Science.gov

Sample records for iterative spectrum shaping

  1. ITER Shape Controller and Transport Simulations

    SciTech Connect

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  2. An iterative multidisciplinary analysis for rotor blade shape determination

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Stefko, George L.

    1993-01-01

    A CFD solver called ADPAC-APES is coupled with a NASTRAN structural analysis and a MARC thermal/heat transfer analysis to determine rotor blade shape. Nonlinear blade displacements due to centrifugal loads, aerodynamic pressures, and nonuniform temperature distribution are determined simultaneously. The effect of blade displacements on aerodynamic pressures and temperatures is then analyzed. These calculations are iterated till a steady state is reached across all the disciplines. This iterative procedure is applied to a ducted fan rotor blade and the manufactured shape is determined from a given operating shape. Effect of a part-span shroud on blade deflections is also analyzed.

  3. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  4. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  5. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    been present at the beginning, ITER would be in far better shape. As is, it can provide good lessons to avoid the same problems in the future. The ITER Council is now applying those lessons. A very experienced new Director General has just been appointed. He has instituted a number of drastic changes, but still within the governance of the JIA. Will there changes be effective? Only time will tell, but I am optimistic.

  6. Shaping the spectrum - From autoinflammation to autoimmunity.

    PubMed

    Hedrich, Christian M

    2016-04-01

    Historically, autoimmune-inflammatory disorders were subdivided into autoinflammatory vs. autoimmune diseases. About a decade ago, an immunological continuum was proposed, placing "classical" autoinflammatory disorders, characterized by systemic inflammation in the absence of high-titer autoantibodies or autoreactive T lymphocytes, at the one end, and autoimmune disorders at the other end. We provide an overview of recent developments and observations, filling in some of the gaps and showing strong interconnections between innate and adaptive immune mechanisms, indicating that disorders from both ends of the immunological spectrum indeed share key pathomechanisms. We focus on three exemplary disorders: i) systemic juvenile idiopathic arthritis representing "classical" autoinflammatory disorders; ii) psoriasis, a mixed pattern disease; and iii) systemic lupus erythematosus, a prototypical autoimmune disease. We summarize scientific observations suggesting that, depending on disease stages and/or duration, individualized treatment targeting innate or adaptive immune mechanisms in disorders from either end of the immunological spectrum may control disease activity. PMID:26948930

  7. Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    PubMed Central

    Chang, Joshua C.; Chou, Tom

    2013-01-01

    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts. PMID:24678141

  8. RMP ELM Suppression in DIII-D Plasmas with ITER Similar Shapes and Collisionalities

    SciTech Connect

    Evans, T.E.; Fenstermacher, M. E.; Moyer, R.A.; Osborne, T. H.; Watkins, J. G.; Gohil, P.; Joseph, I.; Schaffer, M. J.; Baylor, Larry R; Becoulet, M.; Boedo, J.A.; Burrell, K. H.; DeGrassie, J. S.; Finken, K. H.; Jernigan, Thomas C; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Lonnroth, J.; Nardon, E.; Parail, V.; Unterberg, B.; West, W.P.

    2008-01-01

    Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, = 0.53, with ITER relevant collisionalities ve 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.

  9. RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Fenstermacher, M. E.; Moyer, R. A.; Osborne, T. H.; Watkins, J. G.; Gohil, P.; Joseph, I.; Schaffer, M. J.; Baylor, L. R.; Bécoulet, M.; Boedo, J. A.; Burrell, K. H.; de Grassie, J. S.; Finken, K. H.; Jernigan, T.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Lonnroth, J.; Nardon, E.; Parail, V.; Schmitz, O.; Unterberg, B.; West, W. P.

    2008-02-01

    Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, \\bar {\\delta }=0.26 , plasmas and in ITER similar shaped (ISS) plasmas, \\bar {\\delta }=0.53 , with ITER relevant collisionalities v_e^\\ast \\le 0.2 . Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.

  10. Spectrum fatigue testing of T-shaped tension clips

    NASA Astrophysics Data System (ADS)

    Palmberg, Bjoern; Wallstenius, Bengt

    1992-12-01

    An investigation of strain distributions during static loading and crack propagation and fatigue lives under spectrum loading of T-shaped tension clips was carried out. Three slightly different, with respect to geometry, T shaped tension clips made of aluminum alloy 7010-T73651 were studied. The type 1 and 4 test specimens were different only with respect to the web thickness of the clamping end. The type 1 and 2 test specimens were different with repect to milled flat circular countersink around the holes in the type 2 specimens and with respect to the radius between the web and foot. The spectrum fatigue loading consisted of a load sequence representative for the wing root, lower side, of a fighter aircraft. Tests were made at two different load levels for each specimen type. The strain measurements show that the countersink in the type 2 specimens increases the stresses in the fatigue critical region. This is also manifested in the spectrum fatigue life results, where type 2 specimens show the shortest fatigue lives. The strain measurements show that the torque used for the bolts in joining two test specimens or one test specimen and a dummy has a rather large impact on the strain in the fatigue region. The strains decrease with increasing torque. The spectrum fatigue loading resulted in approximately an equal number of flights to obtain a 10.0 mm crack for specimens of type 1 and 4. This suggests that the type 1 configuration is superior since the web thickness is smaller for this type as compared to the type 4 specimens. In other words, the type 4 specimens have an unnecessary oversize of the clamping end web thickness.

  11. Iterative most-likely point registration (IMLP): a robust algorithm for computing optimal shape alignment.

    PubMed

    Billings, Seth D; Boctor, Emad M; Taylor, Russell H

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP's probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  12. Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment

    PubMed Central

    Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  13. Iterative deblending using shaping regularization with a combined PNMO-MF-FK coherency filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang; Jin, Zhaoyu; Gan, Shuwei; Yang, Wencheng; Xiang, Kui; Bai, Min; Huang, Weilin

    2015-11-01

    Simultaneous shooting achieves a much faster acquisition but poses a challenging problem for subsequent processing because of the interference from the neighbor crews. Separation of different sources, also called deblending, becomes important for the overall success of the new acquisition technology. In this paper, we propose a novel deblending approach following the shaping regularization framework. The shaping operator is chosen as an effective filter, combining pseudo normal-moveout, median filtering, and frequency wavenumber filtering (PNMO-MF-FK). We combine the median-filter based deblending approaches and the FK filter based deblending approach within the proposed framework. Instead of simply using the median filter to remove blending noise, we apply a pseudo NMO (PNMO) to prepare a relatively flatter profile in advance, which can make the median filter more effective. It is the first time that the PNMO, median filtering, and FK filtering are combined to form a powerful coherency filter in order to improve the performance of iterative deblending. The proposed deblending approach with the PNMO-MF-FK filter can obtain successful performance within small number of iterations. Compared with the alternative MF-FK filter and FK filter, the PNMO-MF-FK filter can obtain obviously better deblending results. We use both simulated synthetic and field data examples to demonstrate the performance of the proposed approach.

  14. Hybrid iterative wavefront shaping for high-speed focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Hemphill, Ashton S.; Wang, Lihong V.

    2016-03-01

    A major limiting factor of optical imaging in biological applications is the diffusion of light by tissue, preventing focusing at depths greater than ~1 mm in the body. To overcome this issue, phase-based wavefront shaping alters the phase of sections of the incident wavefront to counteract aberrations in phase caused by scattering. This enables focusing through scattering media beyond the optical diffusion limit and increases signal compared to amplitude-based compensation. However, in previous studies, speed of optimization has typically been limited by the use of a liquid crystal spatial light modulator (SLM) for measurement and display. SLMs usually have refresh rates of less than 100 Hz and require much longer than the speckle correlation time of tissue in vivo, usually on the order of milliseconds, to determine the optimal wavefront. Here, we present a phase-based iterative wavefront shaping method based on an onaxis digital micromirror device (DMD) in conjunction with an electro-optic modulator (EOM) for measurement and a fast SLM for display. By combining phase modulation from an EOM with the modal selection of the DMD, we take advantage of DMDs higher refresh rate, approximately 23 kHz, for iterative phase measurement. The slower SLM requires one update for display following the rapid determination of the optimal wavefront via the DMD, allowing for high-speed wavefront shaping. Using this system, we are able to focus through scattering media using 64 modes in under 8 milliseconds, on the order of the speckle correlation time for tissue in vivo.

  15. Optical image encryption based on cascaded iterative angular spectrum algorithm and its implementation with parallel hardware

    NASA Astrophysics Data System (ADS)

    Yu, Biin; Peng, Xiang; Tian, Jindong; Niu, Hanben

    2006-01-01

    A cascaded iterative angular spectrum approach (CIASA) based on the methodology of virtual optics is presented for optical security applications. The technique encodes the target image into two different phase only masks (POM) using a concept of free-space angular spectrum propagation. The two phase-masks are designed and located in any two arbitrary planes interrelated through the free space propagation domain in order to implement the optical encryption or authenticity verification. And both phase masks can serve as enciphered texts. Compared with previous methods, the proposed algorithm employs an improved searching strategy: modifying the phase-distributions of both masks synchronously as well as enlarging the searching space. And with such a scheme, we make use of a high performance floating-point Digital Signal Processor (DSP) to accomplish a design of multiple-locks and multiple-keys optical image encryption system. An evaluation of the system performance is made and it is shown that the algorithm results in much faster convergence and better image quality for the recovered image. And two masks and system parameters can be used to design keys for image encryption, therefore the decrypted image can be obtained only when all these keys are under authorization. This key-assignment strategy may reduce the risk of being intruded and show a high security level. These characters may introduce a high level security that makes the encrypted image more difficult to be decrypted by an unauthorized person.

  16. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    SciTech Connect

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, {delta}, which is most consistent with the data is with the normalized edge pressure, ({beta}{sub POL}{sup PED}){sup 0.4}. Fits of {delta} to a function of temperature, such as {rho}{sub POL}, are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes.

  17. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    SciTech Connect

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  18. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  19. Practical beta limit in ITER-shaped discharges in DIII-D and its increase by higher collisionality

    SciTech Connect

    La Haye, R.J.; Chu, M.S.; Callen, J.D.

    1996-10-01

    The maximum beta which can be sustained for a long pulse in ITER-shaped plasmas in DIII-D with q{sub 95} {approx_gt} 3, ELMs, and sawteeth is found to be limited by resistive tearing modes, particularly m/n = 3/2 and 2/1. At low collisionality comparable to that which will occur in ITER, the beta limit is a factor of two below the usually expected n = {infinity} ballooning and n = 1 kink ideal limits.

  20. Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Hu, Jiasheng; Wu, Kenan

    2009-08-01

    The vector fuzzy control iterative algorithm (VFCIA) is proposed for the design of phase-only sub-wavelength diffractive optical elements (SWDOEs) for beam shaping. The vector diffraction model put forward by Mansuripur is applied to relate the field distributions between the SWDOE plane and the output plane. Fuzzy control theory is used to decide the constraint method for each iterative process of the algorithm. We have designed a SWDOE that transforms a circular flat-top beam to a square irradiance pattern. Computer design results show that the SWDOE designed by the VFCIA can produce better results than the vector iterative algorithm (VIA). And the finite difference time-domain method (FDTD), a rigorous electromagnetic analysis technique, is used to analyze the designed SWDOE for further confirming the validity of the proposed method.

  1. Shaping the Future for Children with Foetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Blackburn, Carolyn; Carpenter, Barry; Egerton, Jo

    2010-01-01

    This article describes work undertaken in connection with an ongoing research project funded by the Training and Development Agency for Schools. It illustrates the educational implications of foetal alcohol spectrum disorders (FASD) and its implications for the educational workforce in seeking to meet the needs of those children who are affected.

  2. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGESBeta

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  3. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    SciTech Connect

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phase distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.

  4. Infrared spectrum of nitric acid dihydrate: Influence of particle shape.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Stetzer, Olaf; Schurath, Ulrich

    2005-03-24

    In situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K. Much better agreement between measured and calculated extinction spectra was obtained by T-matrix calculations assuming oblate particles with aspect ratios greater than five. This indicates that strongly aspherical alpha-NAD crystals are obtained when supercooled nitric acid solution droplets freeze and grow slowly, a process which has been discussed as a potential pathway to the formation of crystalline polar stratospheric cloud (PSC) particles. PMID:16833561

  5. Effect of specimen shape on the elongation of 316LN jacket used in the ITER toroidal field coil

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Kawano, K.; Saito, T.; Iguchi, M.; Nakajima, H.; Teshima, O.; Matsuda, H.

    2012-06-01

    Twenty-five percent of the total toroidal field (TF) coil conductors at the ITER are supplied by the Japan Atomic Energy Agency (JAEA). The jacket section of a TF conductor is made of modified 316LN. The JAEA tested three types of tensile specimens (Japanese-Industrial-Standards-type and ASTM-type) cut from the jacket at 4.2 K. The ASTM-type specimen had a longer and wider reduced section than did the JIS-type specimen. The results of the test showed that the EL of the as-received (AR) jacket was independent of the specimen shape. However, after cold working and aging, the EL of the specimens deteriorated because of sensitization, and the EL distribution in these specimens was larger than that in the case of the AR specimens. It could be inferred that the shape of a test specimen having low ductility is the key determinant of the specimen's susceptibility to fracture.

  6. Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes

    SciTech Connect

    Evans, T E; Fenstermacher, M E; Jakubowski, M; Moyer, R A; Osborne, T H; Schaffer, M J; Schmitz, O; Watkins, J G; Zeng, L; Baylor, L R; Boedo, J A; Burrell, K H; deGrassie, J S; Gohil, P; Joseph, I; Lasnier, C J; Leonard, A W; Mordijck, S; Petty, C C; Pinsker, R I; Rhodes, T L; Rost, J C; Snyder, P B; Unterberg, E; West, W P

    2008-10-13

    Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmas by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.

  7. Investigating the shape bias in typically developing children and children with autism spectrum disorders

    PubMed Central

    Potrzeba, Emily R.; Fein, Deborah; Naigles, Letitia

    2015-01-01

    Young typically developing (TD) children have been observed to utilize word learning strategies such as the noun bias and shape bias; these improve their efficiency in acquiring and categorizing novel terms. Children using the shape bias extend object labels to new objects of the same shape; thus, the shape bias prompts the categorization of object words based on the global characteristic of shape over local, discrete details. Individuals with autism spectrum disorders (ASDs) frequently attend to minor details of objects rather than their global structure. Therefore, children with ASD may not use shape bias to acquire new words. Previous research with children with ASD has provided evidence that they parallel TD children in showing a noun bias, but not a shape bias (Tek et al., 2008). However, this sample was small and individual and item differences were not investigated in depth. In an extension of Tek et al. (2008) with twice the sample size and a wider developmental timespan, we tested 32 children with ASD and 35 TD children in a longitudinal study across 20 months using the intermodal preferential looking paradigm. Children saw five triads of novel objects (target, shape-match, color-match) in both NoName and Name trials; those who looked longer at the shape-match during the Name trials than the NoName trials demonstrated a shape bias. The TD group showed a significant shape bias at all visits, beginning at 20 months of age while the language-matched ASD group did not show a significant shape bias at any visit. Within the ASD group, though, some children did show a shape bias; these children had larger vocabularies concurrently and longitudinally. Degree of shape bias elicitation varied by item, but did not seem related to perceptual complexity. We conclude that shape does not appear to be an organizing factor for word learning by children with ASD. PMID:25954219

  8. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  9. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses.

    PubMed

    Shera, Christopher A

    2015-12-01

    Multiple internal reflection of cochlear traveling waves has been argued to provide a plausible explanation for the waxing and waning and other temporal structures often exhibited by the envelopes of basilar-membrane (BM) and auditory-nerve responses to acoustic clicks. However, a recent theoretical analysis of a BM click response measured in chinchilla concludes that the waveform cannot have arisen via any equal, repetitive process, such as iterated intracochlear reflection [Wit and Bell (2015), J. Acoust. Soc. Am. 138, 94-96]. Reanalysis of the waveform contradicts this conclusion. The measured BM click response is used to derive the frequency-domain transfer function characterizing every iteration of the loop. The selfsame transfer function that yields waxing and waning of the BM click response also captures the spectral features of ear-canal stimulus-frequency otoacoustic emissions measured in the same animal, consistent with the predictions of multiple internal reflection. Small shifts in transfer-function phase simulate results at different measurement locations and reproduce the heterogeneity of BM click response envelopes observed experimentally. PMID:26723327

  10. Palm-shaped spectrum generation for dual-band millimeter wave and baseband signals over fiber

    NASA Astrophysics Data System (ADS)

    Lin, R.; Feng, Z.; Tang, M.; Wang, R.; Fu, S.; Shum, P.; Liu, D.; Chen, J.

    2016-05-01

    In order to offer abundant available bandwidth for radio access networks satisfying future 5G requirements on capacity, this paper proposes a simple and cost-effective palm-shaped spectrum generation scheme that can be used for high capacity radio over fiber (RoF) system. The proposed scheme can simultaneously generate an optical carrier used for upstream and two bands of millimeter wave (MMW) that are capable of carrying different downstream data. The experiment results show that the proposed palm-shaped spectrum generation scheme outperforms optical frequency comb (OFC) based multi-band MMW generation in terms of upstream transmission performance. Furthermore, simulation is carried out with different dual-band MMW configurations to verify the feasibility of using the proposed spectrum generation scheme in the RoF system.

  11. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2016-08-01

    Planetary gearbox vibration signals under nonstationary conditions are characterized by time-varying nature and complex multi-components, making it very difficult to extract features for fault diagnosis. Order spectrum analysis is one of the effective approaches for nonstationary signal analysis of rotating machinery. The main idea of order analysis is to map the time-varying frequency components into constant ones. Inspired by this idea, we propose a new order spectrum analysis method to exploit the unique property of iterative generalized demodulation in converting arbitrary instantaneous frequency trajectories of multi-component signals into constant frequency lines on the time-frequency plane. This new method is completely algorithm-based and tachometer/encoder-free, thus easy to implement. It does not involve equi-angular resampling commonly required by most order tracking methods and is hence free from the decimation and/or interpolation error. The proposed order analysis method can eliminate the time-variation effect of frequency and thus can effectively reveal the harmonic order constituents of nonstationary multi-component signals. However, the planetary gearbox vibration signals also lead to complex sideband orders. As such, we further propose to analyze the order spectrum of amplitude envelope. This will eliminate the complex sideband orders in the order spectrum of original signals, leading to a substantially simplified and more reliable gear characteristic frequency identification process. Nevertheless, the gear and/or planet carrier rotating frequency orders, which are irrelevant to gear fault, may still exist. To avoid possible misleading results due to such frequency orders, we also propose to analyze the order spectrum of instantaneous frequency. Theoretically, the peaks present in frequency order spectrum directly correspond to the gear characteristic frequency orders, which can be used to extract gear fault signature more explicitly. The proposed

  12. On the Phase-Averaged Spectrum of Pulsars and Shape of Their Cutoffs

    NASA Technical Reports Server (NTRS)

    Celik, O.; Thomas, T. J.

    2010-01-01

    All gamma ray pulsars exhibit an exponential cutoff in their spectra and for bright pulsars the statistics are sufficiently high to study the detailed shape of the cutoff. The phase averaged spectra of some pulsars exhibit a sub-exponential cutoff, not predicted by any single physical mechanism. Further studies clarified that (his gentler average cutoff is a consequence of having significant variations of the cutoff energy in the phase-resolved spectrum. In conclusion, the phase-averaged spectrum of a pulsar is not a physical quantity to test high-energy emission models.

  13. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Swain, D.; Ongena, J.; Vervier, M.

    2015-12-01

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode Vmax amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of Vmax of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k// computed by means of the coupling code ANTITER II remains small for the considered cases.

  14. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    SciTech Connect

    Messiaen, A. Ongena, J.; Vervier, M.; Swain, D.

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.

  15. Quantitative Estimation of the Amount of Fibrosis in the Rat Liver Using Fractal Dimension of the Shape of Power Spectrum

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun

    1995-05-01

    This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.

  16. Three-dimensional surface deformation-based shape analysis of hippocampus and caudate nucleus in children with fetal alcohol spectrum disorders.

    PubMed

    Joseph, Jesuchristopher; Warton, Christopher; Jacobson, Sandra W; Jacobson, Joseph L; Molteno, Chris D; Eicher, Anton; Marais, Patrick; Phillips, Owen R; Narr, Katherine L; Meintjes, Ernesta M

    2014-02-01

    Surface deformation-based analysis was used to assess local shape variations in the hippocampi and caudate nuclei of children with fetal alcohol spectrum disorders. High-resolution structural magnetic resonance imaging images were acquired for 31 children (19 controls and 12 children diagnosed with fetal alcohol syndrome/partial FAS). Hippocampi and caudate nuclei were manually segmented, and surface meshes were reconstructed. An iterative closest point algorithm was used to register the template of one control subject to all other shapes in order to capture the true geometry of the shape with a fixed number of landmark points. A point distribution model was used to quantify the shape variations in terms of a change in co-ordinate positions. Using the localized Hotelling T(2) method, regions of significant shape variations between the control and exposed subjects were identified and mapped onto the mean shapes. Binary masks of hippocampi and caudate nuclei were generated from the segmented volumes of each brain. These were used to compute the volumes and for further statistical analysis. The Mann-Whitney test was performed to predict volume differences between the groups. Although the exposed and control subjects did not differ significantly in their volumes, the shape analysis showed the hippocampus to be more deformed at the head and tail regions in the alcohol-exposed children. Between-group differences in caudate nucleus morphology were dispersed across the tail and head regions. Correlation analysis showed associations between the degree of compression and the level of alcohol exposure. These findings demonstrate that shape analysis using three-dimensional surface measures is sensitive to fetal alcohol exposure and provides additional information than volumetric measures alone. PMID:23124690

  17. Iterated combination-based paired permutation tests to determine shape effects of chemotherapy in patients with esophageal cancer.

    PubMed

    Alfieri, Rita; Bonnini, Stefano; Brombin, Chiara; Castoro, Carlo; Salmaso, Luigi

    2016-04-01

    The nonparametric combination of dependent permutation tests method is a useful general tool when a testing problem can be broken down into a set of different k > 1 partial tests. These partial tests, after adjustment of p-values to control for multiplicity, can be marginally analyzed, but jointly considered they can provide information on an overall hypothesis, which might represent the true goal of the testing problem. On the one hand, independence among the partial tests is usually an unrealistic assumption; on the other, even when the underlying dependence relations are known quite often they are difficult to cope with properly. Therefore this combination must be achieved nonparametrically, by implicitly taking into account the dependence structure of tests without explicitly describing it. An important property of the tests based on nonparametric combination methodology, when the number of response variables is high compared to the sample sizes, consists in the finite sample consistency. A practical problem involves choosing the most suitable combining function for each specific testing problem given that the final result can be affected by this crucial choice. The purpose of this article is to present an nonparametric combination solution based on the iterated combination of partial tests, evaluate its power behavior using a Monte Carlo simulation study and apply it to a real medical problem, namely the evaluation of the effects of chemotherapy on the shape of esophageal tumors. R code has been implemented to carry out the analyses. PMID:23070597

  18. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    SciTech Connect

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy.

