Science.gov

Sample records for ius

  1. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  2. Ius Chasma Fault

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-415, 8 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 'text-book example' of an offset in layered rock caused by a fault. The offset is most easily seen near the upper right of the image. The martian crust is faulted, and the planet has probably experienced 'earthquakes' (or, marsquakes) in the past. This scene is located on the floor of Ius Chasma near 7.8oS, 80.6oW. Sunlight illuminates the scene from the upper left.

  3. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  4. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    Inertial Upper Stage (IUS) and DoD Communication Interface Unit (CIU) communication system design, hardware specifications, and interfaces were evaluated to determine their compatibility with the Orbiter payload communication and data handling equipment and the Orbiter network communication equipment.

  5. Deployment of Galileo and the IUS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Galileo spacecraft and its Inertial Upper Stage (IUS) booster were deployed from the cargo bay of STS-34 Atlantis. Deployment occurred at 7:15 P.M. EDT on October 18, 1989. Beginning an hour after deployment, two rocket stages of the IUS fired in succession. Galileo separated from the IUS' second stage at 9:05 P.M. and began its ballistic flight to Venus for the first of three gravity-assisted flybys, which will take Galileo to Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  6. A Real-Time Telemetry Simulator of the IUS Spacecraft

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo

    1998-01-01

    A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).

  7. STS-44 Defense Support Program (DSP) / IUS during preflight operations

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Defense Support Program (DSP) satellite atop the inertial upper stage (IUS) is prepared for transfer in a processing facility at Cape Canaveral Air Force Station. Clean-suited technicians overseeing the operation are dwarfed by the size of the 5,200-pound DSP satellite and the IUS. The underside of the IUS (bottom) mounted in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table and ASE forward frame is visible at the base. The umbilical boom between the two ASE frames and the forward frame keel trunnion are visible. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS. View provided by KSC with alternate number KSC-91PC-1749.

  8. Ius Chasma Tributary Valleys and Adjacent Plains

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image covers valley tributaries of Ius Chasma, as well as the plains adjacent to the valleys. Ius Chasma is one of several canyons that make up the Valles Marineris canyon system. Valles Marineris likely formed by extension associated with the growth of the large volcanoes and topographic high of Tharsis to the northwest. As the ground was pulled apart, large and deep gaps resulted in the valleys seen in the top and bottom of this HiRISE image. Ice that was once in the ground could have also melted to create additional removal of material in the formation of the valleys. HiRISE is able to see the rocks along the walls of both these valleys and also impact craters in the image. Rock layers that appear lower down in elevation appear rougher and are shedding boulders. Near the top of the walls and also seen in patches along the smooth plains are brighter layers. These brighter layers are not shedding boulders so they must represent a different kind of rock formed in a different kind of environment than those further down the walls. Because they are highest in elevation, the bright layers are youngest in age. HiRISE is able to see dozens of the bright layers, which are perhaps only a meter in thickness. Darker sand dunes and ripples cover most of the plains and fill the floors of impact craters.

    Image PSP_001351_1715 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 9, 2006. The complete image is centered at -8.3 degrees latitude, 275.4 degrees East longitude. The range to the target site was 254.3 km (158.9 miles). At this distance the image scale ranges from 25.4 cm/pixel (with 1 x 1 binning) to 101.8 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel and north is up. The image was taken at a local Mars time of 3:32 PM and the scene is illuminated from the west with a solar incidence angle of 59 degrees, thus the sun was about

  9. IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.

  10. Contamination measurements during IUS thermal vacuum tests in a large space chamber. [IUS equipment support system

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.

    1984-01-01

    The levels of contamination that originate from inside the IUS equipment support section (ESS) due to outgassing from electronics components and wiring operating at elevated temperatures (80-160 F) were investigated. Pressure was measured inside and outside the ESS. Mass deposition measurements were made with quartz crystal microbalances (QCM) facing into and away from ESS vents. The OCM's were operated at -50 C and -180 C using thermoelectrically and cryogenically cooled QCM's. Gaseous nitrogen flow inside the ESS was used to obtain the effective molecular flow vent area of the ESS, which was evaluated to be 359 sq cm (56 sq in) compared to the 978 sq cm (150 sq in) estimated by an earlier atmosphere pressure billowing test. The total outgassing rate of the ESS materials at a temperature of 60 C (140 F) decays with a time constant of 11.5 hours based on pressure measurements during the hot cycle. A time constant of 22 hours was estimated for the fraction of the outgassing which will condense on a -50 C surface. In contrast, the time constant is only 10.1 hours for the outgassing material which condenses on a surface at -180 C. A surface at -180 C collects approximately one half of the material vented from the ESS which impinges on it. Pressure measurements show very good correlation with the mass deposition measurements.

