Science.gov

Sample records for iterative spectrum shaping

  1. ITER Shape Controller and Transport Simulations

    SciTech Connect

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  2. An iterative multidisciplinary analysis for rotor blade shape determination

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Stefko, George L.

    1993-01-01

    A CFD solver called ADPAC-APES is coupled with a NASTRAN structural analysis and a MARC thermal/heat transfer analysis to determine rotor blade shape. Nonlinear blade displacements due to centrifugal loads, aerodynamic pressures, and nonuniform temperature distribution are determined simultaneously. The effect of blade displacements on aerodynamic pressures and temperatures is then analyzed. These calculations are iterated till a steady state is reached across all the disciplines. This iterative procedure is applied to a ducted fan rotor blade and the manufactured shape is determined from a given operating shape. Effect of a part-span shroud on blade deflections is also analyzed.

  3. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  4. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  5. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    been present at the beginning, ITER would be in far better shape. As is, it can provide good lessons to avoid the same problems in the future. The ITER Council is now applying those lessons. A very experienced new Director General has just been appointed. He has instituted a number of drastic changes, but still within the governance of the JIA. Will there changes be effective? Only time will tell, but I am optimistic.

  6. Shaping the spectrum - From autoinflammation to autoimmunity.

    PubMed

    Hedrich, Christian M

    2016-04-01

    Historically, autoimmune-inflammatory disorders were subdivided into autoinflammatory vs. autoimmune diseases. About a decade ago, an immunological continuum was proposed, placing "classical" autoinflammatory disorders, characterized by systemic inflammation in the absence of high-titer autoantibodies or autoreactive T lymphocytes, at the one end, and autoimmune disorders at the other end. We provide an overview of recent developments and observations, filling in some of the gaps and showing strong interconnections between innate and adaptive immune mechanisms, indicating that disorders from both ends of the immunological spectrum indeed share key pathomechanisms. We focus on three exemplary disorders: i) systemic juvenile idiopathic arthritis representing "classical" autoinflammatory disorders; ii) psoriasis, a mixed pattern disease; and iii) systemic lupus erythematosus, a prototypical autoimmune disease. We summarize scientific observations suggesting that, depending on disease stages and/or duration, individualized treatment targeting innate or adaptive immune mechanisms in disorders from either end of the immunological spectrum may control disease activity. PMID:26948930

  7. Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    PubMed Central

    Chang, Joshua C.; Chou, Tom

    2013-01-01

    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts. PMID:24678141

  8. RMP ELM Suppression in DIII-D Plasmas with ITER Similar Shapes and Collisionalities

    SciTech Connect

    Evans, T.E.; Fenstermacher, M. E.; Moyer, R.A.; Osborne, T. H.; Watkins, J. G.; Gohil, P.; Joseph, I.; Schaffer, M. J.; Baylor, Larry R; Becoulet, M.; Boedo, J.A.; Burrell, K. H.; DeGrassie, J. S.; Finken, K. H.; Jernigan, Thomas C; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Lonnroth, J.; Nardon, E.; Parail, V.; Unterberg, B.; West, W.P.

    2008-01-01

    Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, = 0.26, plasmas and in ITER similar shaped (ISS) plasmas, = 0.53, with ITER relevant collisionalities ve 0.2. Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.

  9. RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Fenstermacher, M. E.; Moyer, R. A.; Osborne, T. H.; Watkins, J. G.; Gohil, P.; Joseph, I.; Schaffer, M. J.; Baylor, L. R.; Bécoulet, M.; Boedo, J. A.; Burrell, K. H.; de Grassie, J. S.; Finken, K. H.; Jernigan, T.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Lonnroth, J.; Nardon, E.; Parail, V.; Schmitz, O.; Unterberg, B.; West, W. P.

    2008-02-01

    Large Type-I edge localized modes (ELMs) are completely eliminated with small n = 3 resonant magnetic perturbations (RMP) in low average triangularity, \\bar {\\delta }=0.26 , plasmas and in ITER similar shaped (ISS) plasmas, \\bar {\\delta }=0.53 , with ITER relevant collisionalities v_e^\\ast \\le 0.2 . Significant differences in the RMP requirements and in the properties of the ELM suppressed plasmas are found when comparing the two triangularities. In ISS plasmas, the current required to suppress ELMs is approximately 25% higher than in low average triangularity plasmas. It is also found that the width of the resonant q95 window required for ELM suppression is smaller in ISS plasmas than in low average triangularity plasmas. An analysis of the positions and widths of resonant magnetic islands across the pedestal region, in the absence of resonant field screening or a self-consistent plasma response, indicates that differences in the shape of the q profile may explain the need for higher RMP coil currents during ELM suppression in ISS plasmas. Changes in the pedestal profiles are compared for each plasma shape as well as with changes in the injected neutral beam power and the RMP amplitude. Implications of these results are discussed in terms of requirements for optimal ELM control coil designs and for establishing the physics basis needed in order to scale this approach to future burning plasma devices such as ITER.

  10. Spectrum fatigue testing of T-shaped tension clips

    NASA Astrophysics Data System (ADS)

    Palmberg, Bjoern; Wallstenius, Bengt

    1992-12-01

    An investigation of strain distributions during static loading and crack propagation and fatigue lives under spectrum loading of T-shaped tension clips was carried out. Three slightly different, with respect to geometry, T shaped tension clips made of aluminum alloy 7010-T73651 were studied. The type 1 and 4 test specimens were different only with respect to the web thickness of the clamping end. The type 1 and 2 test specimens were different with repect to milled flat circular countersink around the holes in the type 2 specimens and with respect to the radius between the web and foot. The spectrum fatigue loading consisted of a load sequence representative for the wing root, lower side, of a fighter aircraft. Tests were made at two different load levels for each specimen type. The strain measurements show that the countersink in the type 2 specimens increases the stresses in the fatigue critical region. This is also manifested in the spectrum fatigue life results, where type 2 specimens show the shortest fatigue lives. The strain measurements show that the torque used for the bolts in joining two test specimens or one test specimen and a dummy has a rather large impact on the strain in the fatigue region. The strains decrease with increasing torque. The spectrum fatigue loading resulted in approximately an equal number of flights to obtain a 10.0 mm crack for specimens of type 1 and 4. This suggests that the type 1 configuration is superior since the web thickness is smaller for this type as compared to the type 4 specimens. In other words, the type 4 specimens have an unnecessary oversize of the clamping end web thickness.

  11. Iterative most-likely point registration (IMLP): a robust algorithm for computing optimal shape alignment.

    PubMed

    Billings, Seth D; Boctor, Emad M; Taylor, Russell H

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP's probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  12. Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment

    PubMed Central

    Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.

    2015-01-01

    We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700

  13. Iterative deblending using shaping regularization with a combined PNMO-MF-FK coherency filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang; Jin, Zhaoyu; Gan, Shuwei; Yang, Wencheng; Xiang, Kui; Bai, Min; Huang, Weilin

    2015-11-01

    Simultaneous shooting achieves a much faster acquisition but poses a challenging problem for subsequent processing because of the interference from the neighbor crews. Separation of different sources, also called deblending, becomes important for the overall success of the new acquisition technology. In this paper, we propose a novel deblending approach following the shaping regularization framework. The shaping operator is chosen as an effective filter, combining pseudo normal-moveout, median filtering, and frequency wavenumber filtering (PNMO-MF-FK). We combine the median-filter based deblending approaches and the FK filter based deblending approach within the proposed framework. Instead of simply using the median filter to remove blending noise, we apply a pseudo NMO (PNMO) to prepare a relatively flatter profile in advance, which can make the median filter more effective. It is the first time that the PNMO, median filtering, and FK filtering are combined to form a powerful coherency filter in order to improve the performance of iterative deblending. The proposed deblending approach with the PNMO-MF-FK filter can obtain successful performance within small number of iterations. Compared with the alternative MF-FK filter and FK filter, the PNMO-MF-FK filter can obtain obviously better deblending results. We use both simulated synthetic and field data examples to demonstrate the performance of the proposed approach.

  14. Hybrid iterative wavefront shaping for high-speed focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Hemphill, Ashton S.; Wang, Lihong V.

    2016-03-01

    A major limiting factor of optical imaging in biological applications is the diffusion of light by tissue, preventing focusing at depths greater than ~1 mm in the body. To overcome this issue, phase-based wavefront shaping alters the phase of sections of the incident wavefront to counteract aberrations in phase caused by scattering. This enables focusing through scattering media beyond the optical diffusion limit and increases signal compared to amplitude-based compensation. However, in previous studies, speed of optimization has typically been limited by the use of a liquid crystal spatial light modulator (SLM) for measurement and display. SLMs usually have refresh rates of less than 100 Hz and require much longer than the speckle correlation time of tissue in vivo, usually on the order of milliseconds, to determine the optimal wavefront. Here, we present a phase-based iterative wavefront shaping method based on an onaxis digital micromirror device (DMD) in conjunction with an electro-optic modulator (EOM) for measurement and a fast SLM for display. By combining phase modulation from an EOM with the modal selection of the DMD, we take advantage of DMDs higher refresh rate, approximately 23 kHz, for iterative phase measurement. The slower SLM requires one update for display following the rapid determination of the optimal wavefront via the DMD, allowing for high-speed wavefront shaping. Using this system, we are able to focus through scattering media using 64 modes in under 8 milliseconds, on the order of the speckle correlation time for tissue in vivo.

  15. Optical image encryption based on cascaded iterative angular spectrum algorithm and its implementation with parallel hardware

    NASA Astrophysics Data System (ADS)

    Yu, Biin; Peng, Xiang; Tian, Jindong; Niu, Hanben

    2006-01-01

    A cascaded iterative angular spectrum approach (CIASA) based on the methodology of virtual optics is presented for optical security applications. The technique encodes the target image into two different phase only masks (POM) using a concept of free-space angular spectrum propagation. The two phase-masks are designed and located in any two arbitrary planes interrelated through the free space propagation domain in order to implement the optical encryption or authenticity verification. And both phase masks can serve as enciphered texts. Compared with previous methods, the proposed algorithm employs an improved searching strategy: modifying the phase-distributions of both masks synchronously as well as enlarging the searching space. And with such a scheme, we make use of a high performance floating-point Digital Signal Processor (DSP) to accomplish a design of multiple-locks and multiple-keys optical image encryption system. An evaluation of the system performance is made and it is shown that the algorithm results in much faster convergence and better image quality for the recovered image. And two masks and system parameters can be used to design keys for image encryption, therefore the decrypted image can be obtained only when all these keys are under authorization. This key-assignment strategy may reduce the risk of being intruded and show a high security level. These characters may introduce a high level security that makes the encrypted image more difficult to be decrypted by an unauthorized person.

  16. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    SciTech Connect

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, {delta}, which is most consistent with the data is with the normalized edge pressure, ({beta}{sub POL}{sup PED}){sup 0.4}. Fits of {delta} to a function of temperature, such as {rho}{sub POL}, are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes.

  17. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    SciTech Connect

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  18. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  19. Practical beta limit in ITER-shaped discharges in DIII-D and its increase by higher collisionality

    SciTech Connect

    La Haye, R.J.; Chu, M.S.; Callen, J.D.