  19. Joint inversion of T1-T2 spectrum combining the iterative truncated singular value decomposition and the parallel particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Wang, Hua; Fan, Yiren; Cao, Yingchang; Chen, Hua; Huang, Rui

    2016-01-01

    With more information than the conventional one dimensional (1D) longitudinal relaxation time (T1) and transversal relaxation time (T2) spectrums, a two dimensional (2D) T1-T2 spectrum in a low field nuclear magnetic resonance (NMR) is developed to discriminate the relaxation components of fluids such as water, oil and gas in porous rock. However, the accuracy and efficiency of the T1-T2 spectrum are limited by the existing inversion algorithms and data acquisition schemes. We introduce a joint method to inverse the T1-T2 spectrum, which combines iterative truncated singular value decomposition (TSVD) and a parallel particle swarm optimization (PSO) algorithm to get fast computational speed and stable solutions. We reorganize the first kind Fredholm integral equation of two kernels to a nonlinear optimization problem with non-negative constraints, and then solve the ill-conditioned problem by the iterative TSVD. Truncating positions of the two diagonal matrices are obtained by the Akaike information criterion (AIC). With the initial values obtained by TSVD, we use a PSO with parallel structure to get the global optimal solutions with a high computational speed. We use the synthetic data with different signal to noise ratio (SNR) to test the performance of the proposed method. The result shows that the new inversion algorithm can achieve favorable solutions for signals with SNR larger than 10, and the inversion precision increases with the decrease of the components of the porous rock.

  20. The mutation spectrum in genomic late replication domains shapes mammalian GC content.

    PubMed

    Kenigsberg, Ephraim; Yehuda, Yishai; Marjavaara, Lisette; Keszthelyi, Andrea; Chabes, Andrei; Tanay, Amos; Simon, Itamar

    2016-05-19

    Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations. PMID:27085808

  1. The shape of the extragalactic cosmic ray spectrum from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2016-08-01

    We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E/Z < 1 EeV . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.

  2. The mutation spectrum in genomic late replication domains shapes mammalian GC content

    PubMed Central

    Kenigsberg, Ephraim; Yehuda, Yishai; Marjavaara, Lisette; Keszthelyi, Andrea; Chabes, Andrei; Tanay, Amos; Simon, Itamar

    2016-01-01

    Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations. PMID:27085808

  3. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.

    PubMed

    Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J

    2016-06-01

    Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. PMID:26968926

  4. SU-F-18C-02: Evaluations of the Noise Power Spectrum of a CT Iterative Reconstruction Technique for Radiation Therapy

    SciTech Connect

    Dolly, S; Chen, H; Anastasio, M; Mutic, S; Li, H

    2014-06-15

    Purpose: To quantitatively assess the noise power spectrum (NPS) of the new, commercially released CT iterative reconstruction technique, iDose{sup 4} from Philips, to compare it with filtered back-projection techniques (FBP), and to provide clinical practice suggestions for radiation therapy. Methods: A uniform phantom was CT imaged with 120kVp tube potential over a range of mAs (250-3333). The image sets were reconstructed using two reconstruction algorithms (FBP and iDose{sup 4} with noise reduction levels 1, 3, and 6) and three reconstruction filters (standard B, smooth A, and sharp C), after which NPS variations were analyzed and compared on region of interest (ROI) sizes (16×16 to 128×128 pixels), ROI radii (0–65 mm), reconstruction algorithms, reconstruction filters, and mAs. Results: The NPS magnitude and shape depended considerably on ROI size and location for both reconstruction algorithms. Regional noise variance became more stationary as ROI size decreased, minimizing NPS artifacts. The optimal 32×32-pixel ROI size balanced the trade-off between stationary noise and adequate sampling. NPS artifacts were greatest at the center of reconstruction space and decreased with increasing ROI distance from the center. The optimal ROI position was located near the phantom's radial midpoint (∼40mm). For sharper filters, the NPS magnitude and the maximum magnitude frequency increased. Higher dose scans yielded lower NPS magnitudes for both reconstruction algorithms and all filters. Compared to FBP, the iDose{sup 4} algorithm reduced the NPS magnitude while preferentially reducing noise at mid-range spatial frequencies, altering noise texture. This reduction was more significant with increasing iDose{sup 4} noise reduction level. Conclusion: Compared to pixel standard deviation, NPS has greater clinical potential for task-based image quality assessment, describing both the magnitude and spatial frequency characteristics of image noise. While iDose{sup 4

  5. The 21cm power spectrum and the shapes of non-Gaussianity

    SciTech Connect

    Chongchitnan, Sirichai

    2013-03-01

    We consider how measurements of the 21cm radiation from the epoch of reionization (z = 8−12) can constrain the amplitudes of various 'shapes' of primordial non-Gaussianity. The limits on these shapes, each parametrized by the non-linear parameter f{sub NL}, can reveal whether the physics of inflation is more complex than the standard single-field, slow-roll scenario. In this work, we quantify the effects of the well-known local, equilateral, orthogonal and folded types of non-Gaussianities on the 21cm power spectrum, which is expected to be measured by upcoming radio arrays such as the Square-Kilometre Array (SKA). We also assess the prospects of the SKA in constraining these non-Gaussianities, and found constraints that are comparable with those from cosmic-microwave-background experiments such as Planck. We show that the limits on various f{sub NL} can be tightened to O(1) using a radio array with a futuristic but realistic set of specifications.

  6. Shaped Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Drosophila Embryo

    PubMed Central

    Holloway, David

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns. PMID:25945341

  7. Electromagnetic Field Enhancement and Spectrum Shaping through Plasmonically Integrated Optical Vortices

    PubMed Central

    Ahn, Wonmi; Boriskina, Svetlana V.; Hong, Yan; Reinhard, Björn M.

    2012-01-01

    We introduce a new design approach for surface enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices ‘pinned’ to rationally-designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at pre-defined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. PMID:22171957

  8. Search for new physics in a precise 20F beta spectrum shape measurement

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Voytas, Paul; Chuna, Thomas; Naviliat-Cuncic, Oscar; Gade, Alexandra; Hughes, Max; Huyan, Xueying; Liddick, Sean; Minamisono, Kei; Paulauskas, Stanley; Weisshaar, Dirk; Ban, Gilles; Flechard, Xavier; Lienard, Etienne

    2015-10-01

    We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. We aim to achieve a relative precision below 3%, representing an order of magnitude improvement compared to previous experiments. This level of precision will enable a test of the so-called strong form of the conserved vector current (CVC) hypothesis, and should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in a scintillation detector deep enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the beam implantation. Ancillary detectors are used to tag the 1.633-MeV γ-rays following the β decay for coincidence measurements in order to reduce backgrounds. We will give an overview and report on the status of the experiment.

  9. Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Shumack, A. E.; Maggi, C. F.; Reinke, M.; Lawson, K. D.; Coffey, I.; Pütterich, T.; Brezinsek, S.; Lipschultz, B.; Matthews, G. F.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Rzadkiewicz, J.; Czarski, T.; Dominik, W.; Kasprowicz, G.; Pozniak, K.; Zabolotny, W.; Zastrow, K.-D.; Conway, N. J.; contributors, JET

    2015-07-01

    The {{W}45+} and {{W}46+} 3p-4d inner shell excitation lines in addition to M{{o}32+} 2p-3s lines have been identified from the spectrum taken by an upgraded high-resolution x-ray spectrometer. It is found from analysis of the absolute intensities of the {{W}46+} and M{{o}32+} lines that W and Mo concentrations are in the range of ˜ {{10}-5} and ˜ {{10}-6}, respectively, with a ratio of ˜5% in JET with the ITER-like wall configuration for ELMy H-mode plasmas with a plasma current of 2.0-2.5 MA, a toroidal magnetic field of 2.7 T and a neutral beam injection power of 14-18 MW. For the purpose of checking self-consistency, it is confirmed that the W concentration determined from the {{W}45+} line is in agreement with that from the {{W}46+} line within 20% and that the plasma effective charge determined from the continuum of the first order reflection spectrum is also in agreement with that from the second order within 50%. Further, the determined plasma effective charge is in agreement with that determined from a visible spectroscopy, confirming that the sensitivity of the x-ray spectrometer is valid and that the W and the Mo concentrations are also likely to be valid.

  10. The shape of the primary cosmic ray electron spectrum above 10 GeV

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.

    1974-01-01

    A balloon borne measurement of the cosmic ray electron spectrum above 10 GeV is reported in which two new techniques have been used to remove proton background contamination. First, the depth of the spectrometer on one of the flights was more than 40 radiation lengths, enabling hadronically and electromagnetically induced cascades to be differentiated for a subset of the data. Second, electromagnetic cascade starting points were determined to within about 0.1 radiation lengths based upon a calibration with electrons from 5.4 to 18 GeV at the Stanford Linear Accelerator. The resulting spectrum, when fitted with a power law, is steep, but the fit is marginal. A significantly better fit is achieved by assuming a model in which the spectrum is steepening in the measured region.

  11. Spacing and shape of random peaks in non-parametric spectrum estimates

    PubMed Central

    Thomson, D. J.; Haley, C. L.

    2014-01-01

    In this paper, expressions are derived for the expected number of spurious peaks in a spectrum estimate, that is, crossings above a given significance level per frequency unit, as well as the expected width of these peaks. In numerous scientific applications, spectrum estimates are used for the purpose of identifying sinusoidal or modal components, often thinning large sets of candidate frequencies with coincidence detection. Because one always expects numerous false peaks in a spectrum estimate, knowing the expected rate of false peaks helps to decide whether the number observed is abnormal and hence determine the true nature of the process. An example using solar wind data from the Advanced Composition Explorer is given where spectra display pathological numbers of significant peaks, while temporally permuted versions of the data possess spectra with the number expected for a white, Gaussian process. The permutation test is a valuable diagnostic for processes suspected to contain many line components. PMID:25002827

  12. Perception of Shapes Targeting Local and Global Processes in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Grinter, Emma J.; Maybery, Murray T.; Pellicano, Elizabeth; Badcock, Johanna C.; Badcock, David R.

    2010-01-01

    Background: Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and…

  13. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence

    NASA Astrophysics Data System (ADS)

    Gaspari, M.

    2015-07-01

    The hot plasma filling galaxy clusters emits copious X-ray radiation. The classic unheated and unperturbed cooling flow model predicts dramatic cooling rates and an isobaric X-ray spectrum with constant differential luminosity distribution. The observed cores of clusters (and groups) show instead a strong deficit of soft X-ray emission: dLx/dT ∝ (T/Thot)α = 2 ± 1. Using 3D hydrodynamic simulations, we show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow injection: condensing clouds boost the AGN outflows, which quench cooling as they thermalize through the core. The resultant average distribution slope is α ≃ 2, oscillating within the observed 1 < α < 3. In the absence of thermal instability, the X-ray spectrum remains isothermal (α ≳ 8), while unopposed cooling drives a too shallow slope, α < 1. AGN outflows deposit their energy inside-out, releasing more heat in the inner cooler phase; radially distributed heating alone induces a declining spectrum, 1 < α < 2. Turbulence further steepens the spectrum and increases the scatter: the turbulent Mach number in the hot phase is subsonic, while it becomes transonic in the cooler phase, making perturbations to depart from the isobaric mode. Such increase in dln P/dln T leads to α ≈ 3. Self-regulated AGN outflow feedback can address the soft X-ray problem through the interplay of heating and turbulence.

  14. Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyu; Zhu, Ninghua; Wang, Lixian; Wang, Hui; Du, Yuanxin; Liu, Jianguo

    2012-11-01

    The dynamic control for the spectra of the Ultra-wideband (UWB) signals, which is the key for implementing the dynamic spectrum access in the cognitive radio, is still a challenge due to the limited processing speed of the electronic devices. In this paper, we have summarized our recent work about controlling the spectrum shape of the UWB signals in optical domain, in addition to reviewing the other groups' related research work. The experiment setups and results based on nonlinear dynamics of the optoelectronic oscillator and transfer response of the phase or polarization-to-intensity convertor will be described in detail respectively, in which the controllable frequency suppress for the optical UWB signals at specific frequency positions were implemented. Particularly, the UWB pulse with the special shape, which corresponds to the 5-GHz band-rejection in frequency domain, was generated in order to avoid the interference between UWB and Wireless Fidelity system in practice. In addition, the UWB signals whose center frequency could be continuously tuned and converted up to the frequency range of millimeter wave were generated by utilizing the polarization modulator based optical switch. The areas for future development and the challenge of implementing these techniques for the applications in practice will also be discussed.

  15. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoyi; Smith, Jeffrey; Brown, Anthony W.

    2002-09-01

    A Brillouin scattering based fiber sensor system has been developed by our Fiber Optics Group for the structural monitoring and civil engineering related applications. In this paper, the Brillouin loss spectrum has been characterized in terms of its center frequency, peak power, line-width and shape. These parameters have been considered as a function of the input pump and probe laser powers, the pump pulse duration, strain and temperature. The measurement accuracy has been studied at different Brillouin frequency steps to study the uncertainty of the Brillouin frequency, line-width, peak power and shape factor vs. signal to noise ratio, so that we can optimize the system performance. Characterization of the Brillouin loss spectrum led to the development of an innovative technique to measure the strain and temperature simultaneously using the strain and temperature dependence on the peak power in conjunction with the Brillouin frequency for the single mode fiber with 3m spatial resolution, 3°C temperature resolution and 200 me (mm/m) strain accuracy.

  16. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  17. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  18. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    NASA Astrophysics Data System (ADS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-03-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of "different objects same image" or "different images same object" affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and some shadows. In the second hierarchy, we adopt

  19. Crater shape and size-frequency distribution in determining the topographic power spectrum of a cratered surface

    NASA Astrophysics Data System (ADS)

    Rosenburg, M. A.; Aharonson, O.; Smith, D. E.; Zuber, M. T.; Zhang, X.

    2010-12-01

    The statistical properties of a heavily cratered planetary surface reflect several factors that govern its formation and subsequent modification: the size-frequency distribution of impactors, the corresponding distribution of crater sizes, crater morphology, and downslope movement of material on steep slopes. We develop and apply a new cratered terrain-generating model to study the relative contributions of the crater size-frequency distribution and crater shape to the power spectral density of a surface that accumulates impacts. By monitoring surviving rim fragments through time, we derive the relationship between the size-frequency distribution of observable craters and its production function, whose slope we vary. This permits us to explore the criteria for equilibrium. Further, we examine the effects of changes in crater morphology with size—the transition from simple to complex crater shapes, as well as the appearance of complex features such as central peaks, peak rings, and wall terraces—on the slope of the power spectrum, utilizing the new global topography dataset provided by the Lunar Orbiter Laser Altimeter (LOLA) to characterize the power spectra of several lunar craters. Finally, we compare our findings on the dependencies of the power spectral slope to the observed roughness properties at several length scales of lunar terrains in various stages of saturation, from young maria to ancient highlands.

  20. ITER's woes

    NASA Astrophysics Data System (ADS)

    jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita

    2014-07-01

    In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.

  1. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  2. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  3. Are Children with Autism Spectrum Disorder Initially Attuned to Object Function Rather than Shape for Word Learning?

    ERIC Educational Resources Information Center

    Field, Charlotte; Allen, Melissa L.; Lewis, Charlie

    2016-01-01

    We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…

  4. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  5. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGESBeta

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  6. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  7. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    NASA Astrophysics Data System (ADS)

    Cerdeño, D. G.; Peiró, M.; Robles, S.

    2016-04-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.

  8. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  9. SU-C-207-06: In Vivo Quantification of Gold Nanoparticles Using K-Edge Imaging Via Spectrum Shaping by Gold Filter

    SciTech Connect

    Chen, H; Cormack, R; Bhagwat, M; Berbeco, R

    2015-06-15

    Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to create an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.

  10. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.

    PubMed

    Burt, Jim A; Zhao, Xihua; McHale, Jeanne L

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio kappa = Lambda/Delta is increased, where Lambda and Delta are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of kappa for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy lambdasolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Lambda and Delta are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of beta-carotene in isopentane and CS2. The derived values of lambdasolv using the Gaussian model are found to be in better agreement with the high temperature limit of Delta2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Delta of the solvent-induced frequency fluctuations. PMID:15268604

  11. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of β-carotene in nonpolar solvent

    NASA Astrophysics Data System (ADS)

    Burt, Jim A.; Zhao, Xihua; McHale, Jeanne L.

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio κ=Λ/Δ is increased, where Λ and Δ are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of κ for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy λsolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Λ and Δ are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of β-carotene in isopentane and CS2. The derived values of λsolv using the Gaussian model are found to be in better agreement with the high temperature limit of Δ2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Δ of the solvent-induced frequency fluctuations.

  12. Prospects of ITER Instability Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen

    2015-11-01

    Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.

  13. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  14. Optimization of the ITER Ion Cyclotron Heating Antenna Array

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Swain, D. W.; Carter, M. D.; Taylor, D. J.; Bosia, G.; D'Ippolito, D. A.; Myra, J. R.

    1996-11-01

    The present design of the ITER ICH antenna array comprises two poloidal by four toroidal current elements in each of four ports. Each current element forms a resonant double loop (RDL) with power fed to a pretuned matchpoint on the strap; the matching is accomplished using slow-wave transmission lines as adjustable shorted-stub tuners on either end of the current strap. The power requirement is 12.5 MW per port over the frequency range of 40--70 MHz, with extended operation to 80 MHz desirable. The antenna design optimization process includes strap shaping to minimize strap voltages and rf E-fields along B-field lines, (2) frame/Faraday shield geometry design to improve plasma coupling, wave spectrum directivity, and phase control, and (3) Faraday shield/bumper geometry to minimize rf sheath-induced structure heating and impurity generation.

  15. Shapes of Interacting RNA Complexes

    PubMed Central

    Fu, Benjamin M.M.

    2014-01-01

    Abstract Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops. This shape projection preserves the topological core of the RNA complex, and for fixed topological genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows for computing the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform sampling algorithm for shapes of RNA complexes of fixed topological genus. PMID:25075750

  16. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  17. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  18. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  19. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  20. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  1. Iterative contextual CV model for liver segmentation

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; He, Jiangping; Yang, Xin

    2014-01-01

    In this paper, we propose a novel iterative active contour algorithm, i.e. Iterative Contextual CV Model (ICCV), and apply it to automatic liver segmentation from 3D CT images. ICCV is a learning-based method and can be divided into two stages. At the first stage, i.e. the training stage, given a set of abdominal CT training images and the corresponding manual liver labels, our task is to construct a series of self-correcting classifiers by learning a mapping between automatic segmentations (in each round) and manual reference segmentations via context features. At the second stage, i.e. the segmentation stage, first the basic CV model is used to segment the image and subsequently Contextual CV Model (CCV), which combines the image information and the current shape model, is iteratively performed to improve the segmentation result. The current shape model is obtained by inputting the previous automatic segmentation result into the corresponding self-correcting classifier. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that we obtain more and more accurate segmentation results by the iterative steps and satisfying results are obtained after about six iterations. Also, our method is comparable to the state-of-the-art work on liver segmentation.

  2. Gyrokinetic Simulations of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike

    2015-11-01

    It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  3. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  4. ITER nominates next leader

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2015-01-01

    Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.

  5. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  6. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  7. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  8. NREL Spectrum of Innovation

    ScienceCinema

    None

    2013-05-29

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  9. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  10. Fourier mode analysis of source iteration in spatially periodic media

    SciTech Connect

    Zika, M.R.; Larsen, E.W.

    1998-12-31

    The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.

  11. Resonances in the Photoionization Cross Sections of Atomic Nitrogen Shape the Far-ultraviolet Spectrum of the Bright Star in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Chayer, Pierre

    2013-08-01

    The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Lyβ, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 Å and a deep absorption feature at 1072 Å none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s 2 2p 3 2 D 0 and 2 P 0). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.

  12. RESONANCES IN THE PHOTOIONIZATION CROSS SECTIONS OF ATOMIC NITROGEN SHAPE THE FAR-ULTRAVIOLET SPECTRUM OF THE BRIGHT STAR IN 47 TUCANAE

    SciTech Connect

    Dixon, William V.; Chayer, Pierre E-mail: chayer@stsci.edu

    2013-08-10

    The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Ly{beta}, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 A and a deep absorption feature at 1072 A; none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s {sup 2} 2p {sup 3} {sup 2} D {sup 0} and {sup 2} P {sup 0}). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.

  13. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  14. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  15. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  16. Iterated multidimensional wave conversion

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  17. Spectral resolvability of iterated rippled noise

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2005-04-01

    A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

  18. Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroshi; Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Ohsato, Hirotaka; Watanabe, Eiichiro; Sugimoto, Yoshimasa; Furuki, Kenji; Miyaji, Kunio; Hogg, Richard A.

    2015-04-01

    We developed a low-coherence light source based on self-assembled InAs quantum dots (QDs) with controlled emission wavelengths and applied it to optical coherence tomography (OCT) imaging. A current-driven superluminescent diode (SLD) light source including four layers of QDs exhibits a broadband (80-nm-bandwidth) emission centered at approximately 1.2 µm with a Gaussian-like spectral shape at room temperature. Spectral-domain OCT (SD-OCT) using the QD-SLD as a light source was developed and imaging with the SD-OCT was demonstrated. The axial resolution was estimated to be approximately 8 µm in air and no apparent side lobes appeared beside the point spread function, indicating the effectiveness of the QD-SLD for high-resolution, noise-reduced OCT imaging.

  19. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  20. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  1. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  2. Shape Determination for Large Static Structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, Robert E., Jr.

    1986-01-01

    Parameter and shape estimates updated from new measurements. Involves statistical structural analysis, statistical electromagneticfield analysis, filtering, measurement modeling, and iterative prediction/correction procedures. Estimating algorithms result from generalizations of Kalman statistical-filter theory.

  3. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  4. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  5. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  6. Electrical optimization of the ICH antenna array for ITER

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Swain, D. W.; Carter, M. D.; Taylor, D. J.; Bosia, G.

    1997-04-01

    The present design of the ITER ICH antenna array comprises two poloidal by four toroidal current elements in each of four ports. Each current element forms a resonant double loop (RDL) with power fed to a pretuned matchpoint on the strap; the matching is accomplished using slow-wave transmission lines as adjustable shorted-stub tuners on other end of the current strap. The power requirement is 12.5 MW per port over the frequency range of 40-70 MHz, with extended operation to 80 MHz desirable. The antenna design optimization process includes (1) strap shaping to minimize strap voltages and rf E-fields along B-field lines and (2) frame/Faraday shield geometry design to improve plasma coupling, wave spectrum directivity, and phase control. For the ignited plasma parameters, the optimized array design delivers full power over the ranges of 40-80 MHz in frequency and 0° to 180° in phase. The maximum strap voltage is 41 kV and the maximum parallel E-field is 16 kV/cm for the worst case over these ranges. The array directivity for current drive operation is calculated to be close to 80%.