  11. STS-44 DSP / IUS spacecraft tilted to deployment position in OV-104's PLB

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Defense Support Program (DSP) / Inertial Upper Stage (IUS) spacecraft, with forward airborne support equipment (ASE) payload retention latch actuator and umbilical boom released (foreground), is raised to a 58 degree deployment position by the ASE aft frame tilt actuator (AFTA) table in the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104. The IUS is supported in the ASE AFTA table and is inscribed with USAF. Above the IUS is the DSP satellite with stowed solar paddles (box-like structure) visible just above the DSP/IUS interface. Lights illuminate the PLB and highlight the IUS and some DSP components against the blackness of space.

  12. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  13. Solid rocket technology advancements for space tug and IUS applications

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  14. Stratigraphic mapping of hydrated phases in Western Ius Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Cull, S.; McGuire, P. C.; Gross, C.; Dumke, A.

    2013-12-01

    Recent mapping with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) has revealed a wide range of hydrated minerals throughout Valles Marineris. Noctis Labyrinthus has interbedded polyhydrated and monohydrated sulfates, with occasional beds of nontronite (Weitz et al. 2010, Thollot et al. 2012). Tithonium Chasma has interbedded poly- and monohydrated sulfates (Murchie et al. 2012); Juventae has poly- and monohydrated sulfates and an anhydrous ferric hydroxysulfate-bearing material (Bishop et al. 2009); and Melas and Eastern Candor contain layers of poly- and monohydrated sulfates (e.g., Roach et al. 2009). Though each chasm displays its own mineralogy, in general, the eastern valles tend to be dominated by layered sequences with sulfates; whereas, the far western valles (Noctis Labyrinthus) has far more mineral phases, possibly due to a wider variety of past environments or processes affecting the area. Ius Chasma, which is situated between Noctis Labyrinthus and the eastern valles and chasmata, also displays a complex mineralogy, with polyhydrated sulfates, Fe/Mg smectites, hydrated silica, and kieserite (e.g. Roach et al. 2010). Here, we present mapping of recently acquired CRISM observations over Ius Chasma, combining the recent CRISM cubes with topographic terrains produced using High Resolution Stereo Camera (HRSC) data from the Mars Express spacecraft. Stratigraphic columns are produced along the length of Ius Chasma, and compared to stratigraphic columns produced throughout the Valles Marineris

  15. Shuttle orbiter - IUS/DSP satellite interface contamination study

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Strange, D. A.

    1978-01-01

    The results of a contamination analysis on the Defense Support Program (DSP) satellite during launch and deployment by the Space Transportation System (STS) are presented. Predicted contaminant deposition was also included on critical DSP surfaces during the period soon after launch when the DSP is in the shuttle orbiter bay with the doors closed, the bay doors open, and during initial deployment. Additionally, a six sided box was placed at the spacecraft position to obtain directional contaminant flux information for a general payload while in the bay and during deployment. The analysis included contamination sources from the shuttle orbiter, IUS and cradle, the DSP sensor and the DSP support package.

  16. IUS/TUG orbital operations and mission support study. Volume 5: Cost estimates

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costing approach, methodology, and rationale utilized for generating cost data for composite IUS and space tug orbital operations are discussed. Summary cost estimates are given along with cost data initially derived for the IUS program and space tug program individually, and cost estimates for each work breakdown structure element.

  17. STS-44 DSP / IUS spacecraft tilted to deployment position in OV-104's PLB

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Defense Support Program (DSP) / Inertial Upper Stage (IUS) spacecraft, with forward airborne support equipment (ASE) payload retention latch actuator and umbilical boom released, is raised to a 58 degree deployment position by the ASE aft frame tilt actuator (AFTA) table in the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104. The IUS is supported in the ASE AFTA table and is inscribed with USAF. Above the IUS is the DSP satellite with stowed solar paddles (box-like structure) visible just above the DSP/IUS interface. The cylinder at the very top of the DSP satellite is the Infrared (IR) Sensor. Lights illuminate the PLB and highlight the IUS and some DSP components against the blackness of space.

  18. STS-44 DSP / IUS spacecraft tilted to predeployment position in OV-104's PLB

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Defense Support Program (DSP) / Inertial Upper Stage (IUS) spacecraft, with forward airborne support equipment (ASE) payload retention latch actuator released (foreground), is raised to a 29 degree predeployment position by the ASE aft frame tilt actuator (AFTA) table in the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104. Underneath the DSP / IUS combination, the umbilical boom is connected to the IUS. DSP components include Infrared (IR) sensor (top), AR I, SHF Antenna, EHF Antenna, Link 2 High-Gain Antenna, star sensor, and stowed solar paddles (box-like structure around the base). The Earth's limb and the blackness of space create the backdrop for this deployment scene.