    1996-10-01

    The maximum beta which can be sustained for a long pulse in ITER-shaped plasmas in DIII-D with q{sub 95} {approx_gt} 3, ELMs, and sawteeth is found to be limited by resistive tearing modes, particularly m/n = 3/2 and 2/1. At low collisionality comparable to that which will occur in ITER, the beta limit is a factor of two below the usually expected n = {infinity} ballooning and n = 1 kink ideal limits.

  20. Vector fuzzy control iterative algorithm for the design of sub-wavelength diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Hu, Jiasheng; Wu, Kenan

    2009-08-01

    The vector fuzzy control iterative algorithm (VFCIA) is proposed for the design of phase-only sub-wavelength diffractive optical elements (SWDOEs) for beam shaping. The vector diffraction model put forward by Mansuripur is applied to relate the field distributions between the SWDOE plane and the output plane. Fuzzy control theory is used to decide the constraint method for each iterative process of the algorithm. We have designed a SWDOE that transforms a circular flat-top beam to a square irradiance pattern. Computer design results show that the SWDOE designed by the VFCIA can produce better results than the vector iterative algorithm (VIA). And the finite difference time-domain method (FDTD), a rigorous electromagnetic analysis technique, is used to analyze the designed SWDOE for further confirming the validity of the proposed method.

  1. Shaping the Future for Children with Foetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Blackburn, Carolyn; Carpenter, Barry; Egerton, Jo

    2010-01-01

    This article describes work undertaken in connection with an ongoing research project funded by the Training and Development Agency for Schools. It illustrates the educational implications of foetal alcohol spectrum disorders (FASD) and its implications for the educational workforce in seeking to meet the needs of those children who are affected.

  2. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    SciTech Connect

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phase distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.

  3. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGESBeta

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  4. Infrared spectrum of nitric acid dihydrate: Influence of particle shape.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Stetzer, Olaf; Schurath, Ulrich

    2005-03-24

    In situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K. Much better agreement between measured and calculated extinction spectra was obtained by T-matrix calculations assuming oblate particles with aspect ratios greater than five. This indicates that strongly aspherical alpha-NAD crystals are obtained when supercooled nitric acid solution droplets freeze and grow slowly, a process which has been discussed as a potential pathway to the formation of crystalline polar stratospheric cloud (PSC) particles. PMID:16833561

  5. Effect of specimen shape on the elongation of 316LN jacket used in the ITER toroidal field coil

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Kawano, K.; Saito, T.; Iguchi, M.; Nakajima, H.; Teshima, O.; Matsuda, H.

    2012-06-01

    Twenty-five percent of the total toroidal field (TF) coil conductors at the ITER are supplied by the Japan Atomic Energy Agency (JAEA). The jacket section of a TF conductor is made of modified 316LN. The JAEA tested three types of tensile specimens (Japanese-Industrial-Standards-type and ASTM-type) cut from the jacket at 4.2 K. The ASTM-type specimen had a longer and wider reduced section than did the JIS-type specimen. The results of the test showed that the EL of the as-received (AR) jacket was independent of the specimen shape. However, after cold working and aging, the EL of the specimens deteriorated because of sensitization, and the EL distribution in these specimens was larger than that in the case of the AR specimens. It could be inferred that the shape of a test specimen having low ductility is the key determinant of the specimen's susceptibility to fracture.

  6. Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes

    SciTech Connect

    Evans, T E; Fenstermacher, M E; Jakubowski, M; Moyer, R A; Osborne, T H; Schaffer, M J; Schmitz, O; Watkins, J G; Zeng, L; Baylor, L R; Boedo, J A; Burrell, K H; deGrassie, J S; Gohil, P; Joseph, I; Lasnier, C J; Leonard, A W; Mordijck, S; Petty, C C; Pinsker, R I; Rhodes, T L; Rost, J C; Snyder, P B; Unterberg, E; West, W P

    2008-10-13

    Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmas by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.

  7. Investigating the shape bias in typically developing children and children with autism spectrum disorders

    PubMed Central

    Potrzeba, Emily R.; Fein, Deborah; Naigles, Letitia

    2015-01-01

    Young typically developing (TD) children have been observed to utilize word learning strategies such as the noun bias and shape bias; these improve their efficiency in acquiring and categorizing novel terms. Children using the shape bias extend object labels to new objects of the same shape; thus, the shape bias prompts the categorization of object words based on the global characteristic of shape over local, discrete details. Individuals with autism spectrum disorders (ASDs) frequently attend to minor details of objects rather than their global structure. Therefore, children with ASD may not use shape bias to acquire new words. Previous research with children with ASD has provided evidence that they parallel TD children in showing a noun bias, but not a shape bias (Tek et al., 2008). However, this sample was small and individual and item differences were not investigated in depth. In an extension of Tek et al. (2008) with twice the sample size and a wider developmental timespan, we tested 32 children with ASD and 35 TD children in a longitudinal study across 20 months using the intermodal preferential looking paradigm. Children saw five triads of novel objects (target, shape-match, color-match) in both NoName and Name trials; those who looked longer at the shape-match during the Name trials than the NoName trials demonstrated a shape bias. The TD group showed a significant shape bias at all visits, beginning at 20 months of age while the language-matched ASD group did not show a significant shape bias at any visit. Within the ASD group, though, some children did show a shape bias; these children had larger vocabularies concurrently and longitudinally. Degree of shape bias elicitation varied by item, but did not seem related to perceptual complexity. We conclude that shape does not appear to be an organizing factor for word learning by children with ASD. PMID:25954219

  8. Basal Ganglia Shapes Predict Social, Communication, and Motor Dysfunctions in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Qiu, Anqi; Adler, Marcy; Crocetti, Deana; Miller, Michael I.; Mostofsky, Stewart H.

    2010-01-01

    Objective: Basal ganglia abnormalities have been suggested as contributing to motor, social, and communicative impairments in autism spectrum disorder (ASD). Volumetric analyses offer limited ability to detect localized differences in basal ganglia structure. Our objective was to investigate basal ganglia shape abnormalities and their association…

  9. Palm-shaped spectrum generation for dual-band millimeter wave and baseband signals over fiber

    NASA Astrophysics Data System (ADS)

    Lin, R.; Feng, Z.; Tang, M.; Wang, R.; Fu, S.; Shum, P.; Liu, D.; Chen, J.

    2016-05-01

    In order to offer abundant available bandwidth for radio access networks satisfying future 5G requirements on capacity, this paper proposes a simple and cost-effective palm-shaped spectrum generation scheme that can be used for high capacity radio over fiber (RoF) system. The proposed scheme can simultaneously generate an optical carrier used for upstream and two bands of millimeter wave (MMW) that are capable of carrying different downstream data. The experiment results show that the proposed palm-shaped spectrum generation scheme outperforms optical frequency comb (OFC) based multi-band MMW generation in terms of upstream transmission performance. Furthermore, simulation is carried out with different dual-band MMW configurations to verify the feasibility of using the proposed spectrum generation scheme in the RoF system.

  10. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses.

    PubMed

    Shera, Christopher A

    2015-12-01

    Multiple internal reflection of cochlear traveling waves has been argued to provide a plausible explanation for the waxing and waning and other temporal structures often exhibited by the envelopes of basilar-membrane (BM) and auditory-nerve responses to acoustic clicks. However, a recent theoretical analysis of a BM click response measured in chinchilla concludes that the waveform cannot have arisen via any equal, repetitive process, such as iterated intracochlear reflection [Wit and Bell (2015), J. Acoust. Soc. Am. 138, 94-96]. Reanalysis of the waveform contradicts this conclusion. The measured BM click response is used to derive the frequency-domain transfer function characterizing every iteration of the loop. The selfsame transfer function that yields waxing and waning of the BM click response also captures the spectral features of ear-canal stimulus-frequency otoacoustic emissions measured in the same animal, consistent with the predictions of multiple internal reflection. Small shifts in transfer-function phase simulate results at different measurement locations and reproduce the heterogeneity of BM click response envelopes observed experimentally. PMID:26723327

  11. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2016-08-01

    Planetary gearbox vibration signals under nonstationary conditions are characterized by time-varying nature and complex multi-components, making it very difficult to extract features for fault diagnosis. Order spectrum analysis is one of the effective approaches for nonstationary signal analysis of rotating machinery. The main idea of order analysis is to map the time-varying frequency components into constant ones. Inspired by this idea, we propose a new order spectrum analysis method to exploit the unique property of iterative generalized demodulation in converting arbitrary instantaneous frequency trajectories of multi-component signals into constant frequency lines on the time-frequency plane. This new method is completely algorithm-based and tachometer/encoder-free, thus easy to implement. It does not involve equi-angular resampling commonly required by most order tracking methods and is hence free from the decimation and/or interpolation error. The proposed order analysis method can eliminate the time-variation effect of frequency and thus can effectively reveal the harmonic order constituents of nonstationary multi-component signals. However, the planetary gearbox vibration signals also lead to complex sideband orders. As such, we further propose to analyze the order spectrum of amplitude envelope. This will eliminate the complex sideband orders in the order spectrum of original signals, leading to a substantially simplified and more reliable gear characteristic frequency identification process. Nevertheless, the gear and/or planet carrier rotating frequency orders, which are irrelevant to gear fault, may still exist. To avoid possible misleading results due to such frequency orders, we also propose to analyze the order spectrum of instantaneous frequency. Theoretically, the peaks present in frequency order spectrum directly correspond to the gear characteristic frequency orders, which can be used to extract gear fault signature more explicitly. The proposed

  12. On the Phase-Averaged Spectrum of Pulsars and Shape of Their Cutoffs

    NASA Technical Reports Server (NTRS)

    Celik, O.; Thomas, T. J.

    2010-01-01

    All gamma ray pulsars exhibit an exponential cutoff in their spectra and for bright pulsars the statistics are sufficiently high to study the detailed shape of the cutoff. The phase averaged spectra of some pulsars exhibit a sub-exponential cutoff, not predicted by any single physical mechanism. Further studies clarified that (his gentler average cutoff is a consequence of having significant variations of the cutoff energy in the phase-resolved spectrum. In conclusion, the phase-averaged spectrum of a pulsar is not a physical quantity to test high-energy emission models.

  13. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Swain, D.; Ongena, J.; Vervier, M.

    2015-12-01

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode Vmax amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of Vmax of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k// computed by means of the coupling code ANTITER II remains small for the considered cases.

  14. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    SciTech Connect

    Messiaen, A. Ongena, J.; Vervier, M.; Swain, D.

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.

  15. Quantitative Estimation of the Amount of Fibrosis in the Rat Liver Using Fractal Dimension of the Shape of Power Spectrum

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun

    1995-05-01

    This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.

  16. Three-dimensional surface deformation-based shape analysis of hippocampus and caudate nucleus in children with fetal alcohol spectrum disorders.