  7. Iterative most likely oriented point registration.

    PubMed

    Billings, Seth; Taylor, Russell

    2014-01-01

    A new algorithm for model based registration is presented that optimizes both position and surface normal information of the shapes being registered. This algorithm extends the popular Iterative Closest Point (ICP) algorithm by incorporating the surface orientation at each point into both the correspondence and registration phases of the algorithm. For the correspondence phase an efficient search strategy is derived which computes the most probable correspondences considering both position and orientation differences in the match. For the registration phase an efficient, closed-form solution provides the maximum likelihood rigid body alignment between the oriented point matches. Experiments by simulation using human femur data demonstrate that the proposed Iterative Most Likely Oriented Point (IMLOP) algorithm has a strong accuracy advantage over ICP and has increased ability to robustly identify a successful registration result. PMID:25333116

  8. Influence of DBT reconstruction algorithm on power law spectrum coefficient

    NASA Astrophysics Data System (ADS)

    Vancamberg, Laurence; Carton, Ann-Katherine; Abderrahmane, Ilyes H.; Palma, Giovanni; Milioni de Carvalho, Pablo; Iordache, Rǎzvan; Muller, Serge

    2015-03-01

    In breast X-ray images, texture has been characterized by a noise power spectrum (NPS) that has an inverse power-law shape described by its slope β in the log-log domain. It has been suggested that the magnitude of the power-law spectrum coefficient β is related to mass lesion detection performance. We assessed β in reconstructed digital breast tomosynthesis (DBT) images to evaluate its sensitivity to different typical reconstruction algorithms including simple back projection (SBP), filtered back projection (FBP) and a simultaneous iterative reconstruction algorithm (SIRT 30 iterations). Results were further compared to the β coefficient estimated from 2D central DBT projections. The calculations were performed on 31 unilateral clinical DBT data sets and simulated DBT images from 31 anthropomorphic software breast phantoms. Our results show that β highly depends on the reconstruction algorithm; the highest β values were found for SBP, followed by reconstruction with FBP, while the lowest β values were found for SIRT. In contrast to previous studies, we found that β is not always lower in reconstructed DBT slices, compared to 2D projections and this depends on the reconstruction algorithm. All β values estimated in DBT slices reconstructed with SBP were larger than β values from 2D central projections. Our study also shows that the reconstruction algorithm affects the symmetry of the breast texture NPS; the NPS of clinical cases reconstructed with SBP exhibit the highest symmetry, while the NPS of cases reconstructed with SIRT exhibit the highest asymmetry.

  9. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  10. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  11. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  12. Conformal mapping and convergence of Krylov iterations

    SciTech Connect

    Driscoll, T.A.; Trefethen, L.N.

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  13. Generalized iterative deconvolution for receiver function estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhi; Pavlis, Gary L.

    2016-02-01

    This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method-an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.

  14. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  15. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  16. Observation of an Anomalous Line Shape of the η^{'}π^{+}π^{-} Mass Spectrum near the pp[over ¯] Mass Threshold in J/ψ→γη^{'}π^{+}π^{-}.

    PubMed

    Ablikim, M; Achasov, M N; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-07-22

    Using 1.09×10^{9} J/ψ events collected by the BESIII experiment in 2012, we study the J/ψ→γη^{'}π^{+}π^{-} process and observe a significant abrupt change in the slope of the η^{'}π^{+}π^{-} invariant mass distribution at the proton-antiproton (pp[over ¯]) mass threshold. We use two models to characterize the η^{'}π^{+}π^{-} line shape around 1.85  GeV/c^{2}: one that explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatté formula), and another that is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85  GeV/c^{2} with strong couplings to the pp[over ¯] final states or a narrow state just below the pp[over ¯] mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a pp[over ¯] moleculelike state or bound state with greater than 7σ significance. PMID:27494467

  17. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  18. ECRH System For ITER

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.

    2009-11-01

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams

  19. Technology Tips: Using the Iterate Command to Construct Recursive Geometric Sketches

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2006-01-01

    How to iterate geometric shapes to construct Baravelle spirals and Pythagorean trees is demonstrated in this article. The "Surfing Note" sends readers to a site with applets that will generate fractals such as the Sierpinski gasket or the Koch snowflake.

  20. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  1. Composition analysis of large samples with PGNAA using a fixed point iteration

    NASA Astrophysics Data System (ADS)

    Akkurt, Hatice

    2002-09-01

    The composition problem in large sample prompt gamma neutron activation analysis (PGNAA) is a nonlinear inverse problem. The basic form of the nonlinear inverse composition problem is presented. This problem is then formulated in a general way, as a fixed point problem, without addressing any specific application or sample type or linearization approach. This approach of formulating the problem as a fixed point problem suggested a natural fixed point iteration. The algorithm of the fixed point iteration solves the nonlinear composition problem using a combination of measured and computed data. The effectiveness of the fixed point iteration for composition analysis is demonstrated using purely numerical experiments. These numerical experiments showed that the fixed point iteration can be successfully applied to find the bulk composition of large samples, with excellent agreement between the estimated and true composition of the samples, in a few iterations, independent of the initial guess. In order to test the fixed point iteration using real experimental data, a series of large sample PGNAA measurements were performed at ANL-W. These experiments are described and the measured spectra for the samples are presented. Then, the fixed point iteration is applied for these real experiments to find the composition of the samples. In all of the cases, except borated polyethylene, the composition of the large samples are found in a few iterations with errors less than +/-1.3%. The effectiveness of the fixed point iteration is thus demonstrated with many proof-of-principle measurements. While testing the fixed point iteration algorithm, published values of the source spectrum and relative detector efficiencies are used. The sensitivity of the fixed point iteration to source spectrum is investigated and it is shown that the estimated composition results are not very sensitive to the change in the source spectrum. The reason behind the slow convergence for the borated

  2. Optimization of tungsten castellated structures for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R. A.; Petersson, P.

    2015-08-01

    In ITER, the plasma-facing components (PFCs) of the first wall and the divertor armor will be castellated to improve their thermo-mechanical stability and to limit forces due to induced currents. The fuel accumulation in the gaps may significantly contribute to the in-vessel fuel inventory. Castellation shaping may be the most straightforward way to minimize the fuel inventory and to alleviate the thermal loads onto castellations. A new castellation shape was proposed and comparative modeling of conventional (rectangular) and shaped castellation was performed for ITER conditions. Shaped castellation was predicted to be capable to operate under stationary heat load of 20 MW/m2. An 11-fold decrease of beryllium (Be) content in the gaps of the shaped cells alone with a 7-fold decrease of carbon content was predicted. In order to validate the predictive capabilities of modeling tools used for ITER conditions, the dedicated modeling with the same codes was made for existing tokamaks and benchmarked with the results of multi-machine experiments. For the castellations exposed in TEXTOR and DIII-D, the carbon amount in the gaps of shaped cells was 1.9-2.3 times smaller than that of rectangular ones. Modeling for TEXTOR conditions yielded to 1.5-fold decrease of carbon content in the gaps of shaped castellation outlining fair agreement with the experiment. At the same time, a number of processes, like enhanced erosion of molten layer yet need to be implemented in the codes in order to increase the accuracy of predictions for ITER.

  3. A study of core Thomson scattering measurements in ITER using a multi-laser approach

    NASA Astrophysics Data System (ADS)

    Kurskiev, G. S.; Sdvizhenskii, P. A.; Bassan, M.; Andrew, P.; Bazhenov, A. N.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Kukushkin, A. B.; Kukushkin, A. S.; Mukhin, E. E.; Razdobarin, A. G.; Samsonov, D. S.; Semenov, V. V.; Tolstyakov, S. Yu.; Kajita, S.; Masyukevich, S. V.

    2015-05-01

    The electron component is the main channel for anomalous power loss and the main indicator of transient processes in the tokamak plasma. The electron temperature and density profiles mainly determine the operational mode of the machine. This imposes demanding requirements on the precision and on the spatial and temporal resolution of the Thomson scattering (TS) measurements. Measurements of such high electron temperature with good accuracy in a large fusion device such as ITER using TS encounter a number of physical problems. The 40 keV TS spectrum has a significant blue shift. Due to the transmission functions of the fibres and to their darkening that can occur under a strong neutron irradiation, the operational wavelength range is bounded on the blue side. For example, high temperature measurements become impossible with the 1064 nm probing wavelength since the TS signal within the boundaries of the operational window weakly depends on Te. The second problem is connected with the TS calibration. The TS system for a large fusion machine like ITER will have a set of optical components inaccessible for maintenance, and their spectral characteristics may change with time. Since the present concept of the TS system for ITER relies on the classical approach to measuring the shape of the scattered spectra using wide spectral channels, the diagnostic will be very sensitive to the changes in the optical transmission. The third complication is connected with the deviation of the electron velocity distribution function from a Maxwellian that can happen under a strong ECRH/ECCD, and it may additionally hamper the measurements. This paper analyses the advantages of a ‘multi-laser approach’ implementation for the current design of the core TS system. Such an approach assumes simultaneous plasma probing with different wavelengths that allows the measurement accuracy to be improved significantly and to perform the spectral calibration of the TS system. Comparative analysis

  4. ITER startup studies in the DIII-D tokamak

    SciTech Connect

    Jackson, G. L.; Casper, T. A.; Luce, T.C.; Humphreys, D A; Ferron, J.R.; Hyatt, A. W.; Lazarus, Edward Alan; Moyer, R.A.; Petrie, T W; Rudakov, D.L.; West, W. P.

    2008-01-01

    plasma initiation and current ramp up scenario envisioned for ITER has been simulated in DIII-D experiments. These discharges were limited on the low field side (LFS) during the initial current ramp up, as specified for the ITER baseline startup scenario. Initial experiments produced internal inductance (l(i)),higher than the design value for the ITER shaping coils, often leading to vertical instabilities. A modified startup with larger volume was developed to reduce l(i) in the current ramp up. This large-bore scenario, also limiting on the LFS, produced a lower l(i) and avoided the vertical instabilities. Feedback control of l(i), using the ohmic field coil power supply as the actuator, was successfully demonstrated. Such control may be useful in avoiding vertical instabilities and in providing access to sawtooth-free steady state and hybrid scenarios in ITER. Experiments at reduced inductive voltage and with electron cyclotron assist for breakdown and burnthrough have also been carried out. The Corsica equilibrium and transport code has modelled these data to provide validation of transport models used to simulate this phase of ITER discharges in order to yield more accurate extrapolation to ITER scenarios.

  5. Simulating the ITER Plasma Startup Scenario in the DIII-D Tokamak

    SciTech Connect

    Jackson, G; Casper, T; Luce, T; Humphreys, D; Ferron, J; Hyatt, A; Petrie, T; West, W

    2008-10-13

    DIII-D experiments have investigated ITER startup scenarios, including an initial phase where the plasma was limited on low field side (LFS) poloidal bumper limiters. Both the original ITER 'small-bore' (constant q{sub 95}) startup and a 'large-bore' lower internal inductance (l{sub i}) startup have been simulated. In addition, l{sub i} feedback control has been tested with the goal of producing discharges at the ITER design value, l{sub i}(3) = 0.85. These discharges have been simulated using the Corsica free boundary equilibrium code. High performance hybrid scenario discharges ({beta}{sub N} = 2.8, H{sub 98,y2} = 1.4) and ITER H-mode baseline discharges ({beta}{sub N} > 1.6, H{sub 98,y2} = 1-1.2) have been obtained experimentally in an ITER similar shape after the ITER-relevant startup.

  6. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  7. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  8. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  9. Evaluation of ITER MSE Viewing Optics

    SciTech Connect

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-03-26

    image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.

  10. Experimental studies of ITER demonstration discharges

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.; C-Mod Team; ASDEX Upgrade Team; DIII-D Team; JET EFDA Contributors

    2009-08-01

    Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23-0.33 V m-1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4-4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <=1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

  11. Comments on the iterated knapsack attack

    SciTech Connect

    Brickell, E.F.

    1983-01-01

    L. Adleman has proposed a three step method for breaking the iterated knapsack that runs in polynomial time and is linear in the number of iterations. In this paper, we show that the first step is possibly exponential in the number of iterations, and that the second and third steps are exponential even for only three iterations.

  12. Midpoint Shapes.

    ERIC Educational Resources Information Center

    Welchman, Rosamond; Urso, Josephine

    2000-01-01

    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  13. ITER physics design guidelines at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    1991-09-01

    The physics requirements for the International Thermonuclear Experimental Reactor (ITER) design are formulated in a set of physics design guidelines. These guidelines, established by the ITER Physics Group during the Conceptual Design Activity (CDA, 1988--90), were based on credible extrapolations of the tokamak physics database as assessed during the CDA, and defined a class of tokamak designs (with plasma current I is approximately 20 MA and aspect ratio A is approximately 2.5--3.5) that meet the ITER objectives. Recent U.S. studies have indicated that there may be significant benefits if the ITER-CDA design point is moved from the low aspect ratio, high current baseline (A = 2.79, I = 22 MA) to a high aspect ratio machine at Ais approximately 4, I is approximately 15 MA, especially regarding steady-state, technology-testing performance. To adequately assess the physics and technology testing capability of higher aspect ratio design options, several changes are proposed to the original ITER guidelines to reflect the latest developments in physics understanding at higher aspect ratios. The critical issues for higher aspect ratio design options are the uncertainty in scaling of confinement with aspect ratio, the variation of vertical stability with elongation and aspect ratio, plasma shaping requirements, ability to control and maintain plasma current and q-profiles for MHD stability (and volt-second consumption), access for current drive, restrictions on field ripple and divertor plate incident angles, etc.

  14. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  15. On the solution of evolution equations based on multigrid and explicit iterative methods

    NASA Astrophysics Data System (ADS)

    Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.

    2015-08-01

    Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.

  16. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  17. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    SciTech Connect

    Barantsev, K. A. Popov, E. N.; Litvinov, A. N.

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  18. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  19. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  20. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  1. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  2. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  3. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  4. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  5. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  6. Progress and Achievements on the R&D Activities for ITER Vacuum Vessel

    SciTech Connect

    Nakahira, M.; Koizumi, K.; Takahashi, H.; Onozuka, M.; Ioki, K.; Kuzumin, E.; Krylov, V.; Maslakowski, J.; Nelson, Brad E; Jones, L.; Danner, W.; Maisonnier, D.

    2001-01-01

    The ITER vacuum vessel (VV) is designed to be large double-walled structure with a D-shaped crosssection. The achievable fabrication tolerance of this structure was unknown due to the size and complexity of shape. The Full-scale Sector Model of ITER Vacuum Vessel, which was 15m in height, was fabricated and tested to obtain the fabrication and assembly tolerances. The model was fabricated within the target tolerance of 5mm and welding deformation during assembly operation was obtained. The port structure was also connected using remotized welding tools to demonstrate the basic maintenance activity. In parallel, the tests of advanced welding, cutting and inspection system were performed to improve the efficiency of fabrication and maintenance of the Vacuum Vessel. These activities show the feasibility of ITER Vacuum Vessel as feasible in a realistic way. This paper describes the major progress, achievement and latest status of the R&D activities on the ITER vacuum vessel.

  7. ODE System Solver W. Krylov Iteration & Rootfinding

    SciTech Connect

    Hindmarsh, Alan C.

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.

  8. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (ESTSC)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  9. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  10. Shape based zonal wave-front reconstruction for arbitrary shape pupils

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoliang; Qu, Qing; Wang, Yukun; Xu, Huanyu; Wang, Shaoxin; Yang, Chengliang; Xuan, Li

    2015-02-01

    Zonal method is widely used to reconstruct the wave-front. Up to now, the iterative algorithms have been used to reconstruct the arbitrary shape wave-front with high reconstruction accuracy. However, it has the shortcomings of long time consumption. To reduce the time delay, a shaped based method is proposed by adding the shape information into the geometry matrix. The simulated and experimental results indicate that the reconstruction accuracy of proposed method is similar to that of the iterative LS-based method, but the computation time of our method is 3 times less than that of the iteration method. Consequently, the high accuracy and low time consumption are simultaneously achieved with the proposed method.

  11. Detailed Modeling of Grounding Solutions for the ITER ICRF Antenna

    NASA Astrophysics Data System (ADS)

    Kyrytsya, V.; Dumortier, P.; Messiaen, A.; Louche, F.; Durodié, F.

    2011-12-01

    The excitation of non-TEM modes around the ITER ICRF antenna plug can considerably increase the level of RF voltages and currents on the ITER plug. First study of these modes and a solution to avoid them in the ITER ion cyclotron range of frequencies were reported in [1]. In this work a detailed analysis of electrical properties of the ITER ICRF antenna with the plug was studied for different grounding solutions with CST Microwave Studio® [2]. Conclusions of an earlier work [ 1 ] were confirmed on the detailed model of the antenna with the plug. Different grounding contacts (capacitive, galvanic and mixed capacitive-galvanic) as well as their distribution inside the plug gap were analyzed. It was shown that capacitive and mixed capacitive-galvanic grounding are less effective because they demand high values of the capacitance and are more sensitive to the frequency and antenna spectrum. In particular a galvanic grounding realized by the contacts put around the perimeter of the plug gap at lm behind the front face of the antenna is the most suitable solution from the electromagnetic point of view. An optimization of the layout and arrangement of the contacts in order to assess and optimize the current distribution on them is under way. Measurements on a scaled mock-up of the complete antenna and the plug are under way for modeling results confirmation.

  12. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  13. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  14. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Schapiro Shapes

    ERIC Educational Resources Information Center

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  16. NREL Spectrum of Clean Energy Innovation (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  17. Calculations of lower hybrid current drive in ITER

    NASA Astrophysics Data System (ADS)

    Decker, J.; Peysson, Y.; Hillairet, J.; Artaud, J.-F.; Basiuk, V.; Becoulet, A.; Ekedahl, A.; Goniche, M.; Hoang, G. T.; Imbeaux, F.; Ram, A. K.; Schneider, M.

    2011-07-01

    A detailed study of lower hybrid current drive (LHCD) in ITER is provided, focusing on the wave propagation and current drive mechanisms. A combination of ray-tracing and Fokker-Planck calculations are presented for various plasma scenarios, wave frequency and polarization. The dependence of the driven current and the location of power deposition upon the coupled wave spectrum is systematically determined, in order to set objectives for the antenna design. The respective effects of finite-power levels, magnetic trapping, and detailed antenna spectra are accounted for and quantitatively estimated. The sensitivity of LHCD to density and temperature profiles is calculated. From the simulation results, an optimum value for the parallel index of refraction is proposed as a compromise between efficiency and robustness with respect to those profile variations. The corresponding current drive efficiency is found to be similar for the two frequencies generally considered for ITER, f = 3.7 GHz and f = 5.0 GHz.

  18. Correctness properties for iterated hardware structures

    NASA Technical Reports Server (NTRS)

    Windley, Phillip J.

    1993-01-01

    Iterated structures occur frequently in hardware. This paper describes properties required of mathematical relations that can be implemented iteratively and demonstrates the use of these properties on a generalized class of adders. This work provides a theoretical basis for the correct synthesis of iterated arithmetic structures.

  19. ITER density profile with pellet injection

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.

  20. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum. PMID:21033987

  1. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect

    Duran, I.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-10-15

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  2. Improved iterative error analysis for endmember extraction from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Lixin; Zhang, Ying; Guindon, Bert

    2008-08-01

    Automated image endmember extraction from hyperspectral imagery is a challenge and a critical step in spectral mixture analysis (SMA). Over the past years, great efforts were made and a large number of algorithms have been proposed to address this issue. Iterative error analysis (IEA) is one of the well-known existing endmember extraction methods. IEA identifies pixel spectra as a number of image endmembers by an iterative process. In each of the iterations, a fully constrained (abundance nonnegativity and abundance sum-to-one constraints) spectral unmixing based on previously identified endmembers is performed to model all image pixels. The pixel spectrum with the largest residual error is then selected as a new image endmember. This paper proposes an updated version of IEA by making improvements on three aspects of the method. First, fully constrained spectral unmixing is replaced by a weakly constrained (abundance nonnegativity and abundance sum-less-or-equal-to-one constraints) alternative. This is necessary due to the fact that only a subset of endmembers exhibit in a hyperspectral image have been extracted up to an intermediate iteration and the abundance sum-to-one constraint is invalid at the moment. Second, the search strategy for achieving an optimal set of image endmembers is changed from sequential forward selection (SFS) to sequential forward floating selection (SFFS) to reduce the so-called "nesting effect" in resultant set of endmembers. Third, a pixel spectrum is identified as a new image endmember depending on both its spectral extremity in the feature hyperspace of a dataset and its capacity to characterize other mixed pixels. This is achieved by evaluating a set of extracted endmembers using a criterion function, which is consisted of the mean and standard deviation of residual error image. Preliminary comparison between the image endmembers extracted using improved and original IEA are conducted based on an airborne visible infrared imaging

  3. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  4. Projection Classification Based Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiqiu; Li, Chen; Gao, Wenhua

    2015-05-01

    Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.

  5. Software for computing eigenvalue bounds for iterative subspace matrix methods

    NASA Astrophysics Data System (ADS)

    Shepard, Ron; Minkoff, Michael; Zhou, Yunkai

    2005-07-01

    importance in order to provide the modeler with information of the reliability of the computational results. Such applications include using these bounds to terminate the iterative procedure at specified accuracy limits. Method of solution: The Ritz values and their residual norms are computed and used as input for the procedure. While knowledge of the exact eigenvalues is not required, we require that the Ritz values are isolated from the exact eigenvalues outside of the Ritz spectrum and that there are no skipped eigenvalues within the Ritz spectrum. Using a multipass refinement approach, upper and lower bounds are computed for each Ritz value. Typical running time: While typical applications would deal with m<20, for m=100000, the running time is 0.12 s on an Apple PowerBook.

  6. Truncated States Obtained by Iteration

    NASA Astrophysics Data System (ADS)

    Cardoso B., W.; Almeida G. de, N.

    2008-02-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  7. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  8. ITER EDA Newsletter. Volume 3, no. 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.

  9. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  10. Iterative feedback algorithm for phase retrieval based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Liu, Kaifeng; Cheng, Hong; Zhang, Cheng; Shen, Chuan; Zhang, Fen; Wei, Sui

    2015-12-01

    In this paper, a novel phase retrieval algorithm is presented which combines the advantages of the Transport of Intensity Equation (TIE) method and the iteration method. TIE method is fast, but its precision is not high. Though the convergence rate of iteration method is slow, its result is more accurate. This algorithm consists of Iterative Angular Spectrum (IAS) method to utilize the physical constraints between the object and the spectral domain, and the relationship between the intensity and phase among the wave propagation. Firstly, the phase at the object plane is calculated from two intensity images by TIE. Then this result is treated as the initial phase of the IAS. Finally, the phase information at the object plane is acquired according the reversibility of the optical path. During the iteration process, the feedback mechanism is imposed on it that improve the convergence rate and the precision of phase retrieval and the simulation results are given.

  11. ITER on the road to fusion energy

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2010-01-01

    On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.

  12. Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2009-01-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  13. Decentralized control of sound radiation using iterative loop recovery.

    PubMed

    Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R

    2010-10-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units. PMID:20968346

  14. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  15. Bayesian Vision for Shape Recovery

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    We present a new Bayesian vision technique that aims at recovering a shape from two or more noisy observations taken under similar lighting conditions. The shape is parametrized by a piecewise linear height field, textured by a piecewise linear irradiance field, and we assume Gaussian Markovian priors for both shape vertices and irradiance variables. The observation process. also known as rendering, is modeled by a non-affine projection (e.g. perspective projection) followed by a convolution with a piecewise linear point spread function. and contamination by additive Gaussian noise. We assume that the observation parameters are calibrated beforehand. The major novelty of the proposed method consists of marginalizing out the irradiances considered as nuisance parameters, which is achieved by Laplace approximations. This reduces the inference to minimizing an energy that only depends on the shape vertices, and therefore allows an efficient Iterated Conditional Mode (ICM) optimization scheme to be implemented. A Gaussian approximation of the posterior shape density is computed, thus providing estimates both the geometry and its uncertainty. We illustrate the effectiveness of the new method by shape reconstruction results in a 2D case. A 3D version is currently under development and aims at recovering a surface from multiple images, reconstructing the topography by marginalizing out both albedo and shading.

  16. The Biokinetic Spectrum for Temperature.

    PubMed

    Corkrey, Ross; McMeekin, Tom A; Bowman, John P; Ratkowsky, David A; Olley, June; Ross, Tom

    2016-01-01

    We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes. PMID:27088362

  17. The Biokinetic Spectrum for Temperature

    PubMed Central

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Ratkowsky, David A.; Olley, June; Ross, Tom

    2016-01-01

    We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes. PMID:27088362

  18. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  19. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  20. Iterative Beam Hardening Correction for Multi-Material Objects

    PubMed Central

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  1. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  2. Design of the DEMO Fusion Reactor Following ITER

    PubMed Central

    Garabedian, Paul R.; McFadden, Geoffrey B.