  19. Technicians listen to instructions during STS-44 DSP / IUS transfer operation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Clean-suited technicians, wearing headsets, listen to instructions during Defense Support Program (DSP) satellite / inertial upper stage (IUS) transfer operations in a processing facility at Cape Canaveral Air Force Station. In the background, the DSP satellite atop an inertial upper stage (IUS) is readied for transfer to a payload canister transporter. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS during STS-44 mission. View provided by the Kennedy Space Center (KSC) with alternate number KSC-91PC-1748.

  20. Glacial landforms in Ius Chasma, Mars — Indicators of Two Glaciation Episodes

    NASA Astrophysics Data System (ADS)

    Dębniak, K. T.; Kromuszczyńska, O.

    2016-06-01

    Results of geomorphological mapping of glacial landforms in Ius Chasma, Valles Marineris, Mars are presented. The results indicate at least two episodes of glaciations which occurred in the trough system.

  1. IUS/SPINSIM - INERTIAL UPPER STAGE SPIN STAGE SIX DEGREE OF FREEDOM SIMULATION

    NASA Technical Reports Server (NTRS)

    Dauro, V. A.

    1994-01-01

    IUS/SPINSIM was written to evaluate a proposed spinning third stage for the Inertial Upper Stage (IUS) Jupiter Mission. The third stage of the IUS was not to have altitude control during the solid motor burn for this mission. IUS was to be spun up about its principle thrust axis in the desired attitude prior to ignition of its solid motor. IUS/SPINSIM can also be used to evaluate the performance of other spinning stages that utilize a fixed burn motor. IUS/SPINSIM is a Six-Degree-of-Freedom simulation for exo-atmospheric flight of an IUS. It assumes the stage is released in orbit at or near its desired inertial attitude, and is spinning slowly. The code models three phases: a coast phase in which further spin-up may occur, a burn stage during which a solid rocket motor (SRM) burn injects the space craft into a transfer trajectory, and a final coast phase. IUS/SPINSIM takes into account the effects of the following: a reaction control system (RCS) spinning the vehicle; SRM thrust buildup, decay, and misalignment; changing mass, center of gravity, principle moments of inertia, cross products of inertia, time derivatives of inertia; jet damping moments; and an oblate gravity model. Numerical integration of the equations of motion using a Runge-Kutta fourth order integrator and small step sizes is used to track the vehicle's position, velocity, attitude and spin rates. Instead of using Euler angles or the Direction Cosine Matrix, Quarternions are used to model the attitude and spinning of the vehicle. This eliminates the renormalization difficulties associated with either of the other methods. Program input is taken from a file, and output is to a print file and a data file suitable for use in plotting. The IUS/SPINSIM is written in FORTRAN 77 for DEC VAX series computers running VMS. The standard distribution medium for this program is a 9track 1600 BPI magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This

  2. STS-34 Galileo spacecraft / IUS deployment sequence in OV-104's payload bay

    NASA Technical Reports Server (NTRS)

    1989-01-01

    During STS-34 mission, the Galileo spacecraft mounted atop the inertial upper stage (IUS) rises above the airborne support equipment (ASE) after being tilted to a 58-degree deployment position by the aft frame tilt actuator (AFTA) table in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). Visible in the foreground is the ASE forward cradle and the umbilical boom which has fallen away from the IUS. OV-104's orbital maneuvering system (OMS) pods and the Earth's limb appear in the background. OV-104's reaction control system (RCS) thrusters will be inhibited and an ordnance-separation device initiated to physically separate the IUS/spacecraft combination from the tilt table.

  3. STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In a processing facility at Cape Canaveral Air Force Station, clean-suited technicians oversee the transfer of the Defense Support Program (DSP) satellite atop an inertial upper stage (IUS) into a payload canister transporter for shipment to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. During the transfer, the underside of the IUS mounted in the airborne support equipment (ASE) aft frame tilt actuactor (AFTA) table (bottom) and ASE forward frame (middle) is visible. The umbilical boom between the two frames and forward frame keel trunnion are visible. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into its proper orbital position by the IUS during STS-44. View provided by KSC with alternate number KSC-91PC-1751.

  4. Mechanisms to deploy the two-stage IUS from the shuttle cargo bay

    NASA Technical Reports Server (NTRS)

    Haynie, H. T.