    PubMed

    Joseph, Jesuchristopher; Warton, Christopher; Jacobson, Sandra W; Jacobson, Joseph L; Molteno, Chris D; Eicher, Anton; Marais, Patrick; Phillips, Owen R; Narr, Katherine L; Meintjes, Ernesta M

    2014-02-01

    Surface deformation-based analysis was used to assess local shape variations in the hippocampi and caudate nuclei of children with fetal alcohol spectrum disorders. High-resolution structural magnetic resonance imaging images were acquired for 31 children (19 controls and 12 children diagnosed with fetal alcohol syndrome/partial FAS). Hippocampi and caudate nuclei were manually segmented, and surface meshes were reconstructed. An iterative closest point algorithm was used to register the template of one control subject to all other shapes in order to capture the true geometry of the shape with a fixed number of landmark points. A point distribution model was used to quantify the shape variations in terms of a change in co-ordinate positions. Using the localized Hotelling T(2) method, regions of significant shape variations between the control and exposed subjects were identified and mapped onto the mean shapes. Binary masks of hippocampi and caudate nuclei were generated from the segmented volumes of each brain. These were used to compute the volumes and for further statistical analysis. The Mann-Whitney test was performed to predict volume differences between the groups. Although the exposed and control subjects did not differ significantly in their volumes, the shape analysis showed the hippocampus to be more deformed at the head and tail regions in the alcohol-exposed children. Between-group differences in caudate nucleus morphology were dispersed across the tail and head regions. Correlation analysis showed associations between the degree of compression and the level of alcohol exposure. These findings demonstrate that shape analysis using three-dimensional surface measures is sensitive to fetal alcohol exposure and provides additional information than volumetric measures alone. PMID:23124690

  17. Iterated combination-based paired permutation tests to determine shape effects of chemotherapy in patients with esophageal cancer.

    PubMed

    Alfieri, Rita; Bonnini, Stefano; Brombin, Chiara; Castoro, Carlo; Salmaso, Luigi

    2016-04-01

    The nonparametric combination of dependent permutation tests method is a useful general tool when a testing problem can be broken down into a set of different k > 1 partial tests. These partial tests, after adjustment of p-values to control for multiplicity, can be marginally analyzed, but jointly considered they can provide information on an overall hypothesis, which might represent the true goal of the testing problem. On the one hand, independence among the partial tests is usually an unrealistic assumption; on the other, even when the underlying dependence relations are known quite often they are difficult to cope with properly. Therefore this combination must be achieved nonparametrically, by implicitly taking into account the dependence structure of tests without explicitly describing it. An important property of the tests based on nonparametric combination methodology, when the number of response variables is high compared to the sample sizes, consists in the finite sample consistency. A practical problem involves choosing the most suitable combining function for each specific testing problem given that the final result can be affected by this crucial choice. The purpose of this article is to present an nonparametric combination solution based on the iterated combination of partial tests, evaluate its power behavior using a Monte Carlo simulation study and apply it to a real medical problem, namely the evaluation of the effects of chemotherapy on the shape of esophageal tumors. R code has been implemented to carry out the analyses. PMID:23070597

  18. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    SciTech Connect

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy.

  19. Joint inversion of T1-T2 spectrum combining the iterative truncated singular value decomposition and the parallel particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Wang, Hua; Fan, Yiren; Cao, Yingchang; Chen, Hua; Huang, Rui

    2016-01-01

    With more information than the conventional one dimensional (1D) longitudinal relaxation time (T1) and transversal relaxation time (T2) spectrums, a two dimensional (2D) T1-T2 spectrum in a low field nuclear magnetic resonance (NMR) is developed to discriminate the relaxation components of fluids such as water, oil and gas in porous rock. However, the accuracy and efficiency of the T1-T2 spectrum are limited by the existing inversion algorithms and data acquisition schemes. We introduce a joint method to inverse the T1-T2 spectrum, which combines iterative truncated singular value decomposition (TSVD) and a parallel particle swarm optimization (PSO) algorithm to get fast computational speed and stable solutions. We reorganize the first kind Fredholm integral equation of two kernels to a nonlinear optimization problem with non-negative constraints, and then solve the ill-conditioned problem by the iterative TSVD. Truncating positions of the two diagonal matrices are obtained by the Akaike information criterion (AIC). With the initial values obtained by TSVD, we use a PSO with parallel structure to get the global optimal solutions with a high computational speed. We use the synthetic data with different signal to noise ratio (SNR) to test the performance of the proposed method. The result shows that the new inversion algorithm can achieve favorable solutions for signals with SNR larger than 10, and the inversion precision increases with the decrease of the components of the porous rock.

  20. The mutation spectrum in genomic late replication domains shapes mammalian GC content.

    PubMed

    Kenigsberg, Ephraim; Yehuda, Yishai; Marjavaara, Lisette; Keszthelyi, Andrea; Chabes, Andrei; Tanay, Amos; Simon, Itamar

    2016-05-19

    Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations. PMID:27085808

  1. The mutation spectrum in genomic late replication domains shapes mammalian GC content

    PubMed Central

    Kenigsberg, Ephraim; Yehuda, Yishai; Marjavaara, Lisette; Keszthelyi, Andrea; Chabes, Andrei; Tanay, Amos; Simon, Itamar

    2016-01-01

    Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations. PMID:27085808

  2. The shape of the extragalactic cosmic ray spectrum from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2016-08-01

    We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E/Z < 1 EeV . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.

  3. Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.

    PubMed

    Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J

    2016-06-01

    Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. PMID:26968926

  4. Shaped Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Drosophila Embryo

    PubMed Central

    Holloway, David

    2015-01-01

    In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns. PMID:25945341

  5. The 21cm power spectrum and the shapes of non-Gaussianity

    SciTech Connect

    Chongchitnan, Sirichai

    2013-03-01

    We consider how measurements of the 21cm radiation from the epoch of reionization (z = 8−12) can constrain the amplitudes of various 'shapes' of primordial non-Gaussianity. The limits on these shapes, each parametrized by the non-linear parameter f{sub NL}, can reveal whether the physics of inflation is more complex than the standard single-field, slow-roll scenario. In this work, we quantify the effects of the well-known local, equilateral, orthogonal and folded types of non-Gaussianities on the 21cm power spectrum, which is expected to be measured by upcoming radio arrays such as the Square-Kilometre Array (SKA). We also assess the prospects of the SKA in constraining these non-Gaussianities, and found constraints that are comparable with those from cosmic-microwave-background experiments such as Planck. We show that the limits on various f{sub NL} can be tightened to O(1) using a radio array with a futuristic but realistic set of specifications.

  6. SU-F-18C-02: Evaluations of the Noise Power Spectrum of a CT Iterative Reconstruction Technique for Radiation Therapy

    SciTech Connect

    Dolly, S; Chen, H; Anastasio, M; Mutic, S; Li, H

    2014-06-15

    Purpose: To quantitatively assess the noise power spectrum (NPS) of the new, commercially released CT iterative reconstruction technique, iDose{sup 4} from Philips, to compare it with filtered back-projection techniques (FBP), and to provide clinical practice suggestions for radiation therapy. Methods: A uniform phantom was CT imaged with 120kVp tube potential over a range of mAs (250-3333). The image sets were reconstructed using two reconstruction algorithms (FBP and iDose{sup 4} with noise reduction levels 1, 3, and 6) and three reconstruction filters (standard B, smooth A, and sharp C), after which NPS variations were analyzed and compared on region of interest (ROI) sizes (16×16 to 128×128 pixels), ROI radii (0–65 mm), reconstruction algorithms, reconstruction filters, and mAs. Results: The NPS magnitude and shape depended considerably on ROI size and location for both reconstruction algorithms. Regional noise variance became more stationary as ROI size decreased, minimizing NPS artifacts. The optimal 32×32-pixel ROI size balanced the trade-off between stationary noise and adequate sampling. NPS artifacts were greatest at the center of reconstruction space and decreased with increasing ROI distance from the center. The optimal ROI position was located near the phantom's radial midpoint (∼40mm). For sharper filters, the NPS magnitude and the maximum magnitude frequency increased. Higher dose scans yielded lower NPS magnitudes for both reconstruction algorithms and all filters. Compared to FBP, the iDose{sup 4} algorithm reduced the NPS magnitude while preferentially reducing noise at mid-range spatial frequencies, altering noise texture. This reduction was more significant with increasing iDose{sup 4} noise reduction level. Conclusion: Compared to pixel standard deviation, NPS has greater clinical potential for task-based image quality assessment, describing both the magnitude and spatial frequency characteristics of image noise. While iDose{sup 4

  7. Electromagnetic Field Enhancement and Spectrum Shaping through Plasmonically Integrated Optical Vortices

    PubMed Central

    Ahn, Wonmi; Boriskina, Svetlana V.; Hong, Yan; Reinhard, Björn M.

    2012-01-01

    We introduce a new design approach for surface enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices ‘pinned’ to rationally-designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at pre-defined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. PMID:22171957

  8. Search for new physics in a precise 20F beta spectrum shape measurement

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Voytas, Paul; Chuna, Thomas; Naviliat-Cuncic, Oscar; Gade, Alexandra; Hughes, Max; Huyan, Xueying; Liddick, Sean; Minamisono, Kei; Paulauskas, Stanley; Weisshaar, Dirk; Ban, Gilles; Flechard, Xavier; Lienard, Etienne

    2015-10-01

    We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. We aim to achieve a relative precision below 3%, representing an order of magnitude improvement compared to previous experiments. This level of precision will enable a test of the so-called strong form of the conserved vector current (CVC) hypothesis, and should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in a scintillation detector deep enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the beam implantation. Ancillary detectors are used to tag the 1.633-MeV γ-rays following the β decay for coincidence measurements in order to reduce backgrounds. We will give an overview and report on the status of the experiment.

  9. Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Shumack, A. E.; Maggi, C. F.; Reinke, M.; Lawson, K. D.; Coffey, I.; Pütterich, T.; Brezinsek, S.; Lipschultz, B.; Matthews, G. F.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Rzadkiewicz, J.; Czarski, T.; Dominik, W.; Kasprowicz, G.; Pozniak, K.; Zabolotny, W.; Zastrow, K.-D.; Conway, N. J.; contributors, JET

    2015-07-01

    The {{W}45+} and {{W}46+} 3p-4d inner shell excitation lines in addition to M{{o}32+} 2p-3s lines have been identified from the spectrum taken by an upgraded high-resolution x-ray spectrometer. It is found from analysis of the absolute intensities of the {{W}46+} and M{{o}32+} lines that W and Mo concentrations are in the range of ˜ {{10}-5} and ˜ {{10}-6}, respectively, with a ratio of ˜5% in JET with the ITER-like wall configuration for ELMy H-mode plasmas with a plasma current of 2.0-2.5 MA, a toroidal magnetic field of 2.7 T and a neutral beam injection power of 14-18 MW. For the purpose of checking self-consistency, it is confirmed that the W concentration determined from the {{W}45+} line is in agreement with that from the {{W}46+} line within 20% and that the plasma effective charge determined from the continuum of the first order reflection spectrum is also in agreement with that from the second order within 50%. Further, the determined plasma effective charge is in agreement with that determined from a visible spectroscopy, confirming that the sensitivity of the x-ray spectrometer is valid and that the W and the Mo concentrations are also likely to be valid.