    2009-01-01

    Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task.

  3. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  4. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  5. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  6. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  7. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  8. A fast poly-energetic iterative FBP algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Samei, Ehsan

    2014-04-01

    The beam hardening (BH) effect can influence medical interpretations in two notable ways. First, high attenuation materials, such as bones, can induce strong artifacts, which severely deteriorate the image quality. Second, voxel values can significantly deviate from the real values, which can lead to unreliable quantitative evaluation results. Some iterative methods have been proposed to eliminate the BH effect, but they cannot be widely applied for clinical practice because of the slow computational speed. The purpose of this study was to develop a new fast and practical poly-energetic iterative filtered backward projection algorithm (piFBP). The piFBP is composed of a novel poly-energetic forward projection process and a robust FBP-type backward updating process. In the forward projection process, an adaptive base material decomposition method is presented, based on which diverse body tissues (e.g., lung, fat, breast, soft tissue, and bone) and metal implants can be incorporated to accurately evaluate poly-energetic forward projections. In the backward updating process, one robust and fast FBP-type backward updating equation with a smoothing kernel is introduced to avoid the noise accumulation in the iteration process and to improve the convergence properties. Two phantoms were designed to quantitatively validate our piFBP algorithm in terms of the beam hardening index (BIdx) and the noise index (NIdx). The simulation results showed that piFBP possessed fast convergence speed, as the images could be reconstructed within four iterations. The variation range of the BIdx's of various tissues across phantom size and spectrum were reduced from [-7.5, 17.5] for FBP to [-0.1, 0.1] for piFBP while the NIdx's were maintained in the same low level (about [0.3, 1.7]). When a metal implant presented in a complex phantom, piFBP still had excellent reconstruction performance, as the variation range of the BIdx's of body tissues were reduced from [-2.9, 15.9] for FBP to [-0

  9. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Zhao, Yang; Xiong, Gang; Yang, Jiamin; Zhu, Tuo

    2011-02-01

    A space-resolving transmission grating spectrometer is established on the “Shenguang-III" prototype laser facility and an iterative procedure for unfolding the X-ray spectrum with spatial resolution is described. The diagnostics is applied to measure the X-ray spectrum from laser-entered gold target and the typical space-resolved spectrum is provided. The relative standard uncertainty of the X-ray spectrum from the laser-generated plasma is also determined.

  10. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  11. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  12. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  13. Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, Shiyu; Zhang, Zhenxi; Chen, Ying

    2014-03-01

    Statistical iterative reconstruction exhibits particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description in transmission tomography system. However, to solve the objective function is computationally intensive compared to analytical reconstruction methods due to multiple iterations needed for convergence and each iteration involving forward/back-projections by using a complex geometric system model. Optimization transfer (OT) is a general algorithm converting a high dimensional optimization to a parallel 1-D update. OT-based algorithm provides a monotonic convergence and a parallel computing framework but slower convergence rate especially around the global optimal. Based on an indirect estimation on the spectrum of the OT convergence rate matrix, we proposed a successively increasing factor- scaled optimization transfer (OT) algorithm to seek an optimal step size for a faster rate. Compared to a representative OT based method such as separable parabolic surrogate with pre-computed curvature (PC-SPS), our algorithm provides comparable image quality (IQ) with fewer iterations. Each iteration retains a similar computational cost to PC-SPS. The initial experiment with a simulated Digital Breast Tomosynthesis (DBT) system shows that a total 40% computing time is saved by the proposed algorithm. In general, the successively increasing factor-scaled OT exhibits a tremendous potential to be a iterative method with a parallel computation, a monotonic and global convergence with fast rate.

  14. The motional Stark effect diagnostic for ITER using a line-shift approach

    SciTech Connect

    Foley, E. L.; Levinton, F. M.; Yuh, H. Y.; Zakharov, L. E.

    2008-10-15

    The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed.

  15. Ocean color spectrum calculations

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    There is obvious value in developing the means for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. The first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model can be described by a modified single scattering approach based on a simple treatment of multiple scattering. The resulting quasisingle scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurements made at the edge of the Sargasso Sea off Cape Hatteras.

  16. ELM control strategies and tools: status and potential for ITER

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Loarte, A.; Saibene, G.; Baylor, L. R.; Becoulet, M.; Cavinato, M.; Clement-Lorenzo, S.; Daly, E.; Evans, T. E.; Fenstermacher, M. E.; Gribov, Y.; Horton, L. D.; Lowry, C.; Martin, Y.; Neubauer, O.; Oyama, N.; Schaffer, M. J.; Stork, D.; Suttrop, W.; Thomas, P.; Tran, M.; Wilson, H. R.; Kavin, A.; Schmitz, O.

    2013-04-01

    Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6-9 MA operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing

  17. Benchmarking ICRF simulations for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  18. High Precision Assembly Line Synthesis for Molecules with Tailored Shapes

    PubMed Central

    Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.

    2014-01-01

    Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797

  19. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  20. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-08-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  1. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-05-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  2. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  3. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  4. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  5. Acceleration of iterative image restoration algorithms.

    PubMed

    Biggs, D S; Andrews, M

    1997-03-10

    A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863

  6. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  7. Plasma regimes and research goals of JT-60SA towards ITER and DEMO

    NASA Astrophysics Data System (ADS)

    Kamada, Y.; Barabaschi, P.; Ishida, S.; Ide, S.; Lackner, K.; Fujita, T.; Bolzonella, T.; Suzuki, T.; Matsunaga, G.; Yoshida, M.; Shinohara, K.; Urano, H.; Nakano, T.; Sakurai, S.; Kawashima, H.; JT-60SA Team

    2011-07-01

    The JT-60SA device has been designed as a highly shaped large superconducting tokamak with a variety of plasma actuators (heating, current drive, momentum input, stability control coils, resonant magnetic perturbation coils, W-shaped divertor, fuelling, pumping, etc) in order to satisfy the central research needs for ITER and DEMO. In the ITER- and DEMO-relevant plasma parameter regimes and with DEMO-equivalent plasma shapes, JT-60SA quantifies the operation limits, plasma responses and operational margins in terms of MHD stability, plasma transport and confinement, high-energy particle behaviour, pedestal structures, scrape-off layer and divertor characteristics. By integrating advanced studies in these research fields, the project proceeds 'simultaneous and steady-state sustainment of the key performances required for DEMO' with integrated control scenario development applicable to the highly self-regulating burning high-β high bootstrap current fraction plasmas.

  8. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  9. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  10. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  11. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  12. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  13. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  14. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  15. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  16. Primordial power spectrum from Planck

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  17. Primordial power spectrum from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  18. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  19. The Jovian electron spectrum: 1978-1984

    NASA Technical Reports Server (NTRS)

    Moses, D.; Evenson, P. A.; Meyer, P.

    1985-01-01

    Observations of Jovian electrons through six consecutive 13-month Jovian synodic periods from 1978 to 1984 have been made by the University of Chicago electron spectrometer onboard the ISEE-3 (ICE) spacecraft. The Jovian electron spectrum was determined from 5 to 30 Mev and was found to have a shape which is not a power law in kinetic energy, but cuts off at approximately 30 MeV. The average shape of the spectrum over each of the six intervals of best magnetic connection remains the same for all intervals within uncertainties.

  20. Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric cardiac diagnosis

    NASA Astrophysics Data System (ADS)

    Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2010-04-01

    Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.

  1. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  2. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  3. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  4. US sanctions on Russia hit ITER council

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2014-06-01

    The ITER fusion experiment has had to bow to the impact of US sanctions against Russia and move the venue of its council meeting, scheduled for 18-19 June, from St Petersburg to the project headquarters in Cadarache, France.

  5. Budget woes continue to hamper ITER

    NASA Astrophysics Data System (ADS)

    Starckx, Senne

    2011-02-01

    A financial rescue package for ITER - the experimental nuclear-fusion reactor that is currently being built in Cadarache, France - has been refused by the European Parliament and the European Council.

  6. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  7. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  8. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  9. Multiwavelength digital holography for polishing tool shape measurement

    NASA Astrophysics Data System (ADS)

    Lédl, Vít.; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    2013-09-01

    Classical mechano-chemical polishing is still a valuable technique, which gives unbeatable results for some types of optical surfaces. For example, optics for high power lasers requires minimized subsurface damage, very high cosmetic quality, and low mid spatial frequency error. One can hardly achieve this with use of subaperture polishing. The shape of the polishing tool plays a crucial role in achieving the required form of the optical surface. Often the shape of the polishing tool or pad is not known precisely enough during the manufacturing process. The tool shape is usually premachined and later is changed during the polishing procedure. An experienced worker could estimate the shape of the tool indirectly from the shape of the polished element, and that is why he can achieve the required shape in few reasonably long iterative steps. Therefore the lack of the exact tool shape knowledge is tolerated. Sometimes, this indirect method is not feasible even if small parts are considered. Moreover, if processes on machines like planetary (continuous) polishers are considered, the incorrect shape of the polishing pad could extend the polishing times extremely. Every iteration step takes hours. Even worse, polished piece could be wasted if the pad has a poor shape. The ability of the tool shape determination would be very valuable in those types of lengthy processes. It was our primary motivation to develop a contactless measurement method for large diffusive surfaces and demonstrate its usability. The proposed method is based on application of multiwavelength digital holographic interferometry with phase shift.

  10. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  11. An Iterative Soft-Decision Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao

    1996-01-01

    This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.

  12. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  13. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  14. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their parameters within each…

  15. Modelling the physics in iterative reconstruction for transmission computed tomography

    PubMed Central

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  16. Cathodoluminescence Spectrum Imaging Software

    Energy Science and Technology Software Center (ESTSC)

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  17. Regularization Based Iterative Point Match Weighting for Accurate Rigid Transformation Estimation.

    PubMed

    Liu, Yonghuai; De Dominicis, Luigi; Wei, Baogang; Chen, Liang; Martin, Ralph R

    2015-09-01

    Feature extraction and matching (FEM) for 3D shapes finds numerous applications in computer graphics and vision for object modeling, retrieval, morphing, and recognition. However, unavoidable incorrect matches lead to inaccurate estimation of the transformation relating different datasets. Inspired by AdaBoost, this paper proposes a novel iterative re-weighting method to tackle the challenging problem of evaluating point matches established by typical FEM methods. Weights are used to indicate the degree of belief that each point match is correct. Our method has three key steps: (i) estimation of the underlying transformation using weighted least squares, (ii) penalty parameter estimation via minimization of the weighted variance of the matching errors, and (iii) weight re-estimation taking into account both matching errors and information learnt in previous iterations. A comparative study, based on real shapes captured by two laser scanners, shows that the proposed method outperforms four other state-of-the-art methods in terms of evaluating point matches between overlapping shapes established by two typical FEM methods, resulting in more accurate estimates of the underlying transformation. This improved transformation can be used to better initialize the iterative closest point algorithm and its variants, making 3D shape registration more likely to succeed. PMID:26357287

  18. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter

  19. First Operation with the JET ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Neu, Rudolf

    2012-10-01

    To consolidate ITER design choices and prepare for its operation, JET has implemented ITER's plasma facing materials, namely Be at the main wall and W in the divertor. In addition, protection systems, diagnostics and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs), but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (˜ factor 10) have led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a reduced power threshold by 30%, a distinct minimum density and pronounced shape dependence. The L-mode density limit was found up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be only re-established when using gas puff levels of a few 10^21e/s. On average the confinement is lower with the new PFCs, but nevertheless, H factors around 1 (H-Mode) and 1.2 (at βN˜3, Hybrids) have been achieved with W concentrations well below the maximum acceptable level (<10-5).

  20. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  1. Mechanism of shape determination in motile cells

    PubMed Central

    Keren, Kinneret; Pincus, Zachary; Allen, Greg M.; Barnhart, Erin L.; Marriott, Gerard; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells. PMID:18497816

  2. Circadian gating of neuronal functionality: a basis for iterative metaplasticity.

    PubMed

    Iyer, Rajashekar; Wang, Tongfei A; Gillette, Martha U

    2014-01-01

    Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory. PMID:25285070

  3. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106

  4. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  5. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  6. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  7. Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.

  8. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  9. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C. H.; Cordier, J.-J.; Giraud, B.; Gribov, Y.; Heitzenroeder, Ph.; Her, N.; Johnson, G.; Jones, L.; Jun, C.; Kim, B. C.; Kuzmin, E.; Loesser, D.; Martin, A.; Merola, M.; Pathak, H.; Readman, P.; Sugihara, M.; Terasawa, A.; Utin, Yu.; Wang, X.; Wu, S.; Yu, J.; ITER Organization; ITER Parties

    2011-10-01

    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  10. Current status of the ITER MSE diagnostic

    NASA Astrophysics Data System (ADS)

    Yuh, Howard; Levinton, F.; La Fleur, H.; Foley, E.; Feder, R.; Zakharov, L.

    2013-10-01

    The U.S. is providing ITER with a Motional Stark Effect (MSE) diagnostic to provide a measurement to guide reconstructions of the plasma q-profile. The diagnostic design has gone through many iterations, driven primarily by the evolution of the ITER port plug design and the steering of the heating beams. The present two port, three view design viewing both heating beams and the DNB has recently passed a conceptual design review at the IO. The traditional line polarization (MSE-LP) technique employed on many devices around the world faces many challenges in ITER, including strong background light and mirror degradation. To mitigate these effects, a multi-wavelength polarimeter and high resolution spectrometer will be used to subtract polarized background, while retroreflecting polarizers will provide mirror calibration concurrent with MSE-LP measurements. However, without a proven plasma-facing mirror cleaning technique, inherent risks to MSE-LP remain. The high field and high beam energy on ITER offers optimal conditions for a spectroscopic measurement of the electric field using line splitting (MSE-LS), a technique which does not depend on mirror polarization properties. The current design is presented with a roadmap of the R&D needed to address remaining challenges. This work is supported by DOE contracts S009627-R and S012380-F.

  11. U.S. Contributions to ITER

    SciTech Connect

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  12. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P. U.; Durodié, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-05-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.

  13. ITER Experts' meeting on density limits

    SciTech Connect

    Borrass, K.; Igitkhanov, Y.L.; Uckan, N.A.

    1989-12-01

    The necessity of achieving a prescribed wall load or fusion power essentially determines the plasma pressure in a device like ITER. The range of operation densities and temperatures compatible with this condition is constrained by the problems of power exhaust and the disruptive density limit. The maximum allowable heat loads on the divertor plates and the maximum allowable sheath edge temperature practically impose a lower limit on the operating densities, whereas the disruptive density limit imposes an upper limit. For most of the density limit scalings proposed in the past an overlap of the two constraints or at best a very narrow accessible density range is predicted for ITER. Improved understanding of the underlying mechanisms is therefore a crucial issue in order to provide a more reliable basis for extrapolation to ITER and to identify possible ways of alleviating the problem.

  14. Re-starting an Arnoldi iteration

    SciTech Connect

    Lehoucq, R.B.

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  15. Safety and Environmental Activities for ITER

    NASA Astrophysics Data System (ADS)

    Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.

    1997-09-01

    This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.

  16. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  17. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1983-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  18. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1985-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  19. Development of pellet injection systems for ITER

    SciTech Connect

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.

  20. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  1. Low-memory iterative density fitting.

    PubMed

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. PMID:26058451

  2. Autism Spectrum Disorder

    MedlinePlus

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a ... and pervasive developmental disorders. It is called a "spectrum" disorder because people with ASD can have a ...

  3. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral ... for autism spectrum disorder (ASD) and other developmental disabilities. More E-mail Your Friends "Children with autism ...

  4. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  5. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. PMID:25700436

  6. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  7. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  8. Challenges and status of ITER conductor production

    NASA Astrophysics Data System (ADS)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  9. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  10. Modified Iterative Extended Hueckel. 1: Theory

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.

  11. Iterative instructions in the Manchester dataflow computer

    SciTech Connect

    Bohm, A.P.; Gurd, J.R. )

    1990-04-01

    Compilation techniques for dataflow computers, particularly techniques associated with optimized code generation, have led to the introduction of iterative instructions, which produce a sequence of outputs when presented with a single set of inputs. Although these are beneficial in reducing program execution times, they exhibit distinctive, coarse-grain characteristics that effect the normal, fine-grain operation of a dataflow computer. This paper investigates the nature and extent of the benefits and adverse effects of iterative instructions in the prototype Manchester dataflow computer.

  12. The ITER bolometer diagnostic: status and plans.

    PubMed

    Meister, H; Giannone, L; Horton, L D; Raupp, G; Zeidner, W; Grunda, G; Kalvin, S; Fischer, U; Serikov, A; Stickel, S; Reichle, R

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration. PMID:19044656

  13. Ice Shape Characterization Using Self-Organizing Maps

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Tino, Peter; Kreeger, Richard E.

    2011-01-01

    A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the winner codebook vector. Through successive iterations, the codebook vectors begin to align with the trends of the higher-dimensional data. In information processing, the intent of SOM methods is to transmit the codebook vectors, which contains far fewer elements and requires much less memory or bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness descriptions for use with the discrete-element roughness approach. In the present study, SOM characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed.

  14. Experiment and Modeling of ITER Demonstration Discharges in the DIII-D Tokamak

    SciTech Connect

    Park, Jin Myung; Doyle, E. J.; Ferron, J.R.; Holcomb, C T; Jackson, G. L.; Lao, L. L.; Luce, T.C.; Owen, Larry W; Murakami, Masanori; Osborne, T. H.; Politzer, P. A.; Prater, R.; Snyder, P. B.

    2011-01-01

    DIII-D is providing experimental evaluation of 4 leading ITER operational scenarios: the baseline scenario in ELMing H-mode, the advanced inductive scenario, the hybrid scenario, and the steady state scenario. The anticipated ITER shape, aspect ratio and value of I/{alpha}B were reproduced, with the size reduced by a factor of 3.7, while matching key performance targets for {beta}{sub N} and H{sub 98}. Since 2008, substantial experimental progress was made to improve the match to other expected ITER parameters for the baseline scenario. A lower density baseline discharge was developed with improved stationarity and density control to match the expected ITER edge pedestal collisionality ({nu}*{sub e} {approx} 0.1). Target values for {beta}{sub N} and H{sub 98} were maintained at lower collisionality (lower density) operation without loss in fusion performance but with significant change in ELM characteristics. The effects of lower plasma rotation were investigated by adding counter-neutral beam power, resulting in only a modest reduction in confinement. Robust preemptive stabilization of 2/1 NTMs was demonstrated for the first time using ECCD under ITER-like conditions. Data from these experiments were used extensively to test and develop theory and modeling for realistic ITER projection and for further development of its optimum scenarios in DIII-D. Theory-based modeling of core transport (TGLF) with an edge pedestal boundary condition provided by the EPED1 model reproduces T{sub e} and T{sub i} profiles reasonably well for the 4 ITER scenarios developed in DIII-D. Modeling of the baseline scenario for low and high rotation discharges indicates that a modest performance increase of {approx} 15% is needed to compensate for the expected lower rotation of ITER. Modeling of the steady-state scenario reproduces a strong dependence of confinement, stability, and noninductive fraction (f{sub NI}) on q{sub 95}, as found in the experimental I{sub p} scan, indicating that

  15. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  16. Apodization Control of Line Shape in Spectrometer

    NASA Technical Reports Server (NTRS)

    Pires, Antonio; Niple, Edward; Evans, Nathan L.

    1987-01-01

    Kaiser-Bessel apodization function reduces unwanted sidebands. Report discusses apodization in Fourier-transform spectrometer (FTS) for Advanced Moisture and Temperature Sounder (AMTS). Purpose of apodization in instrument to control shape of spectrum in wavenumber space to keep radiation at other wavelengths in passband of spectrometer out of AMTS wavenumber channel.

  17. Object motion tracking in the NDE laboratory by random sample iterative closest point

    NASA Astrophysics Data System (ADS)

    Radkowski, Rafael; Wehr, David; Gregory, Elizabeth; Holland, Stephen D.

    2016-02-01

    We present a computationally efficient technique for real-time motion tracking in the NDE laboratory. Our goal is to track object shapes in an flash thermography test stand to determine the position and orientation of the specimen which facilitates to register thermography data to a 3D part model. Object shapes can be different specimens and fixtures. Specimens can be manually aligned at any test stand, the position and orientation of every a-priori known shape can be computed and forwarded to the data management software. Our technique relies on the random sample consensus (RANSAC) approach to the iterative closest point (ICP) problem for identifying object shapes, thus, it is robust in different situations. The paper introduces the computational techniques and experiments along with the results.

  18. The role of the envelope in processing iterated rippled noise.

    PubMed

    Yost, W A; Patterson, R; Sheft, S

    1998-10-01

    Iterated rippled noise (IRN) is generated by a cascade of delay and add (the gain after the delay is 1.0) or delay and subtract (the gain is -1.0) operations. The delay and add/subtract operations impart a spectral ripple and a temporal regularity to the noise. The waveform fine structure is different in these two conditions, but the envelope can be extremely similar. Four experiments were used to determine conditions in which the processing of IRN stimuli might be mediated by the waveform fine structure or by the envelope. In experiments 1 and 3 listeners discriminated among three stimuli in a single-interval task: IRN stimuli generated with the delay and add operations (g = 1.0), IRN stimuli generated using the delay and subtract operations (g = -1.0), and a flat-spectrum noise stimulus. In experiment 2 the listeners were presented two IRN stimuli that differed in delay (4 vs 6 ms) and a flat-spectrum noise stimulus that was not an IRN stimulus. In experiments 1 and 2 both the envelope and waveform fine structure contained the spectral ripple and temporal regularity. In experiment 3 only the envelope had this spectral and temporal structure. In all experiments discrimination was determined as a function of high-pass filtering the stimuli, and listeners could discriminate between the two IRN stimuli up to frequency regions as high as 4000-6000 Hz. Listeners could discriminate the IRN stimuli from the flat-spectrum noise stimulus at even higher frequencies (as high as 8000 Hz), but these discriminations did not appear to depend on the pitch of the IRN stimuli. A control experiment (fourth experiment) suggests that IRN discriminations in high-frequency regions are probably not due entirely to low-frequency nonlinear distortion products. The results of the paper imply that pitch processing of IRN stimuli is based on the waveform fine structure. PMID:10491699

  19. Shape prior modeling using sparse representation and online dictionary learning.

    PubMed

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient. PMID:23286160

  20. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  1. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  2. Scene-based nonuniformity correction using multiframe registration and iteration method

    NASA Astrophysics Data System (ADS)

    Ren, Jianle; Chen, Qian; Qian, Weixian; Yu, Xuelian; Li, Danping

    2014-05-01

    In this paper, an improved scene-based nonuniformity correction (NC) algorithm for infrared focal plane arrays (IRFPAs) using multiframe registration and iteration method is proposed. This method estimates the global translation and iterates between several adjacent frames. Then mean square error between any two properly registered images is minimized to obtain nonuniformity correction parameters. The detailed method includes three main steps: First, we assume that brightness along the motion trajectory is constant, and a linear detector response and model the nonuniformity of each detector with a gain and a bias. Second, several adjacent frames are used to compute relative motion of any two adjacent frames. Here we use the Fourier shift theorem, their relative translation can be obtained by calculating their normalized cross-power spectrum. We choose K adjacent frames, so the total number of iteration is K*(K-1)/2. Then the mean square error function is defined as the corresponding difference between the two adjacent corrected frames, and it is minimized making use of the least mean square algorithm. The use of correlation of adjacent frames sufficiently, together with iteration strategy between them, can get fast and reliable fixed-pattern noise reduction with low few ghosting artifacts. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods. The performance of the proposed method is thoroughly evaluated with clean infrared image sequences with synthetic nonuniformity and real infrared imagery.

