Science.gov

Sample records for iterative systems analyses

  1. RAMI Analyses of Heating Neutral Beam and Diagnostic Neutral Beam Systems for ITER

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Lee, S.; Hemsworth, R.; van Houtte, D.; Okayama, K.; Sagot, F.; Schunke, B.; Svensson, L.

    2011-09-01

    A RAMI (Reliability, Availability, Maintainability, Inspectability) analysis has been performed for the heating (& current drive) neutral beam (HNB) and diagnostic neutral beam (DNB) systems of the ITER device [1-3]. The objective of these analyses is to implement RAMI engineering requirements for design and testing to prepare a reliability-centred plan for commissioning, operation, and maintenance of the system in the framework of technical risk control to support the overall ITER Project. These RAMI requirements will correspond to the RAMI targets for the ITER project and the compensating provisions to reach them as deduced from the necessary actions to decrease the risk level of the function failure modes. The RAMI analyses results have to match with the procurement plan of the systems.

  2. Nuclear analyses for the ITER ECRH launcher

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.

    2008-05-01

    Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.

  3. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  4. ECRH System For ITER

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.

    2009-11-01

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams

  5. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  6. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  7. ODE System Solver W. Krylov Iteration & Rootfinding

    SciTech Connect

    Hindmarsh, Alan C.

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.

  8. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (ESTSC)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  9. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  10. Iterative categorization (IC): a systematic technique for analysing qualitative data.

    PubMed

    Neale, Joanne

    2016-06-01

    The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. PMID:26806155

  11. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  12. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  13. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  14. Development of pellet injection systems for ITER

    SciTech Connect

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.

  15. Assessment of CONTAIN and MELCOR for performing LOCA and LOVA analyses in ITER

    SciTech Connect

    Merrill, B.J.; Hagrman, D.L.; Gaeta, M.J.; Petti, D.A.

    1994-09-01

    This report describes the results of an assessment of the CONTAIN and MELCOR computer codes for ITER LOCA and LOVA applications. As part of the assessment, the results of running a test problem that describes an ITER LOCA are presented. It is concluded that the MELCOR code should be the preferred code for ITER severe accident thermal hydraulic analyses. This code will require the least modification to be appropriate for calculating thermal hydraulic behavior in ITER relevant conditions that include vacuum, cryogenics, ITER temperatures, and the presence of a liquid metal test module. The assessment of the aerosol transport models in these codes concludes that several modifications would have to be made to CONTAIN and/or MELCOR to make them applicable to the aerosol transport part of severe accident analysis in ITER.

  16. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  17. Radiation shielding analyses for the ECRH launcher in the ITER upper port

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Heidinger, R.; Lang, K.; Luo, Y.; Tsige-Tamirat, H.

    2005-01-01

    Radiation shielding analyses have been performed for the ECRH system in the ITER upper port to complete the neutron streaming analysis performed previously. The analyses aimed at assessing and optimising the performance of the radiation shield to prove that the shielding requirements can be met by the proposed design variants. The radiation transport calculations have been performed by means of the Monte Carlo programme MCNP in 3D geometry using the standard ITER neutronics model with ECRH launcher and plug integrated into the upper port. The interface programme MCAM was used to convert the 3D ECRH launcher models available from the CAD-system for use with MCNP-calculations. It was shown that the launcher design with the proposed radiation shield can satisfy the design limits for the radiation loads to both the launcher and the neighbouring components such as the Vacuum Vessel and the TF coils. Radiation dose levels were assessed for reactor shutdown at the rear side of ECRH launcher at locations where personnel access for maintenance may be required. The shutdown dose rate calculations were also performed in 3D geometry by applying the rigorous 2-step (R2S) method and comparing the results to those obtained with the direct 1-step (D1S) method. The R2S method includes activation calculations for the launcher materials by means of the inventory code FISPACT. It was proven that the shutdown dose rates inside the port with straight waveguides will be below the ITER radiation limit of 100 µSv/hr after 10 days decay time.

  18. Extending substructure based iterative solvers to multiple load and repeated analyses

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1993-01-01

    Direct solvers currently dominate commercial finite element structural software, but do not scale well in the fine granularity regime targeted by emerging parallel processors. Substructure based iterative solvers--often called also domain decomposition algorithms--lend themselves better to parallel processing, but must overcome several obstacles before earning their place in general purpose structural analysis programs. One such obstacle is the solution of systems with many or repeated right hand sides. Such systems arise, for example, in multiple load static analyses and in implicit linear dynamics computations. Direct solvers are well-suited for these problems because after the system matrix has been factored, the multiple or repeated solutions can be obtained through relatively inexpensive forward and backward substitutions. On the other hand, iterative solvers in general are ill-suited for these problems because they often must restart from scratch for every different right hand side. In this paper, we present a methodology for extending the range of applications of domain decomposition methods to problems with multiple or repeated right hand sides. Basically, we formulate the overall problem as a series of minimization problems over K-orthogonal and supplementary subspaces, and tailor the preconditioned conjugate gradient algorithm to solve them efficiently. The resulting solution method is scalable, whereas direct factorization schemes and forward and backward substitution algorithms are not. We illustrate the proposed methodology with the solution of static and dynamic structural problems, and highlight its potential to outperform forward and backward substitutions on parallel computers. As an example, we show that for a linear structural dynamics problem with 11640 degrees of freedom, every time-step beyond time-step 15 is solved in a single iteration and consumes 1.0 second on a 32 processor iPSC-860 system; for the same problem and the same parallel

  19. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  20. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  1. Fuzzy logic components for iterative deconvolution systems

    NASA Astrophysics Data System (ADS)

    Northan, Brian M.

    2013-02-01

    Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.

  2. Process analyses of ITER Toroidal Field Structure cooling scheme

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H. S.; Forgeas, A.; Chalifour, M.; Serio, L.

    2014-09-01

    Process studies for Toroidal Field Structure (TF ST) system with a dedicated Auxiliary Cold Box (ACB-ST) have been conducted under 15 MA baseline, including plasma disruptions. ACB-ST consists of two heat exchangers immersed in the Liquid Helium (LHe) subcooler, which are placed at the inlet/outlet of a Supercritical Helium (SHe) cold circulator (centrifugal pump). Robustness of ACB-ST is a key to achieve the stability of TF coil operation since it provides the thermal barrier at the interface of the TF Winding Pack (WP) with ST. The paper discusses the control logic for the nominal plasma operating scenario and for Mitigation to regulate the dynamic heat loads on ST. In addition, the operation field of a cold circulator is described in the case of plasma disruptions. The required performance of heat exchangers in the ACB-ST is assessed based on the expected operating conditions.

  3. Verification of MELCOR Input Decks Used in ITER RPrS Analyses

    SciTech Connect

    Richard L. Moore

    2008-01-01

    This report as part of an ITER Task Agreement, documents the verification of the MELCOR Input Computer Decks used in performing the required safety analyses to be presented in the Preliminary Safety Report (Rapport Préliminaire de Séreté, RPrS).

  4. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8systems installed, therefore substantial experience has been accumulated worldwide on practical methods for the optimization of the technique. However the ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  5. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  6. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited)a)

    NASA Astrophysics Data System (ADS)

    Kashiwagi, M.; Taniguchi, M.; Dairaku, M.; Grisham, L. R.; Hanada, M.; Mizuno, T.; Tobari, H.; Umeda, N.; Watanabe, K.; Sakamoto, K.; Inoue, T.

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD- ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER.

  7. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited).

    PubMed

    Kashiwagi, M; Taniguchi, M; Dairaku, M; Grisham, L R; Hanada, M; Mizuno, T; Tobari, H; Umeda, N; Watanabe, K; Sakamoto, K; Inoue, T

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD(-) ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER. PMID:20192419

  8. Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-10-09

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.

  9. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  10. Gas species, their evolution and segregation through the ITER vacuum systems

    SciTech Connect

    Pearce, R.J.H.; Antipenkov, Alexander; Bersier, Jean-Louis; Boussier, Bastien; Baylor, Larry R; Gardner, Walter L; Meitner, Steven J

    2012-01-01

    This paper takes the ITER fueling requirements and current knowledge of gas balance and exhaust from operating tokamaks to predict all likely gas inputs into the ITER Vacuum systems. Areas where gas dynamics modeling is relevant to the ITER design are highlighted. The design and operation of the ITER vacuum system gives an element of segregation of different gas flows and species. This paper analyses the time dependent gas segregation in the vacuum system resulting from different temperature dependences of cryogenic sorption and condensation processes of different gas species. As a specific example, the optimal transfer of Ar-41 through the vacuum system is studied with respect to its decay and the resulting effects on the design of system components.

  11. Conference on iterative methods for large linear systems

    SciTech Connect

    Kincaid, D.R.

    1988-12-01

    This conference is dedicated to providing an overview of the state of the art in the use of iterative methods for solving sparse linear systems with an eye to contributions of the past, present and future. The emphasis is on identifying current and future research directions in the mainstream of modern scientific computing. Recently, the use of iterative methods for solving linear systems has experienced a resurgence of activity as scientists attach extremely complicated three-dimensional problems using vector and parallel supercomputers. Many research advances in the development of iterative methods for high-speed computers over the past forty years are reviewed, as well as focusing on current research.

  12. An iterative method for indefinite systems of linear equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1984-01-01

    An iterative method for solving nonsymmetric indefinite linear systems is proposed. The method involves the successive use of a modified version of the conjugate residual method. A numerical example is given to illustrate the method.

  13. An iterative method for systems of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1989-01-01

    An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.

  14. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-01

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10. PMID:24216821

  15. Iterative least squares method for global positioning system

    NASA Astrophysics Data System (ADS)

    He, Y.; Bilgic, A.

    2011-08-01

    The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS). In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suited for hardware implementation.

  16. On the JET ITER-Like ICRF antenna and implications for the ICRF system for ITER

    NASA Astrophysics Data System (ADS)

    Durodie, Frederic; Nightingale, Mark

    2009-11-01

    A new ``ITER-Like'' Ion Cyclotron Resonance Frequency (ICRF) antenna was installed on the JET tokamak in 2007 and extensively operated on plasma since May 2008 for a wide range of conditions (frequencies: 33, 42 and 47 MHz, L- and ELMy H-mode plasmas, antenna strap - plasma separatrix distances from 9 to 17 cm). Aspects relating to the potential performance and design of the ITER system, will be discussed: (i) the wave coupling performance and validation of the TOPICA modelling code used to predict the coupled power in ITER; (ii) the operation at high coupled power density (up to 6.2 MW/m^2 in L-mode, 4.1 MW/m^2 in H-mode) and high RF voltage on the antenna structure (up to 42 kV); (iii) the coupling of ICRF power during fast variations (ms) in coupling occurring during ELMs and (iv) antenna control in the presence of high mutual coupling between antenna straps.

  17. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  18. Design of fast tuning elements for the ITER ICH system

    SciTech Connect

    Swain, D.W.; Goulding, R.H.

    1996-05-01

    The coupling between the ion cyclotron (IC) antenna and the ITER plasma (as expressed by the load resistance the antenna sees) will experience relatively fast variations due to plasma edge profile modifications. If uncompensated, these will cause an increase in the amount of power reflected back to the transmitter and ultimately a decrease in the amount of radio frequency (rf) power to the plasma caused by protective suppression of the amount of rf power generated by the transmitter. The goals of this task were to study several alternate designs for a tuning and matching (T&M) system and to recommend some research and development (R&D) tasks that could be carried out to test some of the most promising concepts. Analyses of five different T&M configurations are presented in this report. They each have different advantages and disadvantages, and the choice among them must be made depending on the requirements for the IC system. Several general conclusions emerge from our study: The use of a hybrid splitter as a passive reflected-power dump [``edge localized mode (ELM)-dump``] appears very promising; this configuration will protect the rf power sources from reflected power during changes in plasma loading due to plasma motion or profile changes (e.g., ELM- induced changes in the plasma scrape-off region) and requires no active control of the rf system. Trade-offs between simplicity of design and capability of the system must be made. Simple system designs with few components near the antenna either have high voltages over considerable distances of transmission lines, or they are not easily tuned to operate at different frequencies. Designs using frequency shifts and/or fast tuning elements can provide fast matching over a wide range of plasma loading; however, the designs studied here require components near the antenna, complicating assembly and maintenance. Capacitor-tuned resonant systems may offer a good compromise.

  19. NITSOL: A Newton iterative solver for nonlinear systems

    SciTech Connect

    Pernice, M.; Walker, H.F.

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  20. Status of the ITER ICRF system design - 'Externally Matched' approach

    SciTech Connect

    Lamalle, P. U.; Dumortier, P.; Durodie, F.; Evrard, M.; Louche, F.; Messiaen, A.; Vervier, M.; Shannon, M.; Borthwick, A.; Chuilon, B.; Nightingale, M.; Goulding, R.; Swain, D.

    2007-09-28

    The design of the ITER ICRF system has been under revision for several years. The paper presents the status of the design proposal based on a 24 strap antenna plug (6 poloidal by 4 toroidal short radiating conductors) in which the straps are passively combined in 8 poloidal triplets by means of 4-port junctions. These triplets are connected in parallel pairwise through matching elements to form 4 load-resilient conjugate-T circuits. All adjustable matching elements are located outside the plug, i.e. in the ITER port cell and in the generator area.

  1. A first characterization of the quench detection system for ITER

    SciTech Connect

    Marinucci, C.; Bottura, L. |; Pourrahimi, S.

    1995-03-01

    The purpose of this paper is to assess the expected response of conventional and non-conventional quench detection sensors proposed for the ITER coils, and to be tested in the QUELL experiment in SULTAN. The assessment is based on simulation of thermohydraulic transients in the ITER coils for various operating conditions, and a tentative definition of the transfer functions of each sensor concept. It is shown that, for the investigated conditions, the co-wound voltage taps are more accurate than hydraulic systems and conventional voltage balance methods. The additional complication associated with the insertion of taps in the conductor is well offset by the low sensitivity to external disturbances.

  2. Arc detection for the ICRF system on ITER

    NASA Astrophysics Data System (ADS)

    D'Inca, R.

    2011-12-01

    The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.

  3. Hierarchical models and iterative optimization of hybrid systems

    NASA Astrophysics Data System (ADS)

    Rasina, Irina V.; Baturina, Olga V.; Nasatueva, Soelma N.

    2016-06-01

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  4. Defining the infrared systems for ITER

    SciTech Connect

    Reichle, R.; Andrew, P.; Drevon, J.-M.; Encheva, A.; Janeschitz, G.; Levesy, B.; Martin, A.; Pitcher, C. S.; Pitts, R.; Thomas, D.; Vayakis, G.; Walsh, M.; Counsell, G.; Johnson, D.; Kusama, Y.

    2010-10-15

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

  5. Defining the infrared systems for ITER.

    PubMed

    Reichle, R; Andrew, P; Counsell, G; Drevon, J-M; Encheva, A; Janeschitz, G; Johnson, D; Kusama, Y; Levesy, B; Martin, A; Pitcher, C S; Pitts, R; Thomas, D; Vayakis, G; Walsh, M

    2010-10-01

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties. PMID:21033997

  6. ENVIRONMENTAL QUALITY INFORMATION SYSTEM - EQULS® - ITER

    EPA Science Inventory

    This project consisted of an evaluation of the Environmental Quality Information System (EQuIS) software designed by Earthsoft, Inc. as an environmental data management and analysis platform for monitoring and remediation projects. In consultation with the EQuIS vendor, six pri...

  7. Iterative algorithms for large sparse linear systems on parallel computers

    NASA Technical Reports Server (NTRS)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  8. Status of Europe's contribution to the ITER EC system

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.

    2015-03-01

    The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.

  9. Progress on the heating and current drive systems for ITER

    SciTech Connect

    Jacquinot, J.; Beaumont, Bertrand; Bora, D.; Campbell, D.; Darbos, Caroline; Decamps, H.; Graceffa, J.; Gassmann, T.; Hemsworth, R.; Henderson, Mark; Kobayashi, N.; Lamalle, Philippe; Schunke, B.; Tanaka, M.; Tanga, A.; Albajar, F.; Bonicelli, T.; Saibene, G.; Sartori, R.; Becoulet, A.; Hoang, G. T.; Inoue, T.; Sakamoto, K.; Takahashi, K.; Watanabe, K.; Goulding, Richard Howell; Rasmussen, David A; Swain, David W; Chakraborty, A.; Mukherjee, A.; Rao, S. L.; Denisov, G.; Nightingale, M.

    2009-06-01

    The electron cyclotron (EC), ion cyclotron (IC), heating-neutral beam (H-NB) and, although not in the day 1 baseline, lower hybrid (LH) systems intended for ITER have been reviewed in 2007/2008 in light of progress of physics and technology in the field. Although the overall specifications are unchanged, notable changes have been approved. Firstly, it has been emphasized that the H&CD systems are vital for the ITER programme. Consequently, the full 73 MW should be commissioned and available on a routine basis before the D/T phase. Secondly, significant changes have been approved at system level, most notably: the possibility to operate the heating beams at full power during the hydrogen phase requiring new shine through protection; the possibility to operate IC with 2 antennas with increased robustness (no moving parts); the possible increase to 2 MW of key components of the EC transmission systems in order to provide an easier upgrading of the EC power as may be required by the project; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognised. The review describes these changes and their rationale.

  10. Network analyses in systems pharmacology

    PubMed Central

    Berger, Seth I.; Iyengar, Ravi

    2009-01-01

    Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications. Contact: ravi.iyengar@mssm.edu PMID:19648136

  11. Progress and present status of ITER cryoline system

    SciTech Connect

    Badgujar, S.; Bonneton, M.; Chalifour, M.; Forgeas, A.; Serio, L.; Sarkar, B.; Shah, N.

    2014-01-29

    The cryoline system at ITER forms a very complex network localized inside the Tokamak building, on a dedicated plant bridge and in cryoplant areas. The cooling power produced in the cryoplant is distributed via these lines with a total length of about 3.7 km and interconnecting all the cold boxes of the cryogenic system as well as the cold boxes of various clients (magnets, cryopumps and thermal shield). Distinct layouts and polygonal geometry, nuclear safety and confinement requirements, difficult installation and in-service inspection/repair demand very high reliability and availability for the cryolines. The finalization of the building-embedded plates for supporting the lines, before the detailed design, has made this project technologically more challenging. The conceptual design phase has been completed and procurement arrangements have been signed with India, responsible for providing the system of cryolines and warm lines to ITER, as in kind contribution. The prototype test for the design and performance validation has been planned on a representative cryoline section. After describing the basic features and general layout of the ITER cryolines, the paper presents key design requirements, conceptual design approach, progress and status of the cryolines project as well as challenges to build such a complex cryoline system.

  12. Progress and present status of ITER cryoline system

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Bonneton, M.; Chalifour, M.; Forgeas, A.; Serio, L.; Sarkar, B.; Shah, N.

    2014-01-01

    The cryoline system at ITER forms a very complex network localized inside the Tokamak building, on a dedicated plant bridge and in cryoplant areas. The cooling power produced in the cryoplant is distributed via these lines with a total length of about 3.7 km and interconnecting all the cold boxes of the cryogenic system as well as the cold boxes of various clients (magnets, cryopumps and thermal shield). Distinct layouts and polygonal geometry, nuclear safety and confinement requirements, difficult installation and in-service inspection/repair demand very high reliability and availability for the cryolines. The finalization of the building-embedded plates for supporting the lines, before the detailed design, has made this project technologically more challenging. The conceptual design phase has been completed and procurement arrangements have been signed with India, responsible for providing the system of cryolines and warm lines to ITER, as in kind contribution. The prototype test for the design and performance validation has been planned on a representative cryoline section. After describing the basic features and general layout of the ITER cryolines, the paper presents key design requirements, conceptual design approach, progress and status of the cryolines project as well as challenges to build such a complex cryoline system.

  13. Progress on radio frequency auxiliary heating system designs in ITER

    SciTech Connect

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined.

  14. AZTEC: A parallel iterative package for the solving linear systems

    SciTech Connect

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  15. A new multisplitting asynchronous iterative method for linear system

    SciTech Connect

    Da-Wei Chang

    1995-12-01

    The parallel multisplitting iterative method for solving large nonsingular N x N linear system Ax = b was first presented by O`Leary and White, and it has been further investigated by Neumman and Plemmous, Chang. For improvement and generalization model B by Bru et al, our idea is, if there are more than one processors output y`s concurrently, proc(0) input all these information concurrently and use them to update the old approximation.

  16. Neutron activation system using water flow for ITER

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Ebisawa, K.; Kasai, S.; Walker, C.

    2003-03-01

    A neutron activation system with flowing water using the 16O(n,p)16N reaction has been designed for the International Thermonuclear Experimental Reaction (ITER) neutron yield monitor with temporal resolution, based on the experimental results carried out at the fusion neutronics source (FNS) facility of the Japan Atomic Energy Research Institute. On ITER, irradiation ends will be installed in the filler shielding module between the blanket modules at the equatorial ports. The gamma-ray counting stations will be installed on the upstairs of the pit outside the biological shield. BGO (Bi4Ge3O12) scintillation detectors will be employed to measure 6.13 MeV gamma rays emitted from 16N. The distance between the irradiation end and the counting station is ˜20 m. The performance of the neutron activation system has been evaluated by using the neutron Monte Carlo code MCNP-4b with the JENDL 3.2 library. The reaction rate of 16O(n,p)16N was calculated not only at the irradiation end but also along the transfer line, which showed that the temporal resolution would be less than the ITER requirement of 100 ms including turbulent diffusion effects for the flow velocity of 10 m/s. With a flow velocity of 10 m/s, this system can measure the fusion power from 50 kW to 1 GW of the ITER operation by using two gamma-ray detectors; one detector faces the water pipe directly, and another has a collimator for higher-neutron yield. Also the calculation shows that the reaction rate is relatively insensitive to the change of the plasma position.

  17. Radiation analysis of the ITER pellet injection system

    SciTech Connect

    Gouge, M.J. ); Gomes, I.C.; Gomes, L.T.; Stevens, P.N, )

    1991-03-01

    The results of neutronics calculations for the pellet injection system of the International Thermonuclear Experimental Reactor (ITER) are described. Hands-on maintenance of components in the pellet injection room results in a considerable simplification of maintenance support equipment and in greater system availability. The basic configuration of the pellet injection system includes small-diameter guide tubes with which the pellet may have several small-angle collisions before reaching the plasma. The pellet injector port through which the guide tubes pass will be shared with ITER plasma diagnostics, so the calculation takes into account penetrations to accommodate numerous channels for a neutron spectrometer and neutron and gamma-ray cameras. The conservative assumption of steady-state operation of ITER for 1000 days was taken as the baseline for calculating the activation of components in the pellet injection room. The plasma configuration is based on the current ITER guidelines, the first wall configuration is based on the most recently updated configuration, and the blanket configuration is based on the US proposal for the blanket. The plasma, coils, and blanket regions were analyzed with the Monte Carlo code MCNP. The transport of neutrons through the penetrations was also performed with MCNP. The pellet injection room was modeled with the two-dimensional discrete ordinates code DORT, which was also used for the transport of neutrons during operation and of gamma rays caused by activation. The activation calculations were carried out with the REBATE code. Results from this study indicate that restricted personnel access to the pellet injection room is possible, so limited hands-on maintenance can be performed on the majority of the components in the room.

  18. Contractive multifunctions, fixed point inclusions and iterated multifunction systems

    NASA Astrophysics Data System (ADS)

    Kunze, H. E.; La Torre, D.; Vrscay, E. R.

    2007-06-01

    We study the properties of multifunction operators that are contractive in the Covitz-Nadler sense. In this situation, such operators T possess fixed points satisfying the relation x[set membership, variant]Tx. We introduce an iterative method involving projections that guarantees convergence from any starting point x0[set membership, variant]X to a point x[set membership, variant]XT, the set of all fixed points of a multifunction operator T. We also prove a continuity result for fixed point sets XT as well as a "generalized collage theorem" for contractive multifunctions. These results can then be used to solve inverse problems involving contractive multifunctions. Two applications of contractive multifunctions are introduced: (i) integral inclusions and (ii) iterated multifunction systems.

  19. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  20. Neutron flux monitoring system for ITER-FEAT (abstract)

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu.; Krasilnikov, A.; Alekseyev, A.; Amosov, V.; Frunze, V.

    2001-01-01

    The concept of the neutron flux measurements for International Thermonuclear Experimental Reactor ITER-FEAT is discussed. In spite of the fact that ITER-FEAT has reduced fusion power with respect to ITER-FDR, the requirements for neutron flux monitors are similar—wide dynamic range (seven orders), good temporal resolution (1 ms), and high accuracy (10%). It is clear that fission chambers are the most suitable detectors for this application. However high neutron intensity of the fusion plasma and hard requirements lead to a more sophisticated detection system than the ordinary fission chamber. Another problem is an absolute calibration of the detectors. We propose a neutron flux monitoring system, which consist of microfission chambers placed inside the ITER vacuum chamber, three wide range fission chambers placed outside the vacuum chamber, natural diamond detector based compact neutron monitors placed inside the channels of the neutron cameras, and a compact neutron generator for calibration. Microfission chambers could be installed in the standard plugs with other detectors (vacuum x-ray diode, magnetic probe). 235U could be used as well as threshold fission materials (238U, 237Np, 232Th). In the last case the fission chamber will be covered by a boron shield to reduce the changes in the sensitivity. Wide range fission chambers will operate in both pulse count mode and Campbell mode. High linearity is provided by count mode. Temporal resolution of 1 ms is provided by the count mode at low neutron flux and by the Campbell mode at high flux. The nonlinearity of the fission chamber during the switch from count mode to Campbell mode will be corrected by another fission chamber with low sensitivity operating in count mode. Compact neutron flux monitors placed inside neutron cameras will consist of up to ten natural diamond neutron counters with sensitivity to DT neutrons doubled by properly installed poliethilen radiators. Such monitors provide DT neutron flux

  1. Electrical insulation systems for the ITER CS modules

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Martovetsky, N. N.

    2014-01-01

    For the U.S. fabricated ITER Central Solenoid (CS), six, almost identical, modules will be fabricated, then stacked together. The electrical insulation systems of the CS modules consist of turn, layer, and ground insulation. These electrical systems also serve to bond the coil conductors together. For this purpose, an epoxy resin is transferred into the coil assembly using a carefully designed vacuum-pressure impregnation process. The most important testing procedures, data, and design criteria for the key low-temperature, mechanical, and electrical properties are reviewed. Design of these systems is discussed.

  2. Status of the ITER IC H and CD System

    SciTech Connect

    Lamalle, P. U.; Beaumont, B.; Gassmann, T.; Kazarian, F.; Arambhadiya, B.; Bora, D.; Jacquinot, J.; Mitteau, R.; Schueller, F. C.; Tanga, A.; Baruah, U.; Bhardwaj, A.; Kumar, R.; Mukherjee, A.; Singh, N. P.; Singh, R.; Goulding, R.; Rasmussen, D.; Swain, D.; Agarici, G.

    2009-11-26

    The ITER Ion Cyclotron Heating and Current Drive system will deliver 20 MW of radio frequency power to the plasma in quasi continuous operation during the different phases of the experimental programme. The system also has to perform conditioning of the tokamak first wall at low power between main plasma discharges. This broad range of requirements imposes a high flexibility and a high availability. The paper highlights the physics and design requirements on the IC system, the main features of its subsystems, the predicted performance, and the current procurement and installation schedule.

  3. Design Evolution and Analysis of the ITER Cryostat Support System

    NASA Astrophysics Data System (ADS)

    Xie, Han; Song, Yuntao; Wang, Songke

    2015-12-01

    The cryostat is a vacuum tight container enveloping the entire basic systems of the ITER tokamak machine, including a vacuum vessel, a superconducting magnet and thermal shield etc. It is evacuated to a pressure of 10-4 Pa to limit the heat transfer via gas conduction and convection to the cryogenically cooled components. Another important function of cryostat is to support all the loads from the tokamak to the concrete floor of the pit by its support system during different operational regimes and accident scenarios. This paper briefly presents the design evolution and associated analysis of the cryostat support system and the structural interface with the building.

  4. Process Flow and Functional Analysis of the Iter Cryogenic System

    NASA Astrophysics Data System (ADS)

    Henry, D.; Chalifour, M.; Forgeas, A.; Kalinin, V.; Monneret, E.; Serio, L.; Vincent, G.; Voigt, T.