  10. Spacing and shape of random peaks in non-parametric spectrum estimates

    PubMed Central

    Thomson, D. J.; Haley, C. L.

    2014-01-01

    In this paper, expressions are derived for the expected number of spurious peaks in a spectrum estimate, that is, crossings above a given significance level per frequency unit, as well as the expected width of these peaks. In numerous scientific applications, spectrum estimates are used for the purpose of identifying sinusoidal or modal components, often thinning large sets of candidate frequencies with coincidence detection. Because one always expects numerous false peaks in a spectrum estimate, knowing the expected rate of false peaks helps to decide whether the number observed is abnormal and hence determine the true nature of the process. An example using solar wind data from the Advanced Composition Explorer is given where spectra display pathological numbers of significant peaks, while temporally permuted versions of the data possess spectra with the number expected for a white, Gaussian process. The permutation test is a valuable diagnostic for processes suspected to contain many line components. PMID:25002827

  11. The shape of the primary cosmic ray electron spectrum above 10 GeV

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.

    1974-01-01

    A balloon borne measurement of the cosmic ray electron spectrum above 10 GeV is reported in which two new techniques have been used to remove proton background contamination. First, the depth of the spectrometer on one of the flights was more than 40 radiation lengths, enabling hadronically and electromagnetically induced cascades to be differentiated for a subset of the data. Second, electromagnetic cascade starting points were determined to within about 0.1 radiation lengths based upon a calibration with electrons from 5.4 to 18 GeV at the Stanford Linear Accelerator. The resulting spectrum, when fitted with a power law, is steep, but the fit is marginal. A significantly better fit is achieved by assuming a model in which the spectrum is steepening in the measured region.

  12. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence

    NASA Astrophysics Data System (ADS)

    Gaspari, M.

    2015-07-01

    The hot plasma filling galaxy clusters emits copious X-ray radiation. The classic unheated and unperturbed cooling flow model predicts dramatic cooling rates and an isobaric X-ray spectrum with constant differential luminosity distribution. The observed cores of clusters (and groups) show instead a strong deficit of soft X-ray emission: dLx/dT ∝ (T/Thot)α = 2 ± 1. Using 3D hydrodynamic simulations, we show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow injection: condensing clouds boost the AGN outflows, which quench cooling as they thermalize through the core. The resultant average distribution slope is α ≃ 2, oscillating within the observed 1 < α < 3. In the absence of thermal instability, the X-ray spectrum remains isothermal (α ≳ 8), while unopposed cooling drives a too shallow slope, α < 1. AGN outflows deposit their energy inside-out, releasing more heat in the inner cooler phase; radially distributed heating alone induces a declining spectrum, 1 < α < 2. Turbulence further steepens the spectrum and increases the scatter: the turbulent Mach number in the hot phase is subsonic, while it becomes transonic in the cooler phase, making perturbations to depart from the isobaric mode. Such increase in dln P/dln T leads to α ≈ 3. Self-regulated AGN outflow feedback can address the soft X-ray problem through the interplay of heating and turbulence.

  13. Perception of Shapes Targeting Local and Global Processes in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Grinter, Emma J.; Maybery, Murray T.; Pellicano, Elizabeth; Badcock, Johanna C.; Badcock, David R.

    2010-01-01

    Background: Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and…

  14. Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyu; Zhu, Ninghua; Wang, Lixian; Wang, Hui; Du, Yuanxin; Liu, Jianguo

    2012-11-01

    The dynamic control for the spectra of the Ultra-wideband (UWB) signals, which is the key for implementing the dynamic spectrum access in the cognitive radio, is still a challenge due to the limited processing speed of the electronic devices. In this paper, we have summarized our recent work about controlling the spectrum shape of the UWB signals in optical domain, in addition to reviewing the other groups' related research work. The experiment setups and results based on nonlinear dynamics of the optoelectronic oscillator and transfer response of the phase or polarization-to-intensity convertor will be described in detail respectively, in which the controllable frequency suppress for the optical UWB signals at specific frequency positions were implemented. Particularly, the UWB pulse with the special shape, which corresponds to the 5-GHz band-rejection in frequency domain, was generated in order to avoid the interference between UWB and Wireless Fidelity system in practice. In addition, the UWB signals whose center frequency could be continuously tuned and converted up to the frequency range of millimeter wave were generated by utilizing the polarization modulator based optical switch. The areas for future development and the challenge of implementing these techniques for the applications in practice will also be discussed.

  15. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoyi; Smith, Jeffrey; Brown, Anthony W.

    2002-09-01

    A Brillouin scattering based fiber sensor system has been developed by our Fiber Optics Group for the structural monitoring and civil engineering related applications. In this paper, the Brillouin loss spectrum has been characterized in terms of its center frequency, peak power, line-width and shape. These parameters have been considered as a function of the input pump and probe laser powers, the pump pulse duration, strain and temperature. The measurement accuracy has been studied at different Brillouin frequency steps to study the uncertainty of the Brillouin frequency, line-width, peak power and shape factor vs. signal to noise ratio, so that we can optimize the system performance. Characterization of the Brillouin loss spectrum led to the development of an innovative technique to measure the strain and temperature simultaneously using the strain and temperature dependence on the peak power in conjunction with the Brillouin frequency for the single mode fiber with 3m spatial resolution, 3°C temperature resolution and 200 me (mm/m) strain accuracy.

  16. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  17. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  18. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    NASA Astrophysics Data System (ADS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-03-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of "different objects same image" or "different images same object" affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and some shadows. In the second hierarchy, we adopt

  19. Crater shape and size-frequency distribution in determining the topographic power spectrum of a cratered surface

    NASA Astrophysics Data System (ADS)

    Rosenburg, M. A.; Aharonson, O.; Smith, D. E.; Zuber, M. T.; Zhang, X.

    2010-12-01

    The statistical properties of a heavily cratered planetary surface reflect several factors that govern its formation and subsequent modification: the size-frequency distribution of impactors, the corresponding distribution of crater sizes, crater morphology, and downslope movement of material on steep slopes. We develop and apply a new cratered terrain-generating model to study the relative contributions of the crater size-frequency distribution and crater shape to the power spectral density of a surface that accumulates impacts. By monitoring surviving rim fragments through time, we derive the relationship between the size-frequency distribution of observable craters and its production function, whose slope we vary. This permits us to explore the criteria for equilibrium. Further, we examine the effects of changes in crater morphology with size—the transition from simple to complex crater shapes, as well as the appearance of complex features such as central peaks, peak rings, and wall terraces—on the slope of the power spectrum, utilizing the new global topography dataset provided by the Lunar Orbiter Laser Altimeter (LOLA) to characterize the power spectra of several lunar craters. Finally, we compare our findings on the dependencies of the power spectral slope to the observed roughness properties at several length scales of lunar terrains in various stages of saturation, from young maria to ancient highlands.

  20. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  1. ITER's woes

    NASA Astrophysics Data System (ADS)

    jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita

    2014-07-01

    In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.

  2. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  3. Are Children with Autism Spectrum Disorder Initially Attuned to Object Function Rather than Shape for Word Learning?

    ERIC Educational Resources Information Center

    Field, Charlotte; Allen, Melissa L.; Lewis, Charlie

    2016-01-01

    We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…

  4. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  5. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGESBeta

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  6. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  7. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    NASA Astrophysics Data System (ADS)

    Cerdeño, D. G.; Peiró, M.; Robles, S.

    2016-04-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.

  8. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  9. SU-C-207-06: In Vivo Quantification of Gold Nanoparticles Using K-Edge Imaging Via Spectrum Shaping by Gold Filter

    SciTech Connect

    Chen, H; Cormack, R; Bhagwat, M; Berbeco, R

    2015-06-15

    Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to create an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.

  10. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.

    PubMed

    Burt, Jim A; Zhao, Xihua; McHale, Jeanne L

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio kappa = Lambda/Delta is increased, where Lambda and Delta are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of kappa for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy lambdasolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Lambda and Delta are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of beta-carotene in isopentane and CS2. The derived values of lambdasolv using the Gaussian model are found to be in better agreement with the high temperature limit of Delta2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Delta of the solvent-induced frequency fluctuations. PMID:15268604

  11. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of β-carotene in nonpolar solvent

    NASA Astrophysics Data System (ADS)

    Burt, Jim A.; Zhao, Xihua; McHale, Jeanne L.

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio κ=Λ/Δ is increased, where Λ and Δ are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of κ for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy λsolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Λ and Δ are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of β-carotene in isopentane and CS2. The derived values of λsolv using the Gaussian model are found to be in better agreement with the high temperature limit of Δ2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Δ of the solvent-induced frequency fluctuations.

  12. Prospects of ITER Instability Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen

    2015-11-01

    Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.

  13. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  14. Optimization of the ITER Ion Cyclotron Heating Antenna Array

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Swain, D. W.; Carter, M. D.; Taylor, D. J.; Bosia, G.; D'Ippolito, D. A.; Myra, J. R.

    1996-11-01

    The present design of the ITER ICH antenna array comprises two poloidal by four toroidal current elements in each of four ports. Each current element forms a resonant double loop (RDL) with power fed to a pretuned matchpoint on the strap; the matching is accomplished using slow-wave transmission lines as adjustable shorted-stub tuners on either end of the current strap. The power requirement is 12.5 MW per port over the frequency range of 40--70 MHz, with extended operation to 80 MHz desirable. The antenna design optimization process includes strap shaping to minimize strap voltages and rf E-fields along B-field lines, (2) frame/Faraday shield geometry design to improve plasma coupling, wave spectrum directivity, and phase control, and (3) Faraday shield/bumper geometry to minimize rf sheath-induced structure heating and impurity generation.

  15. Shapes of Interacting RNA Complexes

    PubMed Central

    Fu, Benjamin M.M.

    2014-01-01

    Abstract Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops. This shape projection preserves the topological core of the RNA complex, and for fixed topological genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows for computing the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform sampling algorithm for shapes of RNA complexes of fixed topological genus. PMID:25075750

  16. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  17. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  18. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  19. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  20. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  1. Iterative contextual CV model for liver segmentation

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; He, Jiangping; Yang, Xin

    2014-01-01

    In this paper, we propose a novel iterative active contour algorithm, i.e. Iterative Contextual CV Model (ICCV), and apply it to automatic liver segmentation from 3D CT images. ICCV is a learning-based method and can be divided into two stages. At the first stage, i.e. the training stage, given a set of abdominal CT training images and the corresponding manual liver labels, our task is to construct a series of self-correcting classifiers by learning a mapping between automatic segmentations (in each round) and manual reference segmentations via context features. At the second stage, i.e. the segmentation stage, first the basic CV model is used to segment the image and subsequently Contextual CV Model (CCV), which combines the image information and the current shape model, is iteratively performed to improve the segmentation result. The current shape model is obtained by inputting the previous automatic segmentation result into the corresponding self-correcting classifier. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that we obtain more and more accurate segmentation results by the iterative steps and satisfying results are obtained after about six iterations. Also, our method is comparable to the state-of-the-art work on liver segmentation.

