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106

  6. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  7. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  8. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  9. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  10. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  11. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  12. On electromagnetic and quantum invisibility

    NASA Astrophysics Data System (ADS)

    Mundru, Pattabhiraju Chowdary

    The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic

  13. ODE System Solver W. Krylov Iteration & Rootfinding

    SciTech Connect

    Hindmarsh, Alan C.

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.

  14. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (ESTSC)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  15. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  16. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  17. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  18. Prospects of ITER Instability Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen

    2015-11-01

    Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.

  19. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  20. High frequency electromagnetic tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Ueng, T.; Latorre, R.

    1989-09-01

    An experiment was conducted in G Tunnel at the Nevada Test Site to evaluate high frequency electromagnetic tomography as a candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Tomographs of 200 MHz electromagnetic permittivity were made for several planes between boreholes. Data were taken before the heater was turned on, during heating and during cooldown of the rockmass. This data is interpreted to yield maps of changes in water content of the rockmass as a function of time. This interpretation is based on laboratory measurement of electromagnetic permittivity as a function of water content for densely welded tuff. 8 refs., 6 figs.

  1. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  2. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  3. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  4. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  5. ITER Test Blanket Module Error Field Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Schaffer, M. J.

    2010-11-01

    Recent experiments at DIII-D used an active-coil mock-up to investigate effects of magnetic error fields similar to those expected from two ferromagnetic Test Blanket Modules (TBMs) in one ITER equatorial port. The largest and most prevalent observed effect was plasma toroidal rotation slowing across the entire radial profile, up to 60% in H-mode when the mock-up local ripple at the plasma was ˜4 times the local ripple expected in front of ITER TBMs. Analysis showed the slowing to be consistent with non-resonant braking by the mock-up field. There was no evidence of strong electromagnetic braking by resonant harmonics. These results are consistent with the near absence of resonant helical harmonics in the TBM field. Global particle and energy confinement in H-mode decreased by <20% for the maximum mock-up ripple, but <5% at the local ripple expected in ITER. These confinement reductions may be linked with the large velocity reductions. TBM field effects were small in L-mode but increased with plasma beta. The L-H power threshold was unaffected within error bars. The mock-up field increased plasma sensitivity to mode locking by a known n=1 test field (n = toroidal harmonic number). In H-mode the increased locking sensitivity was from TBM torque slowing plasma rotation. At low beta, locked mode tolerance was fully recovered by re-optimizing the conventional DIII-D ``I-coils'' empirical compensation of n=1 errors in the presence of the TBM mock-up field. Empirical error compensation in H-mode should be addressed in future experiments. Global loss of injected neutral beam fast ions was within error bars, but 1 MeV fusion triton loss may have increased. The many DIII-D mock-up results provide important benchmarks for models needed to predict effects of TBMs in ITER.

  6. Correctness properties for iterated hardware structures

    NASA Technical Reports Server (NTRS)

    Windley, Phillip J.

    1993-01-01

    Iterated structures occur frequently in hardware. This paper describes properties required of mathematical relations that can be implemented iteratively and demonstrates the use of these properties on a generalized class of adders. This work provides a theoretical basis for the correct synthesis of iterated arithmetic structures.

  7. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  8. Projection Classification Based Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiqiu; Li, Chen; Gao, Wenhua

    2015-05-01

    Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.

  9. The compact electromagnetic device optimization modeling of seismo-electromagnetic processes for the Earth

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2009-04-01

    The electromagnetically equivalent device model [1]-[2] is extended as considering the whole Earth like a complete system in this paper. The crustal structures are considered as a complex network of distributed circuits involving slot antenna arrays, open waveguides, cavities, transmission strip lines, attenuators, frequency converters, dividers, couplings in the electromagnetically equivalent device model of the complete system of Earth (EEDMCSE). The variations at the geo-data taken at any port of the EEDMCSE give some functional relationships on the electromagnetic characteristics of the distributed complex network explained above. The mappings said here are based on the transformations among both the temporal and the spatial variations of both geo-data and the electromagnetic characteristics of the distributed complex network [2]. The Finite Difference Time Domain Method is used at the evaluations. The temporal variations at the mappings of EEDMCSE at specific locations extract the mechanisms explaining the relationships among the characteristics of the distributed complex network and seismic phenomena of Earth in the future. A mapping is established between the parameter space of the geo-data and the characteristics of the electromagnetically equivalent device model. The temporal variations of the geo-data are correlated to the self-optimizing the specific characteristics of the electromagnetically equivalent device. The relationships said here give a possibility of predicting the geo-data. Using the inverses of the mappings generates the evaluations giving the predictability conditions involving restrictions. The inversion of the mapping exploits a fine model at predicting the natural iterations of the geo-data at future on both the region connected the port and some locations non-related to the port either geologically or seismically or phenomenologically relating to the earth [1] - [5]. 2 References [1] T. Sengor,"The electromagnetic device optimization

  10. Truncated States Obtained by Iteration

    NASA Astrophysics Data System (ADS)

    Cardoso B., W.; Almeida G. de, N.

    2008-02-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  11. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  12. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  13. ITER EDA Newsletter. Volume 3, no. 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.

  14. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  15. ITER on the road to fusion energy

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2010-01-01

    On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.

  16. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  17. Numerical computation of guided electromagnetic waves

    SciTech Connect

    McCartin, B.J.

    1996-12-31

    A computational procedure is presented for the determination of the propagating modes of cylindrical electromagnetic waveguides. The geometrical cross-section of the waveguide is completely arbitrary and may be filled with any homogeneous isotropic material, either dielectric or magnetic or both. A modal decomposition is employed thus reducing the problem to uncoupled Helmholtz equations for transverse electric (TE) and transverse magnetic (TM) modes. The discretization of these two-dimensional Helmholtz equations is accomplished by application of the Control Region Approximation. This is a generalized finite-difference procedure involving the tessellation of the cross-section by dual Dirichlet and Delaunay regions. The discrete propagation constants and modes are determined by an inverse power iteration. Power flow, wall loss, and dielectric loss are then calculated. Numerical results indicating the efficacy of this approach are represented.

  18. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  19. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  20. Electromagnetic energy sink

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, C. A.; Vehmas, J.; Simovski, C. R.; Tretyakov, S. A.; Maslovski, S. I.

    2015-12-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. A known idealized realization of the black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields that exists near any finite-size source, and the energy stored in these fields cannot be harvested. Here, we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs the energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  1. Aircraft electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  2. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  3. EMACK electromagnetic launcher commissioning

    NASA Astrophysics Data System (ADS)

    Deis, D. W.; Scherbarth, D. W.; Ferrentino, G. L.

    1984-03-01

    The Laboratory Demonstration Electromagnetic Launcher Program (EMACK) was initiated in April 1979, with the objective to design, construct, and demonstrate a complete electromagnetic launcher (EML) system capable of accelerating projectiles of substantial mass to velocities significantly greater than those achievable with conventional chemical systems. The last hardware was installed in late 1981. During February 1982, a series of five test shots was made to evaluate the system's performance. Particular attention is given to the parameters of the final, as-built hardware, and the results of the commissioning tests. The results of these tests have demonstrated the viability of the components required for large scale electromagnetic launchers. It has been shown that large projectiles with velocities significantly greater than those achievable by chemical systems can be accelerated intact.

  4. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  5. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  6. Introducing electromagnetic field momentum

    NASA Astrophysics Data System (ADS)

    Yu-Kuang Hu, Ben

    2012-07-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional analysis and without using vector calculus identities or the need to evaluate integrals. I use this result to show that linear and angular momenta are conserved for a charge in the presence of a magnetic dipole when the dipole strength is changed.

  7. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  8. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  9. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  10. Primary Design and Analysis of Feeder for ITER Poloidal Field

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Liu, Sumei; Lu, Kun; Wang, Zhongwei

    2011-10-01

    An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible.

  11. Benchmarking ICRF Full-wave Solvers for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R. J. Dumont, A. Fukuyama, R. Harvey, E. F. Jaeger, K. Indireshkumar, E. Lerche, D. McCune, C. K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2011-01-06

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  12. Nuclear technology aspects of ITER vessel-mounted diagnostics

    NASA Astrophysics Data System (ADS)

    Vayakis, George; Bertalot, Luciano; Encheva, Anna; Walker, Chris; Brichard, Benoît; Cheon, M. S.; Chitarin, G.; Hodgson, Eric; Ingesson, Christian; Ishikawa, M.; Kondoh, T.; Meister, Hans; Moreau, Philippe; Peruzzo, Simone; Pak, S.; Pérez-Pichel, Germán; Reichle, Roger; Testa, Duccio; Toussaint, Matthieu; Vermeeren, Ludo; Vershkov, Vladimir

    2011-10-01

    ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include: Inductive sensors for time-integrated and raw inductive measurements; Steady-state magnetic sensors to correct drifts of the inductive sensors; Bolometer cameras to provide electromagnetic radiation tomography; Microfission chambers and neutron activation stations to provide fusion power and fluence; MM-wave reflectometry to measure the plasma density profile and the plasma-wall distance and; Wiring to service magnetics, bolometry, and in-vessel instrumentation. This paper summarises the key technological issues these diagnostics arising from the nuclear environment, recent progress and outstanding R&D for each system.

  13. Seismic electromagnetic study in China

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  14. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  15. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  16. Calculation of Electromagnetic Quasistatic Plasma Waves*

    NASA Astrophysics Data System (ADS)

    Cooley, J.; Antonsen, T. M., Jr.; Mori, W.

    2001-10-01

    Plasma based particle acceleration requires the generation of plasma wave wakes which maintain their coherence over long distances. For example in Laser Wake Field Acceleration (LWFA) schemes the laser pulse must propagate tens of centimeters, which coresponds to many Rayleigh lengths, and in Plasma Wake Field Acceleration (PWFA) the particle beam must be propagated many meters. These wakes, and their effect on the driver (Laser or particle beam) can be simulated efficiently in the quasistatic approximation [1]. In this approximation the driver does not evolve during the time a plasma electron spends in the driver. We discuss here various numerical algorithms for determining the full electromagnetic wake in this case. The problem is complicated in that the particle trajectories and wake fields must be determined iteratively when the wake becomes electromagnetic. The effect of different choices for the gauge will be presented. [1] "Kinetic Modeling of Intense, Short Laser Pulses Propagating in Tenuous Plasma", P. Mora and T. M. Antonsen Jr., Phys Plasma 4, 217 (1997) *Work supported by NSF and DOE

  17. Electromagnetic mixing laws: A supersymmetric approach

    SciTech Connect

    Niez, J.J.

    2010-02-15

    In this article we address the old problem of finding the effective dielectric constant of materials described either by a local random dielectric constant, or by a set of non-overlapping spherical inclusions randomly dispersed in a host. We use a unified theoretical framework, such that all the most important Electromagnetic Mixing Laws (EML) can be recovered as the first iterative step of a family of results, thus opening the way to future improvements through the refinements of the approximation schemes. When the material is described by a set of immersed inclusions characterized by their spatial correlation functions, we exhibit an EML which, being featured by a minimal approximation scheme, does not come from the multiple scattering paradigm. It is made of a pure Hori-Yonezawa formula, corrected by a power series of the inclusion density. The coefficients of the latter, which are given as sums of standard diagrams, are recast into electromagnetic quantities which calculation is amenable numerically thanks to codes available on the web. The methods used and developed in this work are generic and can be used in a large variety of areas ranging from mechanics to thermodynamics.

  18. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  19. The CMS Electromagnetic Calorimeter

    SciTech Connect

    Paramatti, Riccardo

    2005-10-12

    The electromagnetic calorimeter of the CMS experiment at LHC will consist of about 76000 Lead Tungstate crystals. Its main purpose is the very precise energy measurement of electrons and photons produced at 14 TeV centre-of-mass energy. A review of its performances and its construction status is given. Then the calibration strategy is described in details.

  20. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  1. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  2. Superconductive electromagnet apparatus

    SciTech Connect

    Mine, S.

    1982-12-14

    Disclosed is a superconductive electromagnet apparatus having a coil with a coiled conductor with a channel between adjacently disposed the paths of the coil conductor of which width is selected in accordance with amounts of heat produced at the corresponding portions of the coil section as viewed in cross section.

  3. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  4. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  5. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  6. Magnetization measurements on ITER Nb3Sn CICC and strands subjected to irreversible strain degradation

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Bink, D.; Liu, B.; Miyoshi, Y.; Wessel, W. A. J.; Krooshoop, H. J. G.; Nijhuis, A.

    2012-07-01

    We investigated the impact of irreversible strain changes and filament cracking on the AC losses of several Nb3Sn strands and a full-size ITER cable-in-conduit-conductor (CICC). The aim is to evaluate whether the presence of filament cracks in full-size ITER Nb3Sn CICC (after cyclic loading) can be detected without extracting strands from the cable for microscopic observation. The strand AC loss was measured in a magnetometer in virgin condition and after an applied periodic and cyclic bending strain. The filament fracture pattern was determined afterwards by SEM analysis. We found a significant decrease of the hysteresis loss in ITER bronze and internal-tin type strands with increasing filament fracture density. However, in the experimental comparison between a highly degraded section of a full-size ITER TF CICC sample subjected to high electromagnetic load and a section taken from the low magnetic field zone, no clear difference is observed in hysteresis loss but only in coupling loss. The first measurement on a full-size ITER CICC sample indicates that the amount of cracks is at least restricted to an average crack density of 0.05 cracks/filament/mm but a higher accuracy of the CICC AC loss measurement is required for better precision. Further work is required to evaluate whether the observed degradation of the current sharing temperature and n-value is essentially attributed to strand deformation and associated periodic strain variations or filament cracks.

  7. Results of the TF conductor performance qualification samples for the ITER project

    NASA Astrophysics Data System (ADS)

    Breschi, M.; Devred, A.; Casali, M.; Bessette, D.; Jewell, M. C.; Mitchell, N.; Pong, I.; Vostner, A.; Bruzzone, P.; Stepanov, B.; Boutboul, T.; Martovetsky, N.; Kim, K.; Takahashi, Y.; Tronza, V.; Yu, Wu

    2012-09-01

    The performance of the toroidal field (TF) magnet conductors for the ITER machine are qualified by a short full-size sample (4 m) current sharing temperature (Tcs) test in the SULTAN facility at CRPP in Villigen, Switzerland, using the operating current of 68 kA and the design peak field of 11.8 T. Several samples, including at least one from each of the six ITER Domestic Agencies participating in TF conductor fabrication (China, European Union, Japan, Russia, South Korea and the United States), have been qualified by the ITER Organization after achieving Tcs values of 6.0-6.9 K, after 700-1000 electromagnetic cycles. These Tcs values exceed the ITER specification and enabled the industrial production of these long-lead items for the ITER tokamak to begin in each Domestic Agency. Some of these samples did not pass the qualification test. In this paper, we summarize the performance of the qualified samples, analyze the effect of strand performance on conductor performance, and discuss the details of the test results.