    2010-04-01

    The ITER cryogenic system is presently under design by a large international collaboration. It will start commissioning at Cadarache, south of France in 2015. The system is designed to provide an equivalent refrigeration capacity of 65 kW at 4.5 K for the superconducting magnet and 1300 kW at 80 K for the cryoplant pre-cooling stages and the Cryostat Thermal Shields (CTS). The cryoplant consists of three 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. Two 4.5 K modules are dedicated to the magnet system and a small one is devoted to the cryopumps and Pellet Injection System. One Interconnection box interfaces the cryoplant and a complex cryodistribution system which includes 5 Auxiliary Cold Boxes dedicated to each cryogenic subsystem. The ITER cryogenic system will have to cope with various normal and abnormal operational modes including superconducting magnets quench recovery and fast energy discharge. We will present the general Process Flow Diagram of the cryoplant and cryodistribution system and the operation requirements. The functional analysis of the cryogenic system will be performed leading to a proposal of the cryogenic control system architecture. The instrumentation and control requirements will also be outlined.

  5. Analysis of the ITER LFS Reflectometer Transmission Line System

    SciTech Connect

    Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J; Biewer, Theodore M

    2010-01-01

    A critical issue in the design of the ITER Low Field Side (LFS) reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ~42 m of corrugated waveguide and up to 10 miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing mode conversion and reflections in the waveguide are critical to minimizing standing waves and phase errors in the reflectometer-measured phase. The performance of the corrugated waveguide and miter bends is analyzed and recommendations given.

  6. The efficient parallel iterative solution of large sparse linear systems

    SciTech Connect

    Jones, M.T.; Plassmann, P.E.

    1992-06-01

    The development of efficient, general-purpose software for the iterative solution of sparse linear systems on a parallel MIMD computer requires an interesting combination of expertise. Parallel graph heuristics, convergence analysis, and basic linear algebra implementation issues must all be considered. In this paper, we discuss how we have incorporated recent results in these areas into a general-purpose iterative solver. First, we consider two recently developed parallel graph coloring heuristics. We show how the method proposed by Luby, based on determining maximal independent sets, can be modified to run in an asynchronous manner and give aa expected running time bound for this modified heuristic. In addition, a number of graph reduction heuristics are described that are used in our implementation to improve the individual processor performance. The effect of these various graph reductions on the solution of sparse triangular systems is categorized. Finally, we discuss the performance of this solver from the perspective of two large-scale applications: a piezoelectric crystal finite-element modeling problem, and a nonlinear optimization problem to determine the minimum energy configuration of a three-dimensional, layered superconductor model.

  7. Initial results of systems analysis ETR/ITER design space

    SciTech Connect

    Peng, Yueng Kay Martin; Galambos, John D; Reid, R. L.; Strickler, Dennis J

    1987-01-01

    Preliminary versions of the Engineering Test REactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. They find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W{sub L} {approx}> 1.0 MW/m{sup 2}) leads to minimum size at higher A ({approx} 3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J{sub wp}. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I{sub p} > 15 MA and R < 4.5 m has been obtained by combining the engineering asumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence.

  8. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-01-01

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during both normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.

  9. Parallel, iterative solution of sparse linear systems: Models and architectures

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Patrick, M. L.

    1984-01-01

    A model of a general class of asynchronous, iterative solution methods for linear systems is developed. In the model, the system is solved by creating several cooperating tasks that each compute a portion of the solution vector. A data transfer model predicting both the probability that data must be transferred between two tasks and the amount of data to be transferred is presented. This model is used to derive an execution time model for predicting parallel execution time and an optimal number of tasks given the dimension and sparsity of the coefficient matrix and the costs of computation, synchronization, and communication. The suitability of different parallel architectures for solving randomly sparse linear systems is discussed. Based on the complexity of task scheduling, one parallel architecture, based on a broadcast bus, is presented and analyzed.

  10. Iterative development of visual control systems in a research vivarium.

    PubMed

    Bassuk, James A; Washington, Ida M

    2014-01-01

    The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected Principles

  11. Iterative Development of Visual Control Systems in a Research Vivarium

    PubMed Central

    Bassuk, James A.; Washington, Ida M.

    2014-01-01

    The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children’s (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart’s Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected

  12. Simplified thermal model of the ITER magnet system

    NASA Astrophysics Data System (ADS)

    Furci, Hernán; Luongo, Cesar

    2014-09-01

    A simplified thermal model of the ITER magnet system has been developed to capture the essence of the magnet heat load dynamics without the need for extensive computations. Idealization of the magnets has been made using mainly two standard types of elements, solids and tubes. No Navier-Stokes equations have been solved for the hydraulics, but instead a simple transport model with approximation for pressure evolution has been used. The model was implemented in C language and used to investigate the important features needed to implement a computationally efficient and fast magnet thermal model capturing overall behavior in terms of superconductor cooling channel description (thermal coupling with jackets, presence of the conductor, importance of the central channel, etc.). Furthermore, the model was benchmarked against validated simulation tools such as SuperMagnet and Vincenta using the ITER Central Solenoid normal operation scenario for comparison. Dynamics were shown to be reproduced in good agreement with results attainable with these more detailed codes, considering the high level of uncertainty on the input parameters, namely the heat transfer coefficients and the values of heat loads.

  13. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106

  14. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  15. The cryogenic system for ITER CC superconducting conductor test facility

    NASA Astrophysics Data System (ADS)

    Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

    2011-01-01

    This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

  16. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    NASA Technical Reports Server (NTRS)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  17. Iterative phase retrieval algorithms. Part II: Attacking optical encryption systems.

    PubMed

    Guo, Changliang; Liu, Shi; Sheridan, John T

    2015-05-20

    The modified iterative phase retrieval algorithms developed in Part I [Guo et al., Appl. Opt.54, 4698 (2015)] are applied to perform known plaintext and ciphertext attacks on amplitude encoding and phase encoding Fourier-transform-based double random phase encryption (DRPE) systems. It is shown that the new algorithms can retrieve the two random phase keys (RPKs) perfectly. The performances of the algorithms are tested by using the retrieved RPKs to decrypt a set of different ciphertexts encrypted using the same RPKs. Significantly, it is also shown that the DRPE system is, under certain conditions, vulnerable to ciphertext-only attack, i.e., in some cases an attacker can decrypt DRPE data successfully when only the ciphertext is intercepted. PMID:26192505

  18. The ITER divertor Thomson scattering system: engineering and advanced hardware solutions

    NASA Astrophysics Data System (ADS)

    Mukhin, E. E.; Semenov, V. V.; Razdobarin, A. G.; Tolstyakov, S. Yu; Kochergin, M. M.; Kurskiev, G. S.; Berezutsky, A. A.; Podushnikova, K. A.; Masyukevich, S. V.; Chernakov, P. V.; Borovkov, A. I.; Modestov, V. S.; Nemov, A. S.; Voinov, A. S.; Kornev, A. F.; Stupnikov, V. K.; Borisov, A. A.; Baranov, G. N.; Koval, A. N.; Makushina, A. F.; Yelizarov, B. A.; Kukushkin, A. S.; Encheva, A.; Andrew, P.

    2012-02-01

    A divertor Thomson scattering (TS) system being developed for ITER has incorporated proven solutions from currently available TS systems. On the other hand any ITER diagnostic has to operate in a hostile environment and very restricted access geometry. Therefore the operation in an environment of intensive stray light, plasma background radiation, the necessity meet the requirement using only a 20 mm gap between divertor cassettes for plasma diagnosis as well as to measure plasma temperatures as low as 1 eV severely constrain the divertor TS diagnostic design. The challenging solutions of this novel diagnostic system which has to ensure its steady performance and also the operability and maintenance are the focus of this report. One of the most demanding parts of the in-vessel diagnostic equipment development is the design assessment using different engineering analyses. The task definition and first results of thermal, e/m and seismic analyses are provided. The process of further improving of the design involves identification of susceptible areas and multiple iterations of the design, as needed. One of the key points for all Thomson scattering diagnostics are the laser capabilities. A high-performance and high-power laser system using a steady-state and high-repetitive mode Nd:YAG laser (2J, 50-100Hz, 3ns) has been developed. The reduced laser pulse duration matched with high-speed low-noise APD detector can be very important under high background light level. For diagnostics such as Thomson scattering and Raman spectroscopy, a high-degree of discrimination against stray light at the laser wavelength is required for successful detection of wavelength-shifted light from the laser-plasma interaction region. For this case of high stray light level, a triple grating polychromator characterized by high rejection and high transmission has been designed and developed. The novel polychromator design minimizes stray light while still maintaining a relatively high

  19. Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems: Revision 1

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-10-09

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.

  20. An iterative algorithm for a system of generalized implicit variational inclusions.

    PubMed

    Ahmad, Iqbal; Mishra, Vishnu Narayan; Ahmad, Rais; Rahaman, Mijanur

    2016-01-01

    In this paper, we introduce a system of generalized implicit variational inclusions which consists of three variational inclusions. We design an iterative algorithm with error terms based on relaxed resolvent operator due to Ahmad et al. (Stat Optim Inf Comput 4:183-193, 2016) for approximating the solution of our system. The convergence of the iterative sequences generated by the iterative algorithm is also discussed. An example is given which satisfy all the conditions of our main result. PMID:27547658

  1. Aviation System Analysis Capability Executive Assistant Analyses

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Kostiuk, Peter

    1999-01-01

    This document describes the analyses that may be incorporated into the Aviation System Analysis Capability Executive Assistant. The document will be used as a discussion tool to enable NASA and other integrated aviation system entities to evaluate, discuss, and prioritize analyses.

  2. Analysis of the ITER ICRH Decoupling and Matching System

    NASA Astrophysics Data System (ADS)

    Vervier, M.; Messiaen, A.; Dumortier, P.

    2009-11-01

    The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a "double stub" tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.

  3. Analysis of the ITER ICRH Decoupling and Matching System

    SciTech Connect

    Vervier, M.; Messiaen, A.; Dumortier, P.

    2009-11-26

    The reference ITER ICRH load resilient matching system uses four 3dB hybrid power splitters. It is proposed to use a 'double stub' tuner (DST) configuration for the matching on the reference load and a decoupling system placed between the antenna plug and the matching system to reduce the mutual coupling effects and also to actively control the array current spectrum while requesting the same forward power from all 4 power sources. The paper analyzes (i) the optimization of the matching layout e.g. by varying the distance between the stubs and by the use of two capacitors taking into account the role of the decouplers on the matching requirements; (ii) the practical realization of the decouplers and their insertion into the circuit; (iii) the requests in voltage and current capabilities in the different parts of the system. The paper presents solutions for saving space and to decrease the ratings of the components. The computations are done with the array loading simulated by the TOPICA matrix.

  4. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    SciTech Connect

    Benzi, M.; Tuma, M.

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  5. An Overview Of The ITER In-Vessel Coil Systems

    SciTech Connect

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E; Reed, R P

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  6. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.

    PubMed

    Liu, Derong; Wei, Qinglai

    2014-03-01

    This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455

  7. Overlap Functions for Measures in Conformal Iterated Function Systems

    NASA Astrophysics Data System (ADS)

    Mihailescu, Eugen; Urbański, Mariusz

    2016-01-01

    We employ thermodynamic formalism for the study of conformal iterated function systems (IFS) S = {φ _i}_{i in I} with arbitrary overlaps, and of measures μ on limit sets Λ , which are projections of equilibrium measures hat{μ } with respect to a certain lift map Φ on Σ _I^+ × Λ . No type of Open Set Condition is assumed. We introduce a notion of overlap function and overlap number for such a measure hat{μ } with respect to S; and, in particular a notion of (topological) overlap number o(S). These notions take in consideration the n-chains between points in the limit set. We prove that o(S, hat{μ }) is related to a conditional entropy of hat{μ } with respect to the lift Φ . Various types of projections to Λ of invariant measures are studied. We obtain upper estimates for the Hausdorff dimension HD(μ ) of μ on Λ , by using pressure functions and o(S, hat{μ }). In particular, this applies to projections of Bernoulli measures on Σ _I^+. Next, we apply the results to Bernoulli convolutions ν _λ for λ in (1/2, 1), which correspond to self-similar measures determined by composing, with equal probabilities, the contractions of an IFS with overlaps S_λ . We prove that for all λ in (1/2, 1), there exists a relation between HD(ν _λ ) and the overlap number o(S_λ ). We also estimate o(S_λ ) for certain values of λ.

  8. Active spectroscopic measurements using the ITER diagnostic system

    SciTech Connect

    Thomas, D. M.; Counsell, G.; Johnson, D.; Vasu, P.; Zvonkov, A.

    2010-10-15

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale ({approx}1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  9. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  10. Development of a YAG laser system for the edge Thomson scattering system in ITER

    SciTech Connect

    Hatae, T.; Yatsuka, E.; Hayashi, T.; Ono, T.; Kusama, Y.; Yoshida, H.

    2012-10-15

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  11. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    SciTech Connect

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M.; Thellier, C.; Ferme, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-10-15

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  12. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  13. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  14. Used Fuel Management System Interface Analyses - 13578

    SciTech Connect

    Howard, Robert; Busch, Ingrid; Nutt, Mark; Morris, Edgar; Puig, Francesc; Carter, Joe; Delley, Alexcia; Rodwell, Phillip; Hardin, Ernest; Kalinina, Elena; Clark, Robert; Cotton, Thomas

    2013-07-01

    Preliminary system-level analyses of the interfaces between at-reactor used fuel management, consolidated storage facilities, and disposal facilities, along with the development of supporting logistics simulation tools, have been initiated to provide the U.S. Department of Energy (DOE) and other stakeholders with information regarding the various alternatives for managing used nuclear fuel (UNF) generated by the current fleet of light water reactors operating in the United States. An important UNF management system interface consideration is the need for ultimate disposal of UNF assemblies contained in waste packages that are sized to be compatible with different geologic media. Thermal analyses indicate that waste package sizes for the geologic media under consideration by the Used Fuel Disposition Campaign may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded and being loaded into the dry storage canisters currently in use. The implications of where and when the packaging or repackaging of commercial UNF will occur are key questions being addressed in this evaluation. The analysis demonstrated that thermal considerations will have a major impact on the operation of the system and that acceptance priority, rates, and facility start dates have significant system implications. (authors)

  15. Transportation systems analyses: Volume 1: Executive Summary

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This executive summary of the transportation systems analyses (TSM) semi-annual report addresses the SSF logistics resupply. Our analysis parallels the ongoing NASA SSF redesign effort. Therefore, there could be no SSF design to drive our logistics analysis. Consequently, the analysis attempted to bound the reasonable SSF design possibilities (and the subsequent transportation implications). No other strategy really exists until after a final decision is rendered on the SSF configuration.

  16. A comparison of iterative methods for a model coupled system of elliptic equations

    SciTech Connect

    Donato, J.M.

    1993-08-01

    Many interesting areas of current industry work deal with non-linear coupled systems of partial differential equations. We examine iterative methods for the solution of a model two-dimensional coupled system based on a linearized form of the two carrier drift-diffusion equations from semiconductor modeling. Discretizing this model system yields a large non-symmetric indefinite sparse matrix. To solve the model system various point and block methods, including the hybrid iterative method Alternate Block Factorization (ABF), are applied. We also employ GMRES with various preconditioners, including block and point incomplete LU (ILU) factorizations. The performance of these methods is compared. It is seen that the preferred ordering of the grid variables and the choice of iterative method are dependent upon the magnitudes of the coupling parameters. For this model, ABF is the most robust of the non-accelerated iterative methods. Among the preconditioners employed with GMRES, the blocked ``by grid point`` version of both the ILU and MILU preconditioners are the most robust and the most time efficient over the wide range of parameter values tested. This information may aid in the choice of iterative methods and preconditioners for solving more complicated, yet analogous, coupled systems.

  17. Status of the ITER Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  18. Reproducibility of neuroimaging analyses across operating systems

    PubMed Central

    Glatard, Tristan; Lewis, Lindsay B.; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C.

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed. PMID:25964757

  19. Transportation systems analyses. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The principal objective is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform crew delivery and return, cargo transfer, cargo delivery and return, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include: the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationship between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. Conceptual studies of transportation elements contribute to the systems approach by identifying elements (such as ETO node and transfer/excursion vehicles) needed in current and planned transportation systems. These studies are also a mechanism to integrate the results of relevant parallel studies.

  20. Results of Iterative Standards-Setting Procedures for a Performance-Based System for Renewable Certification.

    ERIC Educational Resources Information Center

    Lofton, Glenda G.; And Others

    This report presents the results of an initial, iterative performance standards-setting (SS) task of a comprehensive on-the-job statewide teacher assessment system--the System for Teaching and Learning Assessment and Review (STAR). The 1990-91 STAR assesses and makes inferences about the quality of teaching and learning on sets of assessment…

  1. Random countable alphabet conformal iterated function systems satisfying the transversality condition

    NASA Astrophysics Data System (ADS)

    Urbański, Mariusz

    2016-03-01

    Dealing with with countable (finite and infinite alike) alphabet random conformal iterated function systems with overlaps, we formulate appropriate transversality conditions and then prove the relevant, in such a context, the Moran-Bowen formula which determines the Hausdorff dimension of random limit sets in dynamical terms. We also provide large classes of examples of such random systems satisfying the transversality condition.

  2. Progress in design and integration of the ITER Electron Cyclotron H&CD system

    SciTech Connect

    Darbos, Caroline; Henderson, Mark; Kobayashi, N.; Albajar, F.; Bonicelli, T.; Saibene, G.; Bigelow, Timothy S; Rasmussen, David A; Chavan, R.; Fasel, D.; Hogge, J. P.; Denisov, G. G.; Heidinger, R.; Piosczyk, B.; Thumm, M.; Rao, S. L.; Sakamoto, K.; Takahaski, K.; Thumm, M.

    2009-06-01

    The Electron Cyclotron system for ITER is an in-kind procurement shared between five parties and the total installed power will be 24 MW, corresponding to a nominal injected power of 20 MW to the plasma, with a possible upgrade up to 48 MW (corresponding to 40 MW injected). Some critical issues have been raised and changes are proposed to simplify these procurements and to facilitate the integration into ITER. The progress in the design and the integration of the EC system into the whole project is presented in this paper, as well as some issues still under studies and some recommendations made by external expert committees.

  3. Iterative solution of large, sparse linear systems on a static data flow architecture - Performance studies

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Patrick, M. L.

    1985-01-01

    The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PE's, and pipelining, the streaming of data from array memories through the PE's. The performance model is used to analyze a row partitioned iterative algorithm for solving sparse linear systems of algebraic equations. Based on this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.

  4. Block quasi-minimal residual iterations for non-Hermitian linear systems

    SciTech Connect

    Freund, R.W.

    1994-12-31

    Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ only in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is usually more efficient to employ a block version of the method that generates blocks of iterates for all the systems simultaneously. An example of such an iteration is the block conjugate gradient algorithm, which was first studied by Underwood and O`Leary. On parallel architectures, block versions of conjugate gradient-type methods are attractive even for the solution of single linear systems, since they have fewer synchronization points than the standard versions of these algorithms. In this talk, the author presents a block version of Freund and Nachtigal`s quasi-minimal residual (QMR) method for the iterative solution of non-Hermitian linear systems. He describes two different implementations of the block-QMR method, one based on a block version of the three-term Lanczos algorithm and one based on coupled two-term block recurrences. In both cases, the underlying block-Lanczos process still allows arbitrary normalizations of the vectors within each block, and the author discusses different normalization strategies. To maintain linear independence within each block, it is usually necessary to reduce the block size in the course of the iteration, and the author describes a deflation technique for performing this reduction. He also present some convergence results, and reports results of numerical experiments with the block-QMR method. Finally, the author discusses possible block versions of transpose-free Lanczos-based iterations such as the TFQMR method.

  5. On the HSS iteration methods for positive definite Toeplitz linear systems

    NASA Astrophysics Data System (ADS)

    Gu, Chuanqing; Tian, Zhaolu

    2009-02-01

    We study the HSS iteration method for large sparse non-Hermitian positive definite Toeplitz linear systems, which first appears in Bai, Golub and Ng's paper published in 2003 [Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003) 603-626], and HSS stands for the Hermitian and skew-Hermitian splitting of the coefficient matrix A. In this note we use the HSS iteration method based on a special case of the HSS splitting, where the symmetric part is a centrosymmetric matrix and the skew-symmetric part is a skew-centrosymmetric matrix for a given Toeplitz matrix. Hence, fast methods are available for computing the two half-steps involved in the HSS and IHSS iteration methods. Some numerical results illustrate their effectiveness.

  6. LU-decomposition with iterative refinement for solving sparse linear systems

    NASA Astrophysics Data System (ADS)

    Al-Kurdi, Ahmad; Kincaid, David R.

    2006-01-01

    In the solution of a system of linear algebraic equations Ax=b with a large sparse coefficient matrix A, the LU-decomposition with iterative refinement (LUIR) is compared with the LU-decomposition with direct solution (LUDS), which is without iterative refinement. We verify by numerical experiments that the use of sparse matrix techniques with LUIR may result in a reduction of both the computing time and the storage requirements. The powers of a Boolean matrix strategy (PBS) is used in an effort to achieve such a reduction and in an attempt to control the sparsity. We conclude that iterative refinement procedures may be efficiently used as an option in software for the solution of sparse linear systems of equations.

  7. Korea's activities for the development of ITER tritium storage and delivery systems

    SciTech Connect

    Chung, H.; Shim, M.; Ahn, D. H.; Lee, M.; Hong, C.; Yoshida, H.; Song, K. M.; Kim, D. J.

    2008-07-15

    The ITER fuel cycle plant is composed of various subsystems such as a long term tritium storage system (LTS), a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea shares in the construction of the ITER fuel cycle plant with the EU (Japan)) and US, and is responsible for the development and supply of the SDS and LTS. The authors thus present details on the development status of the tritium transport container, the long term tritium storage beds, the short-term delivery system T{sub 2}, DT, and the D{sub 2} storage beds, the calorimetry system, and the associated He-3 recovery loop, the over pressure protection systems, and the gas analysis manifold connected to the tritium plant's analytical systems. (authors)

  8. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  9. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    NASA Astrophysics Data System (ADS)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  10. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG.

    PubMed

    Rahol, Jussi; Tissari, Satu

    2002-03-21

    We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time. PMID:11936181

  11. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG

    NASA Astrophysics Data System (ADS)

    Rahola, Jussi; Tissari, Satu

    2002-03-01

    We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time.

  12. Status of the design of the Diagnostic Residual Gas Analyzer System for ITER first plasma

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Klepper, C. C.; Devan, B.; Graves, V.; Marcus, C.; Younkin, T.; Andrew, P.; Johnson, D. W.

    2013-10-01

    Among the ITER procurements awarded to the US ITER Domestic Agency, and subsequently to the ORNL Fusion & Materials for Nuclear Systems Division, is the design and fabrication of the Diagnostc Residual Gas Analyzer (DRGA) system. The DRGA system reached the Preliminary Design Review (PDR) in Spring 2013, and has transitioned into the Final Design phase. As a result of the PDR, and ITER systems design evolutions, several design changes have been incorporated into the DRGA system. The design effort has focused on the vacuum and mechanical interface of the DRGA gas sampling tube with the ITER vacuum vessel and cyrostat. Moreover, R&D tasks to demonstrate the 3-sensor instrumentation design (quadrupole mass spectrometer, ion-trap mass spectrometer, and optical Penning gauge) are maturing through the construction and testing of a DRGA prototype at ORNL. Results will be presented at this poster along with the DRGA design overview. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  13. Conceptual design of a High Temperature Superconductor current feeder system for ITER

    NASA Astrophysics Data System (ADS)

    Tanna, V. L.; Fietz, W. H.; Heller, R.; Vostner, A.; Wesche, R.; Zahn, G. R.

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) project envisages a techno-economically feasible solution of its current feeder system in order to reduce the overall cryogenic requirements and operational costs. Since the ITER magnet system has a long stand-by time with respect to its operation duty cycle, it is essential to optimize the operational costs of the current feeder system taking into consideration both, the full current and stand-by modes. The present HTS technology has reached the maturity that HTS conductors are applicable for the current feeder system of ITER. The replacement of the actually planned conventional current leads by HTS current leads would provide considerable savings in the refrigeration investment and operational costs. Another option is the substitution of the water cooled high current aluminum feeders by HTS feeders, so called HTS bus bars. In this paper, the different design options of Bi-2223/Ag HTS based bus bars as prototype unit modules for ITER are discussed. The performance of different cooling schemes for HTS bus bars is studied and the design related critical issues e.g. metallic transition (65 K -300 K) and bending of bus bar, AC loss, thermal loss and reliability of the cooling system are investigated.

  14. Total-system performance assessment for Yucca Mountain -- SNL second iteration (TSPA-1993); Executive summary

    SciTech Connect

    Wilson, M.L.; Barnard, R.W.; Gauthier, J.H. |

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone. Probabilistic analyses are performed for aqueous and gaseous flow and transport, human intrusion, and basaltic magmatic activity. Results of the calculations lead to a number of recommendations concerning studies related to site characterization. Primary among these are the recommendations to obtain better information on percolation flux at Yucca Mountain, on the presence or absence of flowing fractures, and on physical and chemical processes influencing gaseous flow. Near-field thermal and chemical processes, and waste-container degradation are also areas where additional investigations may reduce important uncertainties. Recommendations for repository and waste-package design studies are: (1) to evaluate the performance implications of large-size containers, and (2) to investigate in more detail the implications of high repository thermal power output on the adjacent host rock and on the spent fuel.

  15. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  16. An iterative inter-track interference mitigation method for two-dimensional magnetic recording systems

    NASA Astrophysics Data System (ADS)

    Warisarn, C.; Losuwan, T.; Supnithi, P.; Kovintavewat, P.

    2014-05-01

    At high recording density, the readback signal of two-dimensional magnetic recording is inevitably corrupted by the two-dimensional (2D) interference consisting of inter-symbol interference and inter-track interference (ITI), which can significantly degrade the overall system performance. This paper proposes an iterative ITI mitigation method using three modified 2D soft-output Viterbi algorithm (2D-SOVA) detectors in conjunction with an iterative processing technique to combat the 2D interference. The codeword of the outer code is divided and then written on three separate tracks. For every iteration, all 2D-SOVA detectors exchange the soft information to improve the reliability of the a priori information and use it in the branch metric calculation, before feeding the refined soft information to the outer decoder. Simulation results show that the proposed method outperforms the conventional receiver and the existing partial ITI mitigation method.

  17. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE PAGESBeta

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; Thornquist, Heidi

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  18. Progress in the Design and Development of the ITER Low-Field Side Reflectometer (LFSR) System

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Wang, G.; Peebles, W. A.; US LFSR Team

    2015-11-01

    The US has formed a team, comprised of personnel from PPPL, ORNL, GA and UCLA, to develop the LFSR system for ITER. The LFSR system will contribute to the measurement of a number of plasma parameters on ITER, including edge plasma electron density profiles, monitor Edge Localized Modes (ELMs) and L-H transitions, and provide physics measurements relating to high frequency instabilities, plasma flows, and other density transients. An overview of the status of design activities and component testing for the system will be presented. Since the 2011 conceptual design review, the number of microwave transmission lines (TLs) and antennas has been reduced from twelve (12) to seven (7) due to space constraint in the ITER Tokamak Port Plug. This change has required a reconfiguration and recalculation of the performance of the front-end antenna design, which now includes use of monostatic transmission lines and antennas. Work supported by US ITER/PPPL Subcontracts S013252-C and S012340, and PO 4500051400 from GA to UCLA.

  19. Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation

    NASA Astrophysics Data System (ADS)

    Bittner-Rohrhofer, K.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2002-11-01

    The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m -2 ( E>0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension-tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.

  20. Analysis of the ITER Low Field Side Reflectometer Transmission Line System

    SciTech Connect

    Hanson, Gregory R; Wilgen, John B; Bigelow, Tim S; Diem, Stephanie J; Biewer, Theodore M

    2010-01-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of 42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

  1. A laser scanning system for metrology and viewing in ITER

    SciTech Connect

    Spampinato, P.T.; Barry, R.E.; Menon, M.M.; Herndon, J.N.; Dagher, M.A.; Maslakowski, J.E.