  2. Gyrokinetic Simulations of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike

    2015-11-01

    It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  3. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  4. ITER nominates next leader

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2015-01-01

    Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.

  5. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  6. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  7. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  8. NREL Spectrum of Innovation

    ScienceCinema

    None

    2013-05-29

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  9. Resonances in the Photoionization Cross Sections of Atomic Nitrogen Shape the Far-ultraviolet Spectrum of the Bright Star in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Chayer, Pierre

    2013-08-01

    The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Lyβ, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 Å and a deep absorption feature at 1072 Å none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s 2 2p 3 2 D 0 and 2 P 0). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.

  10. RESONANCES IN THE PHOTOIONIZATION CROSS SECTIONS OF ATOMIC NITROGEN SHAPE THE FAR-ULTRAVIOLET SPECTRUM OF THE BRIGHT STAR IN 47 TUCANAE

    SciTech Connect

    Dixon, William V.; Chayer, Pierre E-mail: chayer@stsci.edu

    2013-08-10

    The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Ly{beta}, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 A and a deep absorption feature at 1072 A; none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s {sup 2} 2p {sup 3} {sup 2} D {sup 0} and {sup 2} P {sup 0}). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.

  11. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  12. Fourier mode analysis of source iteration in spatially periodic media

    SciTech Connect

    Zika, M.R.; Larsen, E.W.

    1998-12-31

    The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.

  13. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  14. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  15. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  16. Iterated multidimensional wave conversion

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  17. Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroshi; Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Ohsato, Hirotaka; Watanabe, Eiichiro; Sugimoto, Yoshimasa; Furuki, Kenji; Miyaji, Kunio; Hogg, Richard A.

    2015-04-01

    We developed a low-coherence light source based on self-assembled InAs quantum dots (QDs) with controlled emission wavelengths and applied it to optical coherence tomography (OCT) imaging. A current-driven superluminescent diode (SLD) light source including four layers of QDs exhibits a broadband (80-nm-bandwidth) emission centered at approximately 1.2 µm with a Gaussian-like spectral shape at room temperature. Spectral-domain OCT (SD-OCT) using the QD-SLD as a light source was developed and imaging with the SD-OCT was demonstrated. The axial resolution was estimated to be approximately 8 µm in air and no apparent side lobes appeared beside the point spread function, indicating the effectiveness of the QD-SLD for high-resolution, noise-reduced OCT imaging.

  18. Spectral resolvability of iterated rippled noise

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2005-04-01

    A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

  19. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  20. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  1. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  2. Shape Determination for Large Static Structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, Robert E., Jr.

    1986-01-01

    Parameter and shape estimates updated from new measurements. Involves statistical structural analysis, statistical electromagneticfield analysis, filtering, measurement modeling, and iterative prediction/correction procedures. Estimating algorithms result from generalizations of Kalman statistical-filter theory.

  3. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  4. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  5. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  6. Electrical optimization of the ICH antenna array for ITER

    NASA Astrophysics Data System (ADS)

    Ryan, P. M.; Swain, D. W.; Carter, M. D.; Taylor, D. J.; Bosia, G.

    1997-04-01

    The present design of the ITER ICH antenna array comprises two poloidal by four toroidal current elements in each of four ports. Each current element forms a resonant double loop (RDL) with power fed to a pretuned matchpoint on the strap; the matching is accomplished using slow-wave transmission lines as adjustable shorted-stub tuners on other end of the current strap. The power requirement is 12.5 MW per port over the frequency range of 40-70 MHz, with extended operation to 80 MHz desirable. The antenna design optimization process includes (1) strap shaping to minimize strap voltages and rf E-fields along B-field lines and (2) frame/Faraday shield geometry design to improve plasma coupling, wave spectrum directivity, and phase control. For the ignited plasma parameters, the optimized array design delivers full power over the ranges of 40-80 MHz in frequency and 0° to 180° in phase. The maximum strap voltage is 41 kV and the maximum parallel E-field is 16 kV/cm for the worst case over these ranges. The array directivity for current drive operation is calculated to be close to 80%.

  7. Iterative most likely oriented point registration.

    PubMed

    Billings, Seth; Taylor, Russell

    2014-01-01

    A new algorithm for model based registration is presented that optimizes both position and surface normal information of the shapes being registered. This algorithm extends the popular Iterative Closest Point (ICP) algorithm by incorporating the surface orientation at each point into both the correspondence and registration phases of the algorithm. For the correspondence phase an efficient search strategy is derived which computes the most probable correspondences considering both position and orientation differences in the match. For the registration phase an efficient, closed-form solution provides the maximum likelihood rigid body alignment between the oriented point matches. Experiments by simulation using human femur data demonstrate that the proposed Iterative Most Likely Oriented Point (IMLOP) algorithm has a strong accuracy advantage over ICP and has increased ability to robustly identify a successful registration result. PMID:25333116

  8. Influence of DBT reconstruction algorithm on power law spectrum coefficient

    NASA Astrophysics Data System (ADS)

    Vancamberg, Laurence; Carton, Ann-Katherine; Abderrahmane, Ilyes H.; Palma, Giovanni; Milioni de Carvalho, Pablo; Iordache, Rǎzvan; Muller, Serge

    2015-03-01

    In breast X-ray images, texture has been characterized by a noise power spectrum (NPS) that has an inverse power-law shape described by its slope β in the log-log domain. It has been suggested that the magnitude of the power-law spectrum coefficient β is related to mass lesion detection performance. We assessed β in reconstructed digital breast tomosynthesis (DBT) images to evaluate its sensitivity to different typical reconstruction algorithms including simple back projection (SBP), filtered back projection (FBP) and a simultaneous iterative reconstruction algorithm (SIRT 30 iterations). Results were further compared to the β coefficient estimated from 2D central DBT projections. The calculations were performed on 31 unilateral clinical DBT data sets and simulated DBT images from 31 anthropomorphic software breast phantoms. Our results show that β highly depends on the reconstruction algorithm; the highest β values were found for SBP, followed by reconstruction with FBP, while the lowest β values were found for SIRT. In contrast to previous studies, we found that β is not always lower in reconstructed DBT slices, compared to 2D projections and this depends on the reconstruction algorithm. All β values estimated in DBT slices reconstructed with SBP were larger than β values from 2D central projections. Our study also shows that the reconstruction algorithm affects the symmetry of the breast texture NPS; the NPS of clinical cases reconstructed with SBP exhibit the highest symmetry, while the NPS of cases reconstructed with SIRT exhibit the highest asymmetry.

  9. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  10. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  11. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  12. Conformal mapping and convergence of Krylov iterations

    SciTech Connect

    Driscoll, T.A.; Trefethen, L.N.

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  13. Generalized iterative deconvolution for receiver function estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhi; Pavlis, Gary L.

    2016-02-01

    This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method-an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.

  14. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  15. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  16. Observation of an Anomalous Line Shape of the η^{'}π^{+}π^{-} Mass Spectrum near the pp[over ¯] Mass Threshold in J/ψ→γη^{'}π^{+}π^{-}.

    PubMed

    Ablikim, M; Achasov, M N; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-07-22

    Using 1.09×10^{9} J/ψ events collected by the BESIII experiment in 2012, we study the J/ψ→γη^{'}π^{+}π^{-} process and observe a significant abrupt change in the slope of the η^{'}π^{+}π^{-} invariant mass distribution at the proton-antiproton (pp[over ¯]) mass threshold. We use two models to characterize the η^{'}π^{+}π^{-} line shape around 1.85  GeV/c^{2}: one that explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatté formula), and another that is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85  GeV/c^{2} with strong couplings to the pp[over ¯] final states or a narrow state just below the pp[over ¯] mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a pp[over ¯] moleculelike state or bound state with greater than 7σ significance. PMID:27494467

  17. Technology Tips: Using the Iterate Command to Construct Recursive Geometric Sketches

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2006-01-01

    How to iterate geometric shapes to construct Baravelle spirals and Pythagorean trees is demonstrated in this article. The "Surfing Note" sends readers to a site with applets that will generate fractals such as the Sierpinski gasket or the Koch snowflake.

  18. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  19. ECRH System For ITER

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.

    2009-11-01

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams

  20. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  1. Composition analysis of large samples with PGNAA using a fixed point iteration

    NASA Astrophysics Data System (ADS)

    Akkurt, Hatice

    2002-09-01

    The composition problem in large sample prompt gamma neutron activation analysis (PGNAA) is a nonlinear inverse problem. The basic form of the nonlinear inverse composition problem is presented. This problem is then formulated in a general way, as a fixed point problem, without addressing any specific application or sample type or linearization approach. This approach of formulating the problem as a fixed point problem suggested a natural fixed point iteration. The algorithm of the fixed point iteration solves the nonlinear composition problem using a combination of measured and computed data. The effectiveness of the fixed point iteration for composition analysis is demonstrated using purely numerical experiments. These numerical experiments showed that the fixed point iteration can be successfully applied to find the bulk composition of large samples, with excellent agreement between the estimated and true composition of the samples, in a few iterations, independent of the initial guess. In order to test the fixed point iteration using real experimental data, a series of large sample PGNAA measurements were performed at ANL-W. These experiments are described and the measured spectra for the samples are presented. Then, the fixed point iteration is applied for these real experiments to find the composition of the samples. In all of the cases, except borated polyethylene, the composition of the large samples are found in a few iterations with errors less than +/-1.3%. The effectiveness of the fixed point iteration is thus demonstrated with many proof-of-principle measurements. While testing the fixed point iteration algorithm, published values of the source spectrum and relative detector efficiencies are used. The sensitivity of the fixed point iteration to source spectrum is investigated and it is shown that the estimated composition results are not very sensitive to the change in the source spectrum. The reason behind the slow convergence for the borated

  2. Optimization of tungsten castellated structures for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R. A.; Petersson, P.

    2015-08-01

    In ITER, the plasma-facing components (PFCs) of the first wall and the divertor armor will be castellated to improve their thermo-mechanical stability and to limit forces due to induced currents. The fuel accumulation in the gaps may significantly contribute to the in-vessel fuel inventory. Castellation shaping may be the most straightforward way to minimize the fuel inventory and to alleviate the thermal loads onto castellations. A new castellation shape was proposed and comparative modeling of conventional (rectangular) and shaped castellation was performed for ITER conditions. Shaped castellation was predicted to be capable to operate under stationary heat load of 20 MW/m2. An 11-fold decrease of beryllium (Be) content in the gaps of the shaped cells alone with a 7-fold decrease of carbon content was predicted. In order to validate the predictive capabilities of modeling tools used for ITER conditions, the dedicated modeling with the same codes was made for existing tokamaks and benchmarked with the results of multi-machine experiments. For the castellations exposed in TEXTOR and DIII-D, the carbon amount in the gaps of shaped cells was 1.9-2.3 times smaller than that of rectangular ones. Modeling for TEXTOR conditions yielded to 1.5-fold decrease of carbon content in the gaps of shaped castellation outlining fair agreement with the experiment. At the same time, a number of processes, like enhanced erosion of molten layer yet need to be implemented in the codes in order to increase the accuracy of predictions for ITER.