    1980-01-01

    The Inertial Upper Stage (IUS) is a two-stage or three-stage booster used to transport spacecraft from the space shuttle orbit to synchronous orbit or on an interplanetary trajectory. The mechanisms which were designed specifically to perform the two-stage IUS required functions while contained within the cargo bay of the space shuttle during the boost phase and while in a low Earth orbit are discussed. The requirements, configuration, and operation of the mechanisms are described, with particular emphasis on the tilt actuator and the mechanism for decoupling the actuators during boost to eliminate redundant load paths.

  5. STS-34 Cargo Configuration drawing with payload bay location of Galileo/IUS

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Visual aid entitled NATIONAL STS PROGRAM STS-34 CARGO CONFIGURATION is a line drawing of Atlantis, Orbiter Vehicle (OV) 104, orbiting the Earth with its payload bay doors (PLBDs) open. A label identifies the Galileo spacecraft on an inertial upper stage (IUS) and its location in the payload bay (PLB).

  6. STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Overall view shows the Defense Support Program (DSP) satellite atop an inertial upper stage (IUS) during transfer operations in a processing facility at Cape Canaveral Air Force Station. Clean-suited technicians monitor the operations to prepare the 5,200-pound DSP satellite for transfer to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A. DSP solar paddles are in stowed position around the base of the satellite with the Infrared (IR) sensor hidden by a protective cover at the top of the satellite. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous orbit by the IUS during the STS-44 mission. View provided by the Kennedy Space Center (KSC) with alternate number KSC-91PC-1747.

  7. Hydraulic mechanism to limit torsional loads between the IUS and space transportation system orbiter

    NASA Technical Reports Server (NTRS)

    Farmer, James R.

    1986-01-01

    The Inertial Upper Stage (IUS) is a two-stage booster used by NASA and the Defense Department to insert payloads into geosynchronous orbit from low-Earth orbit. The hydraulic mechanism discussed here was designed to perform a specific dynamic and static interface function within the Space Transportation System's Orbiter. Requirements, configuration, and application of the hydraulic mechanism with emphasis on performance and methods of achieving zero external hydraulic leakage are discussed. The hydraulic load-leveler mechanism meets the established design requirements for operation in a low-Earth orbit. Considerable testing was conducted to demonstrate system performance and verification that external leakage had been reduced to zero. Following each flight use of an ASE, all hydraulic mechanism components are carefully inspected for leakage. The ASE, including the hydraulic mechanism, has performed without any anomalies during all IUS flights.

  8. STS-34 Galileo spacecraft / IUS deployment taken by the IMAX camera

    NASA Technical Reports Server (NTRS)

    1989-01-01

    During STS-34 the Galileo spacecraft atop the inertial upper stage (IUS) is deployed from Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). In the foreground, the shuttle solar backscatter ultraviolet (SSBUV) get away special (GAS) canisters are visible on the starboard PLB wall. The airborne support equipment (ASE) forward cradle and aft frame tilt actuator (AFTA) table at a 58 degree angle is visible beneath Galileo/IUS as it rises out of the PLB. In the background are OV-104's wing tips and orbital maneuvering system (OMS) pods and the Earth's limb. OV-104's reaction control system (RCS) thrusters were inhibited and an ordnance-separation device initiated to physically separate the IUS/spacecraft combination from the tilt table. This is a frame taken from a 70mm motion picture film of the deployment sequence. The film will be used in the forthcoming 'Blue Planet' which will address Earth's environmental problems from the perspective of space-based observation and solar syste

  9. STS-43 TDRS-E / IUS is deployed from OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During STS-43, the Tracking and Data Relay Satellite E (TDRS-E), atop the inertial upper stage (IUS), rises above Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) at the rate of approximately 0.4 foot per second. The IUS is highlighted against the Earth's limb and the cloud-covered Pacific Ocean. Left behind in the PLB are the airborne support equipment (ASE) forward frame, the ASE umbilical, and the ASE aft frame tilt actuator (AFTA) table (at 58-degree deployment position). TDRS-E/IUS was released by a spring-loaded ejection system and a Super*zip ordnance separation device on Orbit 5. In the foreground on the port side and mounted on a getaway special (GAS) adapter beam are (forward to aft) the two Shuttle Solar Backscatter Ultraviolet (SSBUV) GAS canisters (one with motorized door assembly (MDA)) and the Tank Pressure Control Experiment (TPCE) GAS canister. Along the starboard sill longeron is the Space Station Heat Pipe Advanced Radiator Element II (SHARE-II).

  10. Prelaunch checkout of the IUS Redundant IMU in the Magellan and Galileo missions

    NASA Astrophysics Data System (ADS)

    Baum, Robert A.; Morrison, Gerald E. S.; Hoskins, J. K.

    An overview is presented of the Redundant Inertial Measurement Unit (RIMU) used in the Redundant INS of the