    1996-05-01

    The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.

  2. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  3. Twin-Screw Extruder Development for the ITER Pellet Injection System

    SciTech Connect

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; McGill, James M; Rasmussen, David A; Leachman, J. W.

    2009-01-01

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.

  4. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  5. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  6. An iterative approach to the optimal co-design of linear control systems

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Wang, Yebin; Bortoff, Scott A.; Jiang, Zhong-Ping

    2016-04-01

    This paper investigates the optimal co-design of both physical plants and control policies for a class of continuous-time linear control systems. The optimal co-design of a specific linear control system is commonly formulated as a nonlinear non-convex optimisation problem (NNOP), and solved by using iterative techniques, where the plant parameters and the control policy are updated iteratively and alternately. This paper proposes a novel iterative approach to solve the NNOP, where the plant parameters are updated by solving a standard semi-definite programming problem, with non-convexity no longer involved. The proposed system design is generally less conservative in terms of the system performance compared to the conventional system-equivalence-based design, albeit the range of applicability is slightly reduced. A practical optimisation algorithm is proposed to compute a sub-optimal solution ensuring the system stability, and the convergence of the algorithm is established. The effectiveness of the proposed algorithm is illustrated by its application to the optimal co-design of a physical load positioning system.

  7. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Luo, Minzhou; Mei, Tao; Yao, Damao

    2009-06-01

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  8. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  9. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  10. Random-iteration algorithm-based optical parallel architecture for fractal-image decoding by use of iterated-function system codes.

    PubMed

    Chang, H T; Kuo, C J

    1998-03-10

    An optical parallel architecture for the random-iteration algorithm to decode a fractal image by use of iterated-function system (IFS) codes is proposed. The code value is first converted into transmittance in film or a spatial light modulator in the optical part of the system. With an optical-to-electrical converter, electrical-to-optical converter, and some electronic circuits for addition and delay, we can perform the contractive affine transformation (CAT) denoted in IFS codes. In the proposed decoding architecture all CAT's generate points (image pixels) in parallel, and these points then are joined for display purposes. Therefore the decoding speed is improved greatly compared with existing serial-decoding architectures. In addition, an error and stability analysis that considers nonperfect elements is presented for the proposed optical system. Finally, simulation results are given to validate the proposed architecture. PMID:18268718

  11. Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1

    SciTech Connect

    Wilson, M.L.; Gauthier, J.H.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Guerin, D.C.; Lu, N.; Martinez, M.J.

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

  12. Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 2

    SciTech Connect

    Wilson, M.L.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Martinez, M.J.; Gauthier, J.H.; Guerin, D.C.; Lu, N.

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

  13. Design of the Remote Steerable ECRH launching system for the ITER upper ports

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Elzendoorn, B. S. Q.; Bongers, W. A.; Bruschi, A.; Cirant, S.; Danilov, I.; Fernandez, A.; Gantenbein, G.; Graswinckel, M. F.; Heidinger, R.; Kasparek, W.; Kleefeldt, K.; Kruijt, O. G.; Lamers, B.; Piosczyk, B.; Plaum, B.; Ronden, D. M. S.; Saibene, G.; Zohm, H.

    2005-01-01

    An ECRH (electron-cyclotron resonance heating) launching system for the ITER upper ports is being designed. The aim of the system is to inject Electron Cyclotron Waves (ECW) in the ITER plasma in order to stabilize neoclassical tearing modes (NTM). Each of the four upper-port launchers consists of six mm-wave lines capable of transmitting high power up to 2 MW per line at 170 GHz. In order to exploit the capability of ECW for localized heating and current drive over a range of plasma radii in ITER, the ECH&CD upper port launcher must have a beam steering capability. The Remote Steering (RS) principle has great advantages, because it enables to avoid steerable mirrors with flexible cooling lines at the plasma-facing end of the launcher. The principle consists of a long, corrugated, square waveguide having the steerable optics placed outside of the first confinement boundary of the vacuum vessel. All vulnerable components are far away from the hostile plasma environment. Furthermore, the RS launching system enables to do maintenance on the system during shutdown, without affecting the torus vacuum and the blanket cooling circuits.

  14. A Second-Order Iterative Implicit Explicit Hybrid Scheme for Hyperbolic Systems of Conservation Laws

    NASA Astrophysics Data System (ADS)

    Dai, Wenlong; Woodward, Paul R.

    1996-10-01

    An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples.

  15. Tritium processing system for the ITER Li/V blanket test module

    SciTech Connect

    Sze, D.K.; Hua, T.Q.; Abdou, M.A.; Dagher, M.A.; Waganer, L.M.

    1997-04-01

    The purpose of the ITER Blanket Testing Module is to test the operating and performance of candidate blanket concepts under a real fusion environment. To assure fuel self-sufficiency the tritium breeding, recovery and processing have to be demonstrated. The tritium produced in the blanket has to be processed to a purity which can be used for refueling. All these functions need to be accomplished so that the tritium system can be scaled to a commercial fusion power plant from a safety and reliability point of view. This paper summarizes the tritium processing steps, the size of the equipment, power requirements, space requirements, etc. for a self-cooled lithium blanket. This information is needed for the design and layout of the test blanket ancillary system and to assure that the ITER guidelines for remote handling of ancillary equipment can be met.

  16. Modeling heterogeneous and fractured reservoirs with inverse methods based on iterated function systems

    SciTech Connect

    Long, J.C.S.; Doughty, C.; Hestir, K.; Martel, S.

    1992-05-01

    Fractured and heterogeneous reservoirs are complex and difficult to characterize. In many cases, the modeling approaches used for making predictions of behavior in such reservoirs have been unsatisfactory. In this paper we describe a new modeling approach which results in a model that has fractal-like qualities. This is an inverse approach which uses observations of reservoir behavior to create a model that can reproduce observed behavior. The model is described by an iterated function system (IFS) that creates a fractal-like object that can be mapped into a conductivity distribution. It may be possible to identify subclasses of Iterated Function Systems which describe geological facies. By limiting the behavior-based search for an IFS to the geologic subclasses, we can condition the reservoir model on geologic information. This technique is under development, but several examples provide encouragement for eventual application to reservoir prediction.

  17. Adaptive iterated function systems filter for images highly corrupted with fixed - Value impulse noise

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.

    2014-06-01

    The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.

  18. Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Golub, Gene H.; Nachtigal, Noel M.

    1992-01-01

    In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments.

  19. A model of asynchronous iterative algorithms for solving large, sparse, linear systems

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Patrick, M. L.

    1984-01-01

    Solving large, sparse, linear systems of equations is one of the fundamental problems in large scale scientific and engineering computation. A model of a general class of asynchronous, iterative solution methods for linear systems is developed. In the model, the system is solved by creating several cooperating tasks that each compute a portion of the solution vector. This model is then analyzed to determine the expected intertask data transfer and task computational complexity as functions of the number of tasks. Based on the analysis, recommendations for task partitioning are made. These recommendations are a function of the sparseness of the linear system, its structure (i.e., randomly sparse or banded), and dimension.

  20. Higher dimensional systems of differential equations obtainable by iterative use of complex methods

    NASA Astrophysics Data System (ADS)

    Qadir, Asghar; Mahomed, Fazal M.

    2015-04-01

    A procedure had been developed to solve systems of two ordinary and partial differential equations (ODEs and PDEs) that could be obtained from scalar complex ODEs by splitting into their real and imaginary parts. The procedure was extended to four dimensional systems obtainable by splitting complex systems of two ODEs into their real and imaginary parts. As it stood, this procedure could be extended to any even dimension but not to odd dimensional systems. In this paper, the complex splitting is used iteratively to obtain three and four dimensional systems of ODEs and four dimensional systems of PDEs for four functions of two and four variables that correspond to a scalar base equation. We also provide characterization criteria for such systems to correspond to the base equation and a clear procedure to construct the base equation. The new systems of four ODEs are distinct from the class obtained by the single split of a two dimensional system. The previous complex methods split each infinitesimal symmetry generator into a pair of operators such that the entire set of operators do not form a Lie algebra. The iterative procedure sheds some light on the emergence of these "Lie-like" operators. In this procedure the higher dimensional system may not have any or the required symmetry for being directly solvable by symmetry and other methods although the base equation can have sufficient symmetry properties. Illustrative examples are provided.

  1. Enhanced iterative learning control for a piezoelectric actuator system using wavelet transform filtering

    NASA Astrophysics Data System (ADS)

    Chien, Chiang-Ju; Lee, Fu-Shin; Wang, Jhen-Cheng

    2007-01-01

    For trajectory tracking of a piezoelectric actuator system, an enhanced iterative learning control (ILC) scheme based on wavelet transform filtering (WTF) is proposed in this research. The enhanced ILC scheme incorporates a state compensation in the ILC formula. Combining state compensation with iterative learning, the scheme enhances tracking accuracies substantially, in comparison to the conventional D-type ILC and a proportional control-aided D-type ILC. The wavelet transform is adopted to filter learnable tracking errors without phase shift. Based on both a time-frequency analysis of tracking errors and a convergence bandwidth analysis of ILC, a two-level WTF is chosen for ILC in this study. The enhanced ILC scheme using WTF was applied to track two desired trajectories, one with a single frequency and the other with multiple frequencies, respectively. Experimental results validate the efficacy of the enhanced ILC in terms of the speed of convergence and the level of long-term tracking errors.

  2. Newton iterative methods for large scale nonlinear systems. Progress report, 1992--1993

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-06-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  3. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. PMID:21721690

  4. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-15

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  5. Lather (Interior Systems Mechanic). Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Chapman, Mike; Chapman, Carol; MacLean, Margaret

    This analysis covers tasks performed by a lather, an occupational title some provinces and territories of Canada have also identified as drywall and acoustical mechanic; interior systems installer; and interior systems mechanic. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and…

  6. Sprinkler System Installer. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Chinien, Chris; Boutin, France

    This analysis covers tasks performed by a sprinkler system installer, an occupational title some provinces and territories of Canada have also identified as pipefitter--fire protection mechanic specialty; sprinkler and fire protection installer; sprinkler and fire protection systems installer; and sprinkler fitter. A guide to analysis discusses…

  7. Concept development for the ITER equatorial port visible/infrared wide angle viewing system

    SciTech Connect

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.; and others

    2012-10-15

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

  8. Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna

    NASA Astrophysics Data System (ADS)

    Vrancken, M.; Lerche, E.; Blackman, T.; Dumortier, P.; Durodié, F.; Evrard, M.; Goulding, R. H.; Graham, M.; Huygen, S.; Jacquet, P.; Kaye, A.; Mayoral, M.-L.; Nightingale, M. P. S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.

    2009-11-01

    The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.

  9. Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna

    SciTech Connect

    Vrancken, M.; Lerche, E.; Dumortier, P.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Weynants, R.

    2009-11-26

    The Scattering Matrix Arc Detection System (SMAD) has been fully deployed on all 4 sets of Resonant Double Loop (RDL), Vacuum Transmission Line (VTL) and Antenna Pressurised Transmission Lines (APTL) of the JET ICRF ITER-Like Antenna (ILA) and this has been indispensable for operating at low (real) T-point impedance values to investigate ELM tolerance. This paper describes the necessity of the SMAD vs VSWR (Voltage Standing Wave Ratio) protection system, SMAD commissioning, problems and a number of typical events detected by the SMAD system during operation on plasma.

  10. Analysis of the ITER low field side reflectometer transmission line system.

    PubMed

    Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M

    2010-10-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given. PMID:21033952

  11. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  12. RF Sources for the ITER Ion Cyclotron Heating and Current Drive System

    SciTech Connect

    Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.

    2005-10-04

    The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.

  13. Mechanical property tests on structural materials for ITER magnet system at low temperatures in China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.

  14. An iterative algorithm for analysis of coupled structural-acoustic systems subject to random excitations

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Zhong; Chen, Gang; Kang, Zhan

    2012-04-01

    This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.

  15. Design and Analysis of the Main AC/DC Converter System for ITER

    NASA Astrophysics Data System (ADS)

    Sheng, Zhicai; Xu, Liuwei; Fu, Peng

    2012-04-01

    A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.

  16. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  17. Augmenting system reliability analyses with observation priors

    SciTech Connect

    Lawrence, Earl; Anderson-cook, Christine

    2009-01-01

    Occasionally, a system may fail a test without an obvious component being at fault. Instead, experts may know that at least one of a set of components has failed, but there is uncertainty about which members in the set were the actual failures. When no further information is available, this missing data may be imputed using standard data augmentation (DA). This process is already used in the current implementation of the JMP complex-system reliability modeling codes. In some cases when this situation arises, there may be some supplemental information about the nature of the failure that suggests which subset of components are more likely to have failed. the behavior of the system during the failure may make certain components more likely candidates, and lead the engineering experts to have certain prior beliefs about what occurred. In this case, it is still known that at least one of a set of components failed, but the experts have some idea that certain failure scenarios are more likely than others. This white paper addresses this situation by modifying the imputation process of data augmentation through the use of an observation prior. This prior is specific to particular observations, and a given outcome which is repeated several times could potentially have different observation priors associated with each occurrence.

  18. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  19. The targeted heating and current drive applications for the ITER electron cyclotron system

    SciTech Connect

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D.; Saibene, G.; Gagliardi, M.; Farina, D.; Figini, L.; Hanson, G.; Poli, E.; Takahashi, K.

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  20. The targeted heating and current drive applications for the ITER electron cyclotron system

    NASA Astrophysics Data System (ADS)

    Henderson, M.; Saibene, G.; Darbos, C.; Farina, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gassmann, T.; Hanson, G.; Loarte, A.; Omori, T.; Poli, E.; Purohit, D.; Takahashi, K.

    2015-02-01

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H&CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H&CD systems. An initial attempt has been developed at prioritizing the allocated H&CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (˜12 MA), and Advanced (˜9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  1. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect

    Berry, Jan; Ferrada, Juan J; Curd, Warren; Dell Orco, Dr. Giovanni; Barabash, Vladimir; Kim, Seokho H

    2011-01-01

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support

  2. Near-Optimal Controller for Nonlinear Continuous-Time Systems With Unknown Dynamics Using Policy Iteration.

    PubMed

    Dutta, Samrat; Patchaikani, Prem Kumar; Behera, Laxmidhar

    2016-07-01

    This paper presents a single-network adaptive critic-based controller for continuous-time systems with unknown dynamics in a policy iteration (PI) framework. It is assumed that the unknown dynamics can be estimated using the Takagi-Sugeno-Kang fuzzy model with arbitrary precision. The successful implementation of a PI scheme depends on the effective learning of critic network parameters. Network parameters must stabilize the system in each iteration in addition to approximating the critic and the cost. It is found that the critic updates according to the Hamilton-Jacobi-Bellman formulation sometimes lead to the instability of the closed-loop systems. In the proposed work, a novel critic network parameter update scheme is adopted, which not only approximates the critic at current iteration but also provides feasible solutions that keep the policy stable in the next step of training by combining a Lyapunov-based linear matrix inequalities approach with PI. The critic modeling technique presented here is the first of its kind to address this issue. Though multiple literature exists discussing the convergence of PI, however, to the best of our knowledge, there exists no literature, which focuses on the effect of critic network parameters on the convergence. Computational complexity in the proposed algorithm is reduced to the order of (Fz)(n-1) , where n is the fuzzy state dimensionality and Fz is the number of fuzzy zones in the states space. A genetic algorithm toolbox of MATLAB is used for searching stable parameters while minimizing the training error. The proposed algorithm also provides a way to solve for the initial stable control policy in the PI scheme. The algorithm is validated through real-time experiment on a commercial robotic manipulator. Results show that the algorithm successfully finds stable critic network parameters in real time for a highly nonlinear system. PMID:26259150

  3. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  4. Static and Dynamic Performance of Newly Developed ITER Relevant Insulation Systems after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2006-03-01

    Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.

  5. Static and Dynamic Performance of Newly Developed ITER Relevant Insulation Systems after Neutron Irradiation

    SciTech Connect

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2006-03-31

    Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1x1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.

  6. Experimental and theoretical studies of iterative methods for nonlinear, nonsymmetric systems arising in combustion

    SciTech Connect

    Hagstrom, T.; Radhakrishnan, K.

    1994-12-31

    The authors report on some iterative methods which they have tested for use in combustion simulations. In particular, they have developed a code to solve zero Mach number reacting flow equations with complex reaction and diffusion physics. These equations have the form of a nonlinear parabolic system coupled with constraints. In semi-discrete form, one obtains DAE`s of index two or three depending on the number of spatial dimensions. The authors have implemented a fourth order (fully implicit) BDF method in time, coupled with a suite of fourth order explicit and implicit spatial difference approximations. Most codes they know of for simulating reacting flows use a splitting strategy to march in time. This results in a sequence of nonlinear systems to solve, each of which has a simpler structure than the one they are faced with. The rapid and robust solution of the coupled system is the essential requirement for the success of their approach. They have implemented and analyzed nonlinear generalizations of conjugate gradient-like methods for nonsymmetric systems, including CGS and the quasi-Newton based method of Eirola and Nevanlinna. They develop a general framework for the nonlinearization of linear methods in terms of the acceleration of fixed-point iterations, where the latter is assumed to include the {open_quote}preconditioning{open_quote}. Their preconditioning is a single step of a split method, using lower order spatial difference approximations as well as simplified (Fickian) approximations of the diffusion physics.

  7. ProVac3D and Application to the Neutral Beam Injection System of ITER

    SciTech Connect

    Luo, X.; Dremel, M.; Day, Ch.

    2008-12-31

    In order to heat the confined plasma up to 100 million degrees Celsius and initiate a sustained fusion reaction, ITER will use several heating mechanisms at the same time, of which Neutral Beam Injection (NBI) systems play an important role. The NBI includes several internal gas sources and has to be operated under vacuum conditions. We have developed ProVac3D, a Monte Carlo simulation code, to calculate gas dynamics and the density profiles in volumes of interest inside NBI. This enables us to elaborate our in-situ and state-of-the-art cryogenic pump design and estimate the corresponding pumping speed.

  8. The search for high level parallelism for the iterative solution of large sparse linear systems

    SciTech Connect

    Young, D.M.

    1988-07-01

    In this paper the author is concerned with the numerical solution, based on iterative methods, of large sparse systems of linear algebraic equations of the type which arise in the numerical solution of elliptic and parabolic partial differential equations by finite difference or finite element methods. He considers linear systems of the form Au = b where A is a given N x N matrix which is large and sparse and where b is a given N x 1 column vector. He will assumes that A is symmetric and positive definite (SPD). He considers iterative algorithms which consist of a basic iterative method, such as the Richardson, Jacobi, SSOR or incomplete Cholesky method, combined with an acceleration procedure such as Chebyshev acceleration or conjugate gradient acceleration. The object of this paper is, however, to examine some high-level methods for achieving parallelism. Such techniques involve only matrix/vector operations and do not involve working with blocks of the matrix, subdividing the region, or using different meshes. It is expected that if effective high-level methods could be developed, they could be combined with block and domain decomposition methods, and related methods, to obtain even greater speedups. It is also expected that by working at a higher level it will eventually be possible to develop general purpose software for parallel machines similar to the ITPACK software packages which have already been developed for sequential and vector machines. The discussion here is primarily devoted to describing various techniques which the author and others have considered for obtaining high-level parallelism. The author plans to continue research on these techniques and eventually to develop algorithms and programs for multiprocessors based on them.

  9. A protection system for the JET ITER-like wall based on imaging diagnostics

    SciTech Connect

    Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom and others

    2012-10-15

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  10. Parallelizing iterative solvers for sparse systems of equations and eigenproblems on distributed-memory machines

    SciTech Connect

    Basermann, A.

    1994-12-31

    For the solution of discretized ordinary or partial differential equations it is necessary to solve systems of equations or eigenproblems with coefficient matrices of different sparsity pattern, depending on the discretization method; using the finite element method (FE) results in largely unstructured systems of equations. Sparse eigenproblems play particularly important roles in the analysis of elastic solids and structures. In the corresponding FE models, the natural frequencies and mode shapes of free vibration are determined as are buckling loads and modes. Another class of problems is related to stability analysis, e.g. of electrical networks. Moreover, approximations of extreme eigenvalues are useful for solving sets of linear equations, e.g. for determining condition numbers of symmetric positive definite matrices or for conjugate gradients methods with polynomial preconditioning. Iterative methods for solving linear systems and eigenproblems mainly consist of matrix-vector products and vector-vector operations; the main work in each iteration is usually the computation of matrix-vector products. Therein, accessing the vector is determined by the sparsity pattern and the storage scheme of the matrix.

  11. A protection system for the JET ITER-like wall based on imaging diagnostics.

    PubMed

    Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented. PMID:23130796

  12. A block iterative LU solver for weakly coupled linear systems. [in fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1977-01-01

    A hybrid technique, called the block iterative LU solver, is proposed for solving the linear equations resulting from a finite element numerical analysis of certain fluid dynamics problems where the equations are weakly coupled between distinct sets of variables. Either the block Jacobi iterative method or the block Gauss-Seidel iterative solver is combined with LU decomposition.

  13. Low-bit rate feedback strategies for iterative IA-precoded MIMO-OFDM-based systems.

    PubMed

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  14. Preliminary system design and analysis of an optimized infrastructure for ITER prototype cryoline test

    NASA Astrophysics Data System (ADS)

    Shah, Nitin Dineshkumar; Bhattacharya, Ritendra Nath; Sarkar, Biswanath; Badgujar, Satish; Vaghela, Hitensinh; Patel, Pratik

    2012-06-01

    The prototype cryoline (PTCL) for ITER is a representative cryoline from the complicated network of all cryolines for the project. The PTCL is being designed with four process pipes at temperature level 4.5 K, two process pipes at 80 K and will be manufactured in a 1:1 scale with a configuration of main line and branch line including vacuum barriers. The test objectives are focused to demonstrate best possible risk free engineering and reliable manufacturing of the cryolines as per the ITER functional requirements. The measured physical parameters will assess the confirmation for acceptable heat loads, stresses and mechanical integrity in normal, off-normal and accident scenarios such as a break of insulation vacuum (BIV). The PTCL will be tested to measure heat load at 4.5 K with scaled mass flow rate having the thermal shield at 80 K. Necessary infrastructure along with the control system have been designed, analyzed and optimized within the imposed constraints to fulfill the test objectives. The system approach along with instrumentations and controls, results of the optimization study, and its usefulness in the present context within the constraints of economics and schedule have been described.

  15. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    PubMed Central

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  16. Evolution of the Design of Cold Mass Support for the ITER Magnet Feeder System

    NASA Astrophysics Data System (ADS)

    Lu, Kun; Song, Yuntao; Niu, Erwu; Zhou, Tinzhi; Wang, Zhongwei; Chen, Yonghua; Zhu, Yinfeng

    2013-02-01

    This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15 kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force.

  17. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    SciTech Connect

    Meitner, Steven J; Baylor, Larry R; Carbajo, Juan J; Combs, Stephen Kirk; Fehling, Dan T; Foust, Charles R; McFee, Marshall T; McGill, James M; Rasmussen, David A; Sitterson, R G; Sparks, Dennis O; Qualls, A L

    2009-07-01

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.

  18. LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS*

    PubMed Central

    Meng, Xiangrui; Saunders, Michael A.; Mahoney, Michael W.

    2014-01-01

    We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results show that on a shared-memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares solver called Blendenpik on large dense problems, and it outperforms the least squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster. PMID:25419094

  19. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    SciTech Connect

    Ferrada, Juan J; Reiersen, Wayne T

    2011-01-01

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment

  20. Iterative nonlinear ISI cancellation in optical tilted filter-based Nyquist 4-PAM system

    NASA Astrophysics Data System (ADS)

    Ju, Cheng; Liu, Na

    2016-09-01

    The conventional double sideband (DSB) modulation and direct detection scheme suffers from severer power fading, linear and nonlinear inter-symbol interference (ISI) caused by fiber dispersion and square-law direct detection. The system's frequency response deteriorates at high frequencies owing to the limited device bandwidth. Moreover, the linear and nonlinear ISI is enhanced induced by the bandwidth limited effect. In this paper, an optical tilted filter is used to mitigate the effect of power fading, and improve the high frequency response of bandwidth limited device in Nyquist 4-ary pulse amplitude modulation (4-PAM) system. Furtherly, iterative technique is introduced to mitigate the nonlinear ISI caused by the combined effects of electrical Nyquist filter, limited device bandwidth, optical tilted filter, dispersion, and square-law photo-detection. Thus, the system's frequency response is greatly improved and the delivery distance can be extended.

  1. Iterative solutions to the steady-state density matrix for optomechanical systems.

    PubMed

    Nation, P D; Johansson, J R; Blencowe, M P; Rimberg, A J

    2015-01-01

    We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems. PMID:25679739

  2. Dual-laser calibration of Thomson scattering systems in ITER and RFX-mod

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2014-04-01

    We first review the principles of the dual-laser calibration technique for measuring the relative sensitivities of the spectral channels in a Thomson scattering (TS) diagnostic system by detecting with the same spectrometer the spectra scattered by the same plasma volume from two laser pulses of different wavelengths. A new data analysis method is then introduced, based on the minimization of a single χ2 function, that provides a simpler and more convenient way to determine the measurement errors on the calibration coefficients. The new analysis method is used here to investigate the expected performances of this calibration technique in the core LIDAR TS system of ITER currently under design and in the conventional multipoint TS system of RFX-mod. By calculating the expected calibration errors for typical plasma scenarios we discuss the different possible choices of the calibration laser, the characteristics of the calibrating plasma and other system parameters with an impact on the application of the technique. For ITER core LIDAR TS, designed with Nd : YAG at 1064 nm as main laser, a ruby laser shows slightly better performances as a calibration laser compared with a second harmonic Nd : YAG and a calibration accuracy ˜1% can be achieved in a relatively small number of pairs of laser pulses. In RFX-mod the combination of a Nd : YAG and a Nd : YLF laser systems is the only viable choice, and we find that, in spite of the small difference between the two wavelengths (λ = 1064 nm and λ = 1053 nm, respectively), dual-laser calibration is still possible to the required accuracy with an affordable number of pairs of laser shots.

  3. Iterative solution of general sparse linear systems on clusters of workstations

    SciTech Connect

    Lo, Gen-Ching; Saad, Y.

    1996-12-31

    Solving sparse irregularly structured linear systems on parallel platforms poses several challenges. First, sparsity makes it difficult to exploit data locality, whether in a distributed or shared memory environment. A second, perhaps more serious challenge, is to find efficient ways to precondition the system. Preconditioning techniques which have a large degree of parallelism, such as multicolor SSOR, often have a slower rate of convergence than their sequential counterparts. Finally, a number of other computational kernels such as inner products could ruin any gains gained from parallel speed-ups, and this is especially true on workstation clusters where start-up times may be high. In this paper we discuss these issues and report on our experience with PSPARSLIB, an on-going project for building a library of parallel iterative sparse matrix solvers.

  4. Fast secant methods for the iterative solution of large nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Deuflhard, Peter; Freund, Roland; Walter, Artur

    1990-01-01

    A family of secant methods based on general rank-1 updates was revisited in view of the construction of iterative solvers for large non-Hermitian linear systems. As it turns out, both Broyden's good and bad update techniques play a special role, but should be associated with two different line search principles. For Broyden's bad update technique, a minimum residual principle is natural, thus making it theoretically comparable with a series of well known algorithms like GMRES. Broyden's good update technique, however, is shown to be naturally linked with a minimum next correction principle, which asymptotically mimics a minimum error principle. The two minimization principles differ significantly for sufficiently large system dimension. Numerical experiments on discretized partial differential equations of convection diffusion type in 2-D with integral layers give a first impression of the possible power of the derived good Broyden variant.

  5. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  6. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    PubMed Central

    Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.

    2014-01-01

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  7. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    PubMed

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  8. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  9. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  10. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  11. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    SciTech Connect

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O.; Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S.; Shinto, K.; Wada, M.

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  12. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  13. Models Extracted from Text for System-Software Safety Analyses

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  14. Tracking control of nonlinear lumped mechanical continuous-time systems: A model-based iterative learning approach

    NASA Astrophysics Data System (ADS)

    Smolders, K.; Volckaert, M.; Swevers, J.