  8. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  9. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  10. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  11. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  12. Electromagnetic structure of light nuclei

    DOE PAGESBeta

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  13. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  14. Neutron measurements in ITER using the Radial Neutron Camera

    NASA Astrophysics Data System (ADS)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  15. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  16. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  17. Finite element neural networks for electromagnetic inverse problems

    NASA Astrophysics Data System (ADS)

    Ramuhalli, P.; Udpa, L.; Udpa, S.

    2002-05-01

    Iterative approaches using numerical forward models are commonly used for solving inverse problems in nondestructive evaluation. The drawbacks of these approaches include their high computational cost and the difficulty in computing gradients for updating defect profiles. This paper proposes a finite element neural network (FENN) that embeds finite element models into a neural network format. This approach enables fast and accurate solution of the forward problem. The FENN can then be used as the forward model in an iterative approach to solve the inverse problem. Gradient-based optimization methods are easily applied since the FENN provides an explicit functional mapping between the defect profile and the measured signal. Results of applying the FENN to several simple electromagnetic forward and inverse problems are presented.

  18. Electromagnetic Environment of Grounding Systems

    NASA Astrophysics Data System (ADS)

    Lefouili, M.; Hafsaoui, I.; Kerroum, K.; Drissi, K. El Khamlichi

    Electromagnetic compatibility (EMC) and lightning protection studies in large installations require knowledge of spatial and temporal distribution of electromagnetic fields in case of lightning and power system faults. A new hybrid method for modeling electromagnetic environment of grounding systems is developed in this work. The electromagnetic fields in the surrounding soil are determined from the previously calculated current distribution using dipoles theory with analytical formulas. The model can be used to predict the EM environment of grounding systems because it can calculate electromagnetic fields in any points of interest.

  19. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  20. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    NASA Astrophysics Data System (ADS)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  1. Electromagnetic scattering by harmonically expanding surfaces and related complex resonances

    NASA Astrophysics Data System (ADS)

    Censor, D.

    1985-02-01

    A relativistically exact iterative method is developed for scattering of electromagnetic waves by expanding surfaces. In particular, the problems of the expanding cylinder and sphere are computed. It is shown that expanding scatterers respond to harmonic excitation by radiating nonharmonic waves. These waves involve complex frequencies, which are computed here. The method involves secular terms in t; therefore its validity for harmonic excitation is limited to early times. However, in the case of impulse excitation and transient scattering this problem is automatically resolved by the fact that the signal is exponentially decaying and the secular terms have no large-time effect.

  2. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  3. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  4. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C C

    1998-01-01

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; and (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.

  5. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  6. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  7. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  8. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  9. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  10. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  11. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  12. Electromagnetically coupled microstrip dipoles

    NASA Astrophysics Data System (ADS)

    Oltman, H. G.; Huebner, D. A.

    1981-01-01

    A new class of printed circuit radiator consisting of a microstrip dipole electromagnetically coupled to a microstrip feed line is described. Several configurations which differ in bandwidth, efficiency, and construction simplicity are presented. A geometry which has been found to be optimum for many applications is noted. Radiation characteristics of both isolated elements and arrays of elements are examined. Experimental and theoretical results are presented.

  13. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  14. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  15. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  16. Earth's Electromagnetic Environment

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2016-01-01

    The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10^{-4}-10^4 Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10^4 Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at ˜1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth's internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz-3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3-30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7-2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

  17. Electromagnetic tornadoes in space

    SciTech Connect

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.

  18. Electromagnetic Hammer for Metalworking

    NASA Technical Reports Server (NTRS)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; Nameth, P.; Okelly, K.; Phillips, H.; Rollo, J.; Rupert, E.; Sykes, H.; Vitrano, E.; Woods, M.

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  19. CMS electromagnetic calorimeter readout

    SciTech Connect

    Denes, P.; Wixted, R.

    1997-12-31

    The CMS Electromagnetic Calorimeter will consist of 109,008 crystals of Lead Tungstate (PbWO{sub 4}) arranged in a barrel (92880 crystals) and 2 endcaps (8064 crystals each). The crystals will be 25 radiation lengths long and cut in tapered shapes to make a hermetic calorimeter. The scintillation light from the crystals is captured by a photodetector, amplified and digitized. The properties of PbWO4, which is a new crystal still very much under development.

  20. Electromagnetically Activated Hypersonic Ducts

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper explores the use of Electromagnetic Radiation as an alternative to combustion in Scramjet-like hypersonic engines. The radiation is absorbed by the flow, heating it and thereby providing an alternative to the heat derived from combustion in the Scramjet. The advantages and disadvantages of this system are explored and theoretical results are presented illustrating typical radiation pathlengths at different frequencies. Suggestions for further theoretical and practical work are also made.

  1. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    SciTech Connect

    Takahashi, K.; Imai, T.; Kobayashi, N.; Sakamoto, K.; Kasugai, A.; Hayakawa, A.; Mori, S.; Mohri, K.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguide lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.

  2. Acceleration of iterative image restoration algorithms.

    PubMed

    Biggs, D S; Andrews, M

    1997-03-10

    A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863

  3. Forward modeling of geophysical electromagnetic methods using Comsol

    NASA Astrophysics Data System (ADS)

    Butler, S. L.; Zhang, Z.

    2016-02-01

    In geophysical electromagnetic methods, time-varying magnetic fields are measured at Earth's surface that are produced by electrical currents inside the Earth in order to constrain subsurface conductivity and geological structure. These methods are widely used for mineral exploration and environmental investigations, and are increasingly being used in hydrocarbon exploration as well. Forward modeling of exploration geophysics methods is useful for the purpose of survey planning, for understanding the method, especially for students, and as part of an iteration process in inverting measured data. Modeling electromagnetic methods remains an area of active research. In most geophysical methods, the electromagnetic frequency is sufficiently low that the wavelength of the radiation is much larger than the area of interest. As such, the quasi-static approximation is valid. Comsol Multiphysics' AC/DC module solves Maxwell's equations in the quasi-static approximation and in this contribution, we will show examples of its use in modeling magnetometric resistivity (MMR), very low frequency (VLF) techniques, as well as frequency and time-domain induction-based electromagnetic techniques. Solutions are compared with benchmarks from the literature.

  4. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  6. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  7. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  8. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  9. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  10. Electromagnetic Theory 3 Volume Set

    NASA Astrophysics Data System (ADS)

    Heaviside, Oliver

    2011-09-01

    Volume 1: Preface; 1. Introduction; 2. Outline of the electromagnetic connections; 3. The elements of vectorial algebra and analysis; 4. Theory of plane electromagnetic waves; Appendix. Volume 2: Preface; 5. Mathematics and the age of the earth; 6. Pure diffusion of electric displacement; 7. Electromagnetic waves and generalised differentiation; 8. Generalised differentiation and divergent series; Appendix. Volume 3: 9. Waves from moving sources; 10. Waves in the ether.

  11. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  12. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  13. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  14. Electromagnetic transitions in hypernuclei

    SciTech Connect

    Chrien, R.E.

    1986-01-01

    The object of this review is to survey observations of electromagnetic transitions in hypernuclei and to point out contributions of these observations to an understanding of the effective two-body hyperon-nucleon forces in the nucleus. The discussion concentrates on lambda-hyperon nucleon potentials. Future plans for high resolution hypernuclear spectroscopy using Ge diode detectors is discussed, especially regarding the window of utility of such devices. Expected improvements in beam facilities are also reviewed. 9 refs., 4 figs., 1 tab. (DWL)

  15. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  16. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  17. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-05-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  18. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Awes, Terry C; ALICE, Collaboration

    2010-01-01

    ALICE is the general purpose experiment at the LHC dedicated to the study of heavy-ion collisions. The electromagnetic calorimeter (EMCal) is a late addition to the ALICE suite of detectors with first modules installed in ALICE this year. The EMCal is designed to trigger on high energy gamma-rays and jets, and to enhance the capabilities of ALICE for these measurements. The EMCal is a Pb/scintillator sampling shish-kebab type calorimeter. The EMCal construction, readout, and performance in beam tests at the CERN SPS and PS are described.

  19. Phase characteristics of electromagnetic stirring

    SciTech Connect

    Fujisaki, Keisuke; Ueyama, Takatsugu; Takahashi, Keiichi; Satoh, Shouji

    1997-09-01

    Electromagnetic stirring is used at billet molds as well as at slab mold, to get high quality steel at continuous casting in steel making plant. In order to get the same electromagnetic force in each billet mold and thus the same quality, phase characteristics of electromagnetic stirring is investigated. From the calculation result, it is found that the relative phase at which the difference of the electromagnetic torque in each mold becomes the smallest is 0 or 240 deg. To apply the phase characteristics of the EMS to the quality control, the authors propose the dynamic phase control system by two inverters to get the high quality in the surface crack.

  20. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling

    SciTech Connect

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.

    2011-12-23

    A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  1. An iterative analytic—numerical method for scattering from a target buried beneath a rough surface

    NASA Astrophysics Data System (ADS)

    Xu, Run-Wen; Guo, Li-Xin; Wang, Rui

    2014-11-01

    An efficiently iterative analytical—numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.

  2. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.

    2011-12-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  3. Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Hu, Jiasheng; Wu, Kenan

    2009-08-01

    The vector fuzzy control iterative algorithm (VFCIA) is proposed for the design of phase-only sub-wavelength diffractive optical elements (SWDOEs) for beam shaping. The vector diffraction model put forward by Mansuripur is applied to relate the field distributions between the SWDOE plane and the output plane. Fuzzy control theory is used to decide the constraint method for each iterative process of the algorithm. We have designed a SWDOE that transforms a circular flat-top beam to a square irradiance pattern. Computer design results show that the SWDOE designed by the VFCIA can produce better results than the vector iterative algorithm (VIA). And the finite difference time-domain method (FDTD), a rigorous electromagnetic analysis technique, is used to analyze the designed SWDOE for further confirming the validity of the proposed method.

  4. EU contribution to the test and analysis of the ITER poloidal field conductor insert and the central solenoid model coil

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Bagnasco, M.; Ciazynski, D.; Lacroix, B.; van Lanen, E. P. A.; Nicollet, S.; Nijhuis, A.; Savoldi Richard, L.; Sborchia, C.; Torre, A.; Vostner, A.; Zani, L.

    2009-08-01

    The PFCI is a single-layer solenoid wound from a 45 m long ITER-type NbTi dual-channel cable-in-conduit conductor, designed to be representative of the one currently proposed for the ITER PF1&6 coils. The PFCI, installed in the bore of the ITER central solenoid model coil (CSMC) at JAEA Naka, Japan, and well instrumented from both the thermal hydraulic and the electromagnetic points of view, has been successfully tested in June-August 2008. The test concentrated on DC performance (current sharing temperature and critical current measurements) and AC loss measurements. The results of the analysis of those measurements are reported in the paper, with particular attention to the comparison with the PFCI short sample, which was previously tested in the SULTAN facility. The evolution of the DC performance of the CSMC is also discussed.

  5. Electro-magnetic compatibility

    NASA Astrophysics Data System (ADS)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  6. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  7. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  8. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  9. Electromagnetically Induced Entanglement

    NASA Astrophysics Data System (ADS)

    Yang, Xihua; Xiao, Min

    2015-08-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  10. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  11. Electromagnetically Induced Entanglement.

    PubMed

    Yang, Xihua; Xiao, Min

    2015-01-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514

  12. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  13. Metamaterials beyond electromagnetism.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. PMID:24190877

  14. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  15. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  16. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  17. US sanctions on Russia hit ITER council

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2014-06-01

    The ITER fusion experiment has had to bow to the impact of US sanctions against Russia and move the venue of its council meeting, scheduled for 18-19 June, from St Petersburg to the project headquarters in Cadarache, France.

  18. Budget woes continue to hamper ITER

    NASA Astrophysics Data System (ADS)

    Starckx, Senne

    2011-02-01

    A financial rescue package for ITER - the experimental nuclear-fusion reactor that is currently being built in Cadarache, France - has been refused by the European Parliament and the European Council.

  19. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  20. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  1. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  2. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  3. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    NASA Astrophysics Data System (ADS)

    Vrancken, M.; Argouarch, A.; Blackman, T.; Dumortier, P.; Durodié, F.; Goulding, R.; Graham, M.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Nicholls, K.; Nightingale, M.; Vervier, M.

    2007-09-01

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST® Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  4. RF Measurements and Modeling from the JET-ITER Like Antenna Testing

    SciTech Connect

    Vrancken, M.; Dumortier, P.; Durodie, F.; Huygen, S.; Lamalle, P. U.; Messiaen, A. M.; Vervier, M.; Argouarch, A.; Blackman, T.; Graham, M.; Nicholls, K.; Nightingale, M.

    2007-09-28

    The RF characteristics of the JET-ITER Like (JET-IL) antenna relevant for operation on plasma have been assessed using full wave three Dimensional (3D) electromagnetic CST registered Microwave Studio (MWS) simulations, measurements of the full 8-port antenna strap array S/Z-matrix, and RF circuit modeling. These efforts are made in parallel with the high voltage testing of the antenna inside a vacuum tank and the hardware implementation of a RF (Radio Frequency) matching feedback control system prior to installation of the antenna on the JET tokamak.

  5. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  6. An Iterative Soft-Decision Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao

    1996-01-01

    This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.

  7. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  8. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  9. Advanced implementations of the iterative multi region technique

    NASA Astrophysics Data System (ADS)

    Kaburcuk, Fatih

    The integration of the finite-difference time-domain (FDTD) method into the iterative multi-region (IMR) technique, an iterative approach used to solve large-scale electromagnetic scattering and radiation problems, is presented in this dissertation. The idea of the IMR technique is to divide a large problem domain into smaller subregions, solve each subregion separately, and combine the solutions of subregions after introducing the effect of interaction to obtain solutions at multiple frequencies for the large domain. Solution of the subregions using the frequency domain solvers has been the preferred approach as such solutions using time domain solvers require computationally expensive bookkeeping of time signals between subregions. In this contribution we present an algorithm that makes it feasible to use the FDTD method, a time domain numerical technique, in the IMR technique to obtain solutions at a pre-specified number of frequencies in a single simulation. As a result, a considerable reduction in memory storage requirements and computation time is achieved. A hybrid method integrated into the IMR technique is also presented in this work. This hybrid method combines the desirable features of the method of moments (MoM) and the FDTD method to solve large-scale radiation problems more efficiently. The idea of this hybrid method based on the IMR technique is to divide an original problem domain into unconnected subregions and use the more appropriate method in each domain. The most prominent feature of this proposed method is to obtain solutions at multiple frequencies in a single IMR simulation by constructing time-limited waveforms. The performance of the proposed method is investigated numerically using different configurations composed of two, three, and four objects.

  10. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  11. Transmitting Electromagnetic Energy into Liquids

    NASA Technical Reports Server (NTRS)

    Johnston, E. J.