  3. A study of core Thomson scattering measurements in ITER using a multi-laser approach

    NASA Astrophysics Data System (ADS)

    Kurskiev, G. S.; Sdvizhenskii, P. A.; Bassan, M.; Andrew, P.; Bazhenov, A. N.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Kukushkin, A. B.; Kukushkin, A. S.; Mukhin, E. E.; Razdobarin, A. G.; Samsonov, D. S.; Semenov, V. V.; Tolstyakov, S. Yu.; Kajita, S.; Masyukevich, S. V.

    2015-05-01

    The electron component is the main channel for anomalous power loss and the main indicator of transient processes in the tokamak plasma. The electron temperature and density profiles mainly determine the operational mode of the machine. This imposes demanding requirements on the precision and on the spatial and temporal resolution of the Thomson scattering (TS) measurements. Measurements of such high electron temperature with good accuracy in a large fusion device such as ITER using TS encounter a number of physical problems. The 40 keV TS spectrum has a significant blue shift. Due to the transmission functions of the fibres and to their darkening that can occur under a strong neutron irradiation, the operational wavelength range is bounded on the blue side. For example, high temperature measurements become impossible with the 1064 nm probing wavelength since the TS signal within the boundaries of the operational window weakly depends on Te. The second problem is connected with the TS calibration. The TS system for a large fusion machine like ITER will have a set of optical components inaccessible for maintenance, and their spectral characteristics may change with time. Since the present concept of the TS system for ITER relies on the classical approach to measuring the shape of the scattered spectra using wide spectral channels, the diagnostic will be very sensitive to the changes in the optical transmission. The third complication is connected with the deviation of the electron velocity distribution function from a Maxwellian that can happen under a strong ECRH/ECCD, and it may additionally hamper the measurements. This paper analyses the advantages of a ‘multi-laser approach’ implementation for the current design of the core TS system. Such an approach assumes simultaneous plasma probing with different wavelengths that allows the measurement accuracy to be improved significantly and to perform the spectral calibration of the TS system. Comparative analysis

  4. ITER startup studies in the DIII-D tokamak

    SciTech Connect

    Jackson, G. L.; Casper, T. A.; Luce, T.C.; Humphreys, D A; Ferron, J.R.; Hyatt, A. W.; Lazarus, Edward Alan; Moyer, R.A.; Petrie, T W; Rudakov, D.L.; West, W. P.

    2008-01-01

    plasma initiation and current ramp up scenario envisioned for ITER has been simulated in DIII-D experiments. These discharges were limited on the low field side (LFS) during the initial current ramp up, as specified for the ITER baseline startup scenario. Initial experiments produced internal inductance (l(i)),higher than the design value for the ITER shaping coils, often leading to vertical instabilities. A modified startup with larger volume was developed to reduce l(i) in the current ramp up. This large-bore scenario, also limiting on the LFS, produced a lower l(i) and avoided the vertical instabilities. Feedback control of l(i), using the ohmic field coil power supply as the actuator, was successfully demonstrated. Such control may be useful in avoiding vertical instabilities and in providing access to sawtooth-free steady state and hybrid scenarios in ITER. Experiments at reduced inductive voltage and with electron cyclotron assist for breakdown and burnthrough have also been carried out. The Corsica equilibrium and transport code has modelled these data to provide validation of transport models used to simulate this phase of ITER discharges in order to yield more accurate extrapolation to ITER scenarios.

  5. Simulating the ITER Plasma Startup Scenario in the DIII-D Tokamak

    SciTech Connect

    Jackson, G; Casper, T; Luce, T; Humphreys, D; Ferron, J; Hyatt, A; Petrie, T; West, W

    2008-10-13

    DIII-D experiments have investigated ITER startup scenarios, including an initial phase where the plasma was limited on low field side (LFS) poloidal bumper limiters. Both the original ITER 'small-bore' (constant q{sub 95}) startup and a 'large-bore' lower internal inductance (l{sub i}) startup have been simulated. In addition, l{sub i} feedback control has been tested with the goal of producing discharges at the ITER design value, l{sub i}(3) = 0.85. These discharges have been simulated using the Corsica free boundary equilibrium code. High performance hybrid scenario discharges ({beta}{sub N} = 2.8, H{sub 98,y2} = 1.4) and ITER H-mode baseline discharges ({beta}{sub N} > 1.6, H{sub 98,y2} = 1-1.2) have been obtained experimentally in an ITER similar shape after the ITER-relevant startup.

  6. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  7. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  8. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  9. Evaluation of ITER MSE Viewing Optics

    SciTech Connect

    Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R

    2007-03-26

    image that then was relayed out of the port plug with more ideal (dielectric) mirrors. Engineering models of the optics, port plug, and neutral beam geometry were also created, using the CATIA ITER models. Two video conference calls with the USIPO provided valuable design guidelines, such as the minimum distance of the first optic from the plasma. A second focus of the project was the calibration of the system. Several different techniques are proposed, both before and during plasma operation. Fixed and rotatable polarizers would be used to characterize the system in the no-plasma case. Obtaining the full modulation spectrum from the polarization analyzer allows measurement of polarization effects and also MHD plasma phenomena. Light from neutral beam interaction with deuterium gas (no plasma) has been found useful to determine the wavelength of each spatial channel. The status of the optical design for the edge (upper) and core (lower) systems is included in the following figure. Several issues should be addressed by a follow-on study, including whether the optical labyrinth has sufficient neutron shielding and a detailed polarization characterization of actual mirrors.

  10. Midpoint Shapes.

    ERIC Educational Resources Information Center

    Welchman, Rosamond; Urso, Josephine

    2000-01-01

    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  11. Experimental studies of ITER demonstration discharges

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.; C-Mod Team; ASDEX Upgrade Team; DIII-D Team; JET EFDA Contributors

    2009-08-01

    Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23-0.33 V m-1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4-4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <=1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.

  12. Comments on the iterated knapsack attack

    SciTech Connect

    Brickell, E.F.

    1983-01-01

    L. Adleman has proposed a three step method for breaking the iterated knapsack that runs in polynomial time and is linear in the number of iterations. In this paper, we show that the first step is possibly exponential in the number of iterations, and that the second and third steps are exponential even for only three iterations.

  13. ITER physics design guidelines at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    1991-09-01

    The physics requirements for the International Thermonuclear Experimental Reactor (ITER) design are formulated in a set of physics design guidelines. These guidelines, established by the ITER Physics Group during the Conceptual Design Activity (CDA, 1988--90), were based on credible extrapolations of the tokamak physics database as assessed during the CDA, and defined a class of tokamak designs (with plasma current I is approximately 20 MA and aspect ratio A is approximately 2.5--3.5) that meet the ITER objectives. Recent U.S. studies have indicated that there may be significant benefits if the ITER-CDA design point is moved from the low aspect ratio, high current baseline (A = 2.79, I = 22 MA) to a high aspect ratio machine at Ais approximately 4, I is approximately 15 MA, especially regarding steady-state, technology-testing performance. To adequately assess the physics and technology testing capability of higher aspect ratio design options, several changes are proposed to the original ITER guidelines to reflect the latest developments in physics understanding at higher aspect ratios. The critical issues for higher aspect ratio design options are the uncertainty in scaling of confinement with aspect ratio, the variation of vertical stability with elongation and aspect ratio, plasma shaping requirements, ability to control and maintain plasma current and q-profiles for MHD stability (and volt-second consumption), access for current drive, restrictions on field ripple and divertor plate incident angles, etc.

  14. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  15. On the solution of evolution equations based on multigrid and explicit iterative methods

    NASA Astrophysics Data System (ADS)

    Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.

    2015-08-01

    Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.

  16. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  17. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    SciTech Connect

    Barantsev, K. A. Popov, E. N.; Litvinov, A. N.

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  18. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  19. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  20. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  1. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  2. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  3. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  4. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  5. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  6. Progress and Achievements on the R&D Activities for ITER Vacuum Vessel

    SciTech Connect

    Nakahira, M.; Koizumi, K.; Takahashi, H.; Onozuka, M.; Ioki, K.; Kuzumin, E.; Krylov, V.; Maslakowski, J.; Nelson, Brad E; Jones, L.; Danner, W.; Maisonnier, D.

    2001-01-01

    The ITER vacuum vessel (VV) is designed to be large double-walled structure with a D-shaped crosssection. The achievable fabrication tolerance of this structure was unknown due to the size and complexity of shape. The Full-scale Sector Model of ITER Vacuum Vessel, which was 15m in height, was fabricated and tested to obtain the fabrication and assembly tolerances. The model was fabricated within the target tolerance of 5mm and welding deformation during assembly operation was obtained. The port structure was also connected using remotized welding tools to demonstrate the basic maintenance activity. In parallel, the tests of advanced welding, cutting and inspection system were performed to improve the efficiency of fabrication and maintenance of the Vacuum Vessel. These activities show the feasibility of ITER Vacuum Vessel as feasible in a realistic way. This paper describes the major progress, achievement and latest status of the R&D activities on the ITER vacuum vessel.

  7. Shape based zonal wave-front reconstruction for arbitrary shape pupils

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoliang; Qu, Qing; Wang, Yukun; Xu, Huanyu; Wang, Shaoxin; Yang, Chengliang; Xuan, Li

    2015-02-01

    Zonal method is widely used to reconstruct the wave-front. Up to now, the iterative algorithms have been used to reconstruct the arbitrary shape wave-front with high reconstruction accuracy. However, it has the shortcomings of long time consumption. To reduce the time delay, a shaped based method is proposed by adding the shape information into the geometry matrix. The simulated and experimental results indicate that the reconstruction accuracy of proposed method is similar to that of the iterative LS-based method, but the computation time of our method is 3 times less than that of the iteration method. Consequently, the high accuracy and low time consumption are simultaneously achieved with the proposed method.

  8. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  9. ODE System Solver W. Krylov Iteration & Rootfinding

    SciTech Connect

    Hindmarsh, Alan C.

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.

  10. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (ESTSC)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  11. Detailed Modeling of Grounding Solutions for the ITER ICRF Antenna

    NASA Astrophysics Data System (ADS)

    Kyrytsya, V.; Dumortier, P.; Messiaen, A.; Louche, F.; Durodié, F.

    2011-12-01

    The excitation of non-TEM modes around the ITER ICRF antenna plug can considerably increase the level of RF voltages and currents on the ITER plug. First study of these modes and a solution to avoid them in the ITER ion cyclotron range of frequencies were reported in [1]. In this work a detailed analysis of electrical properties of the ITER ICRF antenna with the plug was studied for different grounding solutions with CST Microwave Studio® [2]. Conclusions of an earlier work [ 1 ] were confirmed on the detailed model of the antenna with the plug. Different grounding contacts (capacitive, galvanic and mixed capacitive-galvanic) as well as their distribution inside the plug gap were analyzed. It was shown that capacitive and mixed capacitive-galvanic grounding are less effective because they demand high values of the capacitance and are more sensitive to the frequency and antenna spectrum. In particular a galvanic grounding realized by the contacts put around the perimeter of the plug gap at lm behind the front face of the antenna is the most suitable solution from the electromagnetic point of view. An optimization of the layout and arrangement of the contacts in order to assess and optimize the current distribution on them is under way. Measurements on a scaled mock-up of the complete antenna and the plug are under way for modeling results confirmation.