    2008-11-01

    This paper presents a nonlinear model-based iterative learning control procedure to achieve accurate tracking control for nonlinear lumped mechanical continuous-time systems. The model structure used in this iterative learning control procedure is new and combines a linear state space model and a nonlinear feature space transformation. An intuitive two-step iterative algorithm to identify the model parameters is presented. It alternates between the estimation of the linear and the nonlinear model part. It is assumed that besides the input and output signals also the full state vector of the system is available for identification. A measurement and signal processing procedure to estimate these signals for lumped mechanical systems is presented. The iterative learning control procedure relies on the calculation of the input that generates a given model output, so-called offline model inversion. A new offline nonlinear model inversion method for continuous-time, nonlinear time-invariant, state space models based on Newton's method is presented and applied to the new model structure. This model inversion method is not restricted to minimum phase models. It requires only calculation of the first order derivatives of the state space model and is applicable to multivariable models. For periodic reference signals the method yields a compact implementation in the frequency domain. Moreover it is shown that a bandwidth can be specified up to which learning is allowed when using this inversion method in the iterative learning control procedure. Experimental results for a nonlinear single-input-single-output system corresponding to a quarter car on a hydraulic test rig are presented. It is shown that the new nonlinear approach outperforms the linear iterative learning control approach which is currently used in the automotive industry on durability test rigs.

  15. Research on long pulse ECRH system of EAST in support of ITER

    SciTech Connect

    Wang, Xiaojie Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang; Wei, Wei

    2015-12-10

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  16. Research on long pulse ECRH system of EAST in support of ITER

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Wei, Wei; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang

    2015-12-01

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  17. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  18. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    PubMed

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example. PMID:24808590

  19. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  20. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    SciTech Connect

    Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Ha, Tam T; Morrow, Michael; Biewer, Theodore M; Rasmussen, David A; Hechler, Michael P; Pearce, R.J.H.; Dremel, M.; Boissin, Jean Claude

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  1. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    NASA Astrophysics Data System (ADS)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  2. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    PubMed

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. PMID:23706414

  3. Design of Electron Cyclotron Heating and Current Drive System of ITER

    SciTech Connect

    Kobayashi, N.; Bigelow, T.; Rasmussen, D.; Bonicelli, T.; Ramponi, G.; Saibene, G.; Cirant, S.; Denisov, G.; Heidinger, R.; Piosczyk, B.; Henderson, M.; Hogge, J.-P.; Thumm, M.; Tran, M. Q.; Rao, S. L.; Sakamoto, K.; Takahashi, K.; Temkin, R. J.; Verhoeven, A. G. A.; Zohm, H.

    2007-09-28

    Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH and CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mm{phi} corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH and CD system has also a start-up sub-system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start-up through the equatorial launcher. R and Ds of components for high power long pulse and mirror steering mechanism have been on-going in the parties to establish a reliable ITER ECH and CD system.

  4. Iterative methods for large scale nonlinear and linear systems. Final report, 1994--1996

    SciTech Connect

    Walker, H.F.

    1997-09-01

    The major goal of this research has been to develop improved numerical methods for the solution of large-scale systems of linear and nonlinear equations, such as occur almost ubiquitously in the computational modeling of physical phenomena. The numerical methods of central interest have been Krylov subspace methods for linear systems, which have enjoyed great success in many large-scale applications, and newton-Krylov methods for nonlinear problems, which use Krylov subspace methods to solve approximately the linear systems that characterize Newton steps. Krylov subspace methods have undergone a remarkable development over the last decade or so and are now very widely used for the iterative solution of large-scale linear systems, particularly those that arise in the discretization of partial differential equations (PDEs) that occur in computational modeling. Newton-Krylov methods have enjoyed parallel success and are currently used in many nonlinear applications of great scientific and industrial importance. In addition to their effectiveness on important problems, Newton-Krylov methods also offer a nonlinear framework within which to transfer to the nonlinear setting any advances in Krylov subspace methods or preconditioning techniques, or new algorithms that exploit advanced machine architectures. This research has resulted in a number of improved Krylov and Newton-Krylov algorithms together with applications of these to important linear and nonlinear problems.

  5. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    PubMed Central

    Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego

    2011-01-01

    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718

  6. Requirements and interfaces to cryogenic and power supply plants for the ITER magnet system

    SciTech Connect

    Yoshida, K.; Kalinin, V.; Stoner, S.

    1996-12-31

    This paper describes the requirements and interfaces of cryogenic and power supply plants for the ITER magnet system. The heat loads and mass flow rates of the magnet system is evaluated to keep coil temperature within 6.5 K during the plasma operation of 2200 s. The helium consumption in the current leads is estimated for a current feed of 4.5 MA from 4 K to 300 K. The location of the electrical insulation breaks is compared near winding and outside of cryostat. The terminal box is designed for interfacing the cryogenic and power supply systems. Separate vacuums for the cryostat and the cryolines facilitate maintenance of all cryogenic components without warm-up of the whole system. A superconducting busbar is used to supply current from a current connector at the coil to the vapor-cooled lead in the coil terminal box. The layout of cryogenic lines and equipment is designed to consider space limitations and routing restrictions in the tokamak hall and the electrical termination building. The main parameters of the cryogenic plant (cryoplant) are discussed.

  7. Safety Issues and Approach to Meet the Safety Requirements in Tokamak Cooling Water System of ITER

    SciTech Connect

    Flanagan, George F; Reyes, Susana; Chang, Keun Pack; Berry, Jan; Kim, Seokho H

    2010-01-01

    The ITER (Latin for 'the way') tokamak cooling water system (TCWS) consists of several separate systems to cool the major ITER components - the divertor/limiter, the first wall blanket, the neutral beam injector and the vacuum vessel. The ex-vessel part of the TCWS systems provides a confinement function for tritium and activated corrosion products in the cooling water. The Vacuum Vessel System also has a functional safety requirement regarding the residual heat removal from in-vessel components. A preliminary hazards assessment (PHA) was performed for a better understanding of the hazards, initiating events, and defense in depth mechanisms associated with the TCWS. The PHA was completed using the following steps. (1) Hazard Identification. Hazards associated with the TCWS were identified including radiological/chemical/electromagnetic hazards and physical hazards (e.g., high voltage, high pressure, high temperature, falling objects). (2) Hazard Categorization. Hazards identified in step (1) were categorized as to their potential for harm to the workers, the public, and/or the environment. (3) Hazard Evaluation. The design was examined to determine initiating events that might occur and that could expose the public, environment, or workers to the hazard. In addition the system was examined to identify barriers that prevent exposure. Finally, consequences to the public or workers were qualitatively assessed, should the initiating event occur and one or more of the barriers fail. Frequency of occurrence of the initiating event and subsequent barrier failure was qualitatively estimated. (4) Accident Analysis. A preliminary hazards analysis was performed on the conceptual design of the TCWS. As the design progresses, a detailed accident analysis will be performed in the form of a failure modes and effects analysis. The results of the PHA indicated that the principal hazards associated with the TCWS were those associated with radiation. These were low compared to

  8. Adapting iterative algorithms for solving large sparse linear systems for efficient use on the CDC CYBER 205

    NASA Technical Reports Server (NTRS)

    Kincaid, D. R.; Young, D. M.

    1984-01-01

    Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.

  9. Shear/compressive properties of candidate ITER insulation systems at low temperatures

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Reed, R. P.; Schutz, J. B.; Bauer-McDaniel, T. S.

    Shear/compression tests were performed at 76 and 4 K on candidate composite insulation systems for the International Thermonuclear Experimental Reactor (ITER) toroidal field coils. The insulation systems tested consisted of vacuum-pressure impregnated, pre-impregnated, and high-pressure laminate systems that included electrical barriers such as polyimide film or mica/glass. Sandwich-style specimens, in which the composite insulation is bonded to two AISI 316 stainless steel chips, were used. Two specimens were loaded at an angle, which resulted in combined shear and compressive stresses, and tested simultaneously. Various shear/compression ratios were achieved by using different test fixtures, each at a different angle (15 °, 45 °, 75 ° and 84 °) from the vertical direction. The shear strengths of specimens loaded at 15 ° to 75 ° increased with increasing compressive stress; these specimens experienced shear failures. For specimens loaded at 84 °, the compressive stress increased and the shear strength decreased; the failure modes of these specimens were more compressive than shear. The effects of electrical barriers on shear/compressive properties are also reported.

  10. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  11. Adaptive switching detection algorithm for iterative-MIMO systems to enable power savings

    NASA Astrophysics Data System (ADS)

    Tadza, N.; Laurenson, D.; Thompson, J. S.

    2014-11-01

    This paper attempts to tackle one of the challenges faced in soft input soft output Multiple Input Multiple Output (MIMO) detection systems, which is to achieve optimal error rate performance with minimal power consumption. This is realized by proposing a new algorithm design that comprises multiple thresholds within the detector that, in real time, specify the receiver behavior according to the current channel in both slow and fast fading conditions, giving it adaptivity. This adaptivity enables energy savings within the system since the receiver chooses whether to accept or to reject the transmission, according to the success rate of detecting thresholds. The thresholds are calculated using the mutual information of the instantaneous channel conditions between the transmitting and receiving antennas of iterative-MIMO systems. In addition, the power saving technique, Dynamic Voltage and Frequency Scaling, helps to reduce the circuit power demands of the adaptive algorithm. This adaptivity has the potential to save up to 30% of the total energy when it is implemented on Xilinx®Virtex-5 simulation hardware. Results indicate the benefits of having this "intelligence" in the adaptive algorithm due to the promising performance-complexity tradeoff parameters in both software and hardware codesign simulation.

  12. Rigorous approximation of stationary measures and convergence to equilibrium for iterated function systems

    NASA Astrophysics Data System (ADS)

    Galatolo, Stefano; Monge, Maurizio; Nisoli, Isaia

    2016-07-01

    We study the problem of the rigorous computation of the stationary measure and of the rate of convergence to equilibrium of an iterated function system described by a stochastic mixture of two or more dynamical systems that are either all uniformly expanding on the interval, either all contracting. In the expanding case, the associated transfer operators satisfy a Lasota–Yorke inequality, we show how to compute a rigorous approximations of the stationary measure in the L 1 norm and an estimate for the rate of convergence. The rigorous computation requires a computer-aided proof of the contraction of the transfer operators for the maps, and we show that this property propagates to the transfer operators of the IFS. In the contracting case we perform a rigorous approximation of the stationary measure in the Wasserstein–Kantorovich distance and rate of convergence, using the same functional analytic approach. We show that a finite computation can produce a realistic computation of all contraction rates for the whole parameter space. We conclude with a description of the implementation and numerical experiments. All the authors were partially supported by ICTP and by EU Marie-Curie IRSES Brazilian–European partnership in Dynamical Systems (FP7-PEOPLE-2012-IRSES 318999 BREUDS), SG thanks The Leverhulme Trust for support through Network Grant IN-2014-021.

  13. GPU computing with Kaczmarz’s and other iterative algorithms for linear systems

    PubMed Central

    Elble, Joseph M.; Sahinidis, Nikolaos V.; Vouzis, Panagiotis

    2009-01-01

    The graphics processing unit (GPU) is used to solve large linear systems derived from partial differential equations. The differential equations studied are strongly convection-dominated, of various sizes, and common to many fields, including computational fluid dynamics, heat transfer, and structural mechanics. The paper presents comparisons between GPU and CPU implementations of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging, conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections (CARP-CG). Computations are preformed with dense as well as general banded systems. The results demonstrate that our GPU implementation outperforms CPU implementations of these algorithms, as well as previously studied parallel implementations on Linux clusters and shared memory systems. While the CGNR method had begun to fall out of favor for solving such problems, for the problems studied in this paper, the CGNR method implemented on the GPU performed better than the other methods, including a cluster implementation of the CARP-CG method. PMID:20526446

  14. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    SciTech Connect

    Clemens, M.; Weiland, T.

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  15. Iterative Design and Usability Testing of the Imhere System for Managing Chronic Conditions and Disability

    PubMed Central

    FAIRMAN, ANDREA D.; YIH, ERIKA T.; MCCOY, DANIEL F.; LOPRESTI, EDMUND F.; MCCUE, MICHAEL P.; PARMANTO, BAMBANG; DICIANNO, BRAD E.

    2016-01-01

    A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18–40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387

  16. Iterative Design and Usability Testing of the Imhere System for Managing Chronic Conditions and Disability.

    PubMed

    Fairman, Andrea D; Yih, Erika T; McCoy, Daniel F; Lopresti, Edmund F; McCue, Michael P; Parmanto, Bambang; Dicianno, Brad E

    2016-01-01

    A novel mobile health platform, Interactive Mobile Health and Rehabilitation (iMHere), is being developed to support wellness and self-management among people with chronic disabilities. The iMHere system currently includes a smartphone app with six modules for use by persons with disabilities and a web portal for use by medical and rehabilitation professionals or other support personnel. Our initial clinical research applying use of this system provides insight into the feasibility of employing iMHere in the development of self-management skills in young adults (ages 18-40 years) with spina bifida (SB) (Dicianno, Fairman, et al., 2015). This article describes the iterative design of the iMHere system including usability testing of both the app modules and clinician portal. Our pilot population of persons with SB fostered the creation of a system appropriate for people with a wide variety of functional abilities and needs. As a result, the system is appropriate for use by persons with various disabilities and chronic conditions, not only SB. In addition, the diversity of professionals and support personnel involved in the care of persons with SB also enabled the design and implementation of the iMHere system to meet the needs of an interdisciplinary team of providers who treat various conditions. The iMHere system has the potential to foster communication and collaboration among members of an interdisciplinary healthcare team, including individuals with chronic conditions and disabilities, for a client-centered approach to support self-management skills. PMID:27563387

  17. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shu

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  18. ITER's woes

    NASA Astrophysics Data System (ADS)

    jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita

    2014-07-01

    In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.

  19. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-Da)

    NASA Astrophysics Data System (ADS)

    Lasnier, C. J.; Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-01

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  20. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect

    Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-15

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  1. System matrix analysis for sparse-view iterative image reconstruction in X-ray CT.

    PubMed

    Wang, Linyuan; Zhang, Hanming; Cai, Ailong; Li, Yongl; Yan, Bin; Li, Lei; Hu, Guoen

    2015-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, used for investigations in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, as both the singularity of undersampled reconstruction and the sufficient view number for sparse-view reconstruction are ill-defined. In this paper, the singular value decomposition method is used to study the condition number and singularity of the system matrix and the regularized matrix. An estimation method of the empirical lower bound is proposed, which is helpful for estimating the number of projection views required for exact reconstruction. Simulation studies show that the singularity of the system matrices for different projection views is effectively reduced by regularization. Computing the condition number of a regularized matrix is necessary to provide a reference for evaluating the singularity and recovery potential of reconstruction algorithms using regularization. The empirical lower bound is helpful for estimating the projections view number with a sparse reconstruction algorithm. PMID:25567402

  2. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  3. Parallel iterative solution of sparse linear systems using orderings from graph coloring heuristics

    SciTech Connect

    Jones, M.T.; Plassmann, P.E.

    1990-12-01

    The efficiency of a parallel implementation of the conjugate gradient method preconditioned by an incomplete Cholesky factorization can vary dramatically depending on the column ordering chosen. One method to minimize the number of major parallel steps is to choose an ordering based on a coloring of the symmetric graph representing the nonzero adjacency structure of the matrix. In this paper, we compare the performance of the preconditioned conjugate gradient method using these coloring orderings with a number of standard orderings on matrices arising from applications in structural engineering. Because optimal colorings for these systems may not be a priori known: we employ several graph coloring heuristics to obtain consistent colorings. Based on lower bounds obtained from the local structure of these systems, we find that the colorings determined by these heuristics are nearly optimal. For these problems, we find that the increase in parallelism afforded by the coloring-based orderings more than offsets any increase in the number of iterations required for the convergence of the conjugate gradient algorithm.

  4. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  5. Qualification of the US made conductors for ITER TF magnet system

    SciTech Connect

    Martovetsky, N; Hatfield, D; Miller, J; Bruzzone, P; Stepanov, B; Seber, B

    2009-10-08

    The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  6. Qualification of the US Made Conductors for ITER TF Magnet System

    SciTech Connect

    Martovetsky, Nicolai N; Hatfield, Daniel R; Miller, John R; Bruzzone, P.; Stepanov, B.; Seber, B.

    2010-01-01

    The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  7. Creation of a knowledge management system for QT analyses.

    PubMed

    Tornøe, Christoffer W; Garnett, Christine E; Wang, Yaning; Florian, Jeffry; Li, Michael; Gobburu, Jogarao V

    2011-07-01

    An increasing number of thorough QT (TQT) reports are being submitted to the US Food and Drug Administration's interdisciplinary review team for QT (IRT-QT), requiring time-intensive quantitative analyses by a multidisciplinary review team within 45 days. This calls for systematic learning to guide future trials and policies by standardizing and automating the QT analyses to improve review efficiency, provide consistent advice, and enable pooled data analyses to answer key regulatory questions. The QT interval represents the time from initiation of ventricular depolarization to completion of ventricular repolarization recorded by electrocardiograph (ECG) and is used in the proarrhythmic risk assessment. The developed QT knowledge management system is implemented in the R package "QT." Data from 11 crossover TQT studies including time-matched ECGs and pharmacokinetic measurements following single doses of 400 to 1200 mg moxifloxacin were used for the QT analysis example. The automated workflow was divided into 3 components (data management, analysis, and archival). The generated data sets, scripts, tables, and graphs are automatically stored in a queryable repository and summarized in an analysis report. More than 100 TQT studies have been analyzed using the system since 2007. This has dramatically reduced the time needed to review TQT studies and has made the IRT-QT reviews consistent across reviewers. Furthermore, the system enables leveraging prior knowledge through pooled data analyses to answer policy-related questions and to understand the various effects that influence study results. PMID:20978278

  8. Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements

    PubMed Central

    Wang, Changyuan; Zhang, Jing; Mu, Jing

    2012-01-01

    A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-free and implemented only by calculating the functional evaluations. The MLIDDF algorithm involves the use of the iteration measurement update and the current measurement, and the iteration termination criterion based on maximum likelihood is introduced in the measurement update step, so the MLIDDF is guaranteed to produce a sequence estimate that moves up the maximum likelihood surface. In a simulation, its performance is compared against that of the unscented Kalman filter (UKF), divided difference filter (DDF), iterated unscented Kalman filter (IUKF) and iterated divided difference filter (IDDF) both using a traditional iteration strategy. Simulation results demonstrate that the accumulated mean-square root error for the MLIDDF algorithm in position is reduced by 63% compared to that of UKF and DDF algorithms, and by 7% compared to that of IUKF and IDDF algorithms. The new algorithm thus has better state estimation accuracy and a fast convergence rate. PMID:23012525

  9. Status of the ITER ion cyclotron heating and current drive system

    NASA Astrophysics Data System (ADS)

    Lamalle, P.; Beaumont, B.; Kazarian, F.; Gassmann, T.; Agarici, G.; Montemayor, T. Alonzo; Bamber, R.; Bernard, J.-M.; Boilson, D.; Cadinot, A.; Calarco, F.; Colas, L.; Courtois, X.; Deibele, C.; Durodié, F.; Fano, J.; Fredd, E.; Goulding, R.; Greenough, N.; Hillairet, J.; Jacquinot, J.; Kaye, A. S.; Kočan, M.; Labidi, H.; Leichtle, D.; Loarte, A.; McCarthy, M.; Messiaen, A.; Meunier, L.; Mukherjee, A.; Oberlin-Harris, C.; Patel, A. M.; Peters, B.; Rajnish, K.; Rasmussen, D.; Sanabria, R.; Sartori, R.; Singh, R.; Swain, D.; Trivedi, R. G.; Turner, A.

    2015-12-01

    The paper reports on latest developments for the ITER Ion Cyclotron Heating and Current Drive system: imminent acceptance tests of a prototype power supply at full power; successful factory acceptance of candidate RF amplifier tubes which will be tested on dedicated facilities; further design integration and experimental validation of transmission line components under 6MW hour-long pulses. The antenna Faraday shield thermal design has been validated above requirements by cyclic high heat flux tests. R&D on ceramic brazing is under way for the RF vacuum windows. The antenna port plug RF design is stable but major evolution of the mechanical design is in preparation to achieve compliance with the load specification, warrant manufacturability and incorporate late interface change requests. The antenna power coupling capability predictions have been strengthened by showing that, if the plasma scrape-off layer turns out to be steep and the edge density low, the reference burning plasma can realistically be displaced to improve the coupling.

  10. Markerless registration for intracerebral hemorrhage surgical system using weighted Iterative Closest Point (ICP).

    PubMed

    Shin, Sangkyun; Lee, Deukhee; Kim, Youngjun; Park, Sehyung

    2012-01-01

    It is required to use a stereotactic frame on a patient's crainial surface to access an intracerebral hematoma in conventional ICH (Intracerebral Hemorrhage) removal surgery. Since ICH using a stereotactic frame is an invasive procedure and also takes a long time, we attempt to develop a robotic ICH removal procedure with a markerless registration system using an optical 3-D scanner. Preoperative planning is performed using a patient's CT (Computed Tomography) images, which include the patient's 3-D geometrical information on the hematoma and internal structures of brain. To register the preplanned data and the intraoperative patient's data, the patient's facial surface is scanned by an optical 3-D scanner on the bed in the operating room. The intraoperatively scanned facial surface is registered to the pose of the patient's preoperative facial surface. The conventional ICP (Iterative Closest Point) algorithm can be used for the registration. In this paper, we propose a weighted ICP in order to improve the accuracy of the registration results. We investigated facial regions that can be used as anatomical landmarks. The facial regions for the landmarks in the preoperative 3-D model are weighted for more accurate registration. We increase weights at the relatively undeformed facial regions, and decrease weights at the other regions. As a result, more accurate and robust registration can be achieved from the preoperative data even with local facial shape changes. PMID:23367127

  11. Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.

    2015-11-01

    New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  12. Noise performance of statistical model based iterative reconstruction in clinical CT systems

    NASA Astrophysics Data System (ADS)

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-03-01

    The statistical model based iterative reconstruction (MBIR) method has been introduced to clinical CT systems. Due to the nonlinearity of this method, the noise characteristics of MBIR are expected to differ from those of filtered backprojection (FBP). This paper reports an experimental characterization of the noise performance of MBIR equipped on several state-of-the-art clinical CT scanners at our institution. The thoracic section of an anthropomorphic phantom was scanned 50 times to generate image ensembles for noise analysis. Noise power spectra (NPS) and noise standard deviation maps were assessed locally at different anatomical locations. It was found that MBIR lead to significant reduction in noise magnitude and improvement in noise spatial uniformity when compared with FBP. Meanwhile, MBIR shifted the NPS of the reconstructed CT images towards lower frequencies along both the axial and the z frequency axes. This effect was confirmed by a relaxed slice thicknesstradeoff relationship shown in our experimental data. The unique noise characteristics of MBIR imply that extra effort must be made to optimize CT scanning parameters for MBIR to maximize its potential clinical benefits.

  13. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  14. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  15. Analysing hierarchy in the organization of biological and physical systems.

    PubMed

    Jagers op Akkerhuis, Gerard A J M

    2008-02-01

    A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics. PMID:18211280

  16. Enhancing the Reflexivity of System Innovation Projects with System Analyses

    ERIC Educational Resources Information Center

    van Mierlo, Barbara; Arkesteijn, Marlen; Leeuwis, Cees

    2010-01-01

    Networks aiming for fundamental changes bring together a variety of actors who are part and parcel of a problematic context. These system innovation projects need to be accompanied by a monitoring and evaluation approach that supports and maintains reflexivity to be able to deal with uncertainties and conflicts while challenging current practices…

  17. Performance of the ITER ICRH system as expected from TOPICA and ANTITER II modelling

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Koch, R.; Weynants, R. R.; Dumortier, P.; Louche, F.; Maggiora, R.; Milanesio, D.

    2010-02-01

    The performance on plasma of the antennas of the proposed ITER ICRF system is evaluated by means of the antenna 24 × 24 impedance matrix provided by the TOPICA code and confirmed and interpreted by the semi-analytical code ANTITER II (summarized in an appendix). From this analysis the following system characteristics can be derived: (1) a roughly constant power capability in the entire 40-55 MHz frequency band with the same maximum voltage in the eight feeding lines is obtained for all the considered heating and current drive phasings on account of the broadbanding effect of service stubs. (2) The power capability of the array significantly depends on the distance of the antenna to the separatrix, the density profile in the scrape-off layer (SOL) and on the strap current toroidal and poloidal phasings. The dependence on phasing is stronger for wider SOL. (3) To exceed a radiated power capability of 20 MW per antenna array in the upper part of the frequency band, with a separatrix-wall distance of 17 cm and a conservative short decay plasma edge density profile, the system voltage stand-off must be 45 kV and well chosen combinations of toroidal and poloidal phasing are needed. (4) On account of the plasma gyrotropy and of poloidal magnetic field, special care must be taken in choosing the optimal toroidal current drive and poloidal phasings. The ANTITER II analysis shows furthermore that important coaxial and surface mode excitation can only be expected in the monopole toroidal phasing, that strong wave reflection from a steep density profile significantly reduces the coupling even if the separatrix is closer to the antenna and that the part of the edge density profile having a density lower than the cut-off density pertaining to the considered phasing does not significantly contribute to the coupling.

  18. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    SciTech Connect

    Kim, Seokho H; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  19. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    NASA Astrophysics Data System (ADS)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2016-02-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson-Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. Overall, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.

  20. Robust iterative learning protocols for finite-time consensus of multi-agent systems with interval uncertain topologies

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Jia, Yingmin; Du, Junping

    2015-04-01

    This paper is devoted to the robust finite-time output consensus problems of multi-agent systems under directed graphs, where all agents and their communication topologies are subject to interval uncertainties. Distributed protocols are constructed by using iterative learning control (ILC) algorithms, where information is exchanged only at the end of one iteration and learning is used to update the control inputs after each iteration. It is proved that under ILC-based protocols, the finite-time consensus can be achieved with an increasing number of iterations if the communication network of agents is guaranteed to have a spanning tree. Moreover, if the information of any desired terminal output is available to a portion (not necessarily all) of the agents, then the consensus output that all agents finally reach can be enabled to be the desired terminal output. It is also proved that for all ILC-based protocols, gain selections can be provided in terms of bound values, and consensus conditions can be developed associated with bound matrices. Simulation results are given to demonstrate the effectiveness of our theoretical results.

  1. Compartment Venting Analyses of Ares I First Stage Systems Tunnel

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Arner, Stephen

    2009-01-01

    Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.

  2. iPFPi: A System for Improving Protein Function Prediction through Cumulative Iterations.

    PubMed

    Taha, Kamal; Yoo, Paul D; Alzaabi, Mohammed

    2015-01-01

    We propose a classifier system called iPFPi that predicts the functions of un-annotated proteins. iPFPi assigns an un-annotated protein P the functions of GO annotation terms that are semantically similar to P. An un-annotated protein P and a GO annotation term T are represented by their characteristics. The characteristics of P are GO terms found within the abstracts of biomedical literature associated with P. The characteristics of Tare GO terms found within the abstracts of biomedical literature associated with the proteins annotated with the function of T. Let F and F/ be the important (dominant) sets of characteristic terms representing T and P, respectively. iPFPi would annotate P with the function of T, if F and F/ are semantically similar. We constructed a novel semantic similarity measure that takes into consideration several factors, such as the dominance degree of each characteristic term t in set F based on its score, which is a value that reflects the dominance status of t relative to other characteristic terms, using pairwise beats and looses procedure. Every time a protein P is annotated with the function of T, iPFPi updates and optimizes the current scores of the characteristic terms for T based on the weights of the characteristic terms for P. Set F will be updated accordingly. Thus, the accuracy of predicting the function of T as the function of subsequent proteins improves. This prediction accuracy keeps improving over time iteratively through the cumulative weights of the characteristic terms representing proteins that are successively annotated with the function of T. We evaluated the quality of iPFPi by comparing it experimentally with two recent protein function prediction systems. Results showed marked improvement. PMID:26357323

  3. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    SciTech Connect

    Willert, Jeffrey; Taitano, William T.; Knoll, Dana

    2014-09-15

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.

  4. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  5. Database system for analysing and managing coiled tubing drilling data

    NASA Astrophysics Data System (ADS)

    Suh, J.; Choi, Y.; Park, H.; Choe, J.