    1984-01-01

    Rough liquid surface enhances coupling. Agitating surface of liquid nitrogen bath with periodic or aperiodic excitation enhances electromagnetic coupling between microwave horn and blackbody temperature standard immersed in liquid. Useful in interfaces between electromagnetic radiation and liquids. Biomedical, radar, and meteorological applications.

  12. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  13. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter

  14. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  15. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  16. Electromagnetic scattering theory

    NASA Technical Reports Server (NTRS)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  17. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  18. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  19. Causal electromagnetic interaction equations

    SciTech Connect

    Zinoviev, Yury M.

    2011-02-15

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  20. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    1997-02-01

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domain CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.

  1. Electromagnetic nucleon form factors

    SciTech Connect

    Bender, A.; Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.

  2. Wavelets and electromagnetics

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.

    1992-01-01

    Wavelets are an exciting new topic in applied mathematics and signal processing. This paper will provide a brief review of wavelets which are also known as families of functions with an emphasis on interpretation rather than rigor. We will derive an indirect use of wavelets for the solution of integral equations based techniques adapted from image processing. Examples for resistive strips will be given illustrating the effect of these techniques as well as their promise in reducing dramatically the requirement in order to solve an integral equation for large bodies. We also will present a direct implementation of wavelets to solve an integral equation. Both methods suggest future research topics and may hold promise for a variety of uses in computational electromagnetics.

  3. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  4. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  5. Electromagnetic Gyrokinetic Simulations

    SciTech Connect

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  6. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  7. The ALICE Electromagnetic Calorimeter

    SciTech Connect

    Gadrat, S.

    2010-06-01

    ALICE (A Large Ion Collider Experiment) is the only LHC experiment at CERN fully dedicated to the study of the quark and gluon plasma. Driven by the RHIC results on jet quenching, the ALICE collaboration has proposed to extend the capabilities of the ALICE detector for the study of high momentum photons and jets by adding a large acceptance calorimeter. This EMCal (ElectroMagnetic Calorimeter) is designed to provide an unbiased fast high-p{sub T} trigger and to measure the neutral energy of jets and photons up to 200 GeV. Four over ten supermodules of the calorimeter have been installed and commissioned at CERN in 2009 which represents 40% of the full acceptance.

  8. Simulation of ITER full-field ICWC scenario in JET: RF physics aspects

    NASA Astrophysics Data System (ADS)

    Lyssoivan, A.; Douai, D.; Koch, R.; Ongena, J.; Philipps, V.; Schüller, F. C.; Van Eester, D.; Wauters, T.; Blackman, T.; Bobkov, V.; Brezinsek, S.; de la Cal, E.; Durodié, F.; Gauthier, E.; Gerbaud, T.; Graham, M.; Jachmich, S.; Joffrin, E.; Kreter, A.; Kyrytsya, V.; Lerche, E.; Lomas, P.; Louche, F.; Maslov, M.; Mayoral, M.-L.; Moiseenko, V.; Monakhov, I.; Pankratov, I.; Paul, M. K.; Pitts, R. A.; Plyusnin, V.; Sergienko, G.; Shimada, M.; Vdovin, V. L.; contributors, JET-EFDA

    2012-07-01

    -field operation (BT = 5.3 T, f = 40 MHz) with the fundamental ion-cyclotron resonance for deuterium (\\omega =\\Omega_{D^+}) located on-axis. Numerical modelling with the 3D electromagnetic code Micro Wave Studio, a 1D RF full wave code and a 0D plasma code allows extrapolating the results obtained on JET and other present-day tokamaks to ITER and provides good prospects for the use of the ITER ICRF antennas for ICWC purposes.

  9. Full waveform inversion in the frequency domain using direct iterative T-matrix methods

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Ursin, Bjørn

    2015-06-01

    We present two direct iterative solutions to the nonlinear seismic waveform inversion problem that are based on volume integral equation methods for seismic forward modelling in the acoustic approximation. The solutions are presented in the frequency domain, where accurate inversion results can often be obtained using a relatively low number of frequency components. Our inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. Both these solutions update the wavefield within the scattering domain after each iteration. The main difference is that the background medium Green functions are kept fixed in the first solution, but updated after each iteration in the second solution. This means that our solutions are very similar to the Born iterative (BI) and the distorted Born iterative (DBI) methods that are commonly used in acoustic and electromagnetic inverse scattering. However, we have eliminated the need to perform a full forward simulation (or to invert a huge matrix) at each iteration via the use of an iterative T-matrix method for fixed background media for the BI method and a variational T-matrix method for dynamic background media for the DBI method. The T-matrix (variation) is linearly related with the seismic wavefield data (residuals), but related with the unknown scattering potential model parameter (updates) in a non-linear manner, which is independent of the source-receiver configuration. This mathematical structure, which allows one to peel off the effects of the source-receiver configuration, is very attractive when dealing with multiple (simultaneous) sources, and is also compatible with the (future) use of renormalization methods for dealing with local minima problems. To illustrate the performance and potential of the two direct iterative methods for FWI, we performed a series of numerical

  10. Interdisciplinary optimization combining electromagnetic and aerodynamic methods

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders James

    The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the

  11. Updating Plasma Scattering of Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    2010-05-01

    The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.

  12. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  13. Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.

  14. An iterative parallel sparse matrix equation solver with application to finite element modeling of electromagnetic scattering

    SciTech Connect

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1994-12-31

    The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.

  15. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  16. Current status of the ITER MSE diagnostic

    NASA Astrophysics Data System (ADS)

    Yuh, Howard; Levinton, F.; La Fleur, H.; Foley, E.; Feder, R.; Zakharov, L.

    2013-10-01

    The U.S. is providing ITER with a Motional Stark Effect (MSE) diagnostic to provide a measurement to guide reconstructions of the plasma q-profile. The diagnostic design has gone through many iterations, driven primarily by the evolution of the ITER port plug design and the steering of the heating beams. The present two port, three view design viewing both heating beams and the DNB has recently passed a conceptual design review at the IO. The traditional line polarization (MSE-LP) technique employed on many devices around the world faces many challenges in ITER, including strong background light and mirror degradation. To mitigate these effects, a multi-wavelength polarimeter and high resolution spectrometer will be used to subtract polarized background, while retroreflecting polarizers will provide mirror calibration concurrent with MSE-LP measurements. However, without a proven plasma-facing mirror cleaning technique, inherent risks to MSE-LP remain. The high field and high beam energy on ITER offers optimal conditions for a spectroscopic measurement of the electric field using line splitting (MSE-LS), a technique which does not depend on mirror polarization properties. The current design is presented with a roadmap of the R&D needed to address remaining challenges. This work is supported by DOE contracts S009627-R and S012380-F.

  17. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  18. Iterative contextual CV model for liver segmentation

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; He, Jiangping; Yang, Xin

    2014-01-01

    In this paper, we propose a novel iterative active contour algorithm, i.e. Iterative Contextual CV Model (ICCV), and apply it to automatic liver segmentation from 3D CT images. ICCV is a learning-based method and can be divided into two stages. At the first stage, i.e. the training stage, given a set of abdominal CT training images and the corresponding manual liver labels, our task is to construct a series of self-correcting classifiers by learning a mapping between automatic segmentations (in each round) and manual reference segmentations via context features. At the second stage, i.e. the segmentation stage, first the basic CV model is used to segment the image and subsequently Contextual CV Model (CCV), which combines the image information and the current shape model, is iteratively performed to improve the segmentation result. The current shape model is obtained by inputting the previous automatic segmentation result into the corresponding self-correcting classifier. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that we obtain more and more accurate segmentation results by the iterative steps and satisfying results are obtained after about six iterations. Also, our method is comparable to the state-of-the-art work on liver segmentation.

  19. U.S. Contributions to ITER

    SciTech Connect

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  20. Electromagnetic modeling in accelerator designs

    SciTech Connect

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described.

  1. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance. PMID:15352705

  2. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  3. ITER Experts' meeting on density limits

    SciTech Connect

    Borrass, K.; Igitkhanov, Y.L.; Uckan, N.A.

    1989-12-01

    The necessity of achieving a prescribed wall load or fusion power essentially determines the plasma pressure in a device like ITER. The range of operation densities and temperatures compatible with this condition is constrained by the problems of power exhaust and the disruptive density limit. The maximum allowable heat loads on the divertor plates and the maximum allowable sheath edge temperature practically impose a lower limit on the operating densities, whereas the disruptive density limit imposes an upper limit. For most of the density limit scalings proposed in the past an overlap of the two constraints or at best a very narrow accessible density range is predicted for ITER. Improved understanding of the underlying mechanisms is therefore a crucial issue in order to provide a more reliable basis for extrapolation to ITER and to identify possible ways of alleviating the problem.

  4. Re-starting an Arnoldi iteration

    SciTech Connect

    Lehoucq, R.B.

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  5. Safety and Environmental Activities for ITER

    NASA Astrophysics Data System (ADS)

    Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.

    1997-09-01

    This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.

  6. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  7. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1983-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  8. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1985-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  9. Development of pellet injection systems for ITER

    SciTech Connect

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.

  10. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  11. Low-memory iterative density fitting.

    PubMed

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. PMID:26058451

  12. Test and Analysis of China's First Short Conductor Sample for ITER Toroidal Field Coils

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wu, Yu

    2011-02-01

    In the framework of the ITER qualification tests, the first China TF conductor sample (CNTF1) was tested at the SULTAN facility. The sample was made of two TF conductor sections manufactured from identical internal stannum strands provided by the Oxford Superconducting technology company (OST). In order to evaluate the conductor performance, the current sharing temperature (Tcs) was measured at specified electromagnetic load cycling steps. Both conductor sections of the CNTF1 sample showed identical performance. Tcs was 7.2 K before cycling loading, and 6.9 K even after 950 cycles, without significant degradation, which substantially exceeds the ITER requirement of 5.7 K. The tests of the CNTF1 conductor sample showed that the electromagnetic cyclic load exhibited a negligible effect on the conductor performance. The coupling time constant θ for AC loss was 214 ms and 71.52 ms before and after the cycling load, respectively. The test results of the sample are compared with the strand performance and parameter model analysis.

  13. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. PMID:25700436

  14. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  15. Electromagnetically driven peristaltic pump

    DOEpatents

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  16. Electromagnetic Interference on Pacemakers

    PubMed Central

    Erdogan, Okan

    2002-01-01

    External sources, either within or outside the hospital environment, may interfere with the appropriate function of pacemakers which are being implanted all around the world in current medical practice. The patient and the physician who is responsible for follow-up of the pacing systems may be confronted with some specific problems regarding the various types of electromagnetic interference (EMI). To avoid these unwanted EMI effects one must be aware of this potential problem and need to take some precautions. The effects of EMI on pacemaker function and precautions to overcome some specific problems were discussed in this review article. There are many sources of EMI interacting with pacemakers. Magnetic resonance imaging creates real problem and should be avoided in pacemaker patients. Cellular phones might be responsible for EMI when they were held on the same side with the pacemaker. Otherwise they don't cause any specific type of interaction with pacemakers. Sale security systems are not a problem if one walks through it without lingering in or near it. Patients having unipolar pacemaker systems are prone to develop EMI because of pectoral muscle artifacts during vigorous active physical exercise. PMID:17006562

  17. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  18. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  19. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  20. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  1. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  2. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  3. Electromagnetic Interference In New Aircraft

    NASA Technical Reports Server (NTRS)

    Larsen, William E.

    1991-01-01

    Report reviews plans to develop tests and standards to ensure that digital avionics systems in new civil aircraft immune to electromagnetic interference (EMI). Updated standards reflect more severe environment and vulnerabilities of modern avionics.

  4. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  5. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  6. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  7. Modified Iterative Extended Hueckel. 1: Theory

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.

  8. Iterative instructions in the Manchester dataflow computer

    SciTech Connect

    Bohm, A.P.; Gurd, J.R. )

    1990-04-01

    Compilation techniques for dataflow computers, particularly techniques associated with optimized code generation, have led to the introduction of iterative instructions, which produce a sequence of outputs when presented with a single set of inputs. Although these are beneficial in reducing program execution times, they exhibit distinctive, coarse-grain characteristics that effect the normal, fine-grain operation of a dataflow computer. This paper investigates the nature and extent of the benefits and adverse effects of iterative instructions in the prototype Manchester dataflow computer.

  9. The ITER bolometer diagnostic: status and plans.

    PubMed

    Meister, H; Giannone, L; Horton, L D; Raupp, G; Zeidner, W; Grunda, G; Kalvin, S; Fischer, U; Serikov, A; Stickel, S; Reichle, R

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration. PMID:19044656

  10. Self-dual electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  11. Electromagnetic holographic imaging of bioimpedance

    NASA Astrophysics Data System (ADS)

    Smith, Dexter G.; Ko, Harvey W.; Lee, Benjamin R.; Partin, Alan W.

    1998-05-01

    The electromagnetic bioimpedance method has successfully measured the very subtle conductivity changes associated with brain edema and prostate tumor. This method provides noninvasive measurements using non-ionizing magnetic fields applied with a small coil that avoids the use of contact electrodes. This paper introduces results from combining a holographic signal processing algorithm and a low power coil system that helps provide the 3D image of impedance contrast that should make the noninvasive electromagnetic bioimpedance method useful in health care.

  12. Transverse cable stiffness and mechanical losses associated with load cycles in ITER Nb3Sn and NbTi CICCs

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.

    2009-05-01

    The flexible nature of the cable bundles in the sizeable cable-in-conduit-conductors for ITER containing more than a thousand strands, in combination with a void fraction of around 30%, gives scope for significant cable compression and strand deflection. In particular, the transverse stiffness of the Nb3Sn type of cabled superconductors, being subjected to large electromagnetic forces, is critical for their long-term performance considering the impact of the strain variation on the transport properties. What is more, the compression of the cable bundle under load and the permanent deformation and relaxation in time or that associated with quenches, have an effect on the cooling and pressure drop along the turns of the windings and are valuable to account for in large magnets such as for ITER. The electromagnetic AC losses of ITER Nb3Sn and NbTi CICCs, related to changing magnetic field and in this manner important for their stability, were broadly studied and reported but the associated mechanical losses have received less attention so far. The lifetime characteristics in terms of cable compression, changes in transverse stiffness and mechanical losses are experimentally determined on several prototype ITER NbTi and Nb3Sn conductors in the Twente press and a summary of the results is given. The nonlinear stress-strain characteristics of the cable bundle and its moderate time-dependent nature can be considered as a viscoelastic-plastic phenomenon. The evolution of the stiffness and the mechanical loss depends on the peak load, void fraction, strand type and strand coating and changes with the number of load cycles. The dissipated heat from mechanical energy is not a critical issue for ITER magnet operation but is not negligible, in particular in the case of NbTi conductors.