  3. Performance of spectral MSE diagnostic on C-Mod and ITER

    NASA Astrophysics Data System (ADS)

    Liao, Ken; Rowan, William; Mumgaard, Robert; Granetz, Robert; Scott, Steve; Marchuk, Oleksandr; Ralchenko, Yuri; Alcator C-Mod Team

    2015-11-01

    Magnetic field was measured on Alcator C-mod by applying spectral Motional Stark Effect techniques based on line shift (MSE-LS) and line ratio (MSE-LR) to the H-alpha emission spectrum of the diagnostic neutral beam atoms. The high field of Alcator C-mod allows measurements to be made at close to ITER values of Stark splitting (~ Bv⊥) with similar background levels to those expected for ITER. Accurate modeling of the spectrum requires a non-statistical, collisional-radiative analysis of the excited beam population and quadratic and Zeeman corrections to the Stark shift. A detailed synthetic diagnostic was developed and used to estimate the performance of the diagnostic at C-Mod and ITER parameters. Our analysis includes the sensitivity to view and beam geometry, aperture and divergence broadening, magnetic field, pixel size, background noise, and signal levels. Analysis of preliminary experiments agree with Kinetic+(polarization)MSE EFIT within ~2° in pitch angle and simulations predict uncertainties of 20 mT in | B | and <2° in pitch angle. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG03-96ER-54373 and DE-FC02-99ER54512.

  4. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  5. Iteration of Complex Functions and Newton's Method

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer

    2009-01-01

    This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…

  6. Nuclear analyses for the ITER ECRH launcher

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.

    2008-05-01

    Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.

  7. Iteration and Anxiety in Mathematical Literature

    ERIC Educational Resources Information Center

    Capezzi, Rita; Kinsey, L. Christine

    2016-01-01

    We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.

  8. ITER faces further five-year delay

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2016-06-01

    The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 – a target date that is already five years later than currently scheduled.

  9. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  10. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  11. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  12. The determination of orbits using Picard iteration

    NASA Technical Reports Server (NTRS)

    Mikkilineni, R. P.; Feagin, T.

    1975-01-01

    The determination of orbits by using Picard iteration is reported. This is a direct extension of the classical method of Picard that has been used in finding approximate solutions of nonlinear differential equations for a variety of problems. The application of the Picard method of successive approximations to the initial value and the two point boundary value problems is given.

  13. Symbolic Computational Algebra Applied to Picard Iteration.

    ERIC Educational Resources Information Center

    Mathews, John

    1989-01-01

    Uses muMATH to illustrate the step-by-step process in translating mathematical theory into the symbolic manipulation setting. Shows an application of a Picard iteration which uses a computer to generate a sequence of functions which converge to a solution. (MVL)

  14. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  15. Iterative solution of the Helmholtz equation

    SciTech Connect

    Larsson, E.; Otto, K.

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  16. Shaping Diffraction-Grating Grooves to Optimize Efficiency

    NASA Technical Reports Server (NTRS)

    Backlund, John; Wilson, Daniel; Mouroulis, Pantazis; Maker, Paul; Muller, Richard

    2008-01-01

    A method of shaping diffraction-grating grooves to optimize the spectral efficiency, spectral range, and image quality of a spectral imaging instrument is under development. The method is based on the use of an advanced design algorithm to determine the possibly complex shape of grooves needed to obtain a desired efficiency-versus-wavelength response (see figure). Then electron- beam fabrication techniques are used to realize the required groove shape. The method could be used, for example, to make the spectral efficiency of the grating in a given wavelength range proportional to the inverse of the spectral efficiency of a photodetector array so that the overall spectral efficiency of the combination of the grating and the photodetector array would be flat. The method has thus far been applied to one-dimensional gratings only, but in principle, it is also applicable to two-dimensional gratings. The algorithm involves calculations in the spatial-frequency domain. The spatial-frequency spectrum of a grating is represented as a diffraction-order spectral-peak-width function multiplied by an efficiency function for a single grating groove. This representation affords computational efficiency and accuracy by making it possible to consider only the response from one grating groove (one period of the grating), instead of from the whole grating area, in determining the response from the entire grating. This combination of efficiency and accuracy is crucial for future extensions of the algorithm to two-dimensional designs and to designs in which polarization must also be taken into account. The algorithm begins with the definition of target values of relative efficiency that represent the desired spectral response of the grating in certain spectral frequencies calculated from the diffraction order and wavelength. The grating period is divided into a number of cells - typically, 100. The phase contribution from each cell is determined from the phase of the incident

  17. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  18. Reducing the latency of the Fractal Iterative Method to half an iteration

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Tallon, Michel

    2013-12-01

    The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.

  19. Shapes of sedimenting soft elastic capsules in a viscous fluid.

    PubMed

    Boltz, Horst-Holger; Kierfeld, Jan

    2015-09-01

    Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point force, where we always find capsule shapes to transform smoothly without bifurcations. PMID:26465552

  20. Shapes of sedimenting soft elastic capsules in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Boltz, Horst-Holger; Kierfeld, Jan

    2015-09-01

    Soft elastic capsules which are driven through a viscous fluid undergo shape deformation coupled to their motion. We introduce an iterative solution scheme which couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid at low Reynolds numbers. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical rest shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force. This type of instability should be observable for generic synthetic capsules. All shape bifurcations can be resolved in the force-velocity relation of sedimenting capsules, where up to three capsule shapes with different velocities can occur for the same driving force. All three types of possible axisymmetric stationary shapes are stable with respect to rotation during sedimentation. Additionally, we study capsules pushed or pulled by a point force, where we always find capsule shapes to transform smoothly without bifurcations.

  1. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  2. Limits to dose reduction from iterative reconstruction and the effect of through-slice blurring

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2016-03-01

    Iterative reconstruction methods have become very popular and show the potential to reduce dose. We present a limit to the maximum dose reduction possible with new reconstruction algorithms obtained by analyzing the information content of the raw data, assuming the reconstruction algorithm does not have a priori knowledge about the object or correlations between pixels. This limit applies to the task of estimating the density of a lesion embedded in a known background object, where the shape of the lesion is known but its density is not. Under these conditions, the density of the lesion can be estimated directly from the raw data in an optimal manner. This optimal estimate will meet or outperform the performance of any reconstruction method operating on the raw data, under the condition that the reconstruction method does not introduce a priori information. The raw data bound can be compared to the lesion density estimate from FBP in order to produce a limit on the dose reduction possible from new reconstruction algorithms. The possible dose reduction from iterative reconstruction varies with the object, but for a lesion embedded in the center of a water cylinder, it is less than 40%. Additionally, comparisons between iterative reconstruction and filtered backprojection are sometimes confounded by the effect of through-slice blurring in the iterative reconstruction. We analyzed the magnitude of the variance reduction brought about by through-slice blurring on scanners from two different vendors and found it to range between 11% and 48%.

  3. ITER demonstration discharges in DIII-D with dominant electron heating

    NASA Astrophysics Data System (ADS)

    Luce, T. C.; Jackson, G. L.; Ferron, J. R.; La Haye, R. J.; Politzer, P. A.; Doyle, E. J.; Park, J. M.

    2011-10-01

    DIII-D has investigated experimentally the ITER baseline H-mode scenario with a series of scaled demonstration discharges using the ITER shape and matching key dimensionless fusion performance parameters such as normalized beta, confinement factor and collisionality. This work was recently extended to discharges with dominant electron heating, as ITER will have. In DIII-D, six gyrotrons inject up to 3.5 MW of heating power, allowing access to these ITER baseline scenario discharges with only small additions of neutral beam power. For neutral beam (NB) heated discharges it was found that the current profile is critical in obtaining reproducible discharges without tearing modes and we will discuss the parameter range for EC discharges. Plans to extend this investigation by further lowering the net NB torque will also be presented. This work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-08ER54984 and DE-AC05-00OR22725.

  4. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  5. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  6. U-Shaped Curves in Development: A PDP Approach

    ERIC Educational Resources Information Center

    Rogers, Timothy T.; Rakison, David H.; McClelland, James L.

    2004-01-01

    As the articles in this issue attest, U-shaped curves in development have stimulated a wide spectrum of research across disparate task domains and age groups and have provoked a variety of ideas about their origins and theoretical significance. In the authors' view, the ubiquity of the general pattern suggests that U-shaped curves can arise from…

  7. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  8. Majorana approach to the stochastic theory of line shapes

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Coleman, Piers

    2016-08-01

    Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.

  9. Iterative electro-optic matrix processor

    NASA Astrophysics Data System (ADS)

    Carlotto, M. J.

    An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.

  10. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  11. High resolution non-iterative aperture synthesis.

    PubMed

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  12. Linear iterative solvers for implicit ODE methods

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.; Skeel, Robert D.

    1990-01-01

    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.

  13. Iterative optimization calibration method for stereo deflectometry.

    PubMed

    Ren, Hongyu; Gao, Feng; Jiang, Xiangqian

    2015-08-24

    An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180

  14. Main challenges for ITER optical diagnostics

    NASA Astrophysics Data System (ADS)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-01

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  15. High contrast laminography using iterative algorithms

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Jakubek, J.

    2011-01-01

    3D X-ray imaging of internal structure of large flat objects is often complicated by limited access to all viewing angles or extremely high absorption in certain directions, therefore the standard method of computed tomography (CT) fails. This problem can be solved by the method of laminography. During a laminographic measurement the imaging detector is placed close to the sample while the X-ray source irradiates both sample and detector at different angles. The application of the state-of-the-art pixel detector Medipix in laminography together with adapted tomographic iterative alghorithms for 3D reconstruction of sample structure has been investigated. Iterative algorithms such as EM (Expectation Maximization) and OSEM (Ordered Subset Expectation Maximization) improve the quality of the reconstruction and allow including more complex physical models. In this contribution results and proposed future approaches which could be used for resolution enhancement are presented.

  16. Iterative image restoration using approximate inverse preconditioning.

    PubMed

    Nagy, J G; Plemmons, R J; Torgersen, T C

    1996-01-01

    Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem. PMID:18285203

  17. Thermomechanical analysis of the ITER breeding blanket

    SciTech Connect

    Majumdar, S.; Gruhn, H.; Gohar, Y.; Giegerich, M.

    1997-03-01

    Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.

  18. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  19. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  20. Fourier analysis of the SOR iteration

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Trefethen, L. N.

    1986-01-01

    The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.

  1. Statistical properties of an iterated arithmetic mapping

    SciTech Connect

    Feix, M.R.; Rouet, J.L.

    1994-07-01

    We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.

  2. Iterative pass optimization of sequence data

    NASA Technical Reports Server (NTRS)

    Wheeler, Ward C.

    2003-01-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.

  3. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  4. Iterative pass optimization of sequence data.

    PubMed

    Wheeler, Ward C

    2003-06-01

    The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. PMID:12901382

  5. ITER Creation Safety File Expertise Results

    NASA Astrophysics Data System (ADS)

    Perrault, D.

    2013-06-01

    In March 2010, the ITER operator delivered the facility safety file to the French "Autorité de Sûreté Nucléaire" (ASN) as part of its request for the creation decree, legally necessary before building works can begin on the site. The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the ASN, recently completed its expertise of the safety measures proposed for ITER, on the basis of this file and of additional technical documents from the operator. This paper presents the IRSN's main conclusions. In particular, they focus on the radioactive materials involved, the safety and radiation protection demonstration (suitability of risk management measures…), foreseeable accidents, building and safety important component design and, finally, wastes and effluents to be produced. This assessment was just the first legally-required step in on-going safety monitoring of the ITER project, which will include other complete regulatory re-evaluations.

  6. Recent ADI iteration analysis and results

    SciTech Connect

    Wachspress, E.L.

    1994-12-31

    Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.

  7. ITER (International Thermonuclear Experimental Reactor) in perspective

    SciTech Connect

    Henning, C.D. )

    1989-10-20

    The International Thermonuclear Experimental Reactor (ITER) team is completing the second year of a three-year conceptual design phase. The purpose of ITER is to demonstrate the scientific and technological feasibility of fusion power. It is to demonstrate plasma ignition and extended burn with steady state as the ultimate goal. In so doing, it is to provide the physics data base needed for a demonstration tokamak power reactor and to demonstrate reactor-relevant technologies, such as high-heat-flux and nuclear components for fusion power. To meet these objectives, many design compromises had to be reached by the participants following a careful review of the physics and technology base for fusion. The current ITER design features a 6-m major radius, a 2.15-m minor radius and a 22-MA plasma current. About 330 volt-seconds in the poloidal field system inductively drive the current for hundreds of seconds. Moreover, about 125 MW of neutral-beam, lower-hybrid, and electron-cyclotron power are provided for steady-state current drive and heating all these systems are discussed in this paper. 3 refs., 6 figs., 7 tabs.

  8. The dynamics of iterated transportation simulations

    SciTech Connect

    Nagel, K.; Rickert, M.; Simon, P.M.

    1998-12-01

    Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.

  9. Performance assessment of the ITER ICRF antenna

    NASA Astrophysics Data System (ADS)

    Durodié, F.; Vrancken, M.; Bamber, R.; Colas, L.; Dumortier, P.; Hancock, D.; Huygen, S.; Lockley, D.; Louche, F.; Maggiora, R.; Milanesio, D.; Messiaen, A.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; van Schoor, M.; Wilson, D.; Winkler, K.; Cycle Team

    2014-02-01

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [1] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf F4E for the ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to respectively the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed.

  10. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  11. Enhancing the cosmic shear power spectrum

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus; Harnois-Déraps, Joachim; Heymans, Catherine; Jimenez, Raul; Joachimi, Benjamin; Verde, Licia

    2016-02-01

    Applying a transformation to a non-Gaussian field can enhance the information content of the resulting power spectrum, by reducing the correlations between Fourier modes. In the context of weak gravitational lensing, it has been shown that this gain in information content is significantly compromised by the presence of shape noise. We apply clipping to mock convergence fields, a technique which is known to be robust in the presence of noise and has been successfully applied to galaxy number density fields. When analysed in isolation the resulting convergence power spectrum returns degraded constraints on cosmological parameters. However, substantial gains can be achieved by performing a combined analysis of the power spectra derived from both the original and transformed fields. Even in the presence of realistic levels of shape noise, we demonstrate that this approach is capable of reducing the area of likelihood contours within the Ωm - σ8 plane by more than a factor of 3.

  12. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  13. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  14. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  15. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  16. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  17. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    PubMed

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. PMID:27492243

  18. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    SciTech Connect

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  19. Alcator C-Mod: research in support of ITER and steps beyond

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; LaBombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.

    2015-10-01

    This paper presents an overview of recent highlights from research on Alcator C-Mod. Significant progress has been made across all research areas over the last two years, with particular emphasis on divertor physics and power handling, plasma-material interaction studies, edge localized mode-suppressed pedestal dynamics, core transport and turbulence, and RF heating and current drive utilizing ion cyclotron and lower hybrid tools. Specific results of particular relevance to ITER include: inner wall SOL transport studies that have led, together with results from other experiments, to the change of the detailed shape of the inner wall in ITER; runaway electron studies showing that the critical electric field required for runaway generation is much higher than predicted from collisional theory; core tungsten impurity transport studies reveal that tungsten accumulation is naturally avoided in typical C-Mod conditions.

  20. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  1. Radiation pattern synthesis of planar antennas using the iterative sampling method

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  2. Carbon charge exchange analysis in the ITER-like wall environment

    SciTech Connect

    Menmuir, S.; Giroud, C.; Hawkes, N. C.; Biewer, T. M.; Coffey, I. H.; Delabie, E.; Sertoli, M.

    2014-11-15

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  3. The Optical Spectrum of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Schiminovich, David; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained an optical spectrum of the isolated pulsar Geminga at the Keck Observatory. The optical object is at the limit of spectroscopic capability of any telescope, with a continuum flux that is approx. 0.5% of the dark sky on Mauna Kea. With particular attention paid to the dominant systematics of sky subtraction in our observing and analysis methods, we attained approx. 0.1% systematics in heavily binned spectra. The resulting spectrum spanning 3700 - 8000 A has a flat power-law shape f(sub nu) proportional to nu(exp -0.8) and a broad dip over 6300 - 6500 A. Thermal radiation cannot explain the optical spectrum of Geminga. The dominant component can be modeled as either electron synchrotron emission and ion (proton) cyclotron absorption, or ion cyclotron emission, the latter in a 10(exp 11) G magnetic field.

  4. Analysis of the ITER ICRH Decoupling and Matching System

    NASA Astrophysics Data System (ADS)

    Vervier, M.; Messiaen, A.; Dumortier, P.

    2009-11-01

    The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a "double stub" tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.

  5. Iterative methods for symmetric ill-conditioned Toeplitz matrices

    SciTech Connect

    Huckle, T.

    1996-12-31

    We consider ill-conditioned symmetric positive definite, Toeplitz systems T{sub n}x = b. If we want to solve such a system iteratively with the conjugate gradient method, we can use band-Toeplitz-preconditioners or Sine-Transform-peconditioners M = S{sub n}{Lambda}S{sub n}, S{sub n} the Sine-Transform-matrix and {Lambda} a diagonal matrix. A Toeplitz matrix T{sub n} = (t{sub i-j)}{sub i}{sup n},{sub j=1} is often related to an underlying function f defined by the coefficients t{sub j}, j = -{infinity},..,-1,0, 1,.., {infinity}. There are four cases, for which we want to determine a preconditioner M: - T{sub n} is related to an underlying function which is given explicitly; - T{sub n} is related to an underlying function that is given by its Fourier coefficients; - T{sub n} is related to an underlying function that is unknown; - T{sub n} is not related to an underlying function. Especially for the first three cases we show how positive definite and effective preconditioners based on the Sine-Transform can be defined for general nonnegative underlying function f. To define M, we evaluate or estimate the values of f at certain positions, and build a Sine-transform matrix with these values as eigenvalues. Then, the spectrum of the preconditioned system is bounded from above and away from zero.

  6. Analysis of the ITER ICRH Decoupling and Matching System

    SciTech Connect

    Vervier, M.; Messiaen, A.; Dumortier, P.

    2009-11-26

    The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a 'double stub' tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.

  7. Assessment of operational space for long-pulse scenarios in ITER

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Hayashi, N.; Kim, H. S.; Kim, S. H.; Koechl, F.; Kukushkin, A. S.; Leonov, V. M.; Medvedev, S. Yu.; Murakami, M.; Na, Y. S.; Pankin, A. Y.; Park, J. M.; Snyder, P. B.; Snipes, J. A.; Zhogolev, V. E.; IOS ITPA TG, the

    2015-06-01

    The operational space (Ip - n) for long-pulse scenarios (Δtburn ˜ 1000 s, Q ⩾ 5) of ITER has been assessed by 1.5D core transport modelling with pedestal parameters predicted by the EPED1 code by a set of transport codes under a joint activity carried out by the Integrated Operational Scenario ITPA group. The analyses include the majority of transport models (CDBM, GLF23, Bohm/gyroBohm (BgB), MMM7.1, MMM95, Weiland, scaling-based) presently used for interpretation of experiments and ITER predictions. The EPED1 code was modified to take into account boundary conditions predicted by SOLPS4 for ITER. In contrast to standard EPED1 assumptions, EPED1 with the SOLPS boundary conditions predicts no degradation of the pedestal pressure as density is reduced. Lowering the plasma density to ne ˜ (5-6) × 1019 m-3 leads to an increased plasma temperature (similar pedestal pressure), which reduces the loop voltage and increases the duration of the burn phase to Δtburn ˜ 1000 s with Q ⩾ 5 for Ip ⩾ 13 MA at moderate normalized pressure (βN ˜ 2). These ITER plasmas require the same level of additional heating power as the reference Q = 10 inductive scenario at 15 MA (33 MW NBI and 17-20 MW EC heating and current drive power). However, unlike the ‘hybrid’ scenarios considered previously, these H-mode plasmas do not require specially shaped q profiles nor improved confinement in the core for the transport models considered in this study. Thus, these medium density H-mode plasma scenarios with Ip ⩾ 13 MA present an attractive alternative to hybrid scenarios to achieve ITER's long-pulse Q ⩾ 5 scenario and deserve further analysis and experimental demonstration in present tokamaks.

  8. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  9. Consecutive combined response spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Longjun; Zhao, Guochen; Liu, Qingyang; Xie, Yujian; Xie, Lili

    2014-12-01

    Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function f( T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.

  10. Fragment oriented molecular shapes.

    PubMed

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  11. The Hue of Shapes

    ERIC Educational Resources Information Center

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  12. The Shape of Thought

    ERIC Educational Resources Information Center

    Markson, Lori; Diesendruck, Gil; Bloom, Paul

    2008-01-01

    When children learn the name of a novel object, they tend to extend that name to other objects similar in shape--a phenomenon referred to as the shape bias. Does the shape bias stem from learned associations between names and categories of objects, or does it derive from more general properties of children's understanding of language and the…

  13. An iterative three-dimensional electron density imaging algorithm using uncollimated Compton scattered x rays from a polyenergetic primary pencil beam

    SciTech Connect

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2007-01-15

    X-ray film-screen mammography is currently the gold standard for detecting breast cancer. However, one disadvantage is that it projects a three-dimensional (3D) object onto a two-dimensional (2D) image, reducing contrast between small lesions and layers of normal tissue. Another limitation is its reduced sensitivity in women with mammographically dense breasts. Computed tomography (CT) produces a 3D image yet has had a limited role in mammography due to its relatively high dose, low resolution, and low contrast. As a first step towards implementing quantitative 3D mammography, which may improve the ability to detect and specify breast tumors, we have developed an analytical technique that can use Compton scatter to obtain 3D information of an object from a single projection. Imaging material with a pencil beam of polychromatic x rays produces a characteristic scattered photon spectrum at each point on the detector plane. A comparable distribution may be calculated using a known incident x-ray energy spectrum, beam shape, and an initial estimate of the object's 3D mass attenuation and electron density. Our iterative minimization algorithm changes the initially arbitrary electron density voxel matrix to reduce regular differences between the analytically predicted and experimentally measured spectra at each point on the detector plane. The simulated electron density converges to that of the object as the differences are minimized. The reconstruction algorithm has been validated using simulated data produced by the EGSnrc Monte Carlo code system. We applied the imaging algorithm to a cylindrically symmetric breast tissue phantom containing multiple inhomogeneities. A preliminary ROC analysis scores greater than 0.96, which indicate that under the described simplifying conditions, this approach shows promise in identifying and localizing inhomogeneities which simulate 0.5 mm calcifications with an image voxel resolution of 0.25 cm and at a dose comparable to

  14. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.