    2009-05-01

    This study present a prototype of database system for analysing and managing petrophysical data from coiled tubing drilling in the oil and gas industry. The characteristics of coiled tubing drilling data from cores were analyzed and categorized according to the whole drilling process and data modeling including object relation diagram, class diagram was carried out to design the schema of effective database system such as the relationships between tables and key index fields to create the relationships. The database system called DrillerGeoDB consists of 22 tables and those are classified with 4 groups such as project information, stratum information, drilling/logging information and operation evaluate information. DrillerGeoDB provide all sort of results of each process with a spreadsheet such as MS-Excel via application of various algorithm of logging theory and statistics function of cost evaluation. This presentation describes the details of the system development and implementation.

  6. PCG: A software package for the iterative solution of linear systems on scalar, vector and parallel computers

    SciTech Connect

    Joubert, W.; Carey, G.F.

    1994-12-31

    A great need exists for high performance numerical software libraries transportable across parallel machines. This talk concerns the PCG package, which solves systems of linear equations by iterative methods on parallel computers. The features of the package are discussed, as well as techniques used to obtain high performance as well as transportability across architectures. Representative numerical results are presented for several machines including the Connection Machine CM-5, Intel Paragon and Cray T3D parallel computers.

  7. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  8. A kind of multilevel authentication system for multiple-image by modulated real part synthesis and iterative phase multiplexing

    NASA Astrophysics Data System (ADS)

    Pan, Xuemei; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2016-04-01

    A kind of multilevel authentication system for multiple-image based on modulated real part synthesis and iterative phase multiplexing in the Fresnel domain is proposed. In the design process of the low-level authentication system, a series of normalized real part information are iteratively generated by phase retrieval algorithm in the Fresnel domain, and the final private keys for different individual low-level certification images can be fabricated by binary amplitude modulation, superposition, synthesis, and sampling; while in the design process of the high-level authentication system, the final private keys for different individual high-level certification images can be generated by iterative phase information encoding and multiplexing. During the high-level authentication, the meaningful certification image can be reconstructed by the inverse Fresnel transform with the corresponding correct private keys, meanwhile, the correlation coefficient is utilized as judgment criterion; while in the low-level authentication, with the help of correct keys, the noise-like image with meaningless information can be recovered, but a remarkable peak output in the nonlinear correlation coefficient can be generated, which is adopted as the criterion to judge whether the low-level authentication is successful or not. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  9. On The Problem Of In-vessel Mirrors For Diagnostic Systems Of ITER

    SciTech Connect

    Voitsenya, V. S.; Litnovsky, A.

    2008-03-12

    The present status of the investigations with ITER-candidate mirror materials and directed on solution of the in-vessel mirror problem, are presented in the paper. The current tasks in the R and D of diagnostic mirrors and outstanding questions are discussed.

  10. YALINA analytical benchmark analyses using the deterministic ERANOS code system.

    SciTech Connect

    Gohar, Y.; Aliberti, G.; Nuclear Engineering Division

    2009-08-31

    The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.

  11. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  12. Air pollution control system research: An iterative approach to developing affordable systems

    SciTech Connect

    Watt, L.C.; Cannon, F.S.; Heinsohn, R.J.; Spaeder, T.A.; Darvin, C.H.

    1993-12-31

    The research will be accomplished on lab scale, pilot scale, and production air pollution control systems (APCS). The production system, to be installed at Marine Corps Logistics Base (MCLB) Barstow, CA, will treat the exhaust from three paint booths which will be modified to recirculate a large percentage of their exhaust. These recirculation systems are, themselves, a critical element in the overall R and D effort. The goal of the program is to conduct an R and D effort which will improve and demonstrate a combination of technologies intended to make VOC treatment both effective and affordable. The US Marine Corps, the other services and industry will each benefit.

  13. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  14. The distributed system for collecting and analysing selected medical data

    NASA Astrophysics Data System (ADS)

    Makal, Jarosław; Idźkowski, Adam; Walendziuk, Wojciech; Mirończuk, Marcin

    2006-10-01

    In this paper the structure of a three-tiered distributed system for collecting and analysing medical examination data is presented. The idea of this work is to make an assistant tool for urologists to diagnose the lower urinary track diseases and their symptoms easier. The data (which are processed from the files made in the uroflowmeters - devices for measuring urine flow rate) are presented in web browser. It has been done with the use of PHP scripts which are accessed through Apache web server.

  15. Advanced vehicle systems assessment. Volume 4: Supporting analyses

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.

  16. Appropriate time scales for nonlinear analyses of deterministic jump systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya

    2011-06-01

    In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.

  17. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  18. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  19. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  20. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  1. Loads specification and embedded plate definition for the ITER cryoline system

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.

    2015-12-01

    ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.

  2. An iteration for indefinite and non-symmetric systems and its application to the Navier-Stokes equations

    SciTech Connect

    Wathen, A.; Golub, G.

    1996-12-31

    A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).

  3. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  4. Characterization of high-speed video systems: tests and analyses

    NASA Astrophysics Data System (ADS)

    Carlton, Patrick N.; Chenette, Eugene R.; Rowe, W. J.; Snyder, Donald R.

    1992-01-01

    The current method of munitions systems testing uses film cameras to record airborne events such as store separation. After film exposure, much time is spent in developing the film and analyzing the images. If the analysis uses digital methods, additional time is required to digitize the images preparatory to the analysis phase. Because airborne equipment parameters such as exposure time cannot be adjusted in flight, images often suffer as a result of changing lighting conditions. Image degradation from other sources may occur in the film development process, and during digitizing. Advances in the design of charge-coupled device (CCD) cameras and mass storage devices, coupled with sophisticated data compression and transmission systems, provide the means to overcome these shortcomings. A system can be developed where the image sensor provides an analog electronic signal and, consequently, images can be digitized and stored using digital mass storage devices or transmitted to a ground station for immediate viewing and analysis. All electronic imaging and processing offers the potential for improved data quality, rapid response time and closed loop operation. This paper examines high speed, high resolution imaging system design issues assuming an electronic image sensor will be used. Experimental data and analyses are presented on the resolution capability of current film and digital image processing technology. Electrical power dissipation in a high speed, high resolution CCD array is also analyzed.

  5. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  6. Value Engineering in System of Cryoline and Cryo- distribution for ITER: In-kind Contribution from India

    NASA Astrophysics Data System (ADS)

    Sarkar, B.; Shah, N.; Vaghela, H.; Bhattacharya, R.; Choukekar, K.; Patel, P.; Chang, H.-S.; Badgujar, S.; Chalifour, M.

    2015-12-01

    System of Cryoline and Cryo-distribution for ITER has matured to a stage of preliminary design with the advent of industrial associates. Starting from the cold power source, the system of Cryoline and Cryo-distribution transfers the controlled cold power through a large network to the superconducting magnets and cryopumps. The functional responsibility also includes very high reliability and availability with respect to the operation of the ITER machine. Following the completion of conceptual design, it was necessary to perform a detailed engineering study of the complete network of distribution system in totality, before entering in to the industrial phase. This is to ensure the functional responsibility of the system. Value engineering in the area of distribution boxes including interfacing Cryolines has been performed in order to access the integrated reliable performance with respect to the overall cryogenic system, reducing the risk transferred to the industrial partners. These include technical risk assessment, analysis, mitigation plan and implementation with the industrial partners. The paper describes the methodology of technical risk management, value engineering performed to ensure fulfilment of licensing and regulatory obligations, functional reliability, testing and manufacturability by standard industrial processes, so that highly reliable integrated distribution system is delivered for the project.

  7. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  8. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-04-15

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial

  9. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    PubMed Central

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-01-01

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo®, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the classical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared

  10. Reproducible analyses of microbial food for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  11. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.

    PubMed

    Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F

    2015-09-01

    A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring

  12. A Novel System for Supporting Autism Diagnosis Using Home Videos: Iterative Development and Evaluation of System Design

    PubMed Central

    Rozga, Agata; Smith, Christopher J; Oberleitner, Ron; Abowd, Gregory D; Arriaga, Rosa I

    2015-01-01

    Background Observing behavior in the natural environment is valuable to obtain an accurate and comprehensive assessment of a child’s behavior, but in practice it is limited to in-clinic observation. Research shows significant time lag between when parents first become concerned and when the child is finally diagnosed with autism. This lag can delay early interventions that have been shown to improve developmental outcomes. Objective To develop and evaluate the design of an asynchronous system that allows parents to easily collect clinically valid in-home videos of their child’s behavior and supports diagnosticians in completing diagnostic assessment of autism. Methods First, interviews were conducted with 11 clinicians and 6 families to solicit feedback from stakeholders about the system concept. Next, the system was iteratively designed, informed by experiences of families using it in a controlled home-like experimental setting and a participatory design process involving domain experts. Finally, in-field evaluation of the system design was conducted with 5 families of children (4 with previous autism diagnosis and 1 child typically developing) and 3 diagnosticians. For each family, 2 diagnosticians, blind to the child’s previous diagnostic status, independently completed an autism diagnosis via our system. We compared the outcome of the assessment between the 2 diagnosticians, and between each diagnostician and the child’s previous diagnostic status. Results The system that resulted through the iterative design process includes (1) NODA smartCapture, a mobile phone-based application for parents to record prescribed video evidence at home; and (2) NODA Connect, a Web portal for diagnosticians to direct in-home video collection, access developmental history, and conduct an assessment by linking evidence of behaviors tagged in the videos to the Diagnostic and Statistical Manual of Mental Disorders criteria. Applying clinical judgment, the diagnostician

  13. An Illumination Modeling System for Human Factors Analyses

    NASA Technical Reports Server (NTRS)

    Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)

    2002-01-01

    Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.

  14. Generalized Kac lemma for recurrence time in iterated open quantum systems

    NASA Astrophysics Data System (ADS)

    Sinkovicz, P.; Kiss, T.; Asbóth, J. K.

    2016-05-01

    We consider recurrence to the initial state after repeated actions of a quantum channel. After each iteration a projective measurement is applied to check recurrence. The corresponding return time is known to be an integer for the special case of unital channels, including unitary channels. We prove that for a more general class of quantum channels the expected return time can be given as the inverse of the weight of the initial state in the steady state. This statement is a generalization of the Kac lemma for classical Markov chains.

  15. Testing Facility Uncertainty Analyses for RBCC Systems Testing

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Steele, W. Glenn; Ryan, Harry M.; Hughes, Mark S.; Hammond, J. Matt

    2002-01-01

    The Rocket Based Combined Cycle (RBCC) engine is expected to evolve based upon past combined-cycle propulsion test experience/data and new extensive test data. Currently, it is envisioned that a portion of the component and system testing will be pursued at NASA Stennis Space Center (SSC). To realize the greatest benefit of the test data, uncertainty analyses are being performed on the relevant RBCC components and systems to be tested at NASA SSC to ascertain the needed measurement requirements. These studies pertain to the existing E-Complex test stands as well as a new facility, E-4. This paper describes the approach used in the studies and gives examples to demonstrate the approach and the usefulness of the results. Future work will greatly increase the reliability of the test data while minimizing costs by focusing expenditures in the proper areas that are critical to program success and not allowing resources to be wasted in areas that are not significant relative to overall program goals.

  16. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  17. Proposal of actively heated, long stem based Cs delivery system for diagnostic neutral beam source in ITER

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Mishra, S.; Pandya, K.; Bandyopadhyay, M.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Shah, S.; Phukan, A.; Roopesh, G.; Ahmed, I.; Chakraborty, A. K.; Singh, M. J.; Schunke, B.; Hemsworth, R.; Svensson, L.; Chareyre, J.; Graceffa, J.

    2013-02-01

    Positioning of Cesium (Cs) oven modules in the complex interface dominated space envelope of a negative ion source such as Diagnostic Neutral Beam (DNB) source for ITER is a challenge not only for the designer of the ion source, but also that of remote handling. A more user friendly design of the Cs delivery could emerge from the consideration of a possibility of injecting the Cs from an oven located outside the vacuum envelope of the ion source, thereby ensuring an ease of Cs refilling and oven maintenance. The design of such a delivery system involves long transmission path of lengths ˜4 m, from ambient to vacuum. System design involves incorporation of a low loss transmission tube enveloped by highly reflective inner surface pipe to reduce the heat losses and therefore heating of the nearby systems. A combination of all metallic valves operated at high temperatures has been incorporated in such a way that the Cs refilling or oven maintenance can be done without breaking the ion source vacuum. Removable joints in the oven heating elements are provided at specific locations to remove the Cs oven for ion source maintenance. Experimental data on Cs transmission over such a long length, required for an effective design of a co-axial transmission, is not presently available. However, an experiment has been carried out in ITER-India making measurements of Cs distribution in coaxial transmission of a length of more than 5 m. These experiments incorporate an additional feature of multiple nozzle distributor based Cs delivery into the ion source which might help in reducing the need of multiple Cs ovens in large ion sources like ITER. The Cs flux from the oven is measured by surface ionization detector (SID). The angular distribution of the Cs flux is measured by a movable SID in linear direction and has been found in good agreement with the calculations. The Cs inventory in the oven reservoir was measured by electrical resistivity measurements methods. The paper

  18. Iterative Frequency-Domain Channel Estimation and Equalization for Ultra-Wideband Systems with Short Cyclic Prefix

    NASA Astrophysics Data System (ADS)

    Bahçeci, Salim; Koca, Mutlu

    2010-12-01

    In impulse radio ultra-wideband (IR-UWB) systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD) processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP) to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI) and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP) and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS) and non-line-of-sight (NLOS) UWB channels after only a few iterations.

  19. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  20. Improvements in Hanford TRU Program Utilizing Systems Modeling and Analyses

    SciTech Connect

    Baynes, P.A.; Bailey, K.B.; McKenney, D.E.; Uytioco, E.

    2008-07-01

    Hanford's Transuranic (TRU) Program is responsible for certifying contact-handled (CH) TRU waste and shipping the certified waste to the Waste Isolation Pilot Plant (WIPP). Hanford's CH TRU waste includes material that is in retrievable storage as well as above ground storage, and newly generated waste. Certifying a typical container entails retrieving and then characterizing it (Non-Destructive Examination [NDE], Non-Destructive Assay [NDA], and Head Space Gas Sampling [HSG]), validating records (data review and reconciliation), and designating the container for a payload. The certified payload is then shipped to WIPP. Systems modeling and analysis techniques were applied to Hanford's TRU Program to help streamline the certification process and increase shipping rates. The modeling and analysis yields several benefits: - Maintains visibility on system performance and predicts downstream consequences of production issues. - Predicts future system performance with higher confidence, based on tracking past performance. - Applies speculation analyses to determine the impact of proposed changes (e.g., apparent shortage of feed should not be used as basis to reassign personnel if more feed is coming in the queue). - Positively identifies the appropriate queue for all containers (e.g., discovered several containers that were not actively being worked because they were in the wrong 'physical' location - method used previously for queuing up containers). - Identifies anomalies with the various data systems used to track inventory (e.g., dimensional differences for Standard Waste Boxes). A model of the TRU Program certification process was created using custom queries of the multiple databases for managing waste containers. The model was developed using a simplified process chart based on the expected path for a typical container. The process chart was augmented with the remediation path for containers that do not meet acceptance criteria for WIPP. Containers are sorted

  1. Initial results of systems analysis of the ETR/ITER (Engineering Test Reactor/International Thermonuclear Experimental Reactor) design space

    SciTech Connect

    Peng, Y.K.M.; Galambos, J.D.; Reid, R.L.; Strickler, D.J.; Kalsi, S.; Deleanu, L.

    1987-01-01

    Preliminary versions of the Engineering Test Reactor (ETR) systems code TETRA (Tokamak Engineering Test Reactor Analysis), which determines design solutions by the method of constrained optimization, are used to characterize the International Thermonuclear Experimental Reactor (ITER) and its design parameter space. We find that the physics objectives of high ignition margin and high plasma current lead to minimum size at relatively low aspect ratios (A = 2.5-3.0), while the engineering objective of high neutron wall load (W/sub L/ /approx gt/ 1.0 MW/m/sup 2/) leads to minimum size at higher A (/approximately/3.5). For minimum-size ITERs, the optimal toroidal field coil (TFC) designs fall within a narrow range of maximum fields (10-11 T) with R varying over only a few percent despite a factor of two change in the winding pack current density J/sub wp/. The major radius of the design is found to be sensitive to changes in elongation, inboard distances (such as plasma scrape-off), inductive flux capability, plasma temperature, beta limit, and ignition margin. A preliminary characterization of the US ITER designs with plasma current I/sub p/ > 15 MA and R < 4.5 m has been obtained by combining the engineering assumptions for devices such as the Tokamak Ignition/Burn Engineering Reactor (TIBER) with the physics assumptions for devices such as the Compact Ignition Tokamak (CIT) and the Next European Torus (NET). These devices can accommodate a range of full- to reduced-bore, driven (Q < 10), steady-state plasmas for the engineering phase that produces high neutron wall load and fluence. 12 refs., 4 figs., 3 tabs.

  2. Study of the choice of the decoupling layout for the ITER ICRH system

    SciTech Connect

    Vervier, M. Messiaen, A.; Ongena, J.; Durodié, F.

    2015-12-10

    10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition of four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.

  3. An iterative model-based cogging compensator for the Green Bank Telescope servo system

    NASA Astrophysics Data System (ADS)

    Franke, Timothy; Weadon, Timothy; Ford, John; Garcia-Sanz, Mario

    2014-07-01

    This paper outlines an anti-cogging methodology and summarizes the current state of motor cogging cancellation on the Green Bank Telescope (GBT). An iterative, model-based algorithm is developed for finding the anticogging signal which yields rapid convergence. This method fills a gap in present methodologies in that it can serve as a drop-in cogging solution which operates in the presence of unknown structural dynamics as well as with an existing feedback controller. The algorithm is described and demonstrated on a 40 HP DC brushed motor test bed and also on the GBT's elevation axis motors. Results and implementation experience from deploying the algorithm on a motor test bed and on the GBT are discussed.

  4. Parallelizable restarted iterative methods for nonsymmetric linear systems. Part 1: Theory

    SciTech Connect

    Joubert, W.D.; Carey, G.F.

    1991-05-01

    Large sparse nonsymmetric problems of the form Au = b are frequently solved using restarted conjugate gradient-type algorithms such as the popular GCR and GMRES algorithms. In this study the authors define a new class of algorithms which generate the same iterates as the standard GMRES algorithm but require as little as half of the computational expense. This performance improvement is obtained by using short economical three-term recurrences to replace the long recurrence used by GMRES. The new algorithms are shown to have good numerical properties in typical cases, and the new algorithms may be easily modified to be as numerically safe as standard GMRES. Numerical experiments with these algorithms are given in Part 2, in which they demonstrate the improved performance of the new schemes on different computer architectures.

  5. Use of PID and Iterative Learning Controls on Improving Intra-Oral Hydraulic Loading System of Dental Implants

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Cheng; Chan, Manuel; Hsin, Yi-Ping; Ko, Ching-Chang

    This study presents the control design and tests of an intra-oral hydraulic system for quantitatively loading of a dental implant. The computer-controlled system was developed and employed for better pressure error compensation by PID (proportional-integral-derivative) control and point-to-point iterative learning algorithm. In vitro experiments showed that implant loading is precisely controlled (error 3%) for 0.5Hz loading without air inclusion, and reasonably performed (error<10%) with air inclusion up to 20% of the total hydraulic volume. The PID controller maintains forces at the desired level while the learning controller eliminates overshoot/undershoot at the onset of each loading cycle. The system can be potentially used for in vivo animal studies for better understanding of how bone responds to implant loading. Quantitative information derived from this biomechanical model will add to improved designs of dental implants.

  6. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  7. Fictitious Reference Iterative Tuning for Non-Minimum Phase Systems in the IMC Architecture: Simultaneous Attainment of Controllers and Models

    NASA Astrophysics Data System (ADS)

    Kaneko, Osamu; Nguyen, Hien Thi; Wadagaki, Yusuke; Yamamoto, Shigeru

    This paper provides a practical and meaningful application of controller parameter tuning. Here, we propose a simultaneous attainment of a desired controller and a mathematical model of a plant by utilizing the fictitious reference iterative tuning (FRIT), which is a useful method of controller parameter tuning with only one-shot experimental data, in the internal model control (IMC) architecture. Particularly, this paper focuses on systems with unstable zeros which cannot be eliminated in many applications. We explain how the utilization of the FRIT is effective for obtaining not only the desired control parameter values but also an appropriate mathematical model of the plant. In order to show the effectiveness and the validity of the proposed method, we give illustrative examples.

  8. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.

    2014-02-01

    CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.

  9. An iterative Riemann solver for systems of hyperbolic conservation law s, with application to hyperelastic solid mechanics

    SciTech Connect

    Miller, Gregory H.

    2003-08-06

    In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.

  10. Analyses of Dynamic Response of Vehicle and Track Coupling System with Random Irregularity of Track Vertical Profile

    NASA Astrophysics Data System (ADS)

    LEI, X.; NODA, N.-A.

    2002-11-01

    A dynamic computational model for the vehicle and track coupling system is developed by means of finite element method in this paper. In numerical implementation, the vehicle and track coupling system is divided into two parts; lower structure and upper structure. The vehicle as the upper structure in the coupling system is a whole locomotive or rolling stock with two layers of spring and damping system in which vertical and rolling motion for vehicle and bogie are involved. The lower structure in the coupling system is a railway track where rails are considered as beams with finite length rested on a double layer continuous elastic foundation. The two parts are solved independently with an iterative scheme. Coupling the vehicle system and railway track is realized through interaction forces between the wheels and the rail, where the irregularity of the track vertical profile considered as stationary ergodic Gaussian random processes and simulated by trigonometry series is included. The amplitudes of vibrations, their velocities and the accelerations generated in the vehicle and rail and the interaction forces between the vehicle and the rail due to the random irregularity of the track vertical profile and different line grades and train speeds have been analyzed numerically by this model. Analyses of system responses are performed in time and frequency domains.

  11. Spaceborne power systems preference analyses. Volume 2: Decision analysis

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.

  12. Safety-factor profile tailoring by improved electron cyclotron system for sawtooth control and reverse shear scenarios in ITER

    SciTech Connect

    Zucca, C.; Sauter, O.; Fable, E.; Henderson, M. A.; Polevoi, A.; Saibene, G.

    2008-11-01

    The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model by Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q{sub 0.2}-q{sub min} in advanced scenarios, if one row provides counter-ECCD.

  13. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  14. Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.

  15. A Coding System for Analysing a Spoken Text Database.

    ERIC Educational Resources Information Center

    Cutting, Joan

    1994-01-01

    This paper describes a coding system devised to analyze conversations of graduate students in applied linguistics at Edinburgh University. The system was devised to test the hypothesis that as shared knowledge among conversation participants grows, the textual density of in-group members has more cues than that of strangers. The informal…

  16. Spaceborne power systems preference analyses. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals.

  17. Analyses of grounded and ungrounded photovoltaic power systems

    SciTech Connect

    Bower, W.; Wiles, J.

    1994-07-01

    Photovoltaic (PV) modules and photovoltaic balance of systems equipment are designed, manufactured, and marketed internationally. Each country or group Of countries has a set of electrical safety codes, either in place or evolving, that guide and regulate the design and installation of PV power systems. A basic difference in these codes is that some require hard (low-resistance) grounding (the United States and Canada) and others opt for an essentially ungrounded system (Europe and Japan). The significant design and safety issues that exist between the two grounding concepts affect the international PV industry`s ability to economically and effectively design and market safe, reliable, and durable PV systems in the global market place. This paper will analyze the technical and safety benefits, penalties, and costs of both grounded arid ungrounded PV systems. The existing grounding practice in several typical countries will be addressed.

  18. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  19. Guide for Oxygen Hazards Analyses on Components and Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Dees, Jesse; Poe, Robert F.

    1996-01-01

    Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite at lower temperatures in an oxygen-enriched environment than in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Many metals burn violently in an oxygen-enriched environment when ignited. Lubricants, tapes, gaskets, fuels, and solvents can increase the possibility of ignition in oxygen systems. However, these hazards do not preclude the use of oxygen. Oxygen may be safely used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. These ignition and combustion hazards necessitate a proper oxygen hazards analysis before introducing a material or component into oxygen service. The objective of this test plan is to describe the White Sands Test Facility oxygen hazards analysis to be performed on components and systems before oxygen is introduced and is recommended before implementing the oxygen component qualification procedure. The plan describes the NASA Johnson Space Center White Sands Test Facility method consistent with the ASTM documents for analyzing the hazards of components and systems exposed to an oxygen-enriched environment. The oxygen hazards analysis is a useful tool for oxygen-system designers, system engineers, and facility managers. Problem areas can be pinpointed before oxygen is introduced into the system, preventing damage to hardware and possible injury or loss of life.

  20. Analyses Of Transient Events In Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Cavallo, Peter; Daines, Russell

    2005-01-01

    Valve systems in rocket propulsion systems and testing facilities are constantly subject to dynamic events resulting from the timing of valve motion leading to unsteady fluctuations in pressure and mass flow. Such events can also be accompanied by cavitation, resonance, system vibration leading to catastrophic failure. High-fidelity dynamic computational simulations of valve operation can yield important information of valve response to varying flow conditions. Prediction of transient behavior related to valve motion can serve as guidelines for valve scheduling, which is of crucial importance in engine operation and testing. In this paper, we present simulations of the diverse unsteady phenomena related to valve and feed systems that include valve stall, valve timing studies as well as cavitation instabilities in components utilized in the test loop.

  1. A Framework for Integrated Component and System Analyses of Instabilities

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Erwin, James; Arunajatesan, Srinivasan; Cattafesta, Lou; Liu, Fei

    2010-01-01

    Instabilities associated with fluid handling and operation in liquid rocket propulsion systems and test facilities usually manifest themselves as structural vibrations or some form of structural damage. While the source of the instability is directly related to the performance of a component such as a turbopump, valve or a flow control element, the associated pressure fluctuations as they propagate through the system have the potential to amplify and resonate with natural modes of the structural elements and components of the system. In this paper, the authors have developed an innovative multi-level approach that involves analysis at the component and systems level. The primary source of the unsteadiness is modeled with a high-fidelity hybrid RANS/LES based CFD methodology that has been previously used to study instabilities in feed systems. This high fidelity approach is used to quantify the instability and understand the physics associated with the instability. System response to the driving instability is determined through a transfer matrix approach wherein the incoming and outgoing pressure and velocity fluctuations are related through a transfer (or transmission) matrix. The coefficients of the transfer matrix for each component (i.e. valve, pipe, orifice etc.) are individually derived from the flow physics associated with the component. A demonstration case representing a test loop/test facility comprised of a network of elements is constructed with the transfer matrix approach and the amplification of modes analyzed as the instability propagates through the test loop.

  2. Various Analyses of Structures and Systems Pertaining to Optical Communications

    NASA Technical Reports Server (NTRS)

    Petersen, Collin W.

    2005-01-01

    The Optical Communications Group intends to experiment with a 2 by 2 meter Fresnel lens to determine its likelihood as an alternative to focusing mirrors for optical communications. The lens was delivered in four sections. A support structure was required for the lens in order to hold the four sections in a single flat plane with an adjustable degree angle. In order to use the 200-in. Hale telescope for optical communications purposes, an optical filter membrane must used to pass the communications wavelength while blocking sunlight wavelengths. This filter must withstand wind gusts of up to 50 miles per hour. Stress analysis predicts that the membrane will survive with a safety factor greater than two. The methods used were verified by pressure testing the material. Mechanical and thermodynamic analyses were performed on a simple Golay cell in order to optimize its dimensions for best performance. Flexures are examined as an inexpensive alternative to traditional methods for kinematically constraining a 1.5-meter spherical mirror.

  3. Spectroscopic Measurement System for ITER Divertor Plasma: Impurity Influx Monitor (divertor)

    SciTech Connect

    Sugie, Tatsuo; Ogawa, Hiroaki; Kusama, Yoshinori; Kasai, Satoshi

    2008-03-12

    The detailed design of the Impurity Influx Monitor (divertor) has been carried out to provide the measurement capability in the harsh environment such as higher irradiation levels of neutron, gamma-ray and particles than in present devices. The in-situ calibration system using a micro retro-reflector array has been developed to monitor the sensitivity change of the optical system due to the environmental effects. The optical alignment system for the Monitor has been developed by using a dedicated optics for alignment in the collection optics for measurement.