  13. New advances in three dimensional transient electromagnetic inversion

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2004-06-16

    Inversion of transient electromagnetic (TEM) data sets to image the subsurface three-dimensional (3-D) electrical conductivity and magnetic permeability properties can be done directly in the time domain. The technique, first introduced by Wang et al. (1994) for causal and diffusive electromagnetic fields and subsequently implemented by Zhdanov and Portniaguine (1997) in the framework of iterative migration, is based upon imaging methods originally developed for seismic wavefields (Claerbout, 1971; Tarantola, 1984). In this paper we advance the original derivations of Wang et al. (1994) and Zhdanov and Portniaguine (1997) to treat non-causal TEM fields, as well as correct a flaw in the theory for treatment of magnetic field data. Our 3D imaging scheme is based on a conjugate-gradient search for the minimum of an error functional involving EM measurements governed by Maxwell's equations without displacement currents. Treatment for magnetic field, voltage (time derivative of the magnetic field) and electric field data are given. The functional can be computed by propagating the data errors back into the model in reverse time along with a DC field, sourced by the integrated data errors over the measurement time range. By correlating these fields, including the time-integrated back-propagated fields, with the corresponding incident field and its initial value at each image point, efficient computational forms for the gradients are developed. The forms of the gradients allow for additional efficiencies when voltage and electric field data are inverted. In such instances the combined data errors can be back-propagated jointly, significantly reducing the computation time required to solve the inverse problem. The inversion algorithm is applied to the long offset transient electromagnetic measurement (LOTEM) configuration thereby demonstrating its capability in inverting non-causal field measurements of electric field and voltage, sourced by a grounded wire, over complex

  14. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE PAGESBeta

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; et al

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  15. Engineering aspects of design and integration of ECE diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K. B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J.-M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A.; Vacas, C.; Vayakis, G.; Walsh, M. J.

    2015-03-01

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  16. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  17. Resolution in Electromagnetic Prospecting

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.

    2014-12-01

    Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Megawatt Electromagnetic Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James; Lapointe, Michael; Mikellides, Pavlos

    2003-01-01

    The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive

  19. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  20. Iteration of Complex Functions and Newton's Method

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer

    2009-01-01

    This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…

  1. Nuclear analyses for the ITER ECRH launcher

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.

    2008-05-01

    Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.

  2. Iteration and Anxiety in Mathematical Literature

    ERIC Educational Resources Information Center

    Capezzi, Rita; Kinsey, L. Christine

    2016-01-01

    We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.

  3. Spectral resolvability of iterated rippled noise

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2005-04-01

    A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

  4. ITER faces further five-year delay

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2016-06-01

    The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 – a target date that is already five years later than currently scheduled.

  5. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  6. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  7. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  8. The determination of orbits using Picard iteration

    NASA Technical Reports Server (NTRS)

    Mikkilineni, R. P.; Feagin, T.

    1975-01-01

    The determination of orbits by using Picard iteration is reported. This is a direct extension of the classical method of Picard that has been used in finding approximate solutions of nonlinear differential equations for a variety of problems. The application of the Picard method of successive approximations to the initial value and the two point boundary value problems is given.

  9. Symbolic Computational Algebra Applied to Picard Iteration.

    ERIC Educational Resources Information Center

    Mathews, John

    1989-01-01

    Uses muMATH to illustrate the step-by-step process in translating mathematical theory into the symbolic manipulation setting. Shows an application of a Picard iteration which uses a computer to generate a sequence of functions which converge to a solution. (MVL)

  10. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  11. Iterative solution of the Helmholtz equation

    SciTech Connect

    Larsson, E.; Otto, K.

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  12. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  13. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) computer code documentation (version 3), volume 3, part 4

    NASA Astrophysics Data System (ADS)

    Kadlec, D. L.; Coffey, E. L.

    1983-09-01

    GEMACS, the General Electromagnetic Model for the Analysis of Complex systems, solves electromagnetic radiation and scattering problems. The Method of Moments (MOM) and Geometrical Theory of Diffraction (GTD) are used. MOM is formalized with the Electric Field Integral Equation (EFIE) for wires and the Magnetic Field Integral Equation (MFIE) for patches. The code employs both full matrix decomposition and Banded Matrix Iteration (BMI) solution techniques. The MOM, GTD and hybrid MOM/GTD techniques in the code are used to solve electrically small object problems, electrically large object problems and combination sized object problems. A computer code documentation manual is given. The manual contains extensive software information of the code.

  14. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) computer code documentation (version 3), volume 3, part 3

    NASA Astrophysics Data System (ADS)

    Kadlec, D. L.; Coffey, E. L.

    1983-09-01

    GEMACS, the General Electromagnetic Model for the Analysis of Complex Systems solves electromagnetic radiation and scattering problem. The Method of Moments (MOM) and Geometrical Theory of Diffraction (GTD) are used. MOM is formalized with the Electric Field Integral Equation (EFIE) for wires and the Magnetic Field Integral Equation (MFIE) for patches. The code employ both full matrix decomposition and Banded Matrix Iteration (BMI) solution techniques. The MOM, GTD and hybrid MOM/GTD techniques in the code are used to solve electrically small object problems, electrically large object problems and combination sized object problems. The computer code documentation is given.

  15. Computational electromagnetic methods for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Gomez, Luis J.

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3

  16. Reducing the latency of the Fractal Iterative Method to half an iteration

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Tallon, Michel

    2013-12-01

    The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.

  17. Electromagnetic pion form factor

    SciTech Connect

    Roberts, C.D.

    1995-08-01

    A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.

  18. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  19. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde

    2012-10-01

    In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).

  20. Simulation of electromagnetic scattering with stationary or accelerating targets

    NASA Astrophysics Data System (ADS)

    Funaro, Daniele; Kashdan, Eugene

    2015-12-01

    The scattering of electromagnetic waves by an obstacle is analyzed through a set of partial differential equations combining the Maxwell's model with the mechanics of fluids. Solitary type EM waves, having compact support, may easily be modeled in this context since they turn out to be explicit solutions. From the numerical viewpoint, the interaction of these waves with a material body is examined. Computations are carried out via a parallel high-order finite-differences code. Due to the presence of a gradient of pressure in the model equations, waves hitting the obstacle may impart acceleration to it. Some explicative 2D dynamical configurations are then studied, enabling the simulation of photon-particle iterations through classical arguments.

  1. Binary black holes' effects on electromagnetic fields.

    PubMed

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves. PMID:19792706

  2. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. PMID:27463670

  3. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  4. Un-renormalized classical electromagnetism

    SciTech Connect

    Ibison, Michael . E-mail: ibison@earthtech.org

    2006-02-15

    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.

  5. Electromagnetic corrections to baryon masses

    SciTech Connect

    Durand, Loyal; Ha, Phuoc

    2005-04-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately.

  6. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  7. Nested multigrid vector and scalar potential finite element method for three-dimensional time-harmonic electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Cangellaris, Andreas C.

    2002-05-01

    A new finite element methodology is presented for fast and robust numerical simulation of three-dimensional electromagnetic wave phenomena. The new methodology combines nested multigrid techniques with the ungauged vector and scalar potential formulation of the finite element method. The finite element modeling is performed on nested meshes over the computational domain of interest. The iterative solution of the finite element matrix on the finest mesh is performed using the conjugate gradient method, while the nested multigrid vector and scalar potential algorithm acts as the preconditioner for the iterative solver. Numerical experiments from the application of the new methodology to three-dimensional electromagnetic scattering are used to demonstrate its superior numerical convergence and efficient memory usage.

  8. Electromagnetic effects on planetary rings

    SciTech Connect

    Morfill, G.E.

    1983-01-01

    The role of electromagnetic effects in planetary rings is reviewed. The rings consist of a collection of solid particles with a size spectrum ranging from submicron to 10's of meters (at least in the case of Saturn's rings). Due to the interaction with the ambient plasma, and solar UV radiation, the particles carry electrical charges. Interactions of particles with the planetary electromagnetic field, both singly and collectively, are described, as well as the reactions and influence on plasma transients. The latter leads to a theory for the formation of Saturn's spokes, which is briefly reviewed.

  9. Electromagnetic Models of Extragalactic Jets

    SciTech Connect

    Lisanti, M.; Blandford, R.; /KIPAC, Menlo Park

    2007-10-22

    Relativistic jets may be confined by large-scale, anisotropic electromagnetic stresses that balance isotropic particle pressure and disordered magnetic field. A class of axisymmetric equilibrium jet models will be described and their radiative properties outlined under simple assumptions. The partition of the jet power between electromagnetic and mechanical forms and the comoving energy density between particles and magnetic field will be discussed. Current carrying jets may be recognized by their polarization patterns. Progress and prospects for measuring this using VLBI and GLAST observations will be summarized.

  10. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  11. Physiologic regulation in electromagnetic fields

    SciTech Connect

    Michaelson, S.M.

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  12. Bathymetry, electromagnetic streamlines and the marine controlled source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Pethick, Andrew 12Harris, Brett

    2014-07-01

    Seafloor topography must influence the strength and direction of electromagnetic fields generated during deep ocean controlled source electromagnetic surveying. Neither mathematical equation nor rules of thumb provide a clear perspective of how changes in water column thickness alters electromagnetic fields that engulf hundreds of cubic kilometres of air, ocean, host and reservoir. We use streamline visualisation to provide a generalised representation of how electromagnetic fields propagate into a 2D geo-electrical setting that includes strong bathymetry. Of particular interest are: (i)' dead zones' where electric fields at the ocean floor are demonstrated to be weak and (ii) the 'airwave' that appears in the electric field streamlines as circulating vortices with a shape that is clearly influenced by changes in ocean depth. Our analysis of the distribution of electric fields for deep and shallow water examples alludes to potential benefits from placement of receivers and/or transmitters higher in the water column as is the case for towed receiver geometries. Real-time streamline representation probably holds the most value at the survey planning stage, especially for shallow water marine EM surveys where ocean bottom topography is likely to be consequential.

  13. Iterative electro-optic matrix processor

    NASA Astrophysics Data System (ADS)

    Carlotto, M. J.

    An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.

  14. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  15. High resolution non-iterative aperture synthesis.

    PubMed

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  16. Linear iterative solvers for implicit ODE methods

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.; Skeel, Robert D.

    1990-01-01

    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.

  17. ITER Shape Controller and Transport Simulations

    SciTech Connect

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  18. Iterative optimization calibration method for stereo deflectometry.

    PubMed

    Ren, Hongyu; Gao, Feng; Jiang, Xiangqian

    2015-08-24

    An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180

  19. Main challenges for ITER optical diagnostics

    NASA Astrophysics Data System (ADS)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-01

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  20. High contrast laminography using iterative algorithms

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Jakubek, J.

    2011-01-01

    3D X-ray imaging of internal structure of large flat objects is often complicated by limited access to all viewing angles or extremely high absorption in certain directions, therefore the standard method of computed tomography (CT) fails. This problem can be solved by the method of laminography. During a laminographic measurement the imaging detector is placed close to the sample while the X-ray source irradiates both sample and detector at different angles. The application of the state-of-the-art pixel detector Medipix in laminography together with adapted tomographic iterative alghorithms for 3D reconstruction of sample structure has been investigated. Iterative algorithms such as EM (Expectation Maximization) and OSEM (Ordered Subset Expectation Maximization) improve the quality of the reconstruction and allow including more complex physical models. In this contribution results and proposed future approaches which could be used for resolution enhancement are presented.

  1. Iterative most likely oriented point registration.

    PubMed

    Billings, Seth; Taylor, Russell

    2014-01-01

    A new algorithm for model based registration is presented that optimizes both position and surface normal information of the shapes being registered. This algorithm extends the popular Iterative Closest Point (ICP) algorithm by incorporating the surface orientation at each point into both the correspondence and registration phases of the algorithm. For the correspondence phase an efficient search strategy is derived which computes the most probable correspondences considering both position and orientation differences in the match. For the registration phase an efficient, closed-form solution provides the maximum likelihood rigid body alignment between the oriented point matches. Experiments by simulation using human femur data demonstrate that the proposed Iterative Most Likely Oriented Point (IMLOP) algorithm has a strong accuracy advantage over ICP and has increased ability to robustly identify a successful registration result. PMID:25333116

  2. Iterative image restoration using approximate inverse preconditioning.

    PubMed

    Nagy, J G; Plemmons, R J; Torgersen, T C

    1996-01-01

    Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem. PMID:18285203

  3. Thermomechanical analysis of the ITER breeding blanket

    SciTech Connect

    Majumdar, S.; Gruhn, H.; Gohar, Y.; Giegerich, M.

    1997-03-01

    Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.

  4. Electromagnetic scattering from nonlinear anisotropic cylinders. I - Fundamental frequency

    NASA Astrophysics Data System (ADS)

    Hasan, Moh'd. A.; Uslenghi, P. L. E.

    1990-04-01

    The solution of the problem of electromagnetic scattering of obliquely incident plane waves by homogeneous, nonlinear anisotropic cylindrical structures is obtained. The medium of the scatterer is characterized by Volterra-type integrals for the electric and magnetic flux density vectors D and B, respectively. The nonlinear problem is solved using the perturbation method. The effects of nonlinearities on the field properties both inside and outside the scatterer, together with the effect on the radar cross section, are investigated for the fundamental frequency components. To demonstrate the validity of the approach, the results obtained by the perturbation method are compared with those obtained using the plane wave representation method of Censor (1983), where the iteration method is used to solve the resulting dispersion equation. The results are in very good agreement in both amplitude and phase of the fields for the case of very weak nonlinearity. When the relative magnitude of the nonlinear component of the permittivity is increased, the iteration method shows a faster divergence of the phase from the linear phase.

  5. Efficient imaging of single-hole electromagnetic data

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Wilt, Mike

    2002-04-01

    The extended Born, or localized nonlinear (LN) approximation, of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is shown to be greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. The extended Born solution provides an efficient means for selecting an optimum regularization parameter, because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable at each iteration. In addition, the IE formulation readily contains a sensitivity matrix, which can be revised at each iteration at little expense. In this paper we show inversion results using synthetic and field data. The result from field data is compared with that of a 3-D inversion scheme.

  6. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  7. High Dielectric Dummy Loads for ITER ICRH Antenna Laboratory Testing: Numerical Simulation of One Triplet Loading by Ferroelectric Ceramics

    SciTech Connect

    Champeaux, S.; Gouard, Ph.; Bottollier-Curtet, H.; Dumortier, P.; Koch, R.; Kyrytsya, V.; Messiaen, A.

    2011-12-23

    Up to now, classical 'water' loads have been used for low power testing of ITER ICRH prototype or mock-up antennas . A fair description of the antenna frequency response is obtained excepted for the phasing (0 {pi} 0 {pi}). High dielectric loads are requested to improve the antenna response in the low frequency band. In view of laboratory testing, dummy loads are also required to have efficient wave spatial attenuation to avoid standing waves and to minimize load volume. In this paper, barium titanate ceramic powders mixed with water are shown to exhibit very attractive electromagnetic properties. Coupling performance of one triplet of the ITER ICRH antenna to such kind of loads is numerically investigated. The radiated wave attenuation into the load is also characterized. In spite of its frequency dispersion, 'barium titanate' loads are shown to allow the characterization of the full scale triplet frequency response on a scaled-down mock-up.