  12. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  13. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  14. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Schapiro Shapes

    ERIC Educational Resources Information Center

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  16. NREL Spectrum of Clean Energy Innovation (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  17. Calculations of lower hybrid current drive in ITER

    NASA Astrophysics Data System (ADS)

    Decker, J.; Peysson, Y.; Hillairet, J.; Artaud, J.-F.; Basiuk, V.; Becoulet, A.; Ekedahl, A.; Goniche, M.; Hoang, G. T.; Imbeaux, F.; Ram, A. K.; Schneider, M.

    2011-07-01

    A detailed study of lower hybrid current drive (LHCD) in ITER is provided, focusing on the wave propagation and current drive mechanisms. A combination of ray-tracing and Fokker-Planck calculations are presented for various plasma scenarios, wave frequency and polarization. The dependence of the driven current and the location of power deposition upon the coupled wave spectrum is systematically determined, in order to set objectives for the antenna design. The respective effects of finite-power levels, magnetic trapping, and detailed antenna spectra are accounted for and quantitatively estimated. The sensitivity of LHCD to density and temperature profiles is calculated. From the simulation results, an optimum value for the parallel index of refraction is proposed as a compromise between efficiency and robustness with respect to those profile variations. The corresponding current drive efficiency is found to be similar for the two frequencies generally considered for ITER, f = 3.7 GHz and f = 5.0 GHz.

  18. Correctness properties for iterated hardware structures

    NASA Technical Reports Server (NTRS)

    Windley, Phillip J.

    1993-01-01

    Iterated structures occur frequently in hardware. This paper describes properties required of mathematical relations that can be implemented iteratively and demonstrates the use of these properties on a generalized class of adders. This work provides a theoretical basis for the correct synthesis of iterated arithmetic structures.

  19. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect

    Duran, I.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-10-15

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  20. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum. PMID:21033987

  1. ITER density profile with pellet injection

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.

  2. Improved iterative error analysis for endmember extraction from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Lixin; Zhang, Ying; Guindon, Bert

    2008-08-01

    Automated image endmember extraction from hyperspectral imagery is a challenge and a critical step in spectral mixture analysis (SMA). Over the past years, great efforts were made and a large number of algorithms have been proposed to address this issue. Iterative error analysis (IEA) is one of the well-known existing endmember extraction methods. IEA identifies pixel spectra as a number of image endmembers by an iterative process. In each of the iterations, a fully constrained (abundance nonnegativity and abundance sum-to-one constraints) spectral unmixing based on previously identified endmembers is performed to model all image pixels. The pixel spectrum with the largest residual error is then selected as a new image endmember. This paper proposes an updated version of IEA by making improvements on three aspects of the method. First, fully constrained spectral unmixing is replaced by a weakly constrained (abundance nonnegativity and abundance sum-less-or-equal-to-one constraints) alternative. This is necessary due to the fact that only a subset of endmembers exhibit in a hyperspectral image have been extracted up to an intermediate iteration and the abundance sum-to-one constraint is invalid at the moment. Second, the search strategy for achieving an optimal set of image endmembers is changed from sequential forward selection (SFS) to sequential forward floating selection (SFFS) to reduce the so-called "nesting effect" in resultant set of endmembers. Third, a pixel spectrum is identified as a new image endmember depending on both its spectral extremity in the feature hyperspace of a dataset and its capacity to characterize other mixed pixels. This is achieved by evaluating a set of extracted endmembers using a criterion function, which is consisted of the mean and standard deviation of residual error image. Preliminary comparison between the image endmembers extracted using improved and original IEA are conducted based on an airborne visible infrared imaging

  3. Software for computing eigenvalue bounds for iterative subspace matrix methods

    NASA Astrophysics Data System (ADS)

    Shepard, Ron; Minkoff, Michael; Zhou, Yunkai

    2005-07-01

    importance in order to provide the modeler with information of the reliability of the computational results. Such applications include using these bounds to terminate the iterative procedure at specified accuracy limits. Method of solution: The Ritz values and their residual norms are computed and used as input for the procedure. While knowledge of the exact eigenvalues is not required, we require that the Ritz values are isolated from the exact eigenvalues outside of the Ritz spectrum and that there are no skipped eigenvalues within the Ritz spectrum. Using a multipass refinement approach, upper and lower bounds are computed for each Ritz value. Typical running time: While typical applications would deal with m<20, for m=100000, the running time is 0.12 s on an Apple PowerBook.

  4. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  5. Projection Classification Based Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiqiu; Li, Chen; Gao, Wenhua

    2015-05-01

    Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.

  6. Truncated States Obtained by Iteration

    NASA Astrophysics Data System (ADS)

    Cardoso B., W.; Almeida G. de, N.

    2008-02-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  7. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  8. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  9. ITER EDA Newsletter. Volume 3, no. 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.

  10. Iterative feedback algorithm for phase retrieval based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Liu, Kaifeng; Cheng, Hong; Zhang, Cheng; Shen, Chuan; Zhang, Fen; Wei, Sui

    2015-12-01

    In this paper, a novel phase retrieval algorithm is presented which combines the advantages of the Transport of Intensity Equation (TIE) method and the iteration method. TIE method is fast, but its precision is not high. Though the convergence rate of iteration method is slow, its result is more accurate. This algorithm consists of Iterative Angular Spectrum (IAS) method to utilize the physical constraints between the object and the spectral domain, and the relationship between the intensity and phase among the wave propagation. Firstly, the phase at the object plane is calculated from two intensity images by TIE. Then this result is treated as the initial phase of the IAS. Finally, the phase information at the object plane is acquired according the reversibility of the optical path. During the iteration process, the feedback mechanism is imposed on it that improve the convergence rate and the precision of phase retrieval and the simulation results are given.

  11. ITER on the road to fusion energy

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2010-01-01

    On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.

  12. Decentralized control of sound radiation using iterative loop recovery.

    PubMed

    Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R

    2010-10-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units. PMID:20968346

  13. Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2009-01-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  14. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  15. Bayesian Vision for Shape Recovery

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    We present a new Bayesian vision technique that aims at recovering a shape from two or more noisy observations taken under similar lighting conditions. The shape is parametrized by a piecewise linear height field, textured by a piecewise linear irradiance field, and we assume Gaussian Markovian priors for both shape vertices and irradiance variables. The observation process. also known as rendering, is modeled by a non-affine projection (e.g. perspective projection) followed by a convolution with a piecewise linear point spread function. and contamination by additive Gaussian noise. We assume that the observation parameters are calibrated beforehand. The major novelty of the proposed method consists of marginalizing out the irradiances considered as nuisance parameters, which is achieved by Laplace approximations. This reduces the inference to minimizing an energy that only depends on the shape vertices, and therefore allows an efficient Iterated Conditional Mode (ICM) optimization scheme to be implemented. A Gaussian approximation of the posterior shape density is computed, thus providing estimates both the geometry and its uncertainty. We illustrate the effectiveness of the new method by shape reconstruction results in a 2D case. A 3D version is currently under development and aims at recovering a surface from multiple images, reconstructing the topography by marginalizing out both albedo and shading.

  16. The Biokinetic Spectrum for Temperature

    PubMed Central

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Ratkowsky, David A.; Olley, June; Ross, Tom

    2016-01-01

    We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes. PMID:27088362

  17. The Biokinetic Spectrum for Temperature.

    PubMed

    Corkrey, Ross; McMeekin, Tom A; Bowman, John P; Ratkowsky, David A; Olley, June; Ross, Tom

    2016-01-01

    We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes. PMID:27088362

  18. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  19. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  20. Design of the DEMO Fusion Reactor Following ITER

    PubMed Central

    Garabedian, Paul R.; McFadden, Geoffrey B.

    2009-01-01

    Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task.

  1. Iterative Beam Hardening Correction for Multi-Material Objects

    PubMed Central

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  2. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  3. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  4. Space-Resolved Spectrum Diagnose by Soft X-Ray Transmission Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Zhao, Yang; Xiong, Gang; Yang, Jiamin; Zhu, Tuo

    2011-02-01

    A space-resolving transmission grating spectrometer is established on the “Shenguang-III" prototype laser facility and an iterative procedure for unfolding the X-ray spectrum with spatial resolution is described. The diagnostics is applied to measure the X-ray spectrum from laser-entered gold target and the typical space-resolved spectrum is provided. The relative standard uncertainty of the X-ray spectrum from the laser-generated plasma is also determined.

  5. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  6. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  7. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  8. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  9. A fast poly-energetic iterative FBP algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Samei, Ehsan

    2014-04-01

    The beam hardening (BH) effect can influence medical interpretations in two notable ways. First, high attenuation materials, such as bones, can induce strong artifacts, which severely deteriorate the image quality. Second, voxel values can significantly deviate from the real values, which can lead to unreliable quantitative evaluation results. Some iterative methods have been proposed to eliminate the BH effect, but they cannot be widely applied for clinical practice because of the slow computational speed. The purpose of this study was to develop a new fast and practical poly-energetic iterative filtered backward projection algorithm (piFBP). The piFBP is composed of a novel poly-energetic forward projection process and a robust FBP-type backward updating process. In the forward projection process, an adaptive base material decomposition method is presented, based on which diverse body tissues (e.g., lung, fat, breast, soft tissue, and bone) and metal implants can be incorporated to accurately evaluate poly-energetic forward projections. In the backward updating process, one robust and fast FBP-type backward updating equation with a smoothing kernel is introduced to avoid the noise accumulation in the iteration process and to improve the convergence properties. Two phantoms were designed to quantitatively validate our piFBP algorithm in terms of the beam hardening index (BIdx) and the noise index (NIdx). The simulation results showed that piFBP possessed fast convergence speed, as the images could be reconstructed within four iterations. The variation range of the BIdx's of various tissues across phantom size and spectrum were reduced from [-7.5, 17.5] for FBP to [-0.1, 0.1] for piFBP while the NIdx's were maintained in the same low level (about [0.3, 1.7]). When a metal implant presented in a complex phantom, piFBP still had excellent reconstruction performance, as the variation range of the BIdx's of body tissues were reduced from [-2.9, 15.9] for FBP to [-0

  10. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  11. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  12. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-01

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback. © 2015 Wiley Periodicals, Inc. PMID:26678030

  13. Ocean color spectrum calculations

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    There is obvious value in developing the means for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. The first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model can be described by a modified single scattering approach based on a simple treatment of multiple scattering. The resulting quasisingle scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurements made at the edge of the Sargasso Sea off Cape Hatteras.

  14. The motional Stark effect diagnostic for ITER using a line-shift approach

    SciTech Connect

    Foley, E. L.; Levinton, F. M.; Yuh, H. Y.; Zakharov, L. E.