  4. A System for Integrated Reliability and Safety Analyses

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Coumeri, Marc; Scheidler, Peter, Jr.; Bonesteel, Charles

    1999-01-01

    We present an integrated reliability and aviation safety analysis tool. The reliability models for selected infrastructure components of the air traffic control system are described. The results of this model are used to evaluate the likelihood of seeing outcomes predicted by simulations with failures injected. We discuss the design of the simulation model, and the user interface to the integrated toolset.

  5. [Challenges to the Current Special Education System--Two Analyses.

    ERIC Educational Resources Information Center

    NCERI Bulletin, 1995

    1995-01-01

    This bulletin presents two articles which challenge the current special education system, one in terms of the conceptualization of disability and the second in terms of differential and discriminatory treatment of poor and minority youth. The first article titled "New Trends in Disability Studies: Implications for Educational Policy" (Harlan Hahn)…

  6. State Budgeting for Higher Education: Information Systems and Technical Analyses.

    ERIC Educational Resources Information Center

    Purves, Ralph A.; Glenny, Lyman A.

    The extent to which state agencies are implementing information systems and analytical methods for budget review are examined. Focus is on 17 states: California, Colorado, Connecticut, Florida, Hawaii, Illinois, Kansas, Michigan, Mississippi, Nebraska, New York, Pennsylvania, Tennessee, Texas, Virginia, Washington, and Wisconsin. Trends in budget…

  7. Comparative assessment of selected PWR auxiliary feedwater system reliability analyses

    SciTech Connect

    Youngblood, R.; Fresco, A.; Papazoglou, I.A.; Tsao, J.

    1985-01-01

    This paper presents a sample of results obtained in reviewing utility submittals of Auxiliary Feedwater System reliability studies. These results are then used to illustrate a few general points regarding such studies. The submittals and reviews for operating license applications are quite significant in that they represent an application of probabilistic risk assessment techniques in the licensing process.

  8. Analysing Student Programs in the PHP Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Weragama, Dinesha; Reye, Jim

    2014-01-01

    Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that…

  9. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  10. A trajectory-free framework for analysing multiscale systems

    NASA Astrophysics Data System (ADS)

    Froyland, Gary; Gottwald, Georg A.; Hammerlindl, Andy

    2016-08-01

    We develop algorithms built around properties of the transfer operator and Koopman operator which (1) test for possible multiscale dynamics in a given dynamical system, (2) estimate the magnitude of the time-scale separation, and finally (3) distill the reduced slow dynamics on a suitably designed subspace. By avoiding trajectory integration, the developed techniques are highly computationally efficient. We corroborate our findings with numerical simulations of a test problem.

  11. Nanogold Labeling of the Yeast Endosomal System for Ultrastructural Analyses

    PubMed Central

    Mari, Muriel; Griffith, Janice; Reggiori, Fulvio

    2014-01-01

    Endosomes are one of the major membrane sorting checkpoints in eukaryotic cells and they regulate recycling or destruction of proteins mostly from the plasma membrane and the Golgi. As a result the endosomal system plays a central role in maintaining cell homeostasis, and mutations in genes belonging to this network of organelles interconnected by vesicular transport, cause severe pathologies including cancer and neurobiological disorders. It is therefore of prime relevance to understand the mechanisms underlying the biogenesis and organization of the endosomal system. The yeast Saccharomyces cerevisiae has been pivotal in this task. To specifically label and analyze at the ultrastructural level the endosomal system of this model organism, we present here a detailed protocol for the positively charged nanogold uptake by spheroplasts followed by the visualization of these particles through a silver enhancement reaction. This method is also a valuable tool for the morphological examination of mutants with defects in endosomal trafficking. Moreover, it is not only applicable for ultrastructural examinations but it can also be combined with immunogold labelings for protein localization investigations. PMID:25046212

  12. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  13. Iterative solutions of sparse linear systems on systolic arrays. Technical report

    SciTech Connect

    Melhem, R.

    1987-03-01

    The idea of grouping the non-zero elements of a sparse matrix into few strips that are almost parallel is applied to the design of a systolic accelerator for sparse matrix operations. This accelerator is, then, integrated into a complete systolic system for the solution of large sparse linear systems of equations. The design demonstrates that the application of systolic arrays is not limited to regular computations, and that computationally irregular problems may be solved on systolic networks if local storage is provided in each systolic cell for buffering the irregularity in the data movement and for absorbing the irregularity in the computation.

  14. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  15. A 4D-Var CO2 inversion system with NICAM-TM: development and sensitivity analyses

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Fujii, Y.; Sawa, Y.; Ito, A.; Iida, Y.; Tomita, H.; Masaki, S.; Imasu, R.; Matsuda, H.; Machida, T.; Saigusa, N.

    2014-12-01

    Our understanding of the global carbon cycle and its feedback mechanism to climate changes is limited due to high uncertainties in estimates of regional CO2 fluxes at the earth surface. Recently, a large amount of CO2 concentration data are becoming available from high-frequency aircraft measurements (e.g., CONTRAIL) and satellite measurements (e.g., GOSAT and OCO-2), in addition to expansion of surface measurement networks. To exploit those observational data, a new inversion system has been developed with the four-dimensional variational (4D-Var) method. The system is based on Nonhydrostatic ICosahedral Atmospheric Model-based Transport Model (NICAM-TM), which consists of forward and adjoint transport modes. For the a priori fluxes at terrestrial biospheres and oceans, CO2 flux data from Vegetation Integrative SImulator for Trace Gases (VISIT) and the diagnostic model of Japan Meteorological Agency (JMA) are respectively used. In the iterative calculation, the quasi-Newton method of Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar) is used. In this study, we present the structure of the newly developed system and performances for CO2 flux estimates in ideal twin experiments. By the twin experiments, sensitivities to prior error covariance, numerical algorithms, and observational networks are investigated. Acknowledgment: This study is supported by the Environment Research and Technology Development Fund (2-1401) of the Ministry of the Environment, Japan.

  16. Solar Power System Analyses for Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gefert, Leon P.

    1999-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.

  17. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    NASA Technical Reports Server (NTRS)

    Callini, Gianluca

    2016-01-01

    The drive for the journey to Mars is in a higher gear than ever before. We are developing new spacecraft and life support systems to take humans to the Red Planet. The journey that development hardware takes before its final incarnation in a fully integrated spacecraft can take years, as is the case for the Orion environmental control and life support system (ECLSS). Through the Pressure Integrated Suit Test (PIST) series, NASA personnel at Johnson Space Center have been characterizing the behavior of a closed loop ECLSS in the event of cabin depressurization. This kind of testing - one of the most hazardous activities performed at JSC - requires an iterative approach, increasing in complexity and hazards). The PIST series, conducted in the Crew and Thermal Systems Division (CTSD) 11-ft Chamber, started with unmanned test precursors before moving to a human-in-the-loop phase, and continues to evolve with the eventual goal of a qualification test for the final system that will be installed on Orion. Meanwhile, the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program is an effort to research and develop technologies that will work in concert to support habitation on Mars. September 2015 marked the first unmanned HESTIA test, with the goal of characterizing how ECLSS technologies work together in a closed environment. HESTIA will culminate in crewed testing, but it can benefit from the lessons learned from another test that is farther ahead in its development and life cycle. Discussing PIST and HESTIA, this paper illustrates how we approach testing, the kind of information that facility teams need to ensure efficient collaborations and successful testing, and how we can apply what we learn to execute future tests.

  18. Effect of Iterative Reconstruction on the Detection of Systemic Sclerosis-related Interstitial Lung Disease: Clinical Experience in 55 Patients.

    PubMed

    Pontana, François; Billard, Anne-Sophie; Duhamel, Alain; Schmidt, Bernhard; Faivre, Jean-Baptiste; Hachulla, Eric; Matran, Régis; Remy, Jacques; Remy-Jardin, Martine

    2016-04-01

    Purpose To evaluate the effect of iterative reconstruction on the depiction of systemic sclerosis-related interstitial lung disease (ILD) when the radiation dose is reduced by 60%. Materials and Methods This study was based on retrospective interpretation of prospectively acquired data over a 12-month period and approved by the institutional review board. The requirement to obtain informed consent was waived. Fifty-five chest computed tomographic (CT) examinations were performed in 38 women and 17 men (mean age, 55.8 years; range, 23-82 years) by using a dual-source CT unit with (a) both tubes set at similar energy (120 kVp) and (b) the total reference milliampere seconds (ie, 110 mAs) split up in a way that 40% was applied to tube A and 60% to tube B. Two series of images were generated simultaneously from the same dataset: (a) standard-dose images (generated from both tubes) reconstructed with filtered back projection (group 1, the reference standard) and (b) reduced-dose images (generated from tube A; 60% dose reduction) reconstructed with sinogram-affirmed iterative reconstruction (SAFIRE) (group 2). In both groups, the analyzed parameters comprised the image noise and the visualization and conspicuity of CT features of ILD. Two readers independently analyzed images from both groups. Results were compared by using the Wilcoxon test for paired samples; the 95% confidence interval was calculated when appropriate. Results The mean level of objective noise in group 2 was significantly lower than that in group 1 (22.02 HU vs 26.23 HU, respectively; P < .0001). The CT features of ILD in group 1 were always depicted in group 2, with subjective conspicuity scores (a) improved in group 2 for ground-glass opacity, reticulation, and bronchiectasis and/or bronchiolectasis and (b) identical in both groups for honeycombing. The interobserver agreement for their depiction was excellent in both groups (κ, 0.84-0.98). Conclusion Despite a 60% dose reduction, images

  19. Modular Code and Data System for Fast Reactor Neutronics Analyses

    SciTech Connect

    RIMPAULT, G.

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected in the

  20. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (ESTSC)

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&Dmore » organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected

  1. DEVELOPMENT AND DEMONSTRATION OF A SUPERCRITICAL HELIUM-COOLED CRYOGENIC VISCOUS COMPRESSOR PROTOTYPE FOR THE ITER VACUUM SYSTEM

    SciTech Connect

    Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Rasmussen, David A; Edgemon, Timothy D; Hechler, Michael P; Barbier, Charlotte N; Pearce, R.J.H.; Kersevan, R.; Dremel, M.; Boissin, Jean Claude

    2012-01-01

    As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.

  2. Sensitive Optical and Microfluidic Systems for Cellular Analyses

    NASA Astrophysics Data System (ADS)

    Schiro, Perry G.

    Investigating rare cells and heterogeneous subpopulations is challenging for a myriad reasons. This dissertation describes novel techniques to analyze single molecules, synaptic vesicles, and rare circulating tumor cells. The eDAR platform for isolating rare cells in fluids provides a new method to monitor breast cancer status in patients as well as to guide research for personalized treatment and efficacy. In a side-by-side comparison with CellSearch, eDAR detected CTCs in all 20 Stage IV metastatic breast cancer patients while the CellSearch system found CTCs in just 8 patients. The single-molecule capillary electrophoresis technology is a method to characterize an entire sample one molecule at a time, providing detailed information about the absolute number and nature of molecules present in a sample. The nFASS platform has the potential to apply the advantages that currently exist in flow cytometry to the study of items on a much smaller scale such as subcellular organelles and nanometer-sized objects. For example, the isolation of subpopulations of synaptic vesicles will allow for detailed protein quantification and identification in the study of neurological diseases. These tools facilitate fundamental investigation of objects ranging from single molecules to single cells.

  3. Natural history of alkaptonuria revisited: analyses based on scoring systems.

    PubMed

    Ranganath, Lakshminarayan R; Cox, Trevor F

    2011-12-01

    Increased circulating homogentisic acid in body fluids occurs in alkaptonuria (AKU) due to lack of enzyme homogentisate dioxygenase leading in turn to conversion of HGA to a pigmented melanin-like polymer, known as ochronosis. The tissue damage in AKU is due to ochronosis. A potential treatment, a drug called nitisinone, to decrease formation of HGA is available. However, deploying nitisinone effectively requires its administration at the most optimal time in the natural history. AKU has a long apparent latent period before overt ochronosis develops. The rate of change of ochronosis and its consequences over time following its recognition has not been fully described in any quantitative manner. Two potential tools are described that were used to quantitate disease burden in AKU. One tool describes scoring the clinical features that includes clinical assessments, investigations and questionnaires in 15 patients with AKU. The second tool describes a scoring system that only includes items obtained from questionnaires in 44 people with AKU. Analysis of the data reveals distinct phases of the disease, a pre-ochronotic phase and an ochronotic phase. The ochronotic phase appears to demonstrate an earlier slower progression followed by a rapidly progressive phase. The rate of change of the disease will have implications for monitoring the course of the disease as well as decide on the most appropriate time that treatment should be started for it to be effective either in prevention or arrest of the disease. PMID:21748407

  4. Analysing Finnish Steering System from the Perspective of Social Space: The Case of the "Campus University"

    ERIC Educational Resources Information Center

    Treuthardt, Leena; Valimaa, Jussi

    2008-01-01

    The present study analyses Finnish higher education steering system, management by results, from the perspective of higher education institutions. We ask what happens inside a higher education institution, called here the "Campus University", during the actual negotiations related to the national steering system. We analyse not only the management…

  5. Some results from the second iteration of total-system performance assessment for Yucca Mountain

    SciTech Connect

    Wilson, M.L.

    1994-05-01

    The second preliminary total-system performance assessment for the potential radioactive-waste-repository site at Yucca Mountain has recently been completed. This paper summarizes results for nominal aqueous and gaseous releases using the composite-porosity flow model. The results are found to be sensitive to the type of unsaturated-zone flow, to percolation flux and climate change, to saturated-zone dilution, to container-wetting processes and container-corrosion processes, to fuel-matrix alteration rate and radionuclide solubilities (especially for {sup 237}Np), and to bulk permeability and retardation of gaseous {sup 14}C. These are areas that should be given priority in the site-characterization program. Specific recommendations are given in the full report of the study.

  6. Space-filling curves of self-similar sets (I): iterated function systems with order structures

    NASA Astrophysics Data System (ADS)

    Rao, Hui; Zhang, Shu-Qin

    2016-07-01

    This paper is the first part of a series which provides a systematic treatment of the space-filling curves of self-similar sets. In the present paper, we introduce a notion of linear graph-directed IFS (linear GIFS in short). We show that to construct a space-filling curve of a self-similar set, it amounts to exploring its linear GIFS structures. Compared to the previous methods, such as the L-system or recurrent set method, the linear GIFS approach is simpler, more rigorous and leads to further studies on this topic. We also propose a new algorithm for the beautiful visualization of space-filling curves. In a series of papers Dai et al (2015 arXiv:1511.05411 [math.GN]), Rao and Zhang (2015) and Rao and Zhang (2015), we investigate for a given self-similar set how to get ‘substitution rules’ for constructing space-filling curves, which was obscure in the literature. We solve the problem for self-similar sets of finite type, which covers most of the known results on constructions of space-filling curves.

  7. Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation

    PubMed Central

    Holzem, Katherine M.; Madden, Eli J.; Efimov, Igor R.

    2014-01-01

    Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and disease, cardiac arrhythmias are expressly the product of cardiac tissue—containing enough cardiomyocytes to sustain a reentrant loop of activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coupling. However, relevant human cardiac EP data, upon which to develop or validate models at all scales, has been lacking. Thus, over several years, we have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experimental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP computational investigations, as well as encourage greater data transparency within the field of cardiac EP. PMID:25362174

  8. Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems

    PubMed Central

    Kollár, Zsolt

    2014-01-01

    This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER). PMID:24558338

  9. Development and irradiation test of lost alpha detection system for ITER.

    PubMed

    Nishiura, M; Nagasaka, T; Fujioka, K; Fujimoto, Y; Tanaka, T; Ido, T; Yamamoto, S; Kashiwa, S; Sasao, M

    2010-10-01

    We developed a lost alpha detection system to use in burning plasma experiments. The scintillators of Ag:ZnS and polycrystalline Ce:YAG were designed for a high-temperature environment, and the optical transmission line was designed to transmit from the scintillator to the port plug. The required optical components of lenses and mirrors were irradiated using the fission reactor with the initial result that there was no clear change after the irradiation with a neutron flux of 9.6×10(17) nm(-2)  s(-1) for 48 h. We propose a diagnostic of alpha particle loss, so-called alpha particle induced gamma ray spectroscopy. The initial laboratory test has been carried out by the use of the Ce doped Lu(2)SiO(5) scintillator detector and an Am-Be source to detect the 4.44 MeV high energy gamma ray due to the (9)Be(α,nγ)(12)C reaction. PMID:21033839

  10. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  11. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  12. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    NASA Astrophysics Data System (ADS)

    Reed, Claude B.; Hua, Thanh Q.; Natesan, Ken; Kirillov, Igor R.; Vitkovski, Ivan V.; Anisimov, Aleksandr M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al2O3/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  13. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P. U.; Durodié, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-05-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.

  14. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  15. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  16. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  17. Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1994-01-01

    The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.

  18. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 2, Summary of technical input and model implementation

    SciTech Connect

    Prindle, N.H.; Mendenhall, F.T.; Trauth, K.; Boak, D.M.; Beyeler, W.; Hora, S.; Rudeen, D.

    1996-05-01

    The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the second iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.

  19. PROPERTY CHANGES OF CYANATE ESTER/EPOXY INSULATION SYSTEMS CAUSED BY AN ITER-LIKE DOUBLE IMPREGNATION AND BY REACTOR IRRADIATION

    SciTech Connect

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-08

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2x10{sup 22} m{sup -2}(E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  20. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  1. On the analyses of mixture vapor pressure data: the hydrogen peroxide/water system and its excess thermodynamic functions.

    PubMed

    Manatt, Stanley L; Manatt, Margaret R R

    2004-12-01

    Reported here are some aspects of the analysis of mixture vapor pressure data using the model-free Redlich-Kister approach that have heretofore not been recognized. These are that the pure vapor pressure of one or more components and the average temperature of the complex apparatuses used in such studies can be obtained from the mixture vapor pressures. The findings reported here raise questions regarding current and past approaches for analyses of mixture vapor pressure data. As a test case for this analysis approach the H2O2-H2O mixture vapor pressure measurements reported by Scatchard, Kavanagh, and Tickner (G. Scatchard, G. M. Kavanagh, L. B. Ticknor, J. Am. Chem. Soc. 1952, 74, 3715-3720; G. M. Kavanagh, PhD. Thesis, Massachusetts Institute of Technology (USA), 1949) have been used; there is significant recent interest in this system. It was found that the original data is fit far better with a four-parameter Redlich-Kister excess energy expansion with inclusion of the pure hydrogen peroxide vapor pressure and the temperature as parameters. Comparisons of the present results with the previous analyses of this suite of data exhibit significant deviations. A precedent for consideration of iteration of temperature exists from the little-known work of Uchida, Ogawa, and Yamaguchi (S. Uchida, S. Ogawa, M. Yamaguchi, Japan Sci. Eng. Sci. 1950, 1, 41-49) who observed significant variations of temperature from place to place within a carefully insulated apparatus of the type traditionally used in mixture vapor pressure measurements. For hydrogen peroxide, new critical constants and vapor pressure-temperature equations needed in the analysis approach described above have been derived. Also temperature functions for the four Redlich-Kister parameters were derived, that allowed calculations of the excess Gibbs energy, excess entropy, and excess enthalpy whose values at various temperatures indicate the complexity of H2O2-H2O mixtures not evident in the original analyses

  2. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    PubMed Central

    Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong

    2014-01-01

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo®, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice

  3. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    SciTech Connect

    Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  4. Launch cost analyses for reusable space transportation systems (Sänger II)

    NASA Astrophysics Data System (ADS)

    Koelle, Dietrich E.

    With the revival of studies for more economic fully reusable launch vehicles on both sides of the Atlantic, cost estimation analyses become of major importance. This is due to the fact that the essential cost reduction expected by fully reusable launch systems need to be substantiated for the justification of the development effort. The TRANSCOST model developed in the 1970-1983 period for launch vehicle cost analyses dealt mainly with expendable launch vehicles. This paper shows updated material and CERs for launch cost including fabrication and operations cost for future reusable and winged systems, such as Sänger II with the ETHV hypersonic manned winged upper stage.

  5. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    PubMed

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. PMID:25311160

  6. PCG reference manual: A package for the iterative solution of large sparse linear systems on parallel computers. Version 1.0

    SciTech Connect

    Joubert, W.D.; Carey, G.F.; Kohli, H.; Lorber, A.; McLay, R.T.; Shen, Y.; Berner, N.A. |; Kalhan, A. |

    1995-01-01

    PCG (Preconditioned Conjugate Gradient package) is a system for solving linear equations of the form Au = b, for A a given matrix and b and u vectors. PCG, employing various gradient-type iterative methods coupled with preconditioners, is designed for general linear systems, with emphasis on sparse systems such as these arising from discretization of partial differential equations arising from physical applications. It can be used to solve linear equations efficiently on parallel computer architectures. Much of the code is reusable across architectures and the package is portable across different systems; the machines that are currently supported is listed. This manual is intended to be the general-purpose reference describing all features of the package accessible to the user; suggestions are also given regarding which methods to use for a given problem.

  7. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  8. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  9. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  10. The Impact of British Airways Wind Observations on the Goddard Earth Observing System Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)

    2001-01-01

    British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.

  11. The Validity of Individual Rorschach Variables: Systematic Reviews and Meta-Analyses of the Comprehensive System

    ERIC Educational Resources Information Center

    Mihura, Joni L.; Meyer, Gregory J.; Dumitrascu, Nicolae; Bombel, George

    2013-01-01

    We systematically evaluated the peer-reviewed Rorschach validity literature for the 65 main variables in the popular Comprehensive System (CS). Across 53 meta-analyses examining variables against externally assessed criteria (e.g., observer ratings, psychiatric diagnosis), the mean validity was r = 0.27 (k = 770) as compared to r = 0.08 (k = 386)…

  12. Analysing the Shadows: Private Tutoring as a Descriptor of the Education System in Georgia

    ERIC Educational Resources Information Center

    Bregvadze, Tamar

    2012-01-01

    During the past decade Georgia has received strong international support for education reform, and it represents an interesting case by which the effectiveness of particular interventions in the region can be assessed. Most attempts to analyse progress within the system have so far been concentrated on two aspects of formal education: private and…

  13. Prospects of ITER Instability Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen

    2015-11-01

    Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.

  14. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  15. Reliability-aware iterative detection scheme (RAID) for distributed IDM space-time codes in relay systems

    NASA Astrophysics Data System (ADS)

    Lenkeit, Florian; Wübben, Dirk; Dekorsy, Armin

    2013-12-01

    In this article, distributed interleave-division multiplexing space-time codes (dIDM-STCs) are applied for multi-user two-hop decode-and-forward (DF) relay networks. In case of decoding errors at the relays which propagate to the destination, severe performance degradations can occur as the original detection scheme for common IDM-STCs does not take any reliability information about the first hop into account. Here, a novel reliability-aware iterative detection scheme (RAID) for dIDM-STCs is proposed. This new detection scheme takes the decoding reliability of the relays for each user into account for the detection at the destination. Performance evaluations show that the proposed RAID scheme clearly outperforms the original detection scheme and that in certain scenarios even a better performance than for adaptive relaying schemes can be achieved.

  16. Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses

    SciTech Connect

    Livesay, Eric A.; Tang, Keqi; Taylor, Beverley K.; Buschbach, Michael A.; Hopkins, Derek F.; Lamarche, Brian L.; Zhao, Rui; Shen, Yufeng; Orton, Daniel J.; Moore, Ronald J.; Kelly, Ryan T.; Udseth, Harold R.; Smith, Richard D.

    2008-01-01

    We describe a 4-column, high-pressure capillary liquid chromatography (LC) system for robust, high-throughput LC-MS(/MS) analyses. This system performs multiple LC separations in parallel, but staggers each of them such that the data-rich region of each separation is sampled sequentially. By allowing nearly continuous data acquisition, this design maximizes the use of the mass spectrometer. Each analytical column is connected to a corresponding ESI emitter in order to avoid the use of post-column switching and associated dead volume issues. Encoding translation stages are employed to sequentially position the emitters at the MS inlet. The high reproducibility of this system is demonstrated using consecutive analyses of global tryptic digest of the microbe Shewanella oneidensis.

  17. Analyses and experiments of background sunlight's effects on laser detection system

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Yin, Rui-guang; Ma, Na; Liang, Wei-wei; Li, Bo

    2015-10-01

    Background sunlight effect the technical performance of laser detection system significantly. Analyses and experiments were done to find the degree and regularity of effects of background sunlight on laser detection system. At first, we established the theoretical model of laser detection probability curve. We emulated and analysed the effects on probability curve under different sunlight intensity by the model. Moreover, we got the variation regularity of parameter in probability curve. Secondly, we proposed a prediction method of probability curve, which deduced the detecting parameter from measured data. The method can not only get the probability curve in arbitrary background sunlight by a measured probability curve in typical background sunlight, but also calculate the sensitivity of laser detection systems by probability curve at the specified probability. Thirdly, we measured the probability curves under three types of background sunlight. The illumination conditions in experiments included fine, overcast and night. These three curves can be used as reference to deduce other curves. Using model, method, and measured data mentioned above, we finally finished the analyses and appraisal of the effects of background sunlight on typical laser detection system. The research findings can provide the theoretical reference and technical support for adaptability evaluation of typical laser detection systems in different background sunlight.

  18. Knowledge based system with embedded intelligent heart sound analyser for diagnosing cardiovascular disorders.

    PubMed

    Javed, F; Venkatachalam, P A; Hani, A F M

    2007-01-01

    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists. PMID:17701779

  19. New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations

    NASA Astrophysics Data System (ADS)

    Kew, Lee Ming; Ali, Norhashidah Hj. Mohd

    2015-08-01

    In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for the solution of a three dimensional second order hyperbolic telegraph equation, subject to specific initial and Dirichlet boundary conditions. Both schemes are shown to be of second order accuracies and unconditionally stable. The scheme derived from the rotated grid stencil results in a reduced linear system with lower computational complexity compared to the scheme derived from the centred approximation formula. A comparative study with other common point iterative methods based on the seven-point centred difference approximation together with their computational complexity analyses is also presented.

  20. Results of the implementation on a mock-up of the full 3dB hybrid matching option of the ITER ICRH system

    SciTech Connect

    Grine, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2011-12-23

    Each of the two ICRH antennas for ITER must couple 20MW to the plasma in the 40-55MHz band via an array of 24 radiating shorted straps fed by four generators. The matching system must provide automatic matching control on the mean load provided by the plasma and be resilient (parallel {Gamma}{sub G} parallel <0.2) to a wide range of fast antenna load excursions occurring in ELMy plasmas. Furthermore, good control of the current distribution in the strap array must be possible for the various heating and current drive scenarios. Two load resilient matching options have been considered for ITER: the 4 'Conjugate-T'(CT) and the 4 hybrids ones, the first being presently considered as a back-up option. Automatic control of these 2 options has been developed, and tested for optimization on a low-powered scaled mock-up. Successful implementation of the simultaneous feedback control of 11 actuators for the matching of the 4 CT and for the control of the toroidal phasing has already been achieved. The matching and the array current control of the 3dB hybrid option are provided by simultaneous feedback control of the decouplers and double stub tuners (in total 23 actuators) and this has also been successfully achieved for the full array. The paper discusses the circuit implementation and presents the obtained results.

  1. Results of the implementation on a mock-up of the full 3dB hybrid matching option of the ITER ICRH system

    NASA Astrophysics Data System (ADS)

    Grine, D.; Vervier, M.; Messiaen, A.; Dumortier, P.

    2011-12-01

    Each of the two ICRH antennas for ITER must couple 20MW to the plasma in the 40-55MHz band via an array of 24 radiating shorted straps fed by four generators. The matching system must provide automatic matching control on the mean load provided by the plasma and be resilient (‖ΓG‖<0.2) to a wide range of fast antenna load excursions occurring in ELMy plasmas. Furthermore, good control of the current distribution in the strap array must be possible for the various heating and current drive scenarios. Two load resilient matching options have been considered for ITER: the 4 `Conjugate-T' (CT) and the 4 hybrids ones, the first being presently considered as a back-up option [1]. Automatic control of these 2 options has been developed, and tested for optimization on a low-powered scaled mock-up. Successful implementation of the simultaneous feedback control of 11 actuators for the matching of the 4 CT and for the control of the toroidal phasing has already been achieved [2]. The matching and the array current control of the 3dB hybrid option are provided by simultaneous feedback control of the decouplers and double stub tuners (in total 23 actuators) and this has also been successfully achieved for the full array. The paper discusses the circuit implementation and presents the obtained results.