  8. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  9. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  10. Fourier analysis of the SOR iteration

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Trefethen, L. N.

    1986-01-01

    The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.

  11. Statistical properties of an iterated arithmetic mapping

    SciTech Connect

    Feix, M.R.; Rouet, J.L.

    1994-07-01

    We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.

  12. Iterative pass optimization of sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  13. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  14. Iterative pass optimization of sequence data.

    PubMed

    Wheeler, Ward C

    2003-06-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. PMID:12901382

  15. ITER Creation Safety File Expertise Results

    NASA Astrophysics Data System (ADS)

    Perrault, D.

    2013-06-01

    In March 2010, the ITER operator delivered the facility safety file to the French "Autorité de Sûreté Nucléaire" (ASN) as part of its request for the creation decree, legally necessary before building works can begin on the site. The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the ASN, recently completed its expertise of the safety measures proposed for ITER, on the basis of this file and of additional technical documents from the operator. This paper presents the IRSN's main conclusions. In particular, they focus on the radioactive materials involved, the safety and radiation protection demonstration (suitability of risk management measures…), foreseeable accidents, building and safety important component design and, finally, wastes and effluents to be produced. This assessment was just the first legally-required step in on-going safety monitoring of the ITER project, which will include other complete regulatory re-evaluations.

  16. Conformal mapping and convergence of Krylov iterations

    SciTech Connect

    Driscoll, T.A.; Trefethen, L.N.

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  17. Recent ADI iteration analysis and results

    SciTech Connect

    Wachspress, E.L.

    1994-12-31

    Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.

  18. ITER (International Thermonuclear Experimental Reactor) in perspective

    SciTech Connect

    Henning, C.D. )

    1989-10-20

    The International Thermonuclear Experimental Reactor (ITER) team is completing the second year of a three-year conceptual design phase. The purpose of ITER is to demonstrate the scientific and technological feasibility of fusion power. It is to demonstrate plasma ignition and extended burn with steady state as the ultimate goal. In so doing, it is to provide the physics data base needed for a demonstration tokamak power reactor and to demonstrate reactor-relevant technologies, such as high-heat-flux and nuclear components for fusion power. To meet these objectives, many design compromises had to be reached by the participants following a careful review of the physics and technology base for fusion. The current ITER design features a 6-m major radius, a 2.15-m minor radius and a 22-MA plasma current. About 330 volt-seconds in the poloidal field system inductively drive the current for hundreds of seconds. Moreover, about 125 MW of neutral-beam, lower-hybrid, and electron-cyclotron power are provided for steady-state current drive and heating all these systems are discussed in this paper. 3 refs., 6 figs., 7 tabs.

  19. The dynamics of iterated transportation simulations

    SciTech Connect

    Nagel, K.; Rickert, M.; Simon, P.M.

    1998-12-01

    Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.

  20. Performance assessment of the ITER ICRF antenna

    NASA Astrophysics Data System (ADS)

    Durodié, F.; Vrancken, M.; Bamber, R.; Colas, L.; Dumortier, P.; Hancock, D.; Huygen, S.; Lockley, D.; Louche, F.; Maggiora, R.; Milanesio, D.; Messiaen, A.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; van Schoor, M.; Wilson, D.; Winkler, K.; Cycle Team

    2014-02-01

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [1] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf F4E for the ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to respectively the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed.

  1. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  2. Electromagnetic coupling on complex systems - Topological approach

    NASA Astrophysics Data System (ADS)

    Parmantier, J. P.; Labaume, G.; Alliot, J. C.; Degauque, P.

    The principles of electromagnetic topology, developed by Baum, are reviewed. The method involves breaking a complex electromagnetic problem down into several small ones that are easier to solve. An example is used to illustrate the advantages of the approach.

  3. Versatile Support For Electromagnetic-Test Model

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Ford, Eddie D.

    1994-01-01

    Supporting apparatus holds model for measurements of electromagnetic properties. Includes rigid swept strut, on end of which model oriented over range of angles. Designed to interfere minimally with electromagnetic measurements.

  4. The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Pompe van Meerdervoort, R. P.; Krooshoop, H. J. G.; Wessel, W. A. J.; Zhou, C.; Rolando, G.; Sanabria, C.; Lee, P. J.; Larbalestier, D. C.; Devred, A.; Vostner, A.; Mitchell, N.; Takahashi, Y.; Nabara, Y.; Boutboul, T.; Tronza, V.; Park, S.-H.; Yu, W.

    2013-08-01

    The differences in thermal contraction of the composite materials in a cable in conduit conductor (CICC) for the International Thermonuclear Experimental Reactor (ITER), in combination with electromagnetic charging, cause axial, transverse contact and bending strains in the Nb3Sn filaments. These local loads cause distributed strain alterations, reducing the superconducting transport properties. The sensitivity of ITER strands to different strain loads is experimentally explored with dedicated probes. The starting point of the characterization is measurement of the critical current under axial compressive and tensile strain, determining the strain sensitivity and the irreversibility limit corresponding to the initiation of cracks in the Nb3Sn filaments for axial strain. The influence of spatial periodic bending and contact load is evaluated by using a wavelength of 5 mm. The strand axial tensile stress-strain characteristic is measured for comparison of the axial stiffness of the strands. Cyclic loading is applied for transverse loads following the evolution of the critical current, n-value and deformation. This involves a component representing a permanent (plastic) change and as well as a factor revealing reversible (elastic) behavior as a function of the applied load. The experimental results enable discrimination in performance reduction per specific load type and per strand type, which is in general different for each manufacturer involved. Metallographic filament fracture studies are compared to electromagnetic and mechanical load test results. A detailed multifilament strand model is applied to analyze the quantitative impact of strain sensitivity, intrastrand resistances and filament crack density on the performance reduction of strands and full-size ITER CICCs. Although a full-size conductor test is used for qualification of a strand manufacturer, the results presented here are part of the ITER strand verification program. In this paper, we present an

  5. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  6. On the electromagnetic scattering from infinite rectangular conducting grids

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1985-01-01

    The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.

  7. Subsurface electromagnetic induction imaging for unexploded ordnance detection

    NASA Astrophysics Data System (ADS)

    Grzegorczyk, Tomasz M.; Fernández, Juan Pablo; Shubitidze, Fridon; O'Neill, Kevin; Barrowes, Benjamin E.

    2012-04-01

    Detection and classification of unexploded ordnance based on electromagnetic induction have made tremendous progress over the last few years, to the point that not only more realistic terrains are being considered but also more realistic questions - such as when to stop digging - are being posed. Answering such questions would be easier if it were somehow possible to see under the surface. In this work we propose a method that, within the limitations on resolution imposed in the available range of frequencies, generates subsurface images from which the positions, relative strengths, and number of targets can be read off at a glance. The method seeds the subsurface with multiple dipoles at known locations that contribute collectively but independently to the measured magnetic field. The polarizabilities of the dipoles are simultaneously updated in a process that seeks to minimize the mismatch between computed and measured fields over a grid. In order to force the polarizabilities to be positive we use their square roots as optimization variables, which makes the problem nonlinear. The iterative update process guided by a Jacobian matrix discards or selects dipoles based on their influence on the measured field. Preliminary investigations indicate a fast convergence rate and the ability of the algorithm to locate multiple targets based on data from various state-of-the-art electromagnetic induction sensors.

  8. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  9. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  10. The courts and electromagnetic fields

    SciTech Connect

    Freeman, M. )

    1990-07-19

    This article examines the recent development in eminent domain cases involving power transmission line rights of way, the issue of fear of the mythical buyer. The author feels that the fear of electrocution or of the possible cancer-inducing effects of electromagnetic fields is greatly influencing court decisions in these cases. The results could be more expensive rights of way acquisition by utilities.

  11. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  12. Coupling Electromagnetism to Global Charge

    NASA Astrophysics Data System (ADS)

    Guendelman, E. I.

    2013-12-01

    It is shown that an alternative to the standard scalar quantum electrodynamics (QED) is possible. In this new version, there is only global gauge invariance as far as the charged scalar fields are concerned, although local gauge invariance is kept for the electromagnetic field. The electromagnetic coupling has the form jμ(Aμ +∂μB) where B is an auxiliary field and the current jμ is Aμ independent, so that no "sea gull terms" are introduced. As a consequence of the absence of sea gulls, it is seen that no Klein paradox appears in the presence of a strong square well potential. In a model of this kind, spontaneous breaking of symmetry does not lead to photon mass generation, instead the Goldstone boson becomes a massless source for the electromagnetic field. When spontaneous symmetry breaking takes place infrared questions concerning the theory and generalizations to global vector QED are discussed. In this framework, Q-Balls and other nontopological solitons that owe their existence to a global U(1) symmetry can be coupled to electromagnetism and could represent multiply charged particles now in search in the large hadron collider (LHC). Furthermore, we give an example where an "Emergent" Global Scalar QED can appear from an axion-photon system in an external magnetic field. Finally, formulations of Global Scalar QED that allow perturbative expansions without sea gulls are developed.

  13. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  14. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  15. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  16. Topics in electromagnetic, acoustic, and potential scattering theory

    NASA Astrophysics Data System (ADS)

    Nuntaplook, Umaporn

    the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.

  17. Evaluation of ITER MSE Viewing Optics

    SciTech Connect

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-03-26

    The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on the design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate

  18. Some Student Conceptions of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  19. Resource Letter EM-1: Electromagnetic Momentum

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2012-01-01

    This Resource Letter surveys the literature on momentum in electromagnetic fields, including the general theory, the relation between electromagnetic momentum and vector potential, "hidden" momentum, the 4/3 problem for electromagnetic mass, and the Abraham-Minkowski controversy regarding the field momentum in polarizable and magnetizable media.

  20. A novel surrogate-based approach for optimal design of electromagnetic-based circuits

    NASA Astrophysics Data System (ADS)

    Hassan, Abdel-Karim S. O.; Mohamed, Ahmed S. A.; Rabie, Azza A.; Etman, Ahmed S.

    2016-02-01

    A new geometric design centring approach for optimal design of central processing unit-intensive electromagnetic (EM)-based circuits is introduced. The approach uses norms related to the probability distribution of the circuit parameters to find distances from a point to the feasible region boundaries by solving nonlinear optimization problems. Based on these normed distances, the design centring problem is formulated as a max-min optimization problem. A convergent iterative boundary search technique is exploited to find the normed distances. To alleviate the computation cost associated with the EM-based circuits design cycle, space-mapping (SM) surrogates are used to create a sequence of iteratively updated feasible region approximations. In each SM feasible region approximation, the centring process using normed distances is implemented, leading to a better centre point. The process is repeated until a final design centre is attained. Practical examples are given to show the effectiveness of the new design centring method for EM-based circuits.

  1. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

    SciTech Connect

    Cwik, T.; Katz, D.S.

    1996-12-31

    Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

  2. Strong permanent magnet-assisted electromagnetic undulator

    SciTech Connect

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  3. Final Report on ITER Task Agreement 81-08

    SciTech Connect

    Richard L. Moore

    2008-03-01

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.

  4. Research on JET in view of ITER

    NASA Astrophysics Data System (ADS)

    Pamela, Jerome; Ongena, Jef; Watkins, Michael

    2004-11-01

    Research on JET is focused on further development of the two ITER reference plasma scenarios. The ELMy H-Mode, has been extended to lower rho* at high and q_95=3, with simultaneously H_98=0.9, and f_GW=0.9 at I_p=3.5 MA. The dependence of confinement on beta and rho* has been found to be more favorable than given by the IPB98(y,2) scaling. Highlights in the development of Advanced Regimes with Internal Transport Barriers (ITB) and strong reversed shear (q_0=2-3, q_min=1.5-2.5) are : (i) operation at a core density close to the Greenwald limit and (ii) full current drive in 3T/1.8MA ITB plasmas extended to 20 seconds with a JET record injected energy of E≈ 330MJ; (iii) 7 keV Te≈ Ti ITB plasmas at low toroidal rotation, and (iv) wide radius ITB's (r/a=0.6). Furthermore, emphasis in JET is placed on (i) mitigating the impact of ELMs, (ii) understanding the phenomena leading to tritium retention and (iii) preparing burning plasma physics. Recent developments on JET in view of ITER are : (i) real-time control in both ELMy H-Mode and ITB plasmas and (ii) an upgrade of JET with: (a) increased NBI power (b) a new ELM-resilient ITER-like ICRH antenna (7MW) to be tested in 2006 (c) 16 new and upgraded diagnostics.

  5. Corneal topography matching by iterative registration.

    PubMed

    Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E

    2014-11-01

    Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data. PMID:25500860

  6. Cryogenic High Voltage Insulation Breaks for ITER

    NASA Astrophysics Data System (ADS)

    Kovalchuk, O. A.; Safonov, A. V.; Rodin, I. Yu.; Mednikov, A. A.; Lancetov, A. A.; Klimchenko, Yu. A.; Grinchenko, V. A.; Voronin, N. M.; Smorodina, N. V.; Bursikov, A. S.

    High voltage insulation breaks are used in cryogenic lines with gas or liquid (helium, hydrogen, nitrogen, etc.) at a temperature range of 4.2-300 K and pressure up to 30 MPa to insulate the parts of an electrophysical facility with different electrical potentials. In 2013 JSC "NIIEFA" delivered 95 high voltage insulation breaks to the IO ITER, i.e. 65 breaks with spiral channels and 30 breaks with uniflow channels. These high voltage insulation breaks were designed, manufactured and tested in accordance with the ITER Technical Specifications: «Axial Insulating Breaks for the Qualification Phase of ITER Coils and Feeders». The high voltage insulation breaks consist of the glass-reinforced plastic cylinder equipped with channels for cryoagent and stainless steel end fittings. The operating voltage is 30 kV for the breaks with spiral channels (30 kV HV IBs) and 4 kV for the breaks with uniflow channels (4 kV HV IBs). The main design feature of the 30 kV HV IBs is the spiral channels instead of a linear one. This approach has enabled us to increase the breakdown voltage and decrease the overall dimensions of the high voltage insulation breaks. In 2013 the manufacturing technique was developed to produce the high voltage insulation breaks with the spiral and uniflow channels that made it possible to proceed to serial production. To provide the acceptance tests of the breaks a special test facility was prepared. The helium tightness test at 10-11 m3Pa/s under the pressure up to 10 MPa, the high voltage test up to 135 kV and different types of mechanical tests were carried out at the room and liquid nitrogen temperatures.

  7. Fast iterative reconstructions for animal CT

    NASA Astrophysics Data System (ADS)

    Huang, H.-M.; Hsiao, I.-T.; Jan, M.-L.