    PubMed

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2007-01-01

    X-ray film-screen mammography is currently the gold standard for detecting breast cancer. However, one disadvantage is that it projects a three-dimensional (3D) object onto a two-dimensional (2D) image, reducing contrast between small lesions and layers of normal tissue. Another limitation is its reduced sensitivity in women with mammographically dense breasts. Computed tomography (CT) produces a 3D image yet has had a limited role in mammography due to its relatively high dose, low resolution, and low contrast. As a first step towards implementing quantitative 3D mammography, which may improve the ability to detect and specify breast tumors, we have developed an analytical technique that can use Compton scatter to obtain 3D information of an object from a single projection. Imaging material with a pencil beam of polychromatic x rays produces a characteristic scattered photon spectrum at each point on the detector plane. A comparable distribution may be calculated using a known incident x-ray energy spectrum, beam shape, and an initial estimate of the object's 3D mass attenuation and electron density. Our iterative minimization algorithm changes the initially arbitrary electron density voxel matrix to reduce regular differences between the analytically predicted and experimentally measured spectra at each point on the detector plane. The simulated electron density converges to that of the object as the differences are minimized. The reconstruction algorithm has been validated using simulated data produced by the EGSnrc Monte Carlo code system. We applied the imaging algorithm to a cylindrically symmetric breast tissue phantom containing multiple inhomogeneities. A preliminary ROC analysis scores greater than 0.96, which indicate that under the described simplifying conditions, this approach shows promise in identifying and localizing inhomogeneities which simulate 0.5 mm calcifications with an image voxel resolution of 0.25 cm and at a dose comparable to

  15. Shuttle spectrum despreader

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of the spread spectrum despreader project are reported and three principal products are designed and tested. The products are, (1) a spread spectrum despreader breadboard, (2) associated test equipment consisting of a spectrum spreader and bit reconstruction/error counter and (3) paper design of a Ku-band receiver which would incorporate the despreader as a principal subsystem. The despreader and test set are designed for maximum flexibility. A choice of unbalanced quadriphase or biphase shift keyed data modulation is available. Selectable integration time and threshold voltages on the despreader further lend true usefulness as laboratory test equipment to the delivered hardware.

  16. Final Report on ITER Task Agreement 81-08

    SciTech Connect

    Richard L. Moore

    2008-03-01

    As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.

  17. Research on JET in view of ITER

    NASA Astrophysics Data System (ADS)

    Pamela, Jerome; Ongena, Jef; Watkins, Michael

    2004-11-01

    Research on JET is focused on further development of the two ITER reference plasma scenarios. The ELMy H-Mode, has been extended to lower rho* at high and q_95=3, with simultaneously H_98=0.9, and f_GW=0.9 at I_p=3.5 MA. The dependence of confinement on beta and rho* has been found to be more favorable than given by the IPB98(y,2) scaling. Highlights in the development of Advanced Regimes with Internal Transport Barriers (ITB) and strong reversed shear (q_0=2-3, q_min=1.5-2.5) are : (i) operation at a core density close to the Greenwald limit and (ii) full current drive in 3T/1.8MA ITB plasmas extended to 20 seconds with a JET record injected energy of E≈ 330MJ; (iii) 7 keV Te≈ Ti ITB plasmas at low toroidal rotation, and (iv) wide radius ITB's (r/a=0.6). Furthermore, emphasis in JET is placed on (i) mitigating the impact of ELMs, (ii) understanding the phenomena leading to tritium retention and (iii) preparing burning plasma physics. Recent developments on JET in view of ITER are : (i) real-time control in both ELMy H-Mode and ITB plasmas and (ii) an upgrade of JET with: (a) increased NBI power (b) a new ELM-resilient ITER-like ICRH antenna (7MW) to be tested in 2006 (c) 16 new and upgraded diagnostics.

  18. Corneal topography matching by iterative registration.

    PubMed

    Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E

    2014-11-01

    Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data. PMID:25500860

  19. Cryogenic High Voltage Insulation Breaks for ITER

    NASA Astrophysics Data System (ADS)

    Kovalchuk, O. A.; Safonov, A. V.; Rodin, I. Yu.; Mednikov, A. A.; Lancetov, A. A.; Klimchenko, Yu. A.; Grinchenko, V. A.; Voronin, N. M.; Smorodina, N. V.; Bursikov, A. S.

    High voltage insulation breaks are used in cryogenic lines with gas or liquid (helium, hydrogen, nitrogen, etc.) at a temperature range of 4.2-300 K and pressure up to 30 MPa to insulate the parts of an electrophysical facility with different electrical potentials. In 2013 JSC "NIIEFA" delivered 95 high voltage insulation breaks to the IO ITER, i.e. 65 breaks with spiral channels and 30 breaks with uniflow channels. These high voltage insulation breaks were designed, manufactured and tested in accordance with the ITER Technical Specifications: «Axial Insulating Breaks for the Qualification Phase of ITER Coils and Feeders». The high voltage insulation breaks consist of the glass-reinforced plastic cylinder equipped with channels for cryoagent and stainless steel end fittings. The operating voltage is 30 kV for the breaks with spiral channels (30 kV HV IBs) and 4 kV for the breaks with uniflow channels (4 kV HV IBs). The main design feature of the 30 kV HV IBs is the spiral channels instead of a linear one. This approach has enabled us to increase the breakdown voltage and decrease the overall dimensions of the high voltage insulation breaks. In 2013 the manufacturing technique was developed to produce the high voltage insulation breaks with the spiral and uniflow channels that made it possible to proceed to serial production. To provide the acceptance tests of the breaks a special test facility was prepared. The helium tightness test at 10-11 m3Pa/s under the pressure up to 10 MPa, the high voltage test up to 135 kV and different types of mechanical tests were carried out at the room and liquid nitrogen temperatures.

  20. Fast iterative reconstructions for animal CT

    NASA Astrophysics Data System (ADS)

    Huang, H.-M.; Hsiao, I.-T.; Jan, M.-L.

    2009-06-01

    For iterative x-ray computed tomography (CT) reconstruction, the convex algorithm combined with ordered subset (OSC) [1] is a relatively fast algorithm and has shown its potential for low-dose situations. But it needs one forward projection and two backprojections per iteration. Unlike convex algorithm, the gradient algorithm only requires one forward projection and one backprojection per iteration. Here, we applied ordered subsets of projection data to a modified gradient algorithm. In order to further reduce computation time, the new algorithm, the ordered subset gradient (OSG) algorithm, can be adjusted with a step size. We also implemented another OS-type algorithm called OSTR. The OSG algorithm is compared with OSC algorithm and OSTR algorithm using three-dimensional simulated helical cone-beam CT data. The performance is evaluated in terms of log-likelihood, contrast recovery, and bias-variance studies. Results show that images of OSG has compatible visual image quality to those of OSC and OSTR, but in the resolution and bias-variance studies, OSG seems to reach stable values with faster speed. In particular, OSTR has better recovery in a smoother region, but both OSG and OSC have better recovery in the high-frequency regions. Moreover, in terms of log likelihood with respect to computation time, OSG has faster convergence rate than that of OSC and similar to that of OSTR. We conclude that OSG has potential to provide comparable image quality and is more computationally efficient, and thus could be suitable for low-dose, helical cone-beam CT image reconstruction.

  1. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  2. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  3. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  4. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  5. Iterative blind deconvolution of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Rao, Changhui; Li, Mei; Geng, Zexun

    2006-04-01

    Adaptive optics (AO) technique has been extensively used for large ground-based optical telescopes to overcome the effect of atmospheric turbulence. But the correction is often partial. An iterative blind deconvolution (IBD) algorithm based on maximum-likelihood (ML) method is proposed to restore the details of the object image corrected by AO. IBD algorithm and the procedure are briefly introduced and the experiment results are presented. The results show that IBD algorithm is efficient for the restoration of some useful high-frequency of the image.

  6. Fuzzy logic components for iterative deconvolution systems

    NASA Astrophysics Data System (ADS)

    Northan, Brian M.

    2013-02-01

    Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.

  7. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  8. Deterministic convergence in iterative phase shifting

    SciTech Connect

    Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel

    2009-03-10

    Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.

  9. Reversible shape memory

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Zhou, Jing; White, Sarah; Ashby, Valerie

    2012-02-01

    An ``Achilles' heel'' of shape memory materials is that shape transformations triggered by an external stimulus are usually irreversible. Here we present a new concept of reversible transitions between two well-defined shapes by controlling hierarchic crystallization of a dual-network elastomer. The reversibility was demonstrated for different types of shape transformations including rod bending, winding of a helical coil, and widening an aperture. The distinct feature of the reversible shape alterations is that both counter-shapes are infinitely stable at a temperature of exploitation. Shape reversibility is highly desirable property in many practical applications such as non-surgical removal of a previously inserted catheter and handfree wrapping up of an earlier unraveled solar sail on a space shuttle.

  10. General shape optimization capability

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  11. 3D modeling and optimization of the ITER ICRH antenna

    NASA Astrophysics Data System (ADS)

    Louche, F.; Dumortier, P.; Durodié, F.; Messiaen, A.; Maggiora, R.; Milanesio, D.

    2011-12-01

    The prediction of the coupling properties of the ITER ICRH antenna necessitates the accurate evaluation of the resistance and reactance matrices. The latter are mostly dependent on the geometry of the array and therefore a model as accurate as possible is needed to precisely compute these matrices. Furthermore simulations have so far neglected the poloidal and toroidal profile of the plasma, and it is expected that the loading by individual straps will vary significantly due to varying strap-plasma distance. To take this curvature into account, some modifications of the alignment of the straps with respect to the toroidal direction are proposed. It is shown with CST Microwave Studio® [1] that considering two segments in the toroidal direction, i.e. a "V-shaped" toroidal antenna, is sufficient. A new CATIA model including this segmentation has been drawn and imported into both MWS and TOPICA [2] codes. Simulations show a good agreement of the impedance matrices in vacuum. Various modifications of the geometry are proposed in order to further optimize the coupling. In particular we study the effect of the strap box parameters and the recess of the vertical septa.

  12. Advanced Optics for the Remote Steering ITER ECRH Upper Launcher

    NASA Astrophysics Data System (ADS)

    Bruschi, A.; Cirant, S.; Moro, A.; Platania, P.; Sozzi, C.

    2005-01-01

    The optics of the ECRH Upper Launcher in ITER based on the Remote Steering concept needs special attention, since any focussing element in front of the waveguide has combined effects on the range of steering angles achievable and the beam width in the plasma region. The effects are studied in detail for a setup composed by 8 beams per port (three ports), for a spherical and a hyperbolic mirror surface. Gaussian beam analysis is compared to beam pattern calculations with the optical physics code GRASP, in order to verify the validity of gaussian optics approximation. The standard description with simply astigmatic beams, not adequate in more complex systems as the proposed two-mirror set-up, requires approximations, which are compared with the generalized astigmatic beam description. The ohmic losses at the end mirrors and the related localized heating due to the very large power density cause deformations that depends on the design of the cooling circuit. The distortion of the beam shape has been evaluated in a realistic case of mirror cooling with a small-channel system. The quantification of the effect depends on the precise evaluation ohmic losses and their enhancement in the long term due to the surface deterioration.

  13. In situ monitoring hydrogen isotope retention in ITER first wall

    NASA Astrophysics Data System (ADS)

    Mukhin, E. E.; Andrew, P.; Anthoine, A. D.; Bazhenov, A. N.; Barnsley, R.; Bukreev, I. M.; Bukhovets, V. L.; Chernakov, A. P.; Gorodetsky, A. E.; Kochergin, M. M.; Koval, A. N.; Kukushkin, A. B.; Kukushkin, A. S.; Kurskiev, G. S.; Levashova, M. G.; Litvinov, A. E.; Litunovsky, V. N.; Markin, A. V.; Mazul, I. V.; Masyukevich, S. V.; Miroshnikov, I. V.; Nemov, A. S.; Novokhatsky, A. N.; Razdobarin, A. G.; Sherstnev, E. V.; Samsonov, D. S.; Semenov, V. V.; Smirnov, A. S.; De Temmerman, G.; Tolstyakov, S. Yu.; Zalavutdinov, R. Kh.; Walsh, M. J.

    2016-03-01

    Tritium retention inside the vacuum vessel is a potentially serious constraint in the operation of large-scale fusion machines like ITER. An in situ diagnostics for first wall H/D/T retention by laser induced desorption spectroscopy (LIDS) is proposed for use between plasma discharges. The technique is based on local baking of the first wall by laser irradiation and subsequent analysis of the in-vessel gas by optical emission spectroscopy of plasma radiation. The local heating implementation, kinetics of H/D/T thermal extraction and the accuracy of optical emission spectroscopy measurements are analysed. To resolve the H/D/T lines spectroscopically, their thermal broadening should be minimized to prevent overlapping of the line shapes. A comparative performance analysis of several types of plasma sources with relatively cold ions is made including the following types of discharges: Penning, RF multipactor, laser torch and ECR. All these radiation sources require rather low power and could be used for remote in situ measurements of relative densities of the thermally extracted hydrogen isotopes.

  14. Light shaping along 3D curves and particle manipulation

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2015-03-01

    We present a non-iterative holographic technique for efficient and versatile laser beam shaping along arbitrary 3D curves. Light beams with intensity shaped for several 3D curves: Tilted ring, Viviani's curve, Archimedean spiral, and trefoil-knotted curve have been experimentally generated and applied for optical trapping of micrometer-sized dielectric particles. The high intensity gradients and independent phase control prescribed along the curve make this kind of laser trap attractive for multiple particle manipulation and allow for forward and backward motion to the light source. Indeed, different configurations of tractor beam traps are experimentally demonstrated. This technique can also be applied for laser micro-machining.

  15. Study of Fast, Near-Infrared Photodetectors for the ITER Core LIDAR Thomson Scattering

    SciTech Connect

    Giudicotti, L.; Beurskens, M.; Kempenaars, M.; Walsh, M. J.

    2008-03-12

    A key component for the ITER core LIDAR Thomson Scattering (TS) diagnostic would be a detector with good sensitivity in the 850-1060 nm near infrared (NIR) spectral region. Covering this spectral region becomes necessary if a Nd:YAG laser system operating at {lambda} = 1.06 {mu}m is used as the laser source, which is a very attractive choice in terms of available energy, repetition rate, reliability and cost. In this paper we review the state of the art of two types of detectors available for the above spectral range: the transferred electron (TE) InGaAs/InP hybrid photodiode and the In{sub x}Ga{sub 1-x}As microchannel plate (MCP) image intensifier and we describe the advancements necessary for a possible application in the ITER LIDAR TS. In addition we describe the preliminary characterization of new GaAsP fast MCP photomultipliers (PMTs) suitable for the detection of the visible part of the LIDAR TS spectrum in JET and ITER.

  16. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Resita Arum, Sari; A, Suparmi; C, Cari

    2016-01-01

    The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).

  17. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    NASA Astrophysics Data System (ADS)

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Osborne, T. H.; Snyder, P. B.

    2015-07-01

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute ({{\\bar{n}}e}≈ 7× {{10}19} {{\\text{m}}-3} ) and normalized Greenwald fraction ({{\\bar{n}}e}/{{n}G}>0.7 ). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed ‘Super H-mode’. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling-ballooning modes for edge localized mode (ELM) stability. In general, QH-mode is found to achieve ELM-stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink-peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E× B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low {{q}95} for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.

  18. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    SciTech Connect

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Osborne, T. H.; Snyder, P. B.

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute ($\\bar{n}$e ≈ 7 × 1019 m₋3) and normalized Greenwald fraction ($\\bar{n}$e/nG > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.

  19. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGESBeta

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Osborne, T. H.; Snyder, P. B.

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$e ≈ 7 × 1019 m₋3) and normalized Greenwald fraction ($$\\bar{n}$$e/nG > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  20. A unified noise analysis for iterative image estimation

    SciTech Connect

    Qi, Jinyi

    2003-07-03

    Iterative image estimation methods have been widely used in emission tomography. Accurate estimate of the uncertainty of the reconstructed images is essential for quantitative applications. While theoretical approach has been developed to analyze the noise propagation from iteration to iteration, the current results are limited to only a few iterative algorithms that have an explicit multiplicative update equation. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient type algorithms. One advantage is that proposed method does not require an explicit expression of the preconditioner and hence it is applicable to some algorithms that involve line searches. By deriving fixed point expression from the iteration based results, we show that the iteration based noise analysis is consistent with the xed point based analysis. Examples in emission tomography and transmission tomography are shown.

  1. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  2. Investigation of the prompt-neutron spectrum for spontaneously-fissioning /sup 252/Cf

    SciTech Connect

    Poenitz, W.P.; Tamura, T.

    1982-01-01

    The prompt-fission-neutron spectrum of /sup 252/Cf was investigated. The spectrum was measured with Black Neutron Detectors which have a well known efficiency. Considerations of various issues in such measurements lead to an experiment in which a time-calibration pulser, a random pulser, the neutron detector time-of-flight spectrum, the pulse-shape-discriminator gamma time-of-flight spectrum, and the detector-response spectra were simultaneously recorded for the prompt-fission neutrons, transmission through carbon, and shadowbars in a total-cross-section-type measurement. Corrections and associated uncertainties were applied for a large variety of effects which may have been overlooked in many of the previously reported measurements. Preliminary results indicate deviations from a Maxwellian shape toward a Watt-spectrum shape. Agreement is good with the shape differences relative to a Maxwellian from the recent theoretical calculation by Madland and Nix, however, a lower average energy was found.

  3. Piecewise recognition of bone skeleton profiles via an iterative Hough transform approach without re-voting

    NASA Astrophysics Data System (ADS)

    Ricca, Giorgio; Beltrametti, Mauro C.; Massone, Anna Maria

    2015-03-01

    Many bone shapes in the human skeleton are characterized by profiles that can be associated to equations of algebraic curves. Fixing the parameters in the curve equation, by means of a classical pattern recognition procedure like the Hough transform technique, it is then possible to associate an equation to a specific bone profile. However, most skeleton districts are more accurately described by piecewise defined curves. This paper utilizes an iterative approach of the Hough transform without re-voting, to provide an efficient procedure for describing the profile of a bone in the human skeleton as a collection of different but continuously attached curves.

  4. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  5. Adaptive self-calibrating iterative GRAPPA reconstruction.

    PubMed

    Park, Suhyung; Park, Jaeseok

    2012-06-01

    Parallel magnetic resonance imaging in k-space such as generalized auto-calibrating partially parallel acquisition exploits spatial correlation among neighboring signals over multiple coils in calibration to estimate missing signals in reconstruction. It is often challenging to achieve accurate calibration information due to data corruption with noises and spatially varying correlation. The purpose of this work is to address these problems simultaneously by developing a new, adaptive iterative generalized auto-calibrating partially parallel acquisition with dynamic self-calibration. With increasing iterations, under a framework of the Kalman filter spatial correlation is estimated dynamically updating calibration signals in a measurement model and using fixed-point state transition in a process model while missing signals outside the step-varying calibration region are reconstructed, leading to adaptive self-calibration and reconstruction. Noise statistic is incorporated in the Kalman filter models, yielding coil-weighted de-noising in reconstruction. Numerical and in vivo studies are performed, demonstrating that the proposed method yields highly accurate calibration and thus reduces artifacts and noises even at high acceleration. PMID:21994010

  6. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  7. Diverse Power Iteration Embeddings and Its Applications

    SciTech Connect

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  8. The ITER ICRF Antenna Design with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe

    2007-11-01

    TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499

  9. Pedestal stability comparison and ITER pedestal prediction

    SciTech Connect

    Snyder, P.; Alba, N; Beurskens, M.; Horton, L D

    2009-01-01

    The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

  10. ITER plant layout and site services

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    2000-03-01

    The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment.

  11. Ordinal neural networks without iterative tuning.

    PubMed

    Fernández-Navarro, Francisco; Riccardi, Annalisa; Carloni, Sante

    2014-11-01

    Ordinal regression (OR) is an important branch of supervised learning in between the multiclass classification and regression. In this paper, the traditional classification scheme of neural network is adapted to learn ordinal ranks. The model proposed imposes monotonicity constraints on the weights connecting the hidden layer with the output layer. To do so, the weights are transcribed using padding variables. This reformulation leads to the so-called inequality constrained least squares (ICLS) problem. Its numerical solution can be obtained by several iterative methods, for example, trust region or line search algorithms. In this proposal, the optimum is determined analytically according to the closed-form solution of the ICLS problem estimated from the Karush-Kuhn-Tucker conditions. Furthermore, following the guidelines of the extreme learning machine framework, the weights connecting the input and the hidden layers are randomly generated, so the final model estimates all its parameters without iterative tuning. The model proposed achieves competitive performance compared with the state-of-the-art neural networks methods for OR. PMID:25330430

  12. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  13. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  14. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  15. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  16. Alpha-physics and measurement requirements for ITER

    SciTech Connect

    Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.

    1995-12-31

    This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.

  17. Stationary second-degree iterative methods and recurrences

    SciTech Connect

    Kincaid, D.R.; Young, D.M.

    1991-02-01

    The basic theory of stationary second-degree iterative methods is presented from the point of view of recurrences. Recurrences are encountered in the development of expressions for the spectral radii and for various norms associated with linear stationary iterative methods. We show that many of these recurrences are special cases of a single general recurrence and that its closed-form solution leads to these expressions. Citations are given showing where the expressions occur in the theory of iterative methods.

  18. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  19. ITER- International Toxicity Estimates for Risk, new TOXNET database.

    PubMed

    Tomasulo, Patricia

    2005-01-01

    ITER, the International Toxicity Estimates for Risk database, joined the TOXNET system in the winter of 2004. ITER features international comparisons of environmental health risk assessment information and contains over 620 chemical records. ITER includes data from the EPA, Health Canada, the National Institute of Public Health and the Environment of the Netherlands, and other organizations that provide risk values that have been peer-reviewed. PMID:15760833

  20. Control of the spectrum of the biphoton field

    SciTech Connect

    Katamadze, K. G. Kulik, S. P.

    2011-01-15

    The main methods for controlling the biphoton field, as well as the problems for which the width and the shape of the spectrum of the biphoton field are of decisive importance, are discussed. The method for controlling the spectrum of the spontaneous parametric downconversion of light based on the spatial modulation of the refractive indices of a nonlinear crystal in which the generation of biphotons has been analyzed. Modulation is due to the thermo-optic and electro-optic effects.

  1. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  2. ITER Cryoplant Status and Economics of the LHe plants

    NASA Astrophysics Data System (ADS)

    Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.

    The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.

  3. A novel iterative scheme and its application to differential equations.

    PubMed

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method. PMID:24757427

  4. Pessimal shapes for packing

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav

    2014-03-01

    The question of which convex shapes leave the most empty space in their densest packing is the subject of Reinhardt's conjecture in two dimensions and Ulam's conjecture in three dimensions. Such conjectures about pessimal packing shapes have proven notoriously difficult to make progress on. I show that the regular heptagon is a local pessimum among all convex shapes, and that the 3D ball is a local pessimum among origin-symmetric shapes. Any shape sufficiently close in the space of shapes to these local pessima can be packed at a greater efficiency than they. In two dimensions and in dimensions above three, the ball is not a local pessimum, so the situation in 3D is unusual and intriguing. I will discuss what conditions conspire to make the 3D ball a local pessimum and whether we can prove that it is also a global pessimum.

  5. Learning Deformable Shape Manifolds

    PubMed Central

    Rivera, Samuel; Martinez, Aleix

    2011-01-01

    We propose an approach to shape detection of highly deformable shapes in images via manifold learning with regression. Our method does not require shape key points be defined at high contrast image regions, nor do we need an initial estimate of the shape. We only require sufficient representative training data and a rough initial estimate of the object position and scale. We demonstrate the method for face shape learning, and provide a comparison to nonlinear Active Appearance Model. Our method is extremely accurate, to nearly pixel precision and is capable of accurately detecting the shape of faces undergoing extreme expression changes. The technique is robust to occlusions such as glasses and gives reasonable results for extremely degraded image resolutions. PMID:22308002

  6. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  7. Action spectrum for photocarcinogenesis.