  2. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  3. Space transfer concepts and analyses for exploration missions. Technical directive 12: Beamed power systems study

    NASA Technical Reports Server (NTRS)

    Eder, D.

    1992-01-01

    Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.

  4. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  5. Solar power satellite system definition study. Volume 2, phase 1: Systems analyses tradeoffs.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed. Space construction and support systems are examined including a series construction and equipment characteristics analysis. Space transportation for the satellite and the ground receiving station are assessed.

  6. Truncated States Obtained by Iteration

    NASA Astrophysics Data System (ADS)

    Cardoso B., W.; Almeida G. de, N.

    2008-02-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  7. ITER nominates next leader

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2015-01-01

    Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.

  8. Cyclic structural analyses of anisotropic turbine blades for reusable space propulsion systems. [ssme fuel turbopump

    NASA Technical Reports Server (NTRS)

    Manderscheid, J. M.; Kaufman, A.

    1985-01-01

    Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.

  9. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  10. Analyses and tests of the B-1 aircraft structural mode control system

    NASA Technical Reports Server (NTRS)

    Wykes, J. H.; Byar, T. R.; Macmiller, C. J.; Greek, D. C.

    1980-01-01

    Analyses and flight tests of the B-1 structural mode control system (SMCS) are presented. Improvements in the total dynamic response of a flexible aircraft and the benefits to ride qualities, handling qualities, crew efficiency, and reduced dynamic loads on the primary structures, were investigated. The effectiveness and the performance of the SMCS, which uses small aerodynamic surfaces at the vehicle nose to provide damping to the structural modes, were evaluated.

  11. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  12. Extraterrestrial Materials: The Role of Synchrotron Radiation Analyses in the Study of Our Solar System

    ScienceCinema

    Sutton, Stephen R. [University of Chicago, Chicago, Illinois, United States

    2010-01-08

    Sample-return missions and natural collection processes have provided us with a surprisingly extensive collection of matter from Solar System bodies other than the Earth. These collections include samples from the Moon, Mars, asteroids, interplanetary dust, and, recently, from the Sun (solar wind) and a comet. This presentation will describe some of these materials, how they were collected, and what we have learned from them. Synchrotron radiation analyses of these materials are playing an increasingly valuable role in unraveling the histories and properities of the parent Solar System bodies.

  13. Extraterrestrial Materials: The Role of Synchrotron Radiation Analyses in the Study of our Solar System

    SciTech Connect

    Sutton, Stephen R.

    2006-04-05

    Sample-return missions and natural collection processes have provided us with a surprisingly extensive collection of matter from Solar System bodies other than the Earth. These collections include samples from the Moon, Mars, asteroids, interplanetary dust, and, recently, from the Sun (solar wind) and a comet. This presentation will describe some of these materials, how they were collected, and what we have learned from them. Synchrotron radiation analyses of these materials are playing an increasingly valuable role in unraveling the histories and properities of the parent Solar System bodies.

  14. Extraterrestrial Materials: The Role of Synchrotron Radiation Analyses in the Study of Our Solar System

    SciTech Connect

    Sutton, Stephen R.

    2009-04-05

    Sample-return missions and natural collection processes have provided us with a surprisingly extensive collection of matter from Solar System bodies other than the Earth. These collections include samples from the Moon, Mars, asteroids, interplanetary dust, and, recently, from the Sun (solar wind) and a comet. This presentation will describe some of these materials, how they were collected, and what we have learned from them. Synchrotron radiation analyses of these materials are playing an increasingly valuable role in unraveling the histories and properities of the parent Solar System bodies.

  15. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  16. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    SciTech Connect

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  17. An evaluation system for electronic retrospective analyses in radiation oncology: implemented exemplarily for pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Kessel, Kerstin A.; Jäger, Andreas; Bohn, Christian; Habermehl, Daniel; Zhang, Lanlan; Engelmann, Uwe; Bougatf, Nina; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E.

    2013-03-01

    To date, conducting retrospective clinical analyses is rather difficult and time consuming. Especially in radiation oncology, handling voluminous datasets from various information systems and different documentation styles efficiently is crucial for patient care and research. With the example of patients with pancreatic cancer treated with radio-chemotherapy, we performed a therapy evaluation by using analysis tools connected with a documentation system. A total number of 783 patients have been documented into a professional, web-based documentation system. Information about radiation therapy, diagnostic images and dose distributions have been imported. For patients with disease progression after neoadjuvant chemoradiation, we designed and established an analysis workflow. After automatic registration of the radiation plans with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose-volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence. All results are stored in the database and included in statistical calculations. The main goal of using an automatic evaluation system is to reduce time and effort conducting clinical analyses, especially with large patient groups. We showed a first approach and use of some existing tools, however manual interaction is still necessary. Further steps need to be taken to enhance automation. Already, it has become apparent that the benefits of digital data management and analysis lie in the central storage of data and reusability of the results. Therefore, we intend to adapt the evaluation system to other types of tumors in radiation oncology.

  18. Real-Time Soils Characterization and Analyses Systems Used at Ohio Closure Sites

    SciTech Connect

    Roybal, Lyle Gene; Carpenter, Michael Vance; Giles, John Robert; Hartwell, John Kelvin; Danahy, R.

    2003-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Fernald Environmental Management Project (FEMP) have jointly developed a field-deployed analytical system to rapidly scan, characterize, and analyze surface soil contamination. The basic system consists of a sodium iodide (NaI) spectrometer and global positioning system (GPS) hardware. This hardware can be deployed from any of four different platforms depending on the scope of the survey at hand. These platforms range from a large tractor-based unit (the RTRAK) used to survey large, relatively flat areas to a hand-pushed unit where maneuverability is important, to an excavator mounted system used to scan pits and trenches. The mobile sodium iodide concept was initially developed by the FEMP to provide pre-screening analyses for soils contaminated with uranium, thorium, and radium. The initial study is documented in the RTRAK Applicability Study and provides analyses supporting the field usage of the concept. The RTRAK system produced data that required several days of post-processing and analyses to generate an estimation of field coverage and activity levels. The INEEL has provided integrated engineering, computer hardware and software support to greatly streamline the data acquisition and analysis process to the point where real-time activity and coverage maps are available to the field technicians. On-line analyses have been added to automatically convert GPS data to Ohio State-Plane coordinates, examine and correct collected spectra for energy calibration drifts common to NaI spectrometers, and strip spectra in regions of interest to provide moisture corrected activity levels for total uranium, thorium-232, and radium-226. Additionally, the software provides a number of checks and alarms to alert operators that a hand-examination of spectral data in a particular area may be required. The FEMP has estimated that this technology has produced projected site savings in excess of $34M

  19. DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization.

    PubMed

    Zheng, Z; Papenhausen, E; Mueller, K

    2013-11-01

    Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios. PMID:24145253

  20. DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Papenhausen, E.; Mueller, K.

    2013-11-01

    Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios.

  1. Manned systems utilization analysis (study 2.1). Volume 3: LOVES computer simulations, results, and analyses

    NASA Technical Reports Server (NTRS)

    Stricker, L. T.

    1975-01-01

    The LOVES computer program was employed to analyze the geosynchronous portion of the NASA's 1973 automated satellite mission model from 1980 to 1990. The objectives of the analyses were: (1) to demonstrate the capability of the LOVES code to provide the depth and accuracy of data required to support the analyses; and (2) to tradeoff the concept of space servicing automated satellites composed of replaceable modules against the concept of replacing expendable satellites upon failure. The computer code proved to be an invaluable tool in analyzing the logistic requirements of the various test cases required in the tradeoff. It is indicated that the concept of space servicing offers the potential for substantial savings in the cost of operating automated satellite systems.

  2. Portable, fully autonomous, ion chromatography system for on-site analyses.

    PubMed

    Elkin, Kyle R

    2014-07-25

    The basic operating principles of a portable, fully autonomous, ion chromatography system are described. The system affords the user the ability to collect and analyze samples continuously for 27 days, or about 1930 injections before needing any user intervention. Within the 13 kg system, is a fully computer controlled autosampling, chromatography and data acquisition system. An eluent reflux device (ERD), which integrates eluent suppression and generation in a single multi-chambered device, is used to minimize eluent consumption. During operation, about 1 μL of water per minute is lost to waste while operating standard-bore chromatography at 0.5 mL min(-1) due to eluent refluxing. Over the course of 27 days, about 100mL of rinse water is consumed, effectively eliminating waste production. Data showing the reproducibility (below 1% relative standard deviation over 14 days) of the device is also presented. Chromatographic analyses of common anions (Cl(-), NO3(-), SO4(2-), PO4(3-)), is accomplished in under 15 min using a low backpressure guard column with ∼ 25 mM KOH isocratic elution. For detection, a small capacitively-coupled contactless conductivity detector (C4D) is employed, able to report analytes in the sub to low micromolar range. Preconcentration of the injected samples gives a 50-fold decrease in detection limits, primarily utilized for in-situ detection of phosphate (LOQ 10 μg L(-1)). Field analyses are shown for multiple on-site analyses of stream water indifferent weather conditions. PMID:24913366

  3. Conceptual design description for the tritium recovery system for the US ITER (International Thermonuclear Experimental Reactor) Li sub 2 O/Be water cooled blanket

    SciTech Connect

    Finn, P.A.; Sze, D.K. . Fusion Power Program); Clemmer, R.G. )

    1990-11-01

    The tritium recovery system for the US ITER Li{sub 2}O/Be water cooled blanket processes two separate helium purge streams to recover tritium from the Li{sub 2}O zones and the Be zones of the blanket, to process the waste products, and to recirculate the helium back to the blanket. The components are selected to minimize the tritium inventory of the recovery system, and to minimize waste products. The system is robust to either an increase in the tritium release rate or to an in-leak of water in the purge system. Three major components were used to process these streams, first, 5A molecular sieves at {minus}196{degree}C separate hydrogen from the helium, second, a solid oxide electrolysis unit is used to reduce all molecular water, and third, a palladium/silver diffuser is used to ensure that only hydrogen (H{sub 2}, HT) species reach the cryogenic distillation unit. Other units are present to recover tritium from waste products but the three major components are the basis of the blanket tritium recovery system. 32 refs.

  4. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Astrophysics Data System (ADS)

    Hanley, G. M.

    1981-03-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  5. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  6. Flight test and analyses of the B-1 structural mode control system at supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Wykes, J. H.; Kelpl, M. J.; Brosnan, M. J.

    1983-01-01

    A practical structural mode control system (SMCS) that could be turned on at takeoff and be left on for the entire flight was demonstrated. The SMCS appears to be more effective in damping the key fuselage bending modes at supersonic speeds than at the design point of Mach 0.85 (for fixed gains). The SMCS has an adverse effect on high frequency symmetric modes; however, this adverse effect did not make the system unstable and does not appear to affect ride quality performance. The vertical ride quality analyses indicate that the basic configuration without active systems is satisfactory for long term exposure. If clear air turbulence were to be encountered, indications are that the SMCS would be very effective in reducing the adverse accelerations. On the other hand, lateral ride quality analyses indicate that the aircraft with the SMCS on does not quite meet the long term exposure criteria, but would be satisfactory for shot term exposure at altitude. Again, the lateral SMCS was shown to be very effective in reducing peak lateral accelerations.

  7. Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2015-12-01

    In this paper, we try to use the entransy theory to analyze the heat-work conversion systems with inner irreversible thermodynamic cycles. First, the inner irreversible thermodynamic cycles are analyzed. The influences of different inner irreversible factors on entransy loss are discussed. We find that the concept of entransy loss can be used to analyze the inner irreversible thermodynamic cycles. Then, we analyze the common heat-work conversion systems with inner irreversible thermodynamic cycles. As an example, the heat-work conversion system in which the working fluid of the thermodynamic cycles is heated and cooled by streams is analyzed. Our analyses show that larger entransy loss leads to larger output work when the total heat flow from the high temperature heat source and the corresponding equivalent temperature are fixed. Some numerical cases are presented, and the results verify the theoretical analyses. On the other hand, it is also found that larger entransy loss does not always lead to larger output work when the preconditions are not satisfied. Project supported by the National Natural Science Foundation of China (Grant Nos. 51376101 and 51356001).

  8. Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems

    NASA Astrophysics Data System (ADS)

    Thornhill, D. J.; Kemp, D. W.; Sampayo, E. M.; Schmidt, G. W.

    2010-03-01

    Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR-DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.

  9. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  10. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.

    PubMed

    Knoerzer, Markus; Szydzik, Crispin; Tovar-Lopez, Francisco Javier; Tang, Xinke; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-02-01

    Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density. PMID:26643028

  11. Design realization towards the qualification test of ITER cold circulator

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Patel, P.; Das, J.; Srinivasa, M.; Shukla, V.

    2015-12-01

    Cold circulators, part of ITER Cryo-distribution system, have now reached to a stage of final qualification to demonstrate the design to cater the maximum mass flow and operational demands of the toroidal field (TF) superconducting magnet of ITER with a very high isentropic efficiency. The design for the two numbers of TF cold circulators are now complete gratifying additionally the operational requirements of poloidal field & central solenoid superconducting magnet as well as the cryopumps towards the fulfilment of standardization aspects. Management of physical and functional interfaces has been identified as one the most critical aspect towards the performance of cold circulator. All the interfaces of cold circulators have been analysed with the help of optimized interfacing parameters of Test Auxiliary Cold Box (TACB) and cryogenic test facility at JAEA, Japan during the course of design finalization. Testing at the warm conditions after completion of precise manufacturing of cold circulators has been performed before integrating into the TACB to fulfil the Japanese as well as European regulatory requirements simultaneously. The paper elaborates the methodology of interface management and control, analysis performed towards the interface management and preliminary test results towards the qualification test of the ITER cold circulator.

  12. Assessment of Tools and Data for System-Level Dynamic Analyses

    SciTech Connect

    Steven J. Piet; Nick R. Soelberg

    2011-06-01

    The only fuel cycle for which dynamic analyses and assessments are not needed is the null fuel cycle - no nuclear power. For every other concept, dynamic analyses are needed and can influence relative desirability of options. Dynamic analyses show how a fuel cycle might work during transitions from today's partial fuel cycle to something more complete, impact of technology deployments, location of choke points, the key time lags, when benefits can manifest, and how well parts of fuel cycles work together. This report summarizes the readiness of existing Fuel Cycle Technology (FCT) tools and data for conducting dynamic analyses on the range of options. VISION is the primary dynamic analysis tool. Not only does it model mass flows, as do other dynamic system analysis models, but it allows users to explore various potential constraints. The only fuel cycle for which constraints are not important are those in concept advocates PowerPoint presentations; in contrast, comparative analyses of fuel cycles must address what constraints exist and how they could impact performance. The most immediate tool need is extending VISION to the thorium/U233 fuel cycle. Depending on further clarification of waste management strategies in general and for specific fuel cycle candidates, waste management sub-models in VISION may need enhancement, e.g., more on 'co-flows' of non-fuel materials, constraints in waste streams, or automatic classification of waste streams on the basis of user-specified rules. VISION originally had an economic sub-model. The economic calculations were deemed unnecessary in later versions so it was retired. Eventually, the program will need to restore and improve the economics sub-model of VISION to at least the cash flow stage and possibly to incorporating cost constraints and feedbacks. There are multiple sources of data that dynamic analyses can draw on. In this report, 'data' means experimental data, data from more detailed theoretical or empirical

  13. U.S. Contributions to ITER

    SciTech Connect

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  14. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  15. Iterated multidimensional wave conversion

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  16. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  17. Uls LiDAR Supported Analyses of Laser Beam Penetration from Different ALS Systems Into Vegetation

    NASA Astrophysics Data System (ADS)

    Wieser, M.; Hollaus, M.; Mandlburger, G.; Glira, P.; Pfeifer, N.

    2016-06-01

    This study analyses the underestimation of tree and shrub heights for different airborne laser scanner systems and point cloud distribution within the vegetation column. Reference data was produced by a novel UAV-borne laser scanning (ULS) with a high point density in the complete vegetation column. With its physical parameters (e.g. footprint) and its relative accuracy within the block as stated in Section 2.2 the reference data is supposed to be highly suitable to detect the highest point of the vegetation. An airborne topographic (ALS) and topo-bathymetric (ALB) system were investigated. All data was collected in a period of one month in leaf-off condition, while the dominant tree species in the study area are deciduous trees. By robustly estimating the highest 3d vegetation point of each laser system the underestimation of the vegetation height was examined in respect to the ULS reference data. This resulted in a higher under-estimation of the airborne topographic system with 0.60 m (trees) and 0.55 m (shrubs) than for the topo-bathymetric system 0.30 m (trees) and 0.40 m (shrubs). The degree of the underestimation depends on structural characteristics of the vegetation itself and physical specification of the laser system.

  18. Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong

    2016-05-01

    As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.

  19. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter

  20. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    SciTech Connect

    Jeff Tappen; M.A. Wasiolek; D.W. Wu; J.F. Schmitt

    2001-12-06

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities.

  1. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    SciTech Connect

    Tappen, J. J.; Wasiolek, M. A.; Wu, D. W.; Schmitt, J. F.; Smith, A. J.

    2002-02-26

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities.

  2. Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions

    PubMed Central

    Mochida, Keiichi; Shinozaki, Kazuo

    2011-01-01

    Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances. PMID:22156726

  3. Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens

    PubMed Central

    Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species. PMID:23383313

  4. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    PubMed

    Liu, Guodong; Zhang, Lei; Wei, Xiaomin; Zou, Gen; Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species. PMID:23383313

  5. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  6. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  7. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  8. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  9. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

    NASA Astrophysics Data System (ADS)

    Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.

    2015-02-01

    The System for Automated Geoscientific Analyses (SAGA) is an open-source Geographic Information System (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular organized software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, an easily approachable graphical user interface with many visualization options, a command line interpreter, and interfaces to scripting and low level programming languages like R and Python. The current version 2.1.4 offers more than 700 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Further, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

  10. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

    NASA Astrophysics Data System (ADS)

    Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.

    2015-07-01

    The System for Automated Geoscientific Analyses (SAGA) is an open source geographic information system (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly developed from a specialized tool for digital terrain analysis to a comprehensive and globally established GIS platform for scientific analysis and modeling. SAGA is coded in C++ in an object oriented design and runs under several operating systems including Windows and Linux. Key functional features of the modular software architecture comprise an application programming interface for the development and implementation of new geoscientific methods, a user friendly graphical user interface with many visualization options, a command line interpreter, and interfaces to interpreted languages like R and Python. The current version 2.1.4 offers more than 600 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and beyond. In this paper, we inform about the system's architecture, functionality, and its current state of development and implementation. Furthermore, we highlight the wide spectrum of scientific applications of SAGA in a review of published studies, with special emphasis on the core application areas digital terrain analysis, geomorphology, soil science, climatology and meteorology, as well as remote sensing.

  11. First-Order Systems Least-Squares Finite Element Methods and Nested Iteration for Electromagnetic Two-Fluid Kinetic-Based Plasma Models

    NASA Astrophysics Data System (ADS)

    Leibs, Christopher A.

    Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.

  12. Dynamics of the 2014 Holuhraun fissure eruption analysed by video monitoring system

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2015-04-01

    Events on the volcanic system within the axial volcanic zones are linked to plate movements. The spreading and subsequent rifting of the crust take place at the plate boundary and occurs in distinct rifting episodes. These rifting episodes are characterized by earthquakes and volcanic eruptions within the central volcano or along fissures. For the subsurface structure of a volcanic system and the behavior of the magma plumbing system during major rifting episodes two contrasting models exists, (i) vertical feeding by a deep magma source or (ii) lateral feeding through a shallow magma chamber under the central volcano. The ongoing 2014 Holuhraun eruption is providing a unique opportunity to rigorously test the feeding paths of an active fissure eruption. Here we employ video images to analyse the height and velocity variation of the lava fountains at the Holuhraun eruption fissure. On the first day of the eruption we could set up in total five high resolution video cameras. With algorithms of photogrammetry and correlation analysis we interpret the behavior of the lava fountains. Results suggest a significal lateral propagation path of the dynamics of the active vents, and a lateral migration of the peaks and lows of distinct lava fountains. Although the correlation system can change episodically and sporadically, both the frequency of the lava fountains and the eruption and rest time between single fountains remain similar for adjacent lava fountains imply a controlling process in the magma feeder system itself. We interpret the results by a lateral magma and gas flow underlying and feeding the eruption fissure. Systematic recording and analysis of video data hence help to decide which magma plumbing system is more reliable. Additionally, the dataset allows us to compare the eruption behavior to seismic datasets.

  13. ITER Cryoplant Status and Economics of the LHe plants

    NASA Astrophysics Data System (ADS)

    Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.

    The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.

  14. Capabilities and applications of a computer program system for dynamic loads analyses of flexible airplanes with active controls /DYLOFLEX/

    NASA Technical Reports Server (NTRS)

    Perry, B., III; Goetz, R. C.; Kroll, R. I.; Miller, R. D.

    1979-01-01

    This paper describes and illustrates the capabilities of the DYLOFLEX Computer Program System. DYLOFLEX is an integrated system of computer programs for calculating dynamic loads of flexible airplanes with active control systems. A brief discussion of the engineering formulation for each of the nine DYLOFLEX programs is described. The capabilities of the system are illustrated by the analyses of two example configurations.

  15. Distinct Signaling Roles of Ceramide Species in Yeast Revealed Through Systematic Perturbation and Systems Biology Analyses

    PubMed Central

    Montefusco, David J.; Chen, Lujia; Matmati, Nabil; Lu, Songjian; Newcomb, Benjamin; Cooper, Gregory F.; Hannun, Yusuf A.; Lu, Xinghua

    2014-01-01

    Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule participating in cellular regulatory events and having implications for disease. A challenge in deciphering ceramide signaling emanates from the myriad of ceramide species that exist and the possibility that many of them may have distinct functions. Here, we applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast (Saccharomyces cerevisiae) and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We find that during heat stress distinct metabolic mechanisms control the abundance of different groups of ceramide species. Additionally, distinct groups of ceramide species regulated different sets of functionally related genes, indicating that specific sub-groups of lipids participated in different regulatory pathways. These results indicate a previously unrecognized complexity and versatility of lipid-mediated cell regulation. PMID:24170935

  16. Kinematic and Moisture Environments of Convective Systems During TRMM-LBA: Preliminary Sounding Analyses

    NASA Technical Reports Server (NTRS)

    Halverson, J. B.; Rickenbach, T.; Pierce, H.; Roy, B.; Ferreira, R. N.; Fisch, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Preliminary radiosonde data are analyzed from a four station observation network that operated during TRMM-LBA. These data, which are undergoing quality control, are used to construct mean vertical profiles and time-height sections of u- and v- wind components, and also filtered time series analyses of layer mean relative humidity. Trends are identified in the humidity data which appear similar at all sites, and correlate well with multi-week changes in wind regime identified by Rickenbach et al. Higher-frequency modes of variation (3-5 day) also occur in the humidity and upper tropospheric winds and are spatially coherent among the four locations. The causes of these variations are explored, including interactions among upper tropospheric synoptic features. Finally, an attempt is made to relate the general morphology of convective systems to the vertical shear structure and thermodynamic changes that accompany contrasting wind regimes.

  17. Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monographStream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.

  18. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect

    WILLIAMS, J.C.

    2003-11-15

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  19. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    PubMed

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. PMID:25969399

  20. Magnet design technical report---ITER definition phase

    SciTech Connect

    Henning, C.

    1989-04-28

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.

  1. Alpha-physics and measurement requirements for ITER

    SciTech Connect

    Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.

    1995-12-31

    This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.

  2. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  3. ITER- International Toxicity Estimates for Risk, new TOXNET database.

    PubMed

    Tomasulo, Patricia

    2005-01-01

    ITER, the International Toxicity Estimates for Risk database, joined the TOXNET system in the winter of 2004. ITER features international comparisons of environmental health risk assessment information and contains over 620 chemical records. ITER includes data from the EPA, Health Canada, the National Institute of Public Health and the Environment of the Netherlands, and other organizations that provide risk values that have been peer-reviewed. PMID:15760833

  4. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    SciTech Connect

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-21

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  5. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  6. The Global/Local Nexus in Comparative Policy Studies: Analysing the Triple Bonus System in Mongolia over Time

    ERIC Educational Resources Information Center

    Steiner-Khamsi, Gita

    2012-01-01

    The article analyses a phenomenon that has accompanied teacher salary reform in Mongolia: the import of two global education policies that were nearly identical to the already existing local bonus system ("olympiads"). To make sense of an import that appears superfluous, the author analyses the reception and translation of the triple bonus system…

  7. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    NASA Technical Reports Server (NTRS)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  8. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

    PubMed Central

    Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert

    2011-01-01

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762

  9. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  10. A flexibility-based method via the iterated improved reduction system and the cuckoo optimization algorithm for damage quantification with limited sensors

    NASA Astrophysics Data System (ADS)

    Zare Hosseinzadeh, Ali; Bagheri, Abdollah; Ghodrati Amiri, Gholamreza; Koo, Ki-Young

    2014-04-01

    In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors.

  11. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  12. Iterative image reconstruction techniques: cardiothoracic computed tomography applications.

    PubMed

    Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L

    2014-07-01

    Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334

  13. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    NASA Astrophysics Data System (ADS)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their

  14. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  15. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  16. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  17. PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems

    PubMed Central

    Sriyudthsak, Kansuporn; Mejia, Ramon Francisco; Arita, Masanori; Hirai, Masami Yokota

    2016-01-01

    PASMet (Prediction, Analysis and Simulation of Metabolic networks) is a web-based platform for proposing and verifying mathematical models to understand the dynamics of metabolism. The advantages of PASMet include user-friendliness and accessibility, which enable biologists and biochemists to easily perform mathematical modelling. PASMet offers a series of user-functions to handle the time-series data of metabolite concentrations. The functions are organised into four steps: (i) Prediction of a probable metabolic pathway and its regulation; (ii) Construction of mathematical models; (iii) Simulation of metabolic behaviours; and (iv) Analysis of metabolic system characteristics. Each function contains various statistical and mathematical methods that can be used independently. Users who may not have enough knowledge of computing or programming can easily and quickly analyse their local data without software downloads, updates or installations. Users only need to upload their files in comma-separated values (CSV) format or enter their model equations directly into the website. Once the time-series data or mathematical equations are uploaded, PASMet automatically performs computation on server-side. Then, users can interactively view their results and directly download them to their local computers. PASMet is freely available with no login requirement at http://pasmet.riken.jp/ from major web browsers on Windows, Mac and Linux operating systems. PMID:27174940

  18. InnateDB: facilitating systems-level analyses of the mammalian innate immune response.

    PubMed

    Lynn, David J; Winsor, Geoffrey L; Chan, Calvin; Richard, Nicolas; Laird, Matthew R; Barsky, Aaron; Gardy, Jennifer L; Roche, Fiona M; Chan, Timothy H W; Shah, Naisha; Lo, Raymond; Naseer, Misbah; Que, Jaimmie; Yau, Melissa; Acab, Michael; Tulpan, Dan; Whiteside, Matthew D; Chikatamarla, Avinash; Mah, Bernadette; Munzner, Tamara; Hokamp, Karsten; Hancock, Robert E W; Brinkman, Fiona S L

    2008-01-01

    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner. PMID:18766178

  19. PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems.

    PubMed

    Sriyudthsak, Kansuporn; Mejia, Ramon Francisco; Arita, Masanori; Hirai, Masami Yokota

    2016-07-01

    PASMet (Prediction, Analysis and Simulation of Metabolic networks) is a web-based platform for proposing and verifying mathematical models to understand the dynamics of metabolism. The advantages of PASMet include user-friendliness and accessibility, which enable biologists and biochemists to easily perform mathematical modelling. PASMet offers a series of user-functions to handle the time-series data of metabolite concentrations. The functions are organised into four steps: (i) Prediction of a probable metabolic pathway and its regulation; (ii) Construction of mathematical models; (iii) Simulation of metabolic behaviours; and (iv) Analysis of metabolic system characteristics. Each function contains various statistical and mathematical methods that can be used independently. Users who may not have enough knowledge of computing or programming can easily and quickly analyse their local data without software downloads, updates or installations. Users only need to upload their files in comma-separated values (CSV) format or enter their model equations directly into the website. Once the time-series data or mathematical equations are uploaded, PASMet automatically performs computation on server-side. Then, users can interactively view their results and directly download them to their local computers. PASMet is freely available with no login requirement at http://pasmet.riken.jp/ from major web browsers on Windows, Mac and Linux operating systems. PMID:27174940

  20. InnateDB: facilitating systems-level analyses of the mammalian innate immune response

    PubMed Central

    Lynn, David J; Winsor, Geoffrey L; Chan, Calvin; Richard, Nicolas; Laird, Matthew R; Barsky, Aaron; Gardy, Jennifer L; Roche, Fiona M; Chan, Timothy H W; Shah, Naisha; Lo, Raymond; Naseer, Misbah; Que, Jaimmie; Yau, Melissa; Acab, Michael; Tulpan, Dan; Whiteside, Matthew D; Chikatamarla, Avinash; Mah, Bernadette; Munzner, Tamara; Hokamp, Karsten; Hancock, Robert E W; Brinkman, Fiona S L

    2008-01-01

    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner. PMID:18766178

  1. Design, stability and robustness analyses of neural networks in control systems

    NASA Astrophysics Data System (ADS)

    Shen, Jie

    1998-12-01

    Artificial Neural Network (ANN), also known as connectionist learning and parallel distributed processing, is finding its applications in diverse fields: many branches of engineering, health sciences, cognitive science, archaeology, finance, etc. This research tries to make some efforts to emphasize "design" methodology in ANN, and to explore the structures by which ANN can solve difficult problems by identifying proper ANN architecture. Two classes of ANN--multi-layer neural networks and recurrent networks--are investigated in the context of control of systems and estimation of unknown parameters. The multi-layer neural networks converge to optimal solutions by satisfying mathematical formulations associated with the Hamilton approach and the dynamic programming approach. A benchmark aerospace application is used for illustration. A variant of the Hopfield network, called the Modified Hopfield Neural Network (MHNN), is proposed to show the design approach to the determination of weights in recurrent networks. It is shown how the equilibrium point of this network helps with inversion operations arising in optimal gain determination. Control of dynamic systems using recurrent neural networks are presented. The robustness of the recurrent networks to parameter variation is considered in the context of weights. Analyses are carried out in the frequency domain and the time domain.