    2009-06-01

    For iterative x-ray computed tomography (CT) reconstruction, the convex algorithm combined with ordered subset (OSC) [1] is a relatively fast algorithm and has shown its potential for low-dose situations. But it needs one forward projection and two backprojections per iteration. Unlike convex algorithm, the gradient algorithm only requires one forward projection and one backprojection per iteration. Here, we applied ordered subsets of projection data to a modified gradient algorithm. In order to further reduce computation time, the new algorithm, the ordered subset gradient (OSG) algorithm, can be adjusted with a step size. We also implemented another OS-type algorithm called OSTR. The OSG algorithm is compared with OSC algorithm and OSTR algorithm using three-dimensional simulated helical cone-beam CT data. The performance is evaluated in terms of log-likelihood, contrast recovery, and bias-variance studies. Results show that images of OSG has compatible visual image quality to those of OSC and OSTR, but in the resolution and bias-variance studies, OSG seems to reach stable values with faster speed. In particular, OSTR has better recovery in a smoother region, but both OSG and OSC have better recovery in the high-frequency regions. Moreover, in terms of log likelihood with respect to computation time, OSG has faster convergence rate than that of OSC and similar to that of OSTR. We conclude that OSG has potential to provide comparable image quality and is more computationally efficient, and thus could be suitable for low-dose, helical cone-beam CT image reconstruction.

  8. Generalized iterative deconvolution for receiver function estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhi; Pavlis, Gary L.

    2016-02-01

    This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method-an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.

  9. Experimental studies of ITER demonstration discharges

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.; C-Mod Team; ASDEX Upgrade Team; DIII-D Team; JET EFDA Contributors

    2009-08-01

    Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23-0.33 V m-1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4-4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <=1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

  10. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  11. Iterative blind deconvolution of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Rao, Changhui; Li, Mei; Geng, Zexun

    2006-04-01

    Adaptive optics (AO) technique has been extensively used for large ground-based optical telescopes to overcome the effect of atmospheric turbulence. But the correction is often partial. An iterative blind deconvolution (IBD) algorithm based on maximum-likelihood (ML) method is proposed to restore the details of the object image corrected by AO. IBD algorithm and the procedure are briefly introduced and the experiment results are presented. The results show that IBD algorithm is efficient for the restoration of some useful high-frequency of the image.

  12. Fuzzy logic components for iterative deconvolution systems

    NASA Astrophysics Data System (ADS)

    Northan, Brian M.

    2013-02-01

    Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.

  13. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  14. Deterministic convergence in iterative phase shifting

    SciTech Connect

    Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel

    2009-03-10

    Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.

  15. Coupling characteristics of the ITER-relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.; Achard, J.; Berger-By, G.; Belo, J.; Corbel, E.; Delpech, L.; Ohsako, T.; Prou, M.

    2011-02-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER (Bibet et al 1995 Nucl. Fusion 35 1213-23): the passive active multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has recently been installed on the tokamak Tore Supra. This paper summarizes the comprehensive experimental characterization of the coupling properties of the PAM antenna to the Tore Supra plasmas. In this paper, the electromagnetic properties of the antenna are measured at a reduced power (<1 MW) to allow a systematic comparison with linear wave coupling theory and the associated modelling based on the linear ALOHA code. In a wide range of edge electron densities at the antenna aperture (spanning a factor 20 from 0.5 × nc to 10 × nc where nc is the slow wave density cut-off, nc = 1.7 × 1017 m-3 at 3.7 GHz) and antenna phasing, the ALOHA simulations reproduce the experimental results observed on Tore Supra. In addition, reduced power reflection coefficients (<5%) are measured at a low edge density, close to nc, i.e. in the range 0.5-3 × nc. Measurement and analysis with ALOHA of the antenna-plasma scattering matrices provide explanation of the good coupling properties of the PAM antenna close to nc by highlighting the crucial role of the slow wave intercoupling between active and passive waveguides through the plasma edge. This detailed validation of the coupling modelling is an important step towards the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  16. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) engineering manual (version 3), volume 2

    NASA Astrophysics Data System (ADS)

    Kadlec, D. L.; Coffey, E. L.

    1983-09-01

    GEMACS solves electromagnetic radiation and scattering problems. The Method of Moments (MOM) and Geometrical Theory of Diffraction (GTD) are used. MOM is formalized with the Electric Field Integral Equation (EFIE) for wires and the Magnetic Field Integral Equation (MFIE) for patches. The code employs both full matrix decomposition and Banded Matrix Iteration (BMI) solution techniques. The MOM, GTD and hybrid MOM/GTD techniques in the code are used to solve electrically small object problems, electrically large object problems and combination sized object problems. Volume II is the Engineering Manual. The theory and engineering approximations implemented in the code are discussed. Modeling criterion are given.

  17. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) engineering manual (version 3), volume 3

    NASA Astrophysics Data System (ADS)

    Kadlec, D. L.; Coffey, E. L.

    1983-09-01

    GEMACS solves electromagnetic radiation and scattering problems. The Method of Moments (MOM) and Geometrical Theory of Diffraction (GTD) are used. MOM is formalized with the Electric Field Integral Equation (EFIE) for wires and the Magnetic Field Integral Equation (MFIE) for patches. The code employs both full matrix decomposition and Banded Matrix Iteration (BMI) solution techniques. The MOM, GTD and hybrid MOM/GTD techniques in the code are used to solve electrically small object problems, electrically large object problems and combination sized object problems. Volume III is the Computer Code Documentation Manual. This manual contains extensive software information of the code.

  18. General Electromagnetic Model for the Analysis of Complex Systems (GEMACS) user manual (version 3), volume 1

    NASA Astrophysics Data System (ADS)

    Kadlec, D. L.; Coffey, E. L.

    1983-09-01

    GEMACS solves electromagnetic radiation and scattering problems. The Method of Moments (MOM) and Geometrical Theory of Diffraction (GTD) are used. MOM is formalized with the Electric Field Integral Equation (EFIE) for wires and the Magnetic Field Integral Equation (MFIE) for patches. The code employs both full matrix decomposition and Banded Matrix Iteration (BMI) solution techniques. The MOM, GTD and hybrid MOM/GTD techniques in the code are used to solve electrically small object problems, electrically large object problems and combination sized object problems. Volume I of this report is the User Manual. The code execution requirements, input language and output are discussed.

  19. Falling Magnets and Electromagnetic Braking

    NASA Astrophysics Data System (ADS)

    Culbreath, Christopher; Palffy-Muhoray, Peter

    2009-03-01

    The slow fall of a rare earth magnet through a copper pipe is a striking example of electromagnetic braking; this remarkable phenomenon has been the subject of a number of scientific paper s [1, 2]. In a pipe having radius R and wall thickness D, the terminal velocity of the falling magnet is proportional to (R̂4)/D. It is interesting to ask what happens in the limit as D becomes very large. We report our experimental observations and theoretical predictions of the dependence of the terminal velocity on pipe radius R for large D. [1] Y. Levin, F.L. da Silveira, and F.B. Rizzato, ``Electromagnetic braking: A simple quantitative model''. American Journal of Physics, 74(9): p. 815-817 (2006). [2] J.A. Pelesko, M. Cesky, and S. Huertas, Lenz's law and dimensional analysis. American Journal of Physics, 3(1): p. 37-39. 2005.

  20. Electromagnetic response of Weyl semimetals.

    PubMed

    Vazifeh, M M; Franz, M

    2013-07-12

    It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term θE·B with space and time dependent axion angle θ(r,t). Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytical and numerical techniques. We confirm the existence of the anomalous Hall effect expected on the basis of the field theory treatment. We find, contrary to the latter, that chiral magnetic effect (that is, ground state charge current induced by the applied magnetic field) is absent in both the semimetal and the insulator phase. We elucidate the reasons for this discrepancy. PMID:23889433

  1. Transient electromagnetic interference in substations

    SciTech Connect

    Wiggins, C.M.; Thomas, D.E.; Nickel, F.S.; Salas, T.M. ); Wright, S.E. )

    1994-10-01

    Electromagnetic interference levels on sensitive electronic equipment are quantified experimentally and theoretically in air and gas insulated substations of different voltages. Measurement techniques for recording interference voltages and currents and electric and magnetic fields are reviewed and actual interference data are summarized. Conducted and radiated interference coupling mechanisms and levels in substation control wiring are described using both measurement results and electromagnetic models validated against measurements. The nominal maximum field and control wire interference levels expected in the switchyard and inside the control house from switching operations, faults, and an average lightning strike are estimated using high frequency transient coupling models. Comparisons with standards are made and recommendations given concerning equipment shielding and surge protection.

  2. Time domain electromagnetic metal detectors

    SciTech Connect

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  3. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  4. Fully implicit, energy-conserving electromagnetic particle-in-cell simulations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Chen, Guangye

    2015-11-01

    We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.

  5. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  6. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  7. Electromagnetically controlled multiferroic thermal diode

    NASA Astrophysics Data System (ADS)

    Chotorlishvili, L.; Etesami, S. R.; Berakdar, J.; Khomeriki, R.; Ren, Jie

    2015-10-01

    We propose an electromagnetically tunable thermal diode based on a two-phase multiferroic composite. Analytical and full numerical calculations for a prototypical heterojunction composed of iron on barium titanate in the tetragonal phase demonstrate a strong heat rectification effect that can be controlled externally by a moderate electric field. This finding is important for thermally based information processing and sensing and can also be integrated in (spin) electronic circuits for heat management and recycling.

  8. Pulsed power for electromagnetic launching

    SciTech Connect

    Cowan, M

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  9. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  10. Pulsed power for electromagnetic launching

    NASA Astrophysics Data System (ADS)

    Cowan, M.

    1982-01-01

    There are system advantages to producing power for electromagnetic propulsion by real time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  11. Electromagnetic Calorimeter for HADES Experiment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, P.; Chlad, L.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Korcyl, G.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Neiser, A.; Ott, O.; Otte, O.; Pethukov, O.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Thomas, A.; Tlusty, P.; Traxler, M.

    2014-11-01

    Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  12. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (ESTSC)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  13. Wind measurements by electromagnetic probes

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1988-01-01

    The emerging technology of electromagnetic probing of the atmosphere to measure winds used in a space vehicle ascent winds load calculations is presented. The frequency range, altitude, and resolution for the following probes are presented: lidars, microwave radars, and clear-air Doppler radars (popularly known as wind profilers). The electromagnetic probing of the atmosphere by clear-air radars and lasers is the new technology to supplement balloon-borne wind sensors used to determine ascent wind loads of space vehicles. The electromagnetic probes measure the wind velocity using the Doppler effect. This is the radar technology used in MSFC's Radar Wind Profiler, and is similar to the technology used in conventional Doppler systems except that the frequency is generally lower, antenna is bigger, and dwell time much longer. Designed for unattended and automated instrumentation in providing measurements of the wind in the troposphere, the profiler employs Doppler radar technology and is currently being put in operation at NASA Kennedy Space Center, Florida.

  14. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  15. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  16. A unified noise analysis for iterative image estimation

    SciTech Connect

    Qi, Jinyi

    2003-07-03

    Iterative image estimation methods have been widely used in emission tomography. Accurate estimate of the uncertainty of the reconstructed images is essential for quantitative applications. While theoretical approach has been developed to analyze the noise propagation from iteration to iteration, the current results are limited to only a few iterative algorithms that have an explicit multiplicative update equation. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient type algorithms. One advantage is that proposed method does not require an explicit expression of the preconditioner and hence it is applicable to some algorithms that involve line searches. By deriving fixed point expression from the iteration based results, we show that the iteration based noise analysis is consistent with the xed point based analysis. Examples in emission tomography and transmission tomography are shown.

  17. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  18. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  19. Adaptive self-calibrating iterative GRAPPA reconstruction.

    PubMed

    Park, Suhyung; Park, Jaeseok

    2012-06-01

    Parallel magnetic resonance imaging in k-space such as generalized auto-calibrating partially parallel acquisition exploits spatial correlation among neighboring signals over multiple coils in calibration to estimate missing signals in reconstruction. It is often challenging to achieve accurate calibration information due to data corruption with noises and spatially varying correlation. The purpose of this work is to address these problems simultaneously by developing a new, adaptive iterative generalized auto-calibrating partially parallel acquisition with dynamic self-calibration. With increasing iterations, under a framework of the Kalman filter spatial correlation is estimated dynamically updating calibration signals in a measurement model and using fixed-point state transition in a process model while missing signals outside the step-varying calibration region are reconstructed, leading to adaptive self-calibration and reconstruction. Noise statistic is incorporated in the Kalman filter models, yielding coil-weighted de-noising in reconstruction. Numerical and in vivo studies are performed, demonstrating that the proposed method yields highly accurate calibration and thus reduces artifacts and noises even at high acceleration. PMID:21994010

  20. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  1. Diverse Power Iteration Embeddings and Its Applications

    SciTech Connect

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  2. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  3. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  4. Pedestal stability comparison and ITER pedestal prediction

    SciTech Connect

    Snyder, P.; Alba, N; Beurskens, M.; Horton, L D

    2009-01-01

    The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

  5. ITER plant layout and site services

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    2000-03-01

    The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment.

  6. Ordinal neural networks without iterative tuning.

    PubMed

    Fernández-Navarro, Francisco; Riccardi, Annalisa; Carloni, Sante

    2014-11-01

    Ordinal regression (OR) is an important branch of supervised learning in between the multiclass classification and regression. In this paper, the traditional classification scheme of neural network is adapted to learn ordinal ranks. The model proposed imposes monotonicity constraints on the weights connecting the hidden layer with the output layer. To do so, the weights are transcribed using padding variables. This reformulation leads to the so-called inequality constrained least squares (ICLS) problem. Its numerical solution can be obtained by several iterative methods, for example, trust region or line search algorithms. In this proposal, the optimum is determined analytically according to the closed-form solution of the ICLS problem estimated from the Karush-Kuhn-Tucker conditions. Furthermore, following the guidelines of the extreme learning machine framework, the weights connecting the input and the hidden layers are randomly generated, so the final model estimates all its parameters without iterative tuning. The model proposed achieves competitive performance compared with the state-of-the-art neural networks methods for OR. PMID:25330430

  7. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  8. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  9. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  10. The Electromagnetically Equivalent Complex Network Modeling of Compact Seismo-Climatic Processes for the Complete Earth

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2009-04-01

    the natural iterations of the geo-data at future on both the region under the observation and some locations non-related to the observation region either geologically or seismically or climatically or phenomenologically relating to the earth. The inversion processes from the electromagnetically equivalent complex system models, which are called EECSMs in short, will be discussed in this paper [1] - [5]. The fine model of 13D-hypersurface is generated by using the geophysical EQ data set. The coarse model of 10D-hypersurface is generated by using the data set of waveforms of electromagnetic quantities. The method is applied to both seismic and climatic phenomena at the Marmara Sea region and useful extractions for the prediction of both whether and seismicity are given. 2 References [1] T. Sengor, "The electromagnetic device optimization modeling of seismo-electromagnetic processes," IUGG Perugia 2007. [2] T. Sengor, "The electromagnetic device optimization modeling of seismo-electromagnetic processes for Marmara Sea earthquakes," EGU 2008. [3] T. Sengor, "On the exact interaction mechanism of electromagnetically generated phenomena with significant earthquakes and the observations related the exact predictions before the significant earthquakes at July 1999-May 2000 period," Helsinki Univ. Tech. Electrom. Lab. Rept. 368, May 2001. [4] T. Sengor, "The Observational Findings Before The Great Earthquakes Of December 2004 And The Mechanism Extraction From Associated Electromagnetic Phenomena," Book of XXVIIIth URSI GA 2005, pp. 191, EGH.9 (01443) and Proceedings 2005 CD, New Delhi, India, Oct. 23-29, 2005. [5] T. Sengor, "The interaction mechanism among electromagnetic phenomena and geophysical-seismic-ionospheric phenomena with extraction for exact earthquake prediction genetics," 10th SA of the IAGA 2005, Abst. CD,. GAI, C109, No.: IAGA2005-A-0134, Toulouse, France, July18-29, 2005.