    2008-10-15

    The United States has been tasked with the development and implementation of a motional Stark effect (MSE) system on ITER. In the harsh ITER environment, MSE is particularly susceptible to degradation, as it depends on polarimetry, and the polarization reflection properties of surfaces are highly sensitive to thin film effects due to plasma deposition and erosion of a first mirror. Here we present the results of a comprehensive study considering a new MSE-based approach to internal plasma magnetic field measurements for ITER. The proposed method uses the line shifts in the MSE spectrum (MSE-LS) to provide a radial profile of the magnetic field magnitude. To determine the utility of MSE-LS for equilibrium reconstruction, studies were performed using the ESC-ERV code system. A near-term opportunity to test the use of MSE-LS for equilibrium reconstruction is being pursued in the implementation of MSE with laser-induced fluorescence on NSTX. Though the field values and beam energies are very different from ITER, the use of a laser allows precision spectroscopy with a similar ratio of linewidth to line spacing on NSTX as would be achievable with a passive system on ITER. Simulation results for ITER and NSTX are presented, and the relative merits of the traditional line polarization approach and the new line-shift approach are discussed.

  15. Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, Shiyu; Zhang, Zhenxi; Chen, Ying

    2014-03-01

    Statistical iterative reconstruction exhibits particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description in transmission tomography system. However, to solve the objective function is computationally intensive compared to analytical reconstruction methods due to multiple iterations needed for convergence and each iteration involving forward/back-projections by using a complex geometric system model. Optimization transfer (OT) is a general algorithm converting a high dimensional optimization to a parallel 1-D update. OT-based algorithm provides a monotonic convergence and a parallel computing framework but slower convergence rate especially around the global optimal. Based on an indirect estimation on the spectrum of the OT convergence rate matrix, we proposed a successively increasing factor- scaled optimization transfer (OT) algorithm to seek an optimal step size for a faster rate. Compared to a representative OT based method such as separable parabolic surrogate with pre-computed curvature (PC-SPS), our algorithm provides comparable image quality (IQ) with fewer iterations. Each iteration retains a similar computational cost to PC-SPS. The initial experiment with a simulated Digital Breast Tomosynthesis (DBT) system shows that a total 40% computing time is saved by the proposed algorithm. In general, the successively increasing factor-scaled OT exhibits a tremendous potential to be a iterative method with a parallel computation, a monotonic and global convergence with fast rate.

  16. High Precision Assembly Line Synthesis for Molecules with Tailored Shapes

    PubMed Central

    Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.

    2014-01-01

    Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797

  17. ELM control strategies and tools: status and potential for ITER

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Loarte, A.; Saibene, G.; Baylor, L. R.; Becoulet, M.; Cavinato, M.; Clement-Lorenzo, S.; Daly, E.; Evans, T. E.; Fenstermacher, M. E.; Gribov, Y.; Horton, L. D.; Lowry, C.; Martin, Y.; Neubauer, O.; Oyama, N.; Schaffer, M. J.; Stork, D.; Suttrop, W.; Thomas, P.; Tran, M.; Wilson, H. R.; Kavin, A.; Schmitz, O.

    2013-04-01

    Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6-9 MA operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing

  18. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  19. Benchmarking ICRF simulations for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  20. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-05-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  1. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-08-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  2. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  3. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  4. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  5. Acceleration of iterative image restoration algorithms.

    PubMed

    Biggs, D S; Andrews, M

    1997-03-10

    A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863

  6. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  7. Plasma regimes and research goals of JT-60SA towards ITER and DEMO

    NASA Astrophysics Data System (ADS)

    Kamada, Y.; Barabaschi, P.; Ishida, S.; Ide, S.; Lackner, K.; Fujita, T.; Bolzonella, T.; Suzuki, T.; Matsunaga, G.; Yoshida, M.; Shinohara, K.; Urano, H.; Nakano, T.; Sakurai, S.; Kawashima, H.; JT-60SA Team

    2011-07-01

    The JT-60SA device has been designed as a highly shaped large superconducting tokamak with a variety of plasma actuators (heating, current drive, momentum input, stability control coils, resonant magnetic perturbation coils, W-shaped divertor, fuelling, pumping, etc) in order to satisfy the central research needs for ITER and DEMO. In the ITER- and DEMO-relevant plasma parameter regimes and with DEMO-equivalent plasma shapes, JT-60SA quantifies the operation limits, plasma responses and operational margins in terms of MHD stability, plasma transport and confinement, high-energy particle behaviour, pedestal structures, scrape-off layer and divertor characteristics. By integrating advanced studies in these research fields, the project proceeds 'simultaneous and steady-state sustainment of the key performances required for DEMO' with integrated control scenario development applicable to the highly self-regulating burning high-β high bootstrap current fraction plasmas.

  8. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  9. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  10. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  11. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  12. Primordial power spectrum from Planck

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near l ~ 750-850 represents the most prominent feature in the data. Feature near l ~ 1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ~ 2.5%. In this context low-l and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  13. Primordial power spectrum from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  14. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  15. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  16. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  17. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  18. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  19. The Jovian electron spectrum: 1978-1984

    NASA Technical Reports Server (NTRS)

    Moses, D.; Evenson, P. A.; Meyer, P.

    1985-01-01

    Observations of Jovian electrons through six consecutive 13-month Jovian synodic periods from 1978 to 1984 have been made by the University of Chicago electron spectrometer onboard the ISEE-3 (ICE) spacecraft. The Jovian electron spectrum was determined from 5 to 30 Mev and was found to have a shape which is not a power law in kinetic energy, but cuts off at approximately 30 MeV. The average shape of the spectrum over each of the six intervals of best magnetic connection remains the same for all intervals within uncertainties.

  20. Multiwavelength digital holography for polishing tool shape measurement

    NASA Astrophysics Data System (ADS)

    Lédl, Vít.; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr

    2013-09-01

    Classical mechano-chemical polishing is still a valuable technique, which gives unbeatable results for some types of optical surfaces. For example, optics for high power lasers requires minimized subsurface damage, very high cosmetic quality, and low mid spatial frequency error. One can hardly achieve this with use of subaperture polishing. The shape of the polishing tool plays a crucial role in achieving the required form of the optical surface. Often the shape of the polishing tool or pad is not known precisely enough during the manufacturing process. The tool shape is usually premachined and later is changed during the polishing procedure. An experienced worker could estimate the shape of the tool indirectly from the shape of the polished element, and that is why he can achieve the required shape in few reasonably long iterative steps. Therefore the lack of the exact tool shape knowledge is tolerated. Sometimes, this indirect method is not feasible even if small parts are considered. Moreover, if processes on machines like planetary (continuous) polishers are considered, the incorrect shape of the polishing pad could extend the polishing times extremely. Every iteration step takes hours. Even worse, polished piece could be wasted if the pad has a poor shape. The ability of the tool shape determination would be very valuable in those types of lengthy processes. It was our primary motivation to develop a contactless measurement method for large diffusive surfaces and demonstrate its usability. The proposed method is based on application of multiwavelength digital holographic interferometry with phase shift.

  1. Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric cardiac diagnosis

    NASA Astrophysics Data System (ADS)

    Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2010-04-01

    Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.

  2. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  3. US sanctions on Russia hit ITER council

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2014-06-01

    The ITER fusion experiment has had to bow to the impact of US sanctions against Russia and move the venue of its council meeting, scheduled for 18-19 June, from St Petersburg to the project headquarters in Cadarache, France.

  4. Budget woes continue to hamper ITER

    NASA Astrophysics Data System (ADS)

    Starckx, Senne

    2011-02-01

    A financial rescue package for ITER - the experimental nuclear-fusion reactor that is currently being built in Cadarache, France - has been refused by the European Parliament and the European Council.

  5. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  6. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  7. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  8. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  9. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  10. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their parameters within each…

  11. Cathodoluminescence Spectrum Imaging Software

    Energy Science and Technology Software Center (ESTSC)

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  12. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  13. An Iterative Soft-Decision Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao

    1996-01-01

    This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.

  14. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  15. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  16. Modelling the physics in iterative reconstruction for transmission computed tomography

    PubMed Central

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  17. Regularization Based Iterative Point Match Weighting for Accurate Rigid Transformation Estimation.

    PubMed

    Liu, Yonghuai; De Dominicis, Luigi; Wei, Baogang; Chen, Liang; Martin, Ralph R

    2015-09-01

    Feature extraction and matching (FEM) for 3D shapes finds numerous applications in computer graphics and vision for object modeling, retrieval, morphing, and recognition. However, unavoidable incorrect matches lead to inaccurate estimation of the transformation relating different datasets. Inspired by AdaBoost, this paper proposes a novel iterative re-weighting method to tackle the challenging problem of evaluating point matches established by typical FEM methods. Weights are used to indicate the degree of belief that each point match is correct. Our method has three key steps: (i) estimation of the underlying transformation using weighted least squares, (ii) penalty parameter estimation via minimization of the weighted variance of the matching errors, and (iii) weight re-estimation taking into account both matching errors and information learnt in previous iterations. A comparative study, based on real shapes captured by two laser scanners, shows that the proposed method outperforms four other state-of-the-art methods in terms of evaluating point matches between overlapping shapes established by two typical FEM methods, resulting in more accurate estimates of the underlying transformation. This improved transformation can be used to better initialize the iterative closest point algorithm and its variants, making 3D shape registration more likely to succeed. PMID:26357287

  18. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter

  19. First Operation with the JET ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Neu, Rudolf

    2012-10-01

    To consolidate ITER design choices and prepare for its operation, JET has implemented ITER's plasma facing materials, namely Be at the main wall and W in the divertor. In addition, protection systems, diagnostics and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs), but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (˜ factor 10) have led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a reduced power threshold by 30%, a distinct minimum density and pronounced shape dependence. The L-mode density limit was found up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be only re-established when using gas puff levels of a few 10^21e/s. On average the confinement is lower with the new PFCs, but nevertheless, H factors around 1 (H-Mode) and 1.2 (at βN˜3, Hybrids) have been achieved with W concentrations well below the maximum acceptable level (<10-5).

  20. Mechanism of shape determination in motile cells

    PubMed Central

    Keren, Kinneret; Pincus, Zachary; Allen, Greg M.; Barnhart, Erin L.; Marriott, Gerard; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells. PMID:18497816

  1. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  2. Circadian gating of neuronal functionality: a basis for iterative metaplasticity.

    PubMed

    Iyer, Rajashekar; Wang, Tongfei A; Gillette, Martha U

    2014-01-01

    Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory. PMID:25285070

  3. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106

  4. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  5. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  6. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  7. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  8. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C. H.; Cordier, J.-J.; Giraud, B.; Gribov, Y.; Heitzenroeder, Ph.; Her, N.; Johnson, G.; Jones, L.; Jun, C.; Kim, B. C.; Kuzmin, E.; Loesser, D.; Martin, A.; Merola, M.; Pathak, H.; Readman, P.; Sugihara, M.; Terasawa, A.; Utin, Yu.; Wang, X.; Wu, S.; Yu, J.; ITER Organization; ITER Parties

    2011-10-01

    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  9. Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.

  10. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P. U.; Durodié, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-05-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.