  2. Application of Geographic Information Systems (GIS) in Analysing Rainfall Distribution Patterns in Batu Pahat District

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Kaamin, M.; Azizan, N. S.; Sahat, S.; Bukari, S. M.; Mokhtar, M.; Ngadiman, N.; Hamid, N. B.

    2016-07-01

    Rainfall forecasting reports are crucial to provide information and warnings to the population in a particular location. The Malaysian Meteorology Department (MMD) is a department that plays an important role in monitoring the situation and issued the statement of changes in weather and provides services such as weather advisories and gives warnings when the situation requires. Uncertain weather situations normally have created panic situation, especially in big cities because of flash floods due to poor drainage management. Usually, local authorities provided rainfall data in tables, and it is difficult to analyse to acquire the rainfall trend. Therefore, Geographic Information System (GIS) applications are commonly used to generate rainfall patterns in visual formation with a combination of characteristics of rainfall data and then can be used by stakeholders to facilitate the process of analysis and forecasting rainfall. The objective of this study is to determine the pattern of rainfall distribution using GIS applications in Batu Pahat district to assist interested parties to understand and easy to analyse the rainfall data in visual form or mapping form. Rainfall data for a period of 10 years (2004-2013) and monthly data (Dec 2006 - Feb 2007) are provided by the Department of Irrigation and Drainage (DID) for 12 stations in the district of Batu Pahat, and rainfall maps in each year was obtained using the interpolation Inverse Distance Weighted (IDW) method was used in this research. The rainfall map was then analyzed to identify the highest rainfall that was received during the period of study. For the conclusion, this study has proved that rainfall analysis using GIS application is efficient to be used in gaining information of rainfall patterns as the results show that the highest rainfall occurred in 2006 and 2007, and it were the years of major floods occurrence in Batu Pahat district.

  3. System assessment study of the ESA Darwin Mission: concepts trade-off and first iteration design on novel Emma arrangement

    NASA Astrophysics Data System (ADS)

    Ruilier, C.; Krawczyk, R.; Sghedoni, M.; Chanal, O.; Degrelle, C.; Pirson, L.; Simane, O.; Thomas, E.

    2007-09-01

    ESA's Darwin mission is devoted to direct detection and spectroscopic characterisation of Earth-like planets in the thermal infrared domain by nulling interferometry in space. This technique requires deep and stable starlight rejection to an efficiency around 106 over the whole spectral band. Darwin is a major target for Thales Alenia Space, and is considered as a strategic part of its programme roadmap. In this paper we present the main outcomes of the Darwin mission study conducted by Thales Alenia Space from Oct. 2005 to Jul. 2007. Studying this mission in depth, our proposed most promising configuration features spacecraft in non planar arrangement (called Emma). It offers the best science return in terms of number of stars detected and sky accessibility while staying compliant with mass and volume constraints of a single Ariane 5 launch. Our solution dramatically alleviates engineering constraints thanks to a fully non deployable concept. As compared to the more conventional planar arrangement (called Charles), Emma suppresses Single Point Failures and spurious flexible modes, thus maximising both the system reliability and the stability of the dynamical environment. Emma is fully compatible with either 3 or 4 collectors.

  4. Final Report on ITER Task Agreement 81-18

    SciTech Connect

    Brad J. Merrill

    2008-02-01

    During 2007, the US International Thermonuclear Experimental Reactor (ITER) Project Office (USIPO) entered into a Task Agreement (TA) with the ITER International Organization (IO) to conduct Research and Development activity and/or Design activity in the area of Safety Analyses. There were four tasks within this TA, which were to provide the ITER IO with: 1) Quality Assurance (QA) documentation for the MELCOR 1.8.2 Fusion code, 2) a pedigreed version of MELCOR 1.8.2, 3) assistance in MELCOR input deck development and accident analyses, and 4) support and assistance in the operation of the MELCOR 1.8.2. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-18.

  5. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  6. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  7. Fourier mode analysis of source iteration in spatially periodic media

    SciTech Connect

    Zika, M.R.; Larsen, E.W.

    1998-12-31

    The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.

  8. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  9. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  10. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema

    Robinson, Gene

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  11. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    SciTech Connect

    Robinson, Gene

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  12. Analyses of an air conditioning system with entropy generation minimization and entransy theory

    NASA Astrophysics Data System (ADS)

    Yan-Qiu, Wu; Li, Cai; Hong-Juan, Wu

    2016-06-01

    In this paper, based on the generalized heat transfer law, an air conditioning system is analyzed with the entropy generation minimization and the entransy theory. Taking the coefficient of performance (denoted as COP) and heat flow rate Q out which is released into the room as the optimization objectives, we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations. Five numerical cases are presented. Combining the numerical results and theoretical analyses, we can conclude that the optimization applicabilities of the two theories are conditional. If Q out is the optimization objective, larger entransy increase rate always leads to larger Q out, while smaller entropy generation rate does not. If we take COP as the optimization objective, neither the entropy generation minimization nor the concept of entransy increase is always applicable. Furthermore, we find that the concept of entransy dissipation is not applicable for the discussed cases. Project supported by the Youth Programs of Chongqing Three Gorges University, China (Grant No. 13QN18).

  13. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  14. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  15. Safety and Environmental Activities for ITER

    NASA Astrophysics Data System (ADS)

    Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.

    1997-09-01

    This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.

  16. Evaluation of an EMG bioimpedance measurement system for recording and analysing the pharyngeal phase of swallowing.

    PubMed

    Schultheiss, Corinna; Schauer, Thomas; Nahrstaedt, Holger; Seidl, Rainer O

    2013-07-01

    A neuroprosthetic device for treating swallowing disorders requires an implantable measurement system capable to analysing the timing and quality of the swallowing process in real time. A combined EMG bioimpedance (EMBI) measurement system was developed and is evaluated here. The study was planned and performed as a case-control study. The studies were approved by the Charité Berlin ethics committee in votes EA1/160/09 and EA1/161/09. Investigations were carried out on healthy volunteers in order to examine the usefulness and reproducibility of measurements, the ability to distinguish between swallowing and head movements and the effect of different food consistencies. The correlation between bioimpedance and anatomical and functional changes occurring during the pharyngeal phase of swallowing in non-healthy patients was examined using videofluoroscopy (VFSS). 31 healthy subjects (15♂, 16♀) were tested over the course of 1350 swallows and 19 (17♂, 2♀) non-healthy patients over the course of 54 swallows. The signal curves obtained from both transcutaneous and subcutaneous measurement were similar, characteristic and reproducible (r > 0.5) and correlated with anatomical and functional changes during the pharyngeal phase of swallowing observed using VFSS. Statistically significant differences between head movements and swallowing movements, food volumes and consistencies were found. Neither the conductivity of the food, the sex of the test subject nor the position of the measurement electrodes exerted a statistically significant effect on the measured signal. EMBI is able to reproducibly map the pharyngeal phase of swallowing and changes associated with it both transcutaneously and subcutaneously. The procedure therefore appears to be suitable for use in performing automated evaluation of the swallowing process and for use as a component of an implant. PMID:23440435

  17. Study of the Load Resilient External Matching Circuit for the ITER ICRH/FWCD System by means of its Mock-up

    SciTech Connect

    Messiaen, A.; Dumortier, P.; Lamalle, P. U.; Vervier, M.

    2007-09-28

    The reference matching solution for ITER grouping the 24 straps of the ITER antenna array in 4 'conjugate T' (CT) circuits through pre-matching network is investigated starting from the S matrix measurements versus antenna loading made on the mock-up of the original design. Six decouplers alleviate the mutual coupling effects between the 4 matching circuits and their power sources. All matching actuators are outside the antenna plug. The matching procedure allows the control of load resilience and plasma excitation spectrum for heating and current drive.

  18. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  19. Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities; Phase 2, Iterative performance assessment: Volume 1

    SciTech Connect

    Gureghian, A.B.; Wu, Y.T.; Sagar, B.; Codell, R.A.

    1992-12-01

    Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.

  20. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  1. Challenges and status of ITER conductor production

    NASA Astrophysics Data System (ADS)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  2. Kaczmarz Iterative Projection and Nonuniform Sampling with Complexity Estimates

    PubMed Central

    Wallace, Tim

    2014-01-01

    Kaczmarz's alternating projection method has been widely used for solving mostly over-determined linear system of equations A x = b in various fields of engineering, medical imaging, and computational science. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each iteration at random, based on a certain probability distribution. Since Kaczmarz's method is a subspace projection method, the convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple and randomized Kaczmarz algorithms and explains the link between them. New versions of randomization are proposed that may speed up convergence in the presence of nonuniform sampling, which is common in tomography applications. It is anticipated that proper understanding of sampling and coherence with respect to convergence and noise can improve future systems to reduce the cumulative radiation exposures to the patient. Quantitative simulations of convergence rates and relative algorithm benchmarks have been produced to illustrate the effects of measurement coherency and algorithm performance, respectively, under various conditions in a real-time kernel. PMID:27066496

  3. The precision and accuracy of iterative and non-iterative methods of photopeak integration in activation analysis, with particular reference to the analysis of multiplets

    USGS Publications Warehouse

    Baedecker, P.A.

    1977-01-01

    The relative precisions obtainable using two digital methods, and three iterative least squares fitting procedures of photopeak integration have been compared empirically using 12 replicate counts of a test sample with 14 photopeaks of varying intensity. The accuracy by which the various iterative fitting methods could analyse synthetic doublets has also been evaluated, and compared with a simple non-iterative approach. ?? 1977 Akade??miai Kiado??.

  4. One-electron diatomics in momentum space. II. Second and third iterated LCAO solutions

    SciTech Connect

    Koga, T.; Kawa-ai, R.

    1986-05-15

    Recurrence formulas are derived for the iterative LCAO solution of the one-electron two-center Schroedinger equation in the Fock representation. The results are applied to the second and third iterated LCAO solutions of the H/sup +//sub 2/ system at various internuclear distances R. For 0< or =R< or =20 (a.u.), the maximum errors in the electronic energy are reduced to 2.7% (second iterated) and 1.6% (third iterated), which should be compared with the previous errors of 28.2% (zeroth iterated) and 4.7% (first iterated).

  5. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    PubMed Central

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  6. Systems biological analyses reveal the HCV-specific regulation of hematopoietic development

    PubMed Central

    Velazquez, Victoria M.; Uebelhoer, Luke S.; Thapa, Manoj; Ibegbu, Chris; Courtney, Cynthia; Bosinger, Steven E.; Magliocca, Joseph F.; Adams, Andrew B.; Kirk, Allan D.; Knechtle, Stuart J.; Kalman, Daniel; Suthar, Mehul; Grakoui, Arash

    2014-01-01

    Chronic liver disease is characterized by the liver enrichment of myeloid DCs. To assess the role of disease on myelopoiesis, we utilized a systems biology approach to study development in liver-resident cells expressing stem cell marker CD34. In patients with end-stage liver disease, liver CD34+ cells were comprised by two subsets, designated CD34+CD146+ and CD34+CD146−, and hematopoietic function was restricted to CD34+CD146− cells. Liver CD34 frequencies were reduced during nonalcoholic steatohepatitis (NASH) and chronic hepatitis C virus (HCV) compared to alcohol liver disease (ALD), and this reduction correlated with viral load in the HCV cohort. To better understand the relationship between liver CD34+CD146+ and CD34+CD146− subsets and any effects of disease on CD34 development, we used gene expression profiling and computational modeling to compare each subset during ALD and HCV. For CD34+CD146+ cells, increased expression of endothelial cell genes including von Willebrand factor, VE-cadherin and eNOS were observed when compared to CD34+CD146− cells, and minimal effects of ALD and HCV diseases on gene expression were observed. Importantly for CD34+CD146− cells, chronic HCV was associated with a distinct ‘imprint’ of programs related to cell cycle, DNA repair, chemotaxis, development, and activation, with an emphasis on myeloid and B lymphocyte lineages. This HCV signature was further translated in side-by-side analyses, where HCV CD34+CD146− cells demonstrated superior hematopoietic growth, colony formation, and diversification compared to ALD and NASH when cultured identically. Disease-associated effects on hematopoiesis were also evident by phenotypic alterations in the expression of CD14, HLA-DR and CD16 by myeloid progeny cells. Conclusion Etiology drives progenitor fate within diseased tissues. The liver may be a useful source of hematopoietic cells for therapy, or as therapeutic targets. PMID:25331524

  7. Study of the ITER ICRH system with external matching by means of a mock-up loaded by a variable water load

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Lamalle, P.; Louche, F.

    2006-07-01

    A mock-up of the complete antenna array (24 straps grouped in 8 triplets) of the ICRH system with external matching for ITER has been constructed with a length reduction factor of 5. At a frequency increased by the same factor the electrical properties of the full-scale system can be measured in the presence of non-dispersive medium. A movable water tank in front of the array simulates variable plasma loading. Measurements of the matching performances of various external circuit configurations and of the scattering matrix of the system show (i) the non-negligible effect of mutual coupling on load resilient matching by Conjugate T (CT) or hybrid leading to coupling between the matching actuators and the generators and asymmetry in power distribution, (ii) good load resilience of a single CT for the right choice of configuration and number of matching parameters, (iii) the large number of matching solutions for coupled CTs and (iv) the benefit of passive power distribution to the straps. This has been successfully tested in the case of the complete array. The power is passively distributed among the upper half and the bottom half of the 24 radiating straps of the antenna plug. The 4 top and 4 bottom triplets are, respectively, set in parallel outside the antenna plug near a voltage anti-node by means of T junctions. The load resilient matching (VSWR <1.3 for an antenna loading variation of about 1-8 Ω m-1) is then obtained by a 4-parameters single CT configuration or a hybrid. The maximum voltage along the line remains equal to the one in the antenna plug and there is a fair power share between the straps. A straightforward robust matching procedure of the complete array is described. The effective radiation resistance of different toroidal and poloidal phasing conditions is measured and compared. The paper also underlines the significant influence of the presence of the electrostatic screen and the resulting increase in the recess of the straps on the reduction of

  8. Accident Analyses in Support of the Sludge Water System Safety Analysis

    SciTech Connect

    FINFROCK, S.H.

    2002-08-20

    This document quantifies the potential health effects of the unmitigated hazards identified Hey (2002) for retrieval of sludge from the KE basin. It also identifies potential controls and any supporting mitigative analyses.

  9. Analysis of loss-of-coolant and loss-of-flow accidents in the first wall cooling system of NET/ITER

    NASA Astrophysics Data System (ADS)

    Komen, E. M. J.; Koning, H.

    1994-03-01

    This paper presents the thermal-hydraulic analysis of potential accidents in the first wall cooling system of the Next European Torus or the International Thermonuclear Experimental Reactor. Three ex-vessel loss-of-coolant accidents, two in-vessel loss-of-coolant accidents, and three loss-of-flow accidents have been analyzed using the thermal-hydraulic system analysis code RELAP5/MOD3. The analyses deal with the transient thermal-hydraulic behavior inside the cooling systems and the temperature development inside the nuclear components during these accidents. The analysis of the different accident scenarios has been performed without operation of emergency cooling systems. The results of the analyses indicate that a loss of forced coolant flow through the first wall rapidly causes dryout in the first wall cooling pipes. Following dryout, melting in the first wall starts within about 130 s in case of ongoing plasma burning. In case of large break LOCAs and ongoing plasma burning, melting in the first wall starts about 90 s after accident initiation.

  10. Iterative electro-optic matrix processor

    NASA Astrophysics Data System (ADS)

    Carlotto, M. J.

    An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.

  11. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  12. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction.

    PubMed

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-21

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml(-1) iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml(-1)) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  13. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  14. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The

  15. Spectroscopic analyses of the parent stars of extrasolar planetary system candidates

    NASA Astrophysics Data System (ADS)

    Gonzalez, Guillermo

    1998-06-01

    The stars rho () 1 Cnc, rho CrB, 16 Cyg B, 51 Peg, 47 UMa, 70 Vir, and HD 114762 have recently been proposed to harbor planetary mass companions based on small amplitude radial velocity variations. From spectroscopic analyses we derive the following values of [Fe/H] for these stars: 0.29, -0.29, 0.06, 0.21, 0.01, -0.03, and -0.60 (all with an uncertainty of 0.06 dex), respectively; the [Fe/H] value for 16 Cyg A is 0.11. The four 51 Peg-like systems, upsilon And, tau Boo, rho () 1 Cnc, and 51 Peg, have a mean [Fe/H] value of 0.25. Otherwise, the abundance patterns, expressed as [X/Fe], are approximately solar. We used Fourier analysis, supplemented by line profile synthesis, to derive the following v sin i values: <1.3, 1.4 +/- 0.3, 1.7 +/- 0.4, < 0.5, and < 1.5 km s(-1) for rho () 1 Cnc, 51 Peg, 47 UMa, 70 Vir, and HD 114762, respectively. A similar analysis of the spectrum of rho CrB (with a lower resolving power) yields a value of ~ 1.5 km s() -1. Combining these data with published estimates of v sin i and rotation periods and assuming that the radial velocity variations are due to the presence of planets, we derive the following masses for the companions: >0.66, 2.9(+13.6}_{-1.3) , 0.49+/-0.03, 3.4() +3.1_-1.1, >9.4, and >10.4 cal M_J for rho () 1 Cnc, rho CrB, 51 Peg, 47 UMa, 70 Vir, and HD 114762, respectively; the mass of 16 Cyg B b, calculated using a published estimate for sin i, is 2.0() +1.1_-0.3 cal M_J. The masses of the companions to upsilon And and tau Boo, which were analyzed in a previous paper, are 0.76() +0.19_-0.03 and 5.9() +43.9_-1.8 cal M_J, respectively. We confirm previous claims that rho () 1 Cnc appears to be a subgiant. However, the theoretical isochrone-derived age is much greater than the age of the universe. At this time we have insufficient data to determine the true nature of rho () 1 Cnc, but we suggest that it may be an unresolved stellar binary viewed nearly pole-on. A search for line profile variations might help to resolve this

  16. Analyses of the MSLB benchmark V1000CT-2 by the coupled system code ATHLET-BIPR8KN

    SciTech Connect

    Nikonov, S. P.; Langenbuch, S.; Lizorkin, M. P.; Velkov, K.

    2006-07-01

    Within the activities of OECD/NEA is being initiated the second phase of the VVER-1000 Coolant Transient Benchmark (V1000CT-2). It considers the best estimate analyses of a Main Steam Line Break (MSLB) of a VVER-1000 NPP with two exercises. The analyses have been performed with the coupled system code ATHLET-BIPR8KN which enables to perform realistic simulation of three-dimensional neutron kinetics and thermal-hydraulic processes in VVER NPP. Results are presented and analysed for the two proposed scenarios. These results are supplemented by sensitivity studies varying the number of the thermo-hydraulic channels (THC) in the core and by comparisons with point kinetics calculations. This work is of considerable importance for the validation of the coupled system code ATHLET-BIPR8KN in case of asymmetric core inlet conditions. (authors)

  17. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  18. Spectral resolvability of iterated rippled noise

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2005-04-01

    A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

  19. Iterative solution of the Helmholtz equation

    SciTech Connect

    Larsson, E.; Otto, K.

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  20. Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems (SAP 4.6)

    EPA Science Inventory

    EPA has announced the final report entitled, Synthesis and Assessment Product 4.6: Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems . This Synthesis and Assessment Product 4.6 (SAP 4.6) focuses on impacts of global climate change, es...

  1. Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems (Sap 4.6)

    EPA Science Inventory

    EPA has released the draft document, Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems for public review and comment. The notice has been posted by NOAA/ Department of Commerce on behalf of the U.S. Climate Change Science Program (CCS...

  2. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  3. A comparison of element-by-element preconditioned iterative methods for solid and structural mechanics

    SciTech Connect

    Ferencz, R.M.

    1988-10-01

    Past work with element-by-element (EBE) preconditioned conjugate gradient iterative solution strategies has shown these techniques can be effective for large-scale, three-dimensional calculations in solid and structural mechanics. Significant gains over the profile storage direct solution method traditionally used in implicit finite element codes have been observed for a variety of real engineering analyses, especially in solid mechanics. Structural mechanics applications have proved less successful due to the ill-conditioned linear systems engendered by standard structural discretizations. This lack of robustness has recently motivated reconsideration of Lanczos-based algorithms as alternative iterative drivers. In this paper we compare the relative strengths of the conjugate gradient and Lanczos drivers when coupled with EBE preconditioning. The performance of the two methods is characterized, and compared with direct solution, using a model problem and a number of real engineering meshes. 26 refs., 14 figs., 2 tabs.

  4. Numerical analyses for treating diffusion in single-, two- and three-phase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Numerical solutions were applicable for planar, cylindrical, or spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included in the analyses to account for differences in molal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. A major improvement in solution accuracy was achieved in the two phase analysis by employing a mass conservation criterion to establish the location of the interface rather than the conventional interface-flux-balance criterion. In the three phase analysis, computation time was minimized without sacrificing solution accuracy by treating the three phase problem as a two phase problem when the thickness of the intermediate phase was less than a preset small value. Three computer codes were developed to perform these analyses.

  5. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  6. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  7. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  8. The superior analyses of igneous rocks from Roth's Tabellen, 1869 to 1884, arranged according to the quantitative system of classification

    USGS Publications Warehouse

    Washington, H.S.

    1904-01-01

    In Professional Paper No. 14 there were collected the chemical analyses of igneous rocks published from 1884 to 1900, inclusive, arranged according to the quantitative system of classification recently proposed by Cross, Iddings, Pirsson, and Washington. In order to supplement this work it has appeared advisable to select the more reliable and complete of the earlier analyses collected by Justus Roth and arrange them also in the same manner for publication. Petrographers would thus have available for use according to the new system almost the entire body of chemical work of real value on igneous rocks, the exceptions being a few analyses published prior to 1900 which may have been overlooked by both Roth and myself. The two collections would form a foundation as broad as possible for future research and discussion. I must express my sense of obligation to the United States Geological Survey for publishing the present collection of analyses, and my thanks to my colleagues in the new system of classification for their friendly advice and assistance. 

  9. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  10. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  11. A New Approach for Analysing National Innovation Systems in Emerging and Developing Countries

    ERIC Educational Resources Information Center

    Seidel, Uwe; Muller, Lysann; Meier zu Kocker, Gerd; Filho, Guajarino de Araujo

    2013-01-01

    This paper presents a tool for the indicator-based analysis of national innovation systems (ANIS). ANIS identifies the economic strengths and weaknesses of a country-wide, regional or local system and includes a comprehensive examination and evaluation of the status of existing innovation systems. The use of a particular form of expert interviews…

  12. Operational, control and protective system transient analyses of the closed-cycle GT-HTGR power plant

    NASA Astrophysics Data System (ADS)

    Openshaw, F. L.; Chan, T. W.

    1980-11-01

    This paper presents a description of the analyses of the control/protective system preliminary designs for the gas turbine high-temperature gas-cooled reactor (GT-HTGR) power plant. The purpose of these systems is the control and safe operation of the plant in accordance with utility practice for large nuclear generation stations, and in the event of an abnormal or accident condition to shut the plant down in an orderly manner and maintain it in a safe shutdown condition. Several unique characteristics inherent in the operation of the closed-cycle multiple-loop GT-HTGR design have presented special modeling and/or control design requirements or resulted in unusual conditions. The GT-HTGR dynamic modeling, control/protective system design, and transient analyses are illustrated in this paper through discussion of a few selected transient events and the special modeling and control operation for these events.

  13. Iterative solution of the semiconductor device equations

    SciTech Connect

    Bova, S.W.; Carey, G.F.

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  14. Analysing the capabilities and limitations of tracer tests in stream-aquifer systems

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    2001-01-01

    The goal of this study was to identify the limitations that apply when we couple conservative-tracer injection with reactive solute sampling to identify the transport and reaction processes active in a stream. Our methodology applies Monte Carlo uncertainty analysis to assess the ability of the tracer approach to identify the governing transport and reaction processes for a wide range of stream-solute transport and reaction scenarios likely to be encountered in high-gradient streams. Our analyses identified dimensionless factors that define the capabilities and limitations of the tracer approach. These factors provide a framework for comparing and contrasting alternative tracer test designs.

  15. Iterative optimization calibration method for stereo deflectometry.

    PubMed

    Ren, Hongyu; Gao, Feng; Jiang, Xiangqian

    2015-08-24

    An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180

  16. Distributed Minimal Residual (DMR) method for acceleration of iterative algorithms

    NASA Technical Reports Server (NTRS)

    Lee, Seungsoo; Dulikravich, George S.

    1991-01-01

    A new method for enhancing the convergence rate of iterative algorithms for the numerical integration of systems of partial differential equations was developed. It is termed the Distributed Minimal Residual (DMR) method and it is based on general Krylov subspace methods. The DMR method differs from the Krylov subspace methods by the fact that the iterative acceleration factors are different from equation to equation in the system. At the same time, the DMR method can be viewed as an incomplete Newton iteration method. The DMR method was applied to Euler equations of gas dynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained using either explicit four stage Runge-Kutta or Euler implicit time integration. The formulation for the DMR method is general in nature and can be applied to explicit and implicit iterative algorithms for arbitrary systems of partial differential equations.

  17. A preliminary engineering assessment of the ITER CDA ECH Launcher

    SciTech Connect

    Bigelow, T.S.; Swain, D.W. ); Sawan, M. )

    1994-10-15

    A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.

  18. A preliminary engineering assessment of the ITER CDA ECH launcher

    SciTech Connect

    Bigelow, T.S.; Swain, D.W.; Sawan, M.

    1993-06-01

    A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.

  19. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  20. Fourier analysis of the SOR iteration

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Trefethen, L. N.

    1986-01-01

    The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.