  11. Status of the JET ITER-Like Antenna High-Power Prototype Test Program

    SciTech Connect

    Goulding, R.H.; Baity, F.W.; Fadnek, A.; Freudenberg, K.D.; Nelson, B.E.; Rasmussen, D.A.; Sparks, D.O.; Durodie, F.; Nightingale, M.; Walton, R.

    2005-09-26

    Previous tests of a High Power Prototype (HPP) comprising one quadrant of the JET ITER-Like ICRF Antenna have indicated the need for some design modifications in order to achieve 10 s pulses coupling the full design power (7.1 MW) into the reference plasma load (R' = 4 {omega}/m). These modifications have now been made to the HPP, as well as to the design of the ITER-Like Antenna itself. In particular, maximum current densities have been reduced or otherwise accommodated in key areas. New current straps for the HPP have been fabricated from stereo-lithography-based investment castings. Design modifications to the antenna enclosure have also been implemented. This work has been materially assisted through the use of CST Microwave Studio (MWS), a commercially available 3-D electromagnetic modeling package. Essentially the full engineering CAD model of the HPP current straps and antenna enclosure has been ex-ported from ProE to MWS. Computed current density profiles have been introduced into an ANSYS thermal model. These activities will be discussed, as well as the current status of the HPP test program.

  12. A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Pascarella, A.; Pitolli, F.; Somersalo, E.; Vantaggi, B.

    2015-12-01

    The inverse problem of MEG aims at estimating electromagnetic cerebral activity from measurements of the magnetic fields outside the head. After formulating the problem within the Bayesian framework, a hierarchical conditionally Gaussian prior model is introduced, including a physiologically inspired prior model that takes into account the preferred directions of the source currents. The hyperparameter vector consists of prior variances of the dipole moments, assumed to follow a non-conjugate gamma distribution with variable scaling and shape parameters. A point estimate of both dipole moments and their variances can be computed using an iterative alternating sequential updating algorithm, which is shown to be globally convergent. The numerical solution is based on computing an approximation of the dipole moments using a Krylov subspace iterative linear solver equipped with statistically inspired preconditioning and a suitable termination rule. The shape parameters of the model are shown to control the focality, and furthermore, using an empirical Bayes argument, it is shown that the scaling parameters can be naturally adjusted to provide a statistically well justified depth sensitivity scaling. The validity of this interpretation is verified through computed numerical examples. Also, a computed example showing the applicability of the algorithm to analyze realistic time series data is presented.

  13. ITER Central Solenoid Alternate Pre-Compression Structure Concept and Analysis

    SciTech Connect

    Litherland, P Steve; Freudenberg, Kevin D

    2009-01-01

    The ITER Central Solenoid (CS) is comprised of six independent coils held together by a pre-compression support structure. This structure must provide enough preload to maintain sufficient coil-to-coil contact throughout the current pulse. End of burn (EOB) represents one extreme time-point when the currents in the CS3 coils oppose those of CS1 & CS2. The present baseline design uses nine tie plate pairs located on the coil ID and OD to achieve this pre-compression. While this is an efficient structural approach, the outer tie plates limit access to the coil OD and result in very tight tolerances over the 12.75 m tall toroidal field (TF) coil bore. An alternative pre-compression structure has been developed by the US ITER Project Office, which addresses both of these issues using only internal tension members. This allows clear access to the outer CS surface for plumbing and current feeders, and more reasonable OD tolerances. In addition, the Tension Rod pre-compression structure utilizes existing technology (such as hydraulic tensioner or Superbolt{reg_sign}), which streamlines initial preloading and subsequent adjustments. Structural and transient electromagnetic FEA of the tension rod concept demonstrates that the stresses, displacements, and preliminary Eddy current heat loads are within allowable limits. Fabrication estimates demonstrate no additional cost of the tension rods compared to the tie plates.

  14. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  15. Alpha-physics and measurement requirements for ITER

    SciTech Connect

    Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.

    1995-12-31

    This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.

  16. Stationary second-degree iterative methods and recurrences

    SciTech Connect

    Kincaid, D.R.; Young, D.M.

    1991-02-01

    The basic theory of stationary second-degree iterative methods is presented from the point of view of recurrences. Recurrences are encountered in the development of expressions for the spectral radii and for various norms associated with linear stationary iterative methods. We show that many of these recurrences are special cases of a single general recurrence and that its closed-form solution leads to these expressions. Citations are given showing where the expressions occur in the theory of iterative methods.

  17. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  18. ITER- International Toxicity Estimates for Risk, new TOXNET database.

    PubMed

    Tomasulo, Patricia

    2005-01-01

    ITER, the International Toxicity Estimates for Risk database, joined the TOXNET system in the winter of 2004. ITER features international comparisons of environmental health risk assessment information and contains over 620 chemical records. ITER includes data from the EPA, Health Canada, the National Institute of Public Health and the Environment of the Netherlands, and other organizations that provide risk values that have been peer-reviewed. PMID:15760833

  19. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  20. ITER Cryoplant Status and Economics of the LHe plants

    NASA Astrophysics Data System (ADS)

    Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.

    The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.

  1. A novel iterative scheme and its application to differential equations.

    PubMed

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method. PMID:24757427

  2. Electromagnetic Effects in SDF Explosions

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  3. FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors

    SciTech Connect

    Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio

    2013-03-19

    Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclic loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.

  4. Manager's Role in Electromagnetic Interference (EMI) Control

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.; Lewis, Catherine C.

    2013-01-01

    This presentation captures the essence of electromagnetic compatibility (EMC) engineering from a project manager's perspective. It explains the basics of EMC and the benefits to the project of early incorporation of EMC best practices. The EMC requirement products during a project life cycle are identified, along with the requirement verification methods that should be utilized. The goal of the presentation is to raise awareness and simplify the mystique surrounding electromagnetic compatibility for managers that have little or no electromagnetics background

  5. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  6. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  7. Electromagnetic wave scattering by Schwarzschild black holes.

    PubMed

    Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S

    2009-06-12

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920

  8. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  9. Statistical theory of electromagnetic weak turbulence

    SciTech Connect

    Yoon, Peter H.

    2006-02-15

    The weak turbulence theory as commonly found in the literature employs electrostatic approximation and is applicable to unmagnetized plasmas only. To this date, fully electromagnetic generalization of the existing weak turbulence theory based upon statistical mechanical approach remains largely incomplete. Instead, electromagnetic effects are incorporated into the weak turbulence formalism by means of the semiclassical approach. The present paper reformulates the fully electromagnetic weak turbulence theory from classical statistical mechanical (i.e., the Klimontovich) approach.

  10. Some results concerning linear iterative (systolic) arrays

    SciTech Connect

    Ibarra, O.H.; Palis, M.A.; Kim, S.M.

    1985-05-01

    The authors have shown some new interesting results concerning the properties, power, and limitations of various types of linear iterative (systolic) arrays. The method they employed consisted of finding sequential machine characterizations of these array models, and then using the characterizations to prove the results. Because of the absence of any concurrency and synchronization problems, the authors obtained simple proofs to results which when proved directly on the arrays would seem very difficult. The characterizations, therefore, provide a novel and promising method which can be used to analyze other systolic systems. In the future they hope to extend this methodology to the study of two-dimensional and multidimensional systolic arrays, and other systolic systems with different interconnection networks.

  11. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    SciTech Connect

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  12. Iterative Precise Conductivity Measurement with IDEs

    PubMed Central

    Hubálek, Jaromír

    2015-01-01

    The paper presents a new approach in the field of precise electrolytic conductivity measurements with planar thin- and thick-film electrodes. This novel measuring method was developed for measurement with comb-like electrodes called interdigitated electrodes (IDEs). Correction characteristics over a wide range of specific conductivities were determined from an interface impedance characterization of the thick-film IDEs. The local maximum of the capacitive part of the interface impedance is used for corrections to get linear responses. The measuring frequency was determined at a wide range of measured conductivity. An iteration mode of measurements was suggested to precisely measure the conductivity at the right frequency in order to achieve a highly accurate response. The method takes precise conductivity measurements in concentration ranges from 10−6 to 1 M without electrode cell replacement. PMID:26007745

  13. Iterated Gate Teleportation and Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2015-06-01

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  14. ITER Central Solenoid Coil Insulation Qualification

    SciTech Connect

    Martovetsky, Nicolai N; Mann Jr, Thomas Latta; Miller, John L; Freudenberg, Kevin D; Reed, Richard P; Walsh, Robert P; McColskey, J D; Evans, D

    2010-01-01

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  15. Fusion Specific Features in ITER Accident Analysis

    NASA Astrophysics Data System (ADS)

    Bartels, H.-W.; Gordon, C. W.; Piet, S. J.; Poucet, A. E.; Saji, G.; Topilski, L. N.

    1997-06-01

    Fusion specific features like inherent plasma shutdown, low decay heat densities, cryogenic temperatures, and limited source terms were considered during the safety design process of ITER. Uncertainties in plasma disruptions motivates a robust design to cope with multiple failures of in-vessel cooling piping. A vacuum vessel pressure suppression system mitigates pressure transients and effectively captures mobilized radioactivity. In case of pump trips or ex-vessel coolant losses in the divertor the plasma needs to be actively terminated in a few seconds. Failure to do so might damage the divertor but radiological consequences will be minor due to the intact first confinement barrier. Tritium plant inventories are protected by several layers of confinement. Uncontrolled release of magnet energy will be prevented by design. Postulated damage from magnets to confinement barriers causes fluid ingress (air, water, helium) into the cryostat. The cold environment limits pressurization. Most tritium and dust is captured by condensation.

  16. Learning to improve iterative repair scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene

    1992-01-01

    This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone.

  17. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  18. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-01

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements. PMID:26196609

  19. Iterated upwind schemes for gas dynamics

    SciTech Connect

    Smolarkiewicz, Piotr K. Szmelter, Joanna

    2009-01-10

    A class of high-resolution schemes established in integration of anelastic equations is extended to fully compressible flows, and documented for unsteady (and steady) problems through a span of Mach numbers from zero to supersonic. The schemes stem from iterated upwind technology of the multidimensional positive definite advection transport algorithm (MPDATA). The derived algorithms employ standard and modified forms of the equations of gas dynamics for conservation of mass, momentum and either total or internal energy as well as potential temperature. Numerical examples from elementary wave propagation, through computational aerodynamics benchmarks, to atmospheric small- and large-amplitude acoustics with intricate wave-flow interactions verify the approach for both structured and unstructured meshes, and demonstrate its flexibility and robustness.

  20. ECE for NTM control on ITER

    NASA Astrophysics Data System (ADS)

    van den Brand, H.; de Baar, M. R.; Lopes Cardozo, N. J.; Westerhof, E.

    2012-09-01

    Control of Neoclassical Tearing Modes (NTMs) requires an accurate and low latency detection of the mode position. For a burning H-mode ITER plasma, simulations are conducted for both ECE detected via the equatorial port plug and along the line-of-sight of the ECCD launchers. Simulated ECE is detected using synthetic radiometers, with settings chosen to meet the required accuracy. A video bandwidth of 2 kHz is used which allows for an intermediate frequency bandwidth of BIF = 400 MHz for ECE detected via the equatorial port plug. For ECE detected via the ECCD line-of-sight, an intermediate frequency bandwidth of 1.5 GHz and 1 GHz for the 2/1 and 3/2 NTM respectively suffices for accurate location detection. For both ECE systems, the latency requirements for NTM suppression are fulfilled.

  1. Robust tooth surface reconstruction by iterative deformation.

    PubMed

    Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng

    2016-01-01

    Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm. PMID:26638148

  2. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  3. ITER tokamak buildings and equipment layout

    SciTech Connect

    Ahlfeld, C.E.; Dilling, D.A.; Ishimoto, Kazuyuki; Tanaka, Eiichi; Stoner, S.

    1996-12-31

    The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIA database provide the framework for the equipment layout. This article describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA models. 1 ref., 6 figs.

  4. Iterative restoration of SPECT projection images

    SciTech Connect

    Glick, S.J.; Xia, W.

    1997-04-01

    Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the project data with Bellini`s method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transformation (FFT) methods. After processing of the project data, reconstruction is performed using filtered backprojections. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.

  5. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics

    SciTech Connect

    Robel, M; Kristo, M J; Heller, M A

    2009-06-09

    Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. In fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method

  6. ITER density profile with pellet injection

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.

  7. Error bounds from extra precise iterative refinement

    SciTech Connect

    Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason

    2005-02-07

    We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

  8. An iterative subaperture position correction algorithm

    NASA Astrophysics Data System (ADS)

    Lo, Weng-Hou; Lin, Po-Chih; Chen, Yi-Chun

    2015-08-01

    The subaperture stitching interferometry is a technique suitable for testing high numerical-aperture optics, large-diameter spherical lenses and aspheric optics. In the stitching process, each subaperture has to be placed at its correct position in a global coordinate, and the positioning precision would affect the accuracy of stitching result. However, the mechanical limitations in the alignment process as well as vibrations during the measurement would induce inevitable subaperture position uncertainties. In our previous study, a rotational scanning subaperture stitching interferometer has been constructed. This paper provides an iterative algorithm to correct the subaperture position without altering the interferometer configuration. Each subaperture is first placed at its geometric position estimated according to the F number of reference lens, the measurement zenithal angle and the number of pixels along the width of subaperture. By using the concept of differentiation, a shift compensator along the radial direction of the global coordinate is added into the stitching algorithm. The algorithm includes two kinds of compensators: one for the geometric null with four compensators of piston, two directional tilts and defocus, and the other for the position correction with the shift compensator. These compensators are computed iteratively to minimize the phase differences in the overlapped regions of subapertures in a least-squares sense. The simulation results demonstrate that the proposed method works to the position accuracy of 0.001 pixels for both the single-ring and multiple-ring configurations. Experimental verifications with the single-ring and multiple-ring data also show the effectiveness of the algorithm.