    PubMed

    de Gruijl, F R

    1995-01-01

    The wavelength dependence of the carcinogenicity of ultraviolet (UV) radiation needs to be known in order to assess the carcinogenic risks of various UV sources, most notably the different solar UV spectra at ground level under depleting stratospheric ozone. This wavelength dependence cannot be extracted from human data (e.g., from epidemiology); it can, however, be directly obtained from animal experiments. Precise information on the wavelength dependence, the so-called action spectrum, was not available until recently: erythemal or mutagenic action spectra have been used as substitutes. However, experimental data on skin tumors induced in hairless mice (Skh:HR1) with various polychromatic sources have been building up. Our group has found that none of the substitute action spectra yield a statistically acceptable description of our data, and we have, therefore, derived a new action spectrum, dubbed the SCUP action spectrum (SCUP stands for Skin Cancer Utrecht-Philadelphia, because the action spectrum also fits experimental data from the former Skin and Cancer Hospital in Philadelphia). The SCUP action spectrum has a maximum at 293 nm, and in the UVA region above 340 nm the relative carcinogenicity per J/m2 drops to about 10(-4) of this maximum. The effects of an ozone depletion on solar UV doses weighted with these different action spectra are compared: the erythemal and SCUP weighted dose come out as least sensitive with a 1.3% and 1.4% increase, respectively, for every 1% decrease in ozone. PMID:7597292

  8. The Shape of Eros

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Looking at a few pictures of Eros under the right lighting conditions gives a reasonable idea of the shape of the asteroid, but analysis of NEAR Shoemaker data requires a very accurate digital model of Eros' shape. This 'shape model' helps the NEAR team analyze images and other types of data. For example, comparing the brightness of imaged regions with the orientation of the corresponding parts of the surface, taken from the shape model, allows scientists to determine whether bright areas are due to just surface orientation or also to surface properties. By 'filling

  9. DISJUNCTIVE NORMAL SHAPE MODELS

    PubMed Central

    Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2016-01-01

    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233

  10. Shape optimization for DSA

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Delaney, Kris; Fredrickson, Glenn; Gibou, Frederic

    2016-03-01

    Directed self-assembly using block copolymers for positioning vertical interconnect access in integrated circuits relies on the proper shape of a confined domain in which polymers will self-assemble into the targeted design. Finding that shape, i.e., solving the inverse problem, is currently mainly based on trial and error approaches. We introduce a level-set based algorithm that makes use of a shape optimization strategy coupled with self-consistent field theory to solve the inverse problem in an automated way. It is shown that optimal shapes are found for different targeted topologies with accurate placement and distances between the different components.

  11. Iterative Voting for Inference of Structural Saliency andCharacterization of Subcellular Events

    SciTech Connect

    Parvin, Bahram; Yang, Qing; Han, Ju; Chang, Hang; Rydberg, Bjorn; Barcellos-Hoff, Mary Helen

    2006-05-06

    Saliency is an important perceptual cue that occurs at different levels of resolution. Important attributes of saliency are symmetry, continuity, and closure. Detection of these attributes is often hindered by noise, variation in scale, and incomplete information. This paper introduces the iterative voting method, which uses oriented kernels for inferring saliency as it relates to symmetry. A unique aspect of the technique is the kernel topography, which is refined and reoriented iteratively. The technique can cluster and group nonconvex perceptual circular symmetries along the radial line of an object's shape. It has an excellent noise immunity and is shown to be tolerant to perturbation in scale. The application of this technique to images obtained through various modes of microscopy is demonstrated. Furthermore, as a case example, the method has been applied to quantify kinetics of nuclear foci formation that are formed by phosphorylation of hislone {gamma}H2AX following ionizing radiation. Iterative voting has been implemented in both 2-D and 3-D for multi image analysis.

  12. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    SciTech Connect

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurements included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.

  13. Aperture shape optimization for IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Cassioli, A.; Unkelbach, J.

    2013-01-01

    We propose an algorithm for aperture shape optimization (ASO) for step and shoot delivery of intensity-modulated radiotherapy. The method is an approach to direct aperture optimization (DAO) that exploits gradient information to locally optimize the positions of the leafs of a multileaf collimator. Based on the dose-influence matrix, the dose distribution is locally approximated as a linear function of the leaf positions. Since this approximation is valid only in a small interval around the current leaf positions, we use a trust-region-like method to optimize the leaf positions: in one iteration, the leaf motion is confined to the beamlets where the leaf edges are currently positioned. This yields a well-behaved optimization problem for the leaf positions and the aperture weights, which can be solved efficiently. If, in one iteration, a leaf is moved to the edge of a beamlet, the leaf motion can be confined to the neighboring beamlet in the next iteration. This allows for large leaf position changes over the course of the algorithm. In this paper, the ASO algorithm is embedded into a column-generation approach to DAO. After a new aperture is added to the treatment plan, we use the ASO algorithm to simultaneously optimize aperture weights and leaf positions for the new set of apertures. We present results for a paraspinal tumor case, a prostate case and a head and neck case. The computational results indicate that, using this approach, treatment plans close to the ideal fluence map optimization solution can be obtained.

  14. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  15. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    PubMed Central

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-01-01

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared

  16. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  17. New implicitly solvable potential produced by second order shape invariance

    SciTech Connect

    Cannata, F.; Ioffe, M.V.; Kolevatova, E.V.; Nishnianidze, D.N.

    2015-05-15

    The procedure proposed recently by Bougie et al. (2010) to study the general form of shape invariant potentials in one-dimensional Supersymmetric Quantum Mechanics (SUSY QM) is generalized to the case of Higher Order SUSY QM with supercharges of second order in momentum. A new shape invariant potential is constructed by this method. It is singular at the origin, it grows at infinity, and its spectrum depends on the choice of connection conditions in the singular point. The corresponding Schrödinger equation is solved explicitly: the wave functions are constructed analytically, and the energy spectrum is defined implicitly via the transcendental equation which involves Confluent Hypergeometric functions. - Highlights: • New potential with 2nd order irreducible shape invariance was constructed. • The connection conditions at the singularity of potential were obtained. • The explicit expressions for all wave functions were derived. • The implicit equation for the energy spectrum was obtained.

  18. Impact of quantum entanglement on spectrum of cosmological fluctuations

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi

    2014-07-01

    We investigate the effect of entanglement between two causally separated open charts in de Sitter space on the spectrum of vacuum fluctuations. We consider a free massive scalar field, and construct the reduced density matrix by tracing out the vacuum state for one of the open charts, as recently derived by Maldacena and Pimentel. We formulate the mean-square vacuum fluctuations by using the reduced density matrix and show that the scale invariant spectrum of massless scalar field is realized on small scales. On the other hand, we find that the quantum entanglement affects the shape of the spectrum on large scales comparable to or greater than the curvature radius.

  19. Bottomonium spectrum revisited

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Ortega, Pablo G.; Entem, David R.; Fernández, Francisco

    2016-04-01

    We revisit the bottomonium spectrum motivated by the recently exciting experimental progress in the observation of new bottomonium states, both conventional and unconventional. Our framework is a nonrelativistic constituent quark model which has been applied to a wide range of hadronic observables from the light to the heavy quark sector, and thus the model parameters are completely constrained. Beyond the spectrum, we provide a large number of electromagnetic, strong and hadronic decays in order to discuss the quark content of the bottomonium states and give more insights about a better way to determine their properties experimentally.

  20. Improving VHF Spectrum Utilization

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Orr, Richard; Foore, Larry; Sheehe, Charles; Freeman, Mark; Nguyen, Thanh; Bretmersky, Steven; Laberge, Chuck; Buchanan, David

    2004-01-01

    Limited VHF communications system capacity and increasing air traffic results in congestion of the aviation VHF spectrum. The voice communications errors and delayed channel access create system congestion and air traffic delays. Regulatory subdivision of bands for specific functions limits flexibility in the frequency usage. The objective of this viewgraph presentation is to identify near/mid/far term technologies to improve the performance and spectrum efficiency of current and emerging VHF communications systems. Select technologies with the highest potential, perform research and development to bring them to implementation stage.

  1. Study of the Load Resilient External Matching Circuit for the ITER ICRH/FWCD System by means of its Mock-up

    SciTech Connect

    Messiaen, A.; Dumortier, P.; Lamalle, P. U.; Vervier, M.

    2007-09-28

    The reference matching solution for ITER grouping the 24 straps of the ITER antenna array in 4 'conjugate T' (CT) circuits through pre-matching network is investigated starting from the S matrix measurements versus antenna loading made on the mock-up of the original design. Six decouplers alleviate the mutual coupling effects between the 4 matching circuits and their power sources. All matching actuators are outside the antenna plug. The matching procedure allows the control of load resilience and plasma excitation spectrum for heating and current drive.

  2. Some results concerning linear iterative (systolic) arrays

    SciTech Connect

    Ibarra, O.H.; Palis, M.A.; Kim, S.M.

    1985-05-01

    The authors have shown some new interesting results concerning the properties, power, and limitations of various types of linear iterative (systolic) arrays. The method they employed consisted of finding sequential machine characterizations of these array models, and then using the characterizations to prove the results. Because of the absence of any concurrency and synchronization problems, the authors obtained simple proofs to results which when proved directly on the arrays would seem very difficult. The characterizations, therefore, provide a novel and promising method which can be used to analyze other systolic systems. In the future they hope to extend this methodology to the study of two-dimensional and multidimensional systolic arrays, and other systolic systems with different interconnection networks.

  3. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    SciTech Connect

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  4. Iterative Precise Conductivity Measurement with IDEs

    PubMed Central

    Hubálek, Jaromír

    2015-01-01

    The paper presents a new approach in the field of precise electrolytic conductivity measurements with planar thin- and thick-film electrodes. This novel measuring method was developed for measurement with comb-like electrodes called interdigitated electrodes (IDEs). Correction characteristics over a wide range of specific conductivities were determined from an interface impedance characterization of the thick-film IDEs. The local maximum of the capacitive part of the interface impedance is used for corrections to get linear responses. The measuring frequency was determined at a wide range of measured conductivity. An iteration mode of measurements was suggested to precisely measure the conductivity at the right frequency in order to achieve a highly accurate response. The method takes precise conductivity measurements in concentration ranges from 10−6 to 1 M without electrode cell replacement. PMID:26007745

  5. Iterated Gate Teleportation and Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2015-06-01

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  6. ITER Central Solenoid Coil Insulation Qualification

    SciTech Connect

    Martovetsky, Nicolai N; Mann Jr, Thomas Latta; Miller, John L; Freudenberg, Kevin D; Reed, Richard P; Walsh, Robert P; McColskey, J D; Evans, D

    2010-01-01

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  7. Fusion Specific Features in ITER Accident Analysis

    NASA Astrophysics Data System (ADS)

    Bartels, H.-W.; Gordon, C. W.; Piet, S. J.; Poucet, A. E.; Saji, G.; Topilski, L. N.

    1997-06-01

    Fusion specific features like inherent plasma shutdown, low decay heat densities, cryogenic temperatures, and limited source terms were considered during the safety design process of ITER. Uncertainties in plasma disruptions motivates a robust design to cope with multiple failures of in-vessel cooling piping. A vacuum vessel pressure suppression system mitigates pressure transients and effectively captures mobilized radioactivity. In case of pump trips or ex-vessel coolant losses in the divertor the plasma needs to be actively terminated in a few seconds. Failure to do so might damage the divertor but radiological consequences will be minor due to the intact first confinement barrier. Tritium plant inventories are protected by several layers of confinement. Uncontrolled release of magnet energy will be prevented by design. Postulated damage from magnets to confinement barriers causes fluid ingress (air, water, helium) into the cryostat. The cold environment limits pressurization. Most tritium and dust is captured by condensation.

  8. Learning to improve iterative repair scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene

    1992-01-01

    This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone.

  9. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  10. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-01

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements. PMID:26196609

  11. Iterated upwind schemes for gas dynamics

    SciTech Connect

    Smolarkiewicz, Piotr K. Szmelter, Joanna

    2009-01-10

    A class of high-resolution schemes established in integration of anelastic equations is extended to fully compressible flows, and documented for unsteady (and steady) problems through a span of Mach numbers from zero to supersonic. The schemes stem from iterated upwind technology of the multidimensional positive definite advection transport algorithm (MPDATA). The derived algorithms employ standard and modified forms of the equations of gas dynamics for conservation of mass, momentum and either total or internal energy as well as potential temperature. Numerical examples from elementary wave propagation, through computational aerodynamics benchmarks, to atmospheric small- and large-amplitude acoustics with intricate wave-flow interactions verify the approach for both structured and unstructured meshes, and demonstrate its flexibility and robustness.

  12. ECE for NTM control on ITER

    NASA Astrophysics Data System (ADS)

    van den Brand, H.; de Baar, M. R.; Lopes Cardozo, N. J.; Westerhof, E.

    2012-09-01

    Control of Neoclassical Tearing Modes (NTMs) requires an accurate and low latency detection of the mode position. For a burning H-mode ITER plasma, simulations are conducted for both ECE detected via the equatorial port plug and along the line-of-sight of the ECCD launchers. Simulated ECE is detected using synthetic radiometers, with settings chosen to meet the required accuracy. A video bandwidth of 2 kHz is used which allows for an intermediate frequency bandwidth of BIF = 400 MHz for ECE detected via the equatorial port plug. For ECE detected via the ECCD line-of-sight, an intermediate frequency bandwidth of 1.5 GHz and 1 GHz for the 2/1 and 3/2 NTM respectively suffices for accurate location detection. For both ECE systems, the latency requirements for NTM suppression are fulfilled.

  13. Robust tooth surface reconstruction by iterative deformation.

    PubMed

    Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng

    2016-01-01

    Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm. PMID:26638148

  14. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  15. ITER tokamak buildings and equipment layout

    SciTech Connect

    Ahlfeld, C.E.; Dilling, D.A.; Ishimoto, Kazuyuki; Tanaka, Eiichi; Stoner, S.

    1996-12-31

    The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIA database provide the framework for the equipment layout. This article describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA models. 1 ref., 6 figs.

  16. Iterative restoration of SPECT projection images

    SciTech Connect

    Glick, S.J.; Xia, W.

    1997-04-01

    Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the project data with Bellini`s method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transformation (FFT) methods. After processing of the project data, reconstruction is performed using filtered backprojections. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.

  17. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics

    SciTech Connect

    Robel, M; Kristo, M J; Heller, M A

    2009-06-09

    Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. In fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method

  18. Error bounds from extra precise iterative refinement

    SciTech Connect

    Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason

    2005-02-07

    We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

  19. An iterative subaperture position correction algorithm

    NASA Astrophysics Data System (ADS)

    Lo, Weng-Hou; Lin, Po-Chih; Chen, Yi-Chun

    2015-08-01

    The subaperture stitching interferometry is a technique suitable for testing high numerical-aperture optics, large-diameter spherical lenses and aspheric optics. In the stitching process, each subaperture has to be placed at its correct position in a global coordinate, and the positioning precision would affect the accuracy of stitching result. However, the mechanical limitations in the alignment process as well as vibrations during the measurement would induce inevitable subaperture position uncertainties. In our previous study, a rotational scanning subaperture stitching interferometer has been constructed. This paper provides an iterative algorithm to correct the subaperture position without altering the interferometer configuration. Each subaperture is first placed at its geometric position estimated according to the F number of reference lens, the measurement zenithal angle and the number of pixels along the width of subaperture. By using the concept of differentiation, a shift compensator along the radial direction of the global coordinate is added into the stitching algorithm. The algorithm includes two kinds of compensators: one for the geometric null with four compensators of piston, two directional tilts and defocus, and the other for the position correction with the shift compensator. These compensators are computed iteratively to minimize the phase differences in the overlapped regions of subapertures in a least-squares sense. The simulation results demonstrate that the proposed method works to the position accuracy of 0.001 pixels for both the single-ring and multiple-ring configurations. Experimental verifications with the single-ring and multiple-ring data also show the effectiveness of the algorithm.

  20. Calculation angle and amplitude spectrum of interferogram with FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqing; Ding, Lei

    2013-08-01

    Historically,computationally-intensive data processing for space-borne instruments has heavily relied on groundbased processing system.But with recent advances in FPGAs such as Xilinx Virtex-4 and Virtex-5 series devices that including PowerPC processors and DSP blocks thereby provding a flexible hardware and software co-design architecture to meet computationally-intensive data processing need,So it is able to shift more processing on- board;for high data active and passive instruments,such as interferometer,Implementations of on-board processing algorithms to perform lossless data reductions can dramatically reduce the data rates,therefore relaxing the downlink data bandwidth requirements.The interferograms are performs the inverse fourier transform on-board in order to decrease the transmission rate.In [Revercomb et al.] paper show that only use the modulus of the complx spectrum will lead to big calibration errors.So the amplitude and angle of the complex spectrum is need for radiometric cablibration,but there have a big challenge for on board obtained the amplitude and angle of the complex spectrum.In this paper,we introduce the CORDIC algorithm to slove it. The CORDIC algorithm is an iterative convergence algorithm that performs a rotation iteratively using a series of specific incremental rotation angles selected so that each iteration is performed by shift and add operation,which fit for FPGA implementation,and can be parallel in a chip to fullfill different latency and throughput.Implemention results with Xilinx FPGA are summarized.

  1. Reconstruction of the primordial power spectrum from CMB data

    SciTech Connect

    Guo, Zong-Kuan; Zhang, Yuan-Zhong; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de

    2011-08-01

    Measuring the deviation from scale invariance of the primordial power spectrum is a critical test of inflation. In this paper we reconstruct the shape of the primordial power spectrum of curvature perturbations from the cosmic microwave background data, including the 7-year Wilkinson Microwave Anisotropy Probe data and the Atacama Cosmology Telescope 148 GHz data, by using a binning method of a cubic spline interpolation in log-log space. We find that the power-law spectrum is preferred by the data and that the Harrison-Zel'dovich spectrum is disfavored at 95% confidence level. These conclusions hold with and without allowing for tensor modes, however the simpler model without tensors is preferred by the data. We do not find evidence for a feature in the primordial power spectrum — in full agreement with generic predictions from cosmological inflation.

  2. Rollercoaster Loop Shapes

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie

    2005-01-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  3. Rollercoaster loop shapes

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2005-11-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  4. Crystal Shape Bingo.

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    This document describes a game that provides students with practice in recognizing three dimensional crystal shapes and planar geometric shapes of crystal faces. It contains information on the objective of the game, game preparation, and rules for playing. Play cards are included (four to a page). (ASK)

  5. A method for aligning trans-tibial residual limb shapes so as to identify regions of shape change.

    PubMed

    Zachariah, Santosh G; Sorenson, Elizabeth; Sanders, Joan E

    2005-12-01

    Quantification of the change in shape of a residual limb over time is relevant to the fitting of an external prosthesis. Three algorithms were developed and evaluated to align residual limb shapes: iterative closest points (ICP), mean absolute difference, and weighted surface normals/mean absolute difference. Evaluations were conducted by aligning residual limb shapes with known deformations and transformations with their original shapes. Results showed that ICP did not perform well in that it tended to favor a global distribution of local shape difference rather than localization of the error. The mean absolute difference algorithm performed well as long as the shape difference was localized to one region. Weighted mean surface normals/absolute difference provided the best alignment results, performing well both if shape changes were localized and if they were globally distributed. Mean alignment errors for this method were less than 0.285 mm for each of the three translation directions and less than 0.357 degrees for each of the three rotation directions. This algorithm could be helpful to patients, prosthetists, and researchers developing treatments to overcome the detrimental fitting effects of residual limb shape change. PMID:16425837

  6. Modelling of passive spectroscopy in the ITER divertor: the first hydrogen Balmer lines

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Kotov, V.; Reiter, D.

    2010-07-01

    The first lines of the hydrogen Balmer series are investigated in ITER divertor conditions using a line shape code and a plasma edge transport code. It is shown that most of the emissivity originates from a localized, cold and dense region close to the divertor target plates, where the plasma is in the recombining regime. We simulate the signal obtained by pointing a spectrometer at this zone. The physical processes which contribute to the spectral line formation are examined, with a special emphasis on the Stark effect, photon absorption and stimulated emission. It is shown that, even though the Stark effect is significant, local information on the Doppler atomic temperature can be obtained from a fitting analysis of the Dα spectral line shape.

  7. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  8. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  9. The Effect of Iteration on the Design Performance of Primary School Children

    ERIC Educational Resources Information Center

    Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.

    2015-01-01

    Iteration during the design process is an essential element. Engineers optimize their design by iteration. Research on iteration in Primary Design Education is however scarce; possibly teachers believe they do not have enough time for iteration in daily classroom practices. Spontaneous playing behavior of children indicates that iteration fits in…

  10. Iterative build OMIT maps: Map improvement by iterative model-building and refinement without model bias

    SciTech Connect

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2008-02-12

    A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  11. An Iterative Method for Solving Variable Coefficient ODEs

    ERIC Educational Resources Information Center

    Deeba, Elias; Yoon, Jeong-Mi; Zafiris, Vasilis

    2003-01-01

    In this classroom note, the authors present a method to solve variable coefficients ordinary differential equations of the form p(x)y([squared])(x) + q(x)y([superscript 1])(x) + r(x)y(x) = 0. They propose an iterative method as an alternate method to solve the above equation. This iterative method is accessible to an undergraduate student studying…

  12. Magnet design technical report---ITER definition phase

    SciTech Connect

    Henning, C.

    1989-04-28

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  13. Validation of 1-D transport and sawtooth models for ITER

    SciTech Connect

    Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.

    1996-12-31

    In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.

  14. Wall conditioning for ITER: Current experimental and modeling activities

    NASA Astrophysics Data System (ADS)

    Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.

    2015-08-01

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  15. Not so Complex: Iteration in the Complex Plane

    ERIC Educational Resources Information Center

    O'Dell, Robin S.

    2014-01-01

    The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…

  16. Language Evolution by Iterated Learning with Bayesian Agents

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Kalish, Michael L.

    2007-01-01

    Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…

  17. On the Levin iterative method for oscillatory integrals

    NASA Astrophysics Data System (ADS)

    Xiang, Shuhuang; Wang, Haiyong

    2008-07-01

    This paper considers and gives error analysis for Levin iteration method to approximate Bessel-trigonometric transformation . For generalized Fourier transformation under the condition that g'(x)[not equal to]0 for all x[set membership, variant][a,b], Levin iteration method with the initial U[0](x)[reverse not equivalent]0 is identical to the asymptotic method.

  18. Experimental investigation of iterative reconstruction techniques for high resolution mammography

    NASA Astrophysics Data System (ADS)

    Vengrinovich, Valery L.; Zolotarev, Sergei A.; Linev, Vladimir N.

    2014-02-01

    The further development of the new iterative reconstruction algorithms to improve three-dimensional breast images quality restored from incomplete and noisy mammograms, is provided. The algebraic reconstruction method with simultaneous iterations - Simultaneous Algebraic Reconstruction Technique (SART) and the iterative method of statistical reconstruction Bayesian Iterative Reconstruction (BIR) are referred here as the preferable iterative methods suitable to improve the image quality. For better processing we use the Graphics Processing Unit (GPU). Method of minimizing the Total Variation (TV) is used as a priori support for regularization of iteration process and to reduce the level of noise in the reconstructed image. Preliminary results with physical phantoms show that all examined methods are capable to reconstruct structures layer-by-layer and to separate layers which images are overlapped in the Z- direction. It was found that the method of traditional Shift-And-Add tomosynthesis (SAA) is worse than iterative methods SART and BIR in terms of suppression of the anatomical noise and image blurring in between the adjacent layers. Despite of the fact that the measured contrast/noise ratio in the presence of low contrast internal structures is higher for the method of tomosynthesis SAA than for SART and BIR methods, its effectiveness in the presence of structured background is rather poor. In our opinion the optimal results can be achieved using Bayesian iterative reconstruction BIR.

  19. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  20. Battlefield spectrum management

    NASA Astrophysics Data System (ADS)

    Sivakumar, C.

    1997-06-01

    Modern tactical communications systems rely on radios to support network and user connectivity. One of the challenges for network planners and managers is to make best use of scarce and vulnerable frequency spectrum resources to support the communication needs of war fighters. With the wide variety of Iris radio types typically to be deployed in the battlefield (ranging from high frequency to super high frequency), a comprehensive suite of tools is necessary to ensure that frequency interference is kept minimum. Without a sophisticated frequency spectrum management system, the most advanced tactical communications systems could be rendered useless, jeopardizing human life and national security. For these reasons, it is important to develop an Iris wide battlefield spectrum management capability that takes full advantage of current frequency spectrum management research and development (R&D), related tools, and supporting technology for assigning frequencies. This session briefly describes various assignment strategies being adopted in the Iris BFSM for overcoming cosite/collocated/farsite interferences along with the propagation models [from high frequency (HF) to super high frequency (SHF)] used for the assignment of frequencies. Also a brief thread outlining the process for generating frequency allocation/assignment request and analysis of frequency interference is discussed.

  1. Charging for Spectrum Use.

    ERIC Educational Resources Information Center

    Geller, Henry; Lampert, Donna

    This paper, the third in a series exploring future options for public policy in the communications and information arenas, argues that the communications spectrum--e.g., public mobile service, private radio, and domestic satellites--is a valuable but limited resource that should benefit all Americans. After a background discussion, it is…

  2. Sinclair ZX Spectrum.

    ERIC Educational Resources Information Center

    Rodwell, Peter

    1982-01-01

    Describes and evaluates the hardware, software, peripheral devices, performance capabilities, and programing capacity of the Sinclair ZX Spectrum microcomputer. The computer's display system, its version of the BASIC programing language, its graphics capabilities, and the unique features of its data entry keyboard are discussed. (JL)

  3. A shape decomposition technique in electrical impedance tomography

    SciTech Connect

    Han, D.K.; Prosperetti, A.

    1999-10-10

    Consider a two-dimensional domain containing a medium with unit electrical conductivity and one or more non-conducting objects. The problem considered here is that of identifying shape and position of the objects on the sole basis of measurements on the external boundary of the domain. An iterative technique is presented in which a sequence of solutions of the direct problem is generated by a boundary element method on the basis of assumed positions and shapes of the objects. The key new aspect of the approach is that the boundary of each object is represented in terms of Fourier coefficients rather than a point-wise discretization. These Fourier coefficients generate the fundamental shapes mentioned in the title in terms of which the object shape is decomposed. The iterative procedure consists in the successive updating of the Fourier coefficients at every step by means of the Levenberg-Marquardt algorithm. It is shown that the Fourier decomposition--which, essentially, amounts to a form of image compression--enables the algorithm to image the embedded objects with unprecedented accuracy and clarity. In a separate paper, the method has also been extended to three dimensions with equally good results.

  4. Image Restoration Using the Damped Richardson-Lucy Iteration

    NASA Astrophysics Data System (ADS)

    White, R. L.

    The most widely used image restoration technique for optical astronomical data is the Richardson-Lucy (RL) iteration. The RL method is well-suited to optical and ultraviolet because it converges to the maximum likelihood solution for Poisson statistics in the data, which is appropriate for astronomical images taken with CCD or photon-counting detectors. Images restored using the RL iteration have good good photometric linearity and can be used for quantitative analysis, and typical RL restorations require a manageable amount of computer time. Despite its advantages, the RL method has some serious shortcomings. Noise amplification is a problem, as for all maximum likelihood techniques. If one performs many RL iterations on an image containing an extended object such as a galaxy, the extended emission develops a ``speckled'' appearance. The speckles are the result of fitting the noise in the data too closely. The only limit on the amount of noise amplification in the RL method is the requirement that the image not become negative. The usual practical approach to limiting noise amplification is simply to stop the iteration when the restored image appears to become too noisy. However, in most cases the number of iterations needed is different for different parts of the image. Hundreds of iterations may be required to get a good fit to the high signal-to-noise image of a bright star, while a smooth, extended object may be fitted well after only a few iterations. Thus, one would like to be able to slow or stop the iteration automatically in regions where a smooth model fits the data adequately, while continuing to iterate in regions where there are sharp features (edges or point sources). The need for a spatially adaptive convergence criterion is exacerbated when CCD readout noise is included in the RL algorithm (Snyder, Hammoud, & White, 1993, JOSA A , 10 , 1014), because the rate of convergence is then slower for faint stars than for bright stars. This paper will

  5. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  6. On the JET ITER-Like ICRF antenna and implications for the ICRF system for ITER

    NASA Astrophysics Data System (ADS)

    Durodie, Frederic; Nightingale, Mark

    2009-11-01

    A new ``ITER-Like'' Ion Cyclotron Resonance Frequency (ICRF) antenna was installed on the JET tokamak in 2007 and extensively operated on plasma since May 2008 for a wide range of conditions (frequencies: 33, 42 and 47 MHz, L- and ELMy H-mode plasmas, antenna strap - plasma separatrix distances from 9 to 17 cm). Aspects relating to the potential performance and design of the ITER system, will be discussed: (i) the wave coupling performance and validation of the TOPICA modelling code used to predict the coupled power in ITER; (ii) the operation at high coupled power density (up to 6.2 MW/m^2 in L-mode, 4.1 MW/m^2 in H-mode) and high RF voltage on the antenna structure (up to 42 kV); (iii) the coupling of ICRF power during fast variations (ms) in coupling occurring during ELMs and (iv) antenna control in the presence of high mutual coupling between antenna straps.

  7. Final Report on ITER Task Agreement 81-10

    SciTech Connect

    Brad J. Merrill

    2009-01-01

    An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quench event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.

  8. Iterative image reconstruction techniques: cardiothoracic computed tomography applications.

    PubMed

    Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L

    2014-07-01

    Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334

  9. A unified noise analysis for iterative image estimation.

    PubMed

    Qi, Jinyi

    2003-11-01

    Iterative image estimation methods have been widely used in emission tomography. Accurate estimation of the uncertainty of the reconstructed images is essential for quantitative applications. While both iteration-based noise analysis and fixed-point noise analysis have been developed, current iteration-based results are limited to only a few algorithms that have an explicit multiplicative update equation and some may not converge to the fixed-point result. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient-type algorithms. Under a certain condition, the proposed method does not require an explicit expression of the preconditioner. By deriving the fixed-point expression from the iteration-based result, we show that the proposed iteration-based noise analysis is consistent with fixed-point analysis. Examples in emission tomography and transmission tomography are shown. The results are validated using Monte Carlo simulations. PMID:14653559

  10. A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Pascarella, A.; Pitolli, F.; Somersalo, E.; Vantaggi, B.

    2015-12-01

    The inverse problem of MEG aims at estimating electromagnetic cerebral activity from measurements of the magnetic fields outside the head. After formulating the problem within the Bayesian framework, a hierarchical conditionally Gaussian prior model is introduced, including a physiologically inspired prior model that takes into account the preferred directions of the source currents. The hyperparameter vector consists of prior variances of the dipole moments, assumed to follow a non-conjugate gamma distribution with variable scaling and shape parameters. A point estimate of both dipole moments and their variances can be computed using an iterative alternating sequential updating algorithm, which is shown to be globally convergent. The numerical solution is based on computing an approximation of the dipole moments using a Krylov subspace iterative linear solver equipped with statistically inspired preconditioning and a suitable termination rule. The shape parameters of the model are shown to control the focality, and furthermore, using an empirical Bayes argument, it is shown that the scaling parameters can be naturally adjusted to provide a statistically well justified depth sensitivity scaling. The validity of this interpretation is verified through computed numerical examples. Also, a computed example showing the applicability of the algorithm to analyze realistic time series data is presented.

  11. The exchangeability of shape

    PubMed Central

    2010-01-01

    Background Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes. PMID:20964872

  12. Eliminating Unpredictable Variation through Iterated Learning

    ERIC Educational Resources Information Center

    Smith, Kenny; Wonnacott, Elizabeth

    2010-01-01

    Human languages may be shaped not only by the (individual psychological) processes of language acquisition, but also by population-level processes arising from repeated language learning and use. One prevalent feature of natural languages is that they avoid unpredictable variation. The current work explores whether linguistic predictability might…

  13. The Shapes of Physics

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2013-12-01

    I have used many ploys to start a course in introductory physics, but one of the more interesting ones was to spend 20 minutes describing some of the curves and shapes that we would encounter in our year together. The students saw parabolas, catenaries, hyperbolas, cycloids, circles, ellipses, and helices, and were shown examples, either live or on slides, of these shapes. The world of physics is three-dimensional, and students need to see what curves and trajectories span it. Once they see these shapes in nature, they look at the world around them in fresh ways.

  14. Shaping light with MOEMS

    NASA Astrophysics Data System (ADS)

    Noell, W.; Weber, S.; Masson, J.; Extermann, J.; Bonacina, L.; Bich, A.; Bitterli, R.; Herzig, H. P.; Kiselev, D.; Scharf, T.; Voelkel, R.; Weible, K. J.; Wolf, J.-P.; de Rooij, N. F.

    2011-03-01

    Shaping light with microtechnology components has been possible for many years. The Texas Instruments digital micromirror device (DMD) and all types of adaptive optics systems are very sophisticated tools, well established and widely used. Here we present, however, two very dedicated systems, where one is an extremely simple MEMS-based tunable diffuser, while the second device is complex micromirror array with new capabilities for femtosecond laser pulse shaping. Showing the two systems right next to each other demonstrates the vast options and versatility of MOEMS for shaping light in the space and time domain.

  15. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  16. Evaluating iterative reconstruction performance in computed tomography

    SciTech Connect

    Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan

    2014-12-15

    Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction

  17. Imprint of inflation on galaxy shape correlations

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora

    2015-10-01

    We show that intrinsic (not lensing-induced) correlations between galaxy shapes offer a new probe of primordial non-Gaussianity and inflationary physics which is complementary to galaxy number counts. Specifically, intrinsic alignment correlations are sensitive to an anisotropic squeezed limit bispectrum of the primordial perturbations. Such a feature arises in solid inflation, as well as more broadly in the presence of light higher spin fields during inflation (as pointed out recently by Arkani-Hamed and Maldacena). We present a derivation of the all-sky two-point correlations of intrinsic shapes and number counts in the presence of non-Gaussianity with general angular dependence, and show that a quadrupolar (spin-2) anisotropy leads to the analog in galaxy shapes of the well-known scale-dependent bias induced in number counts by isotropic (spin-0) non-Gaussianity. Moreover, in the presence of non-zero anisotropic non-Gaussianity, the quadrupole of galaxy shapes becomes sensitive to far superhorizon modes. These effects come about because long-wavelength modes induce a local anisotropy in the initial power spectrum, with which galaxies will correlate. We forecast that future imaging surveys could provide constraints on the amplitude of anisotropic non-Gaussianity that are comparable to those from the Cosmic Microwave Background (CMB). These are complementary as they probe different physical scales. The constraints, however, depend on the sensitivity of galaxy shapes to the initial conditions which we only roughly estimate from observed tidal alignments.

  18. Perception of Mirror Symmetry in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Falter, Christine M.; Bailey, Anthony J.

    2012-01-01

    Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…

  19. Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Dubovsky, S. V.

    2016-07-01

    Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.

  20. Iterative and variational homogenization methods for filled elastomers

    NASA Astrophysics Data System (ADS)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  1. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections

    NASA Astrophysics Data System (ADS)

    Thorman, A.; Michael, C.; De Bock, M.; Howard, J.

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  2. Reversible Shape Memory

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Li, Qiaoxi; Turner, Sara; Brosnan, Sarah; Tippets, Cary; Carrillo, Jan-Michael; Nykypnachuk, Dmytro; Gang, Oleg; Dobrynin, Andrey; Lopez, Rene; Ashby, Valerie; Sheiko, Sergei

    2014-03-01

    Reversible shape memory has been achieved on various shapes, e.g. hairpin, origami, coil, robotic gripper and flow rate control device, allowing for multiple switching between encoded shapes without applying any external force. Also, the reversible photonic structure molded in dielectric elastomers has been designed. Maximum reversibility can be achieved by tuning the crosslinking density and the degree of crystallinity of semi-crystalline elastomers. Different crystallization protocols including isothermal and cooling crystallization have been applied to develop a universal picture integrating different shape memory (SM) behaviors: conventional one-way SM, two-way reversible SM, and one-way reversible SM. Acknowledge financial support from the NSF DMR-1122483, DMR- 1004576, and DMR-1206957.

  3. Liver recognition based on statistical shape model in CT images

    NASA Astrophysics Data System (ADS)

    Xiang, Dehui; Jiang, Xueqing; Shi, Fei; Zhu, Weifang; Chen, Xinjian

    2016-03-01

    In this paper, an automatic method is proposed to recognize the liver on clinical 3D CT images. The proposed method effectively use statistical shape model of the liver. Our approach consist of three main parts: (1) model training, in which shape variability is detected using principal component analysis from the manual annotation; (2) model localization, in which a fast Euclidean distance transformation based method is able to localize the liver in CT images; (3) liver recognition, the initial mesh is locally and iteratively adapted to the liver boundary, which is constrained with the trained shape model. We validate our algorithm on a dataset which consists of 20 3D CT images obtained from different patients. The average ARVD was 8.99%, the average ASSD was 2.69mm, the average RMSD was 4.92mm, the average MSD was 28.841mm, and the average MSD was 13.31%.

  4. C1 Hermite shape preserving polynomial splines in R3

    NASA Astrophysics Data System (ADS)

    Gabrielides, Nikolaos C.

    2012-06-01

    The C 2 variable degree splines1-3 have been proven to be an efficient tool for solving the curve shape-preserving interpolation problem in two and three dimensions. Based on this representation, the current paper proposes a Hermite interpolation scheme, to construct C 1 shape-preserving splines of variable degree. After this, a slight modification of the method leads to a C 1 shape-preserving Hermite cubic spline. Both methods can easily be developed within a CAD system, since they compute directly (without iterations) the B-spline control polygon. They have been implemented and tested within the DNV Software CAD/CAE system GeniE. [Figure not available: see fulltext.

  5. Shape memory polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Feina

    Shape memory polymers are smart materials which can remember their original shapes. However, the low recovery stress and low mechanical strength limit the commercial applications of shape memory polymers. In this study, nanoclays were introduced to shape memory polyurethanes (SMPU) to augment these properties by enhance the network of SMPU. Several factors which influence the shape recovery stress were evaluated, including the nature of polymer chain by using different monomers, type of clay particles, extent of filler dispersion, clay content and deformation conditions. It was found that only reactive clay particles were well dispersed into polyurethane matrix by the tethering between --CH2CH 2OH functional groups in clay surfactants and polyurethane chains. Two different shape memory polyurethanes (Systems I & II) prepared by bulk polymerization were compared. The shape memory effect of System I was triggered by melting of the soft segment crystals, while that of System II was by glass transition of the soft segments. It was seen that the reactive clay particles dispersed well in both polyurethane matrices and augmented the recovery stress, e.g., 20% increase with 1 wt % nanoclay in System I and 40% increase with 5 wt % nanoclay in System II were observed. In System I, clay particles interfered with soft segment crystallization, and promoted phase mixing between the hard and soft segments, thus affecting the fixity and recovery ratio. Nevertheless, the soft segment crystallinity was still enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. The higher loading of clay particles accelerated the stress relaxation, resulting in reduction of recovery stress. In System II, no significant effect of clay particles in phase separation was observed, so there was no influence of clay on shape fixity and recovery ratio. The recovery stress increased with reactive nanoclay content. It was also found that the recovery

  6. Comparison of spread spectrum and pulse signal excitation for split spectrum techniques composite imaging

    NASA Astrophysics Data System (ADS)

    Svilainis, L.; Kitov, S.; Rodríguez, A.; Vergara, L.; Dumbrava, V.; Chaziachmetovas, A.

    2012-12-01

    Ultrasonic imaging of composites was investigated. Glass and carbon fiber reinforced plastic produced by resin transfer molding and prepreg forming were analyzed. In some of the samples air bubbles were trapped during RTM (resin transfer molding) process and interlayer gaps were present in prepreg technology samples. One of the most expected techniques to apply in such case is the Split Spectrum processing. On the other hand such signals require specific processing to reliably reconstruct the temporal position of the defect reflection. Correlation processing can be used for signal compression or Wiener filtering can be applied for spectral content equalisation. Pulse signals are simple to generate, but lack the possibility to alter the signal's spectrum shape. Spread spectrum signals offer a powerful tool for signal energy over frequency band increase and resolution enhancement. CW (continuous wave) burst has high energy but lacks the bandwidth needed for SSP (spread spectrum processing). The aim of the investigation was to compare the performance of the above signals in case of composite imaging, when various Split Spectrum Processing techniques are used with preceding Wiener processing for spectral content compensation. Resulting composite signals and images obtained are presented. Structural noise removal performance was evaluated as Receiver Operating Characteristics (ROC).

  7. Economics of spectrum allocation

    NASA Astrophysics Data System (ADS)

    Melody, W. H.

    The effective and efficient allocation and use of the spectrum can be ensured only by a set of sharing rules that will reflect the interests, values, and power of all affected parties. What is now happening is that the new interests and different values of the developing countries are pressing to change the international sharing rules established by a small group of high-technology nations. It is noted that the latter have established a massive telecommunications infrastructure on the basis of inherited sharing rules that reflect only their interests and a much simplified scarcity problem. Once long-term goals and underlying principles of allocation are established, communication technologies and markets can be directed, through a series of adjustment policies, to achieve them. A crucial first step in the creation of an international information environment in which 'free' flows will be balanced flows is the establishment of a balanced and equitable set of sharing rules for the radio spectrum.

  8. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking. PMID:18267522

  9. Sensors across the Spectrum

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-06-01

    A resurgence of interest in spectroscopic sensors has been fueled by increases in performance made possible by technological advancements and applications in medicine, environmental monitoring, and national security. Often this research is technology driven, without enough consideration of the spectroscopic signatures available to be probed. We will compare several current spectroscopic sensors across the electromagnetic spectrum, with an eye towards the fundamental spectroscopic considerations important at each wavelength.

  10. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  11. Universality of fragment shapes.

    PubMed

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-01-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300

  12. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  13. Universality of fragment shapes

    PubMed Central

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-01-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300

  14. Universality of fragment shapes

    NASA Astrophysics Data System (ADS)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  15. U.S. Plans and Strategy for ITER Blanket Testing

    SciTech Connect

    Abdou, M.; Sze, D.; Wong, C.; Sawan, M.; Ying, A.; Morley, N.B.; Malang, S

    2005-04-15

    Testing blanket concepts in the integrated fusion environment is one of the principal objectives of ITER. Blanket test modules will be inserted in ITER from Day 1 of its operation and will provide the first experimental data on the feasibility of the D-T cycle for fusion. With the US rejoining ITER, the US community has decided to have strong participation in the ITER Test Blanket Module (TBM) Program. A US strategy for ITER-TBM has evolved that emphasizes international collaboration. A study was initiated to select the two blanket options for the US ITER-TBM in light of new R and D results from the US and world programs over the past decade. The study is led by the Plasma Chamber community in partnership with the Materials, PFC, Safety, and physics communities. The study focuses on assessment of the critical feasibility issues for candidate blanket concepts and it is strongly coupled to R and D of modeling and experiments. Examples of issues are MHD insulators, SiC insert viability and compatibility with PbLi, tritium permeation, MHD effects on heat transfer, solid breeder 'temperature window' and thermomechanics, and chemistry control of molten salts. A dual coolant liquid breeder and a helium-cooled solid breeder blanket concept have been selected for the US ITER-TBM.

  16. Variation of focal switch with spectrum of a broadband laser

    NASA Astrophysics Data System (ADS)

    Zhang, Biyu; Peng, Runwu; Xie, Haiqing; Zhang, Wei

    2016-05-01

    Effects of the spectrum on focal switch of a broadband laser in a dispersion dual-focus system are presented in this paper. The numerical results show that the two maximum intensities of the broadband laser on the z-axis vary when the central frequency of the broadband laser shifts and the spectrum shape changes, and the variations affect the generation of the focal switch. It is also found that difference of the two maximum intensities tends to increase when the absolute value of central wavelength increases. According to the results in this paper, the generation of the focal switch can be controlled by choosing the shift of the central frequency, the bandwidth, the distance between the two lenses, and the spectrum shape of the broadband laser.

  17. The influence of tortuosity on the spectrum of radiation from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.

  18. The REFLEX II galaxy cluster survey: power spectrum analysis

    NASA Astrophysics Data System (ADS)

    Balaguera-Antolínez, A.; Sánchez, Ariel G.; Böhringer, H.; Collins, C.; Guzzo, L.; Phleps, S.

    2011-05-01

    We present the power spectrum of galaxy clusters measured from the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. This new sample extends the flux limit of the original REFLEX catalogue to 1.8 × 10-12 erg s-1 cm-2, yielding a total of 911 clusters with ≥94 per cent completeness in redshift follow-up. The analysis of the data is improved by creating a set of 100 REFLEX II-catalogue-like mock galaxy cluster catalogues built from a suite of large-volume Λ cold dark matter (ΛCDM) N-body simulations (L-BASICC II). The measured power spectrum is in agreement with the predictions from a ΛCDM cosmological model. The measurements show the expected increase in the amplitude of the power spectrum with increasing X-ray luminosity. On large scales, we show that the shape of the measured power spectrum is compatible with a scale-independent bias and provide a model for the amplitude that allows us to connect our measurements with a cosmological model. By implementing a luminosity-dependent power-spectrum estimator, we observe that the power spectrum measured from the REFLEX II sample is weakly affected by flux-selection effects. The shape of the measured power spectrum is compatible with a featureless power spectrum on scales k > 0.01 h Mpc-1 and hence no statistically significant signal of baryonic acoustic oscillations can be detected. We show that the measured REFLEX II power spectrum displays signatures of non-linear evolution.

  19. Constructing Linkage Disequilibrium Map with Iterative Approach

    NASA Astrophysics Data System (ADS)

    Ao, S. I.

    2008-05-01

    With recent advance of the genotyping single nucleotide polymorphisms (SNPs) in mass scale of high density in a candidate region of the human genome, the linkage disequilibrium analysis can offer a much higher resolution of the biological samples than the traditional linkage maps. We have formulated this LD mapping problem as a constrained unidimensional scaling problem. Our method, which is directly based on the measurement of LD among SNPs, is non-parametric. Therefore it is different from LD maps derived from the given Malecot model. We have formulated with the quadratic programming approach for solving this constrained unidimensional scaling problem. Different from the classical metric unidimensional scaling problem, the constrained problem is not an NP-hard combinatorial problem. The optimal solution is determined by using the quadratic programming solver. Nevertheless, because of the large requirement for memory during the running time that may cause the out of memory problems, and the high computational time of the quadratic programming algorithm, the iterative algorithm has been developed for solving this LD constrained unidimensional scaling problem.

  20. Resent Status of ITER Equatorial Launcher Development

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Kasugai, A.; Oda, Y.; Kobayashi, N.; Sakamoto, K.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. The high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.