  9. Two-dimensional signal processing and storage and theory and applications of electromagnetic measurements. Annual report, 1 January-31 December 1987

    SciTech Connect

    Schafer, R.W.; Paris, D.T.

    1988-01-01

    Specific topics covered are: digital signal processing, parallel-processing architectures, two-dimensional optical storage and processing, hybrid optical/digital signal processing, electromagnetic measurements in the time domain, and automatic radiation measurements for near and far-field transformations. Contents include: Periodic Scheduling Theory for DSP Multiprocessors; Zero-Reflectivity Surface Relief Gratings on Lossy Materials; Shaped Edge Serrations for Improved Reflector Performance; Iterative Signal Restoration and Estimation; Representation, Coding, and Analysis of Image; Multiprocessors for Digital Signal Processing; Two-Dimensional Optical Information Processing; Two-Dimensional Optical/Electronic Signal Processing; Electromagnetic Measurements in the Time and Frequency Domains; and Automated Measurements for Near- and Far-Field Transformations.

  10. Containerless processing using electromagnetic levitation

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Abbaschian, R.

    1990-01-01

    The theory and practice of containerless processing via electromagnetic (EM) levitation is reviewed briefly. The use of EM levitation for the processing of alloys is described with particular emphasis on the bulk melt supercooling phenomenon in a containerless environment. The various effects associated with rapid solidification via bulk melt supercooling are discussed with examples of Nb-Si alloys. It is suggested that a detailed analysis of such effects can be utilized to select the potentially most promising alloys for future space-based processing.

  11. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  12. Electromagnetic fields in fractal continua

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Mena, Baltasar; Patiño, Julián; Morales, Daniel

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum ΦD3⊂E3 with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space Fα accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  13. Electromagnetic effects on transportation systems

    SciTech Connect

    Morris, M.E.; Dinallo, M.A.

    1996-05-01

    Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

  14. Electromagnetic weak turbulence theory revisited

    SciTech Connect

    Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.; Pavan, J.

    2012-10-15

    The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.

  15. Electromagnetic compatibility of nuclear power plants

    SciTech Connect

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  16. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect

    Bashir, M. F.; Smolyakov, A. I.; Elfimov, A. G.; Melnikov, A. V.; Murtaza, G.

    2014-08-15

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m = 1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure β{sub e}, the safety factor q, and the temperature ratio τ on GAM dispersion are analyzed.

  17. Electromagnetic perturbations in new brane world scenarios

    NASA Astrophysics Data System (ADS)

    Molina, C.; Pavan, A. B.; Medina Torrejón, T. E.

    2016-06-01

    In this work, we consider electromagnetic dynamics in Randall-Sundrum branes. It is derived from a family of four-dimensional spacetimes compatible with Randall-Sundrum brane worlds, focusing on asymptotic flat backgrounds. Maximal extensions of the solutions are constructed, and their causal structures are discussed. These spacetimes include singular, nonsingular, and extreme black holes. Maxwell's electromagnetic field is introduced, and its evolution is studied in an extensive numerical survey. Electromagnetic quasinormal mode spectra are derived and analyzed with time-dependent and high-order WKB methods. Our results indicate that the black holes in the brane are electromagnetically stable.

  18. Detection of electromagnetic waves using MEMS antennas

    SciTech Connect

    Lavrik, Nickolay V; Tobin,; Bowland, Landon T

    2011-01-01

    We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.

  19. Calculation principles for a synchronous electromagnetic clutch

    NASA Technical Reports Server (NTRS)

    Panasenkov, M. A.

    1978-01-01

    A detailed explanation of the calculation principles, for a synchronous salient-pole electromagnetic clutch with lumped excitation windings is supplied by direct current. Practical recommendations are given.

  20. Broadband electromagnetic cloaking of long cylindrical objects.

    PubMed

    Tretyakov, Sergei; Alitalo, Pekka; Luukkonen, Olli; Simovski, Constantin

    2009-09-01

    Electromagnetic cloaks are devices that make objects undetectable for probing with electromagnetic waves. The known realizations of transformational-optics cloaks require materials with exotic electromagnetic properties and offer only limited performance in narrow frequency bands. Here, we demonstrate a wideband and low-loss cloak whose operation is not based on the use of exotic electromagnetic materials, which are inevitably dispersive and lossy. Instead, we use a simple structure made of metal layers. In this Letter, we present an experimental demonstration of cloaking for microwaves and simulation results for cloaking in the visible range. PMID:19792314

  1. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  2. The Effect of Iteration on the Design Performance of Primary School Children

    ERIC Educational Resources Information Center

    Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.

    2015-01-01

    Iteration during the design process is an essential element. Engineers optimize their design by iteration. Research on iteration in Primary Design Education is however scarce; possibly teachers believe they do not have enough time for iteration in daily classroom practices. Spontaneous playing behavior of children indicates that iteration fits in…

  3. Iterative build OMIT maps: Map improvement by iterative model-building and refinement without model bias

    SciTech Connect

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2008-02-12

    A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  4. An Iterative Method for Solving Variable Coefficient ODEs

    ERIC Educational Resources Information Center

    Deeba, Elias; Yoon, Jeong-Mi; Zafiris, Vasilis

    2003-01-01

    In this classroom note, the authors present a method to solve variable coefficients ordinary differential equations of the form p(x)y([squared])(x) + q(x)y([superscript 1])(x) + r(x)y(x) = 0. They propose an iterative method as an alternate method to solve the above equation. This iterative method is accessible to an undergraduate student studying…

  5. Magnet design technical report---ITER definition phase

    SciTech Connect

    Henning, C.

    1989-04-28

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  6. Validation of 1-D transport and sawtooth models for ITER

    SciTech Connect

    Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.

    1996-12-31

    In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.

  7. Wall conditioning for ITER: Current experimental and modeling activities

    NASA Astrophysics Data System (ADS)

    Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.

    2015-08-01

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  8. Not so Complex: Iteration in the Complex Plane

    ERIC Educational Resources Information Center

    O'Dell, Robin S.

    2014-01-01

    The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…

  9. Language Evolution by Iterated Learning with Bayesian Agents

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Kalish, Michael L.

    2007-01-01

    Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…

  10. On the Levin iterative method for oscillatory integrals

    NASA Astrophysics Data System (ADS)

    Xiang, Shuhuang; Wang, Haiyong

    2008-07-01

    This paper considers and gives error analysis for Levin iteration method to approximate Bessel-trigonometric transformation . For generalized Fourier transformation under the condition that g'(x)[not equal to]0 for all x[set membership, variant][a,b], Levin iteration method with the initial U[0](x)[reverse not equivalent]0 is identical to the asymptotic method.

  11. Experimental investigation of iterative reconstruction techniques for high resolution mammography

    NASA Astrophysics Data System (ADS)

    Vengrinovich, Valery L.; Zolotarev, Sergei A.; Linev, Vladimir N.

    2014-02-01

    The further development of the new iterative reconstruction algorithms to improve three-dimensional breast images quality restored from incomplete and noisy mammograms, is provided. The algebraic reconstruction method with simultaneous iterations - Simultaneous Algebraic Reconstruction Technique (SART) and the iterative method of statistical reconstruction Bayesian Iterative Reconstruction (BIR) are referred here as the preferable iterative methods suitable to improve the image quality. For better processing we use the Graphics Processing Unit (GPU). Method of minimizing the Total Variation (TV) is used as a priori support for regularization of iteration process and to reduce the level of noise in the reconstructed image. Preliminary results with physical phantoms show that all examined methods are capable to reconstruct structures layer-by-layer and to separate layers which images are overlapped in the Z- direction. It was found that the method of traditional Shift-And-Add tomosynthesis (SAA) is worse than iterative methods SART and BIR in terms of suppression of the anatomical noise and image blurring in between the adjacent layers. Despite of the fact that the measured contrast/noise ratio in the presence of low contrast internal structures is higher for the method of tomosynthesis SAA than for SART and BIR methods, its effectiveness in the presence of structured background is rather poor. In our opinion the optimal results can be achieved using Bayesian iterative reconstruction BIR.

  12. Image Restoration Using the Damped Richardson-Lucy Iteration

    NASA Astrophysics Data System (ADS)

    White, R. L.

    The most widely used image restoration technique for optical astronomical data is the Richardson-Lucy (RL) iteration. The RL method is well-suited to optical and ultraviolet because it converges to the maximum likelihood solution for Poisson statistics in the data, which is appropriate for astronomical images taken with CCD or photon-counting detectors. Images restored using the RL iteration have good good photometric linearity and can be used for quantitative analysis, and typical RL restorations require a manageable amount of computer time. Despite its advantages, the RL method has some serious shortcomings. Noise amplification is a problem, as for all maximum likelihood techniques. If one performs many RL iterations on an image containing an extended object such as a galaxy, the extended emission develops a ``speckled'' appearance. The speckles are the result of fitting the noise in the data too closely. The only limit on the amount of noise amplification in the RL method is the requirement that the image not become negative. The usual practical approach to limiting noise amplification is simply to stop the iteration when the restored image appears to become too noisy. However, in most cases the number of iterations needed is different for different parts of the image. Hundreds of iterations may be required to get a good fit to the high signal-to-noise image of a bright star, while a smooth, extended object may be fitted well after only a few iterations. Thus, one would like to be able to slow or stop the iteration automatically in regions where a smooth model fits the data adequately, while continuing to iterate in regions where there are sharp features (edges or point sources). The need for a spatially adaptive convergence criterion is exacerbated when CCD readout noise is included in the RL algorithm (Snyder, Hammoud, & White, 1993, JOSA A , 10 , 1014), because the rate of convergence is then slower for faint stars than for bright stars. This paper will

  13. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  14. On the JET ITER-Like ICRF antenna and implications for the ICRF system for ITER

    NASA Astrophysics Data System (ADS)

    Durodie, Frederic; Nightingale, Mark

    2009-11-01

    A new ``ITER-Like'' Ion Cyclotron Resonance Frequency (ICRF) antenna was installed on the JET tokamak in 2007 and extensively operated on plasma since May 2008 for a wide range of conditions (frequencies: 33, 42 and 47 MHz, L- and ELMy H-mode plasmas, antenna strap - plasma separatrix distances from 9 to 17 cm). Aspects relating to the potential performance and design of the ITER system, will be discussed: (i) the wave coupling performance and validation of the TOPICA modelling code used to predict the coupled power in ITER; (ii) the operation at high coupled power density (up to 6.2 MW/m^2 in L-mode, 4.1 MW/m^2 in H-mode) and high RF voltage on the antenna structure (up to 42 kV); (iii) the coupling of ICRF power during fast variations (ms) in coupling occurring during ELMs and (iv) antenna control in the presence of high mutual coupling between antenna straps.

  15. Final Report on ITER Task Agreement 81-10

    SciTech Connect

    Brad J. Merrill

    2009-01-01

    An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quench event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.

  16. Iterative image reconstruction techniques: cardiothoracic computed tomography applications.

    PubMed

    Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L

    2014-07-01

    Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334

  17. A unified noise analysis for iterative image estimation.

    PubMed

    Qi, Jinyi

    2003-11-01

    Iterative image estimation methods have been widely used in emission tomography. Accurate estimation of the uncertainty of the reconstructed images is essential for quantitative applications. While both iteration-based noise analysis and fixed-point noise analysis have been developed, current iteration-based results are limited to only a few algorithms that have an explicit multiplicative update equation and some may not converge to the fixed-point result. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient-type algorithms. Under a certain condition, the proposed method does not require an explicit expression of the preconditioner. By deriving the fixed-point expression from the iteration-based result, we show that the proposed iteration-based noise analysis is consistent with fixed-point analysis. Examples in emission tomography and transmission tomography are shown. The results are validated using Monte Carlo simulations. PMID:14653559

  18. FOREWORD: Special section on electromagnetic characterization of buried obstacles

    NASA Astrophysics Data System (ADS)

    Lesselier, Dominique; Chew, Weng Cho

    2004-12-01

    ), and was co-ordinated by the Guest Editors, D Lesselier and T Habashy, and comprised 14 invited papers; and `Electromagnetic and ultrasonic nondestructive evaluation', which was published in December 2002 (volume 18, issue 6), was organized by the Guest Editors, D Lesselier and J Bowler, and comprised 12 invited papers. In particular in the latter special section, it was noted in the foreword that: `Much of the research effort in NDE (nondestructive evaluation) is aligned with the interests of the broader community of scientists and engineers who study inverse problems and their applications in areas such as geophysics, medical imaging, remote sensing or underwater acoustics, to mention but a few. Indeed, many of the basic methods adopted for NDE including tomography, synthetic aperture techniques and iterative inversions, under many guises, are widely used in these other areas'. In a similar fashion, the foreword of the former special section noted that: `Many developments have been driven by several new applications and some old ones, such as mathematical physics, atmospheric sciences, geophysical prospecting, quantum mechanics, remote sensing, underwater acoustics, nondestructive testing and evaluation, medical imaging, to mention only a few'. One was confronted in these two previous special sections, as one is confronted today, with the same difficult endeavour: a signal resulting from the interrogation of an object embedded in some complicated medium by a probing radiation contains arcane, encoded information about this object. Inversion is the procedure by which this signal is transformed into some intelligible, decoded form in order to provide the user with some of this information. This could be estimates of locations, volumes, boundaries, shapes, values, and distributions of electromagnetic (elastic) constitutive parameters. This endeavour forces us to go from mathematical theory to numerical solution methods, to validation from laboratory-controlled data, to

  19. Electromagnetic induction in the Earth

    NASA Astrophysics Data System (ADS)

    Fergurson, Ian; Slater, Lee; Queralt, Pilar; Ledo, Juanjo

    Measurements of electrical properties of the Earth using electromagnetic induction (EM) can elucidate geological structures and processes ranging from meter to mantle scale. The 18th International Workshop on Electromagnetic Induction in the Earth (EMIW) highlighted how recent theoretical and instrumental advances are being applied in high-quality EM induction studies from around the world, at lithospheric, crustal, and near-surface scales.Important aspects of the lithospheric and crustal studies presented included the demonstration of the increased resolution provided by dense two-dimensional magnetotelluric (MT) profiles and three-dimensional grids, the common use of the improved impedance tensor decomposition method to correct regional MT responses, widespread consideration of implicitly anisotropic materials within multidimensional MT models, and, in the numerical modeling field, the increased use of unstructured meshes. Review papers provided an overview of the large-scale EM surveys and spatial variations in the European lithosphere and addressed the role of EM in monitoring seismic and volcanic crustal processes.

  20. Compton Sources of Electromagnetic Radiation

    SciTech Connect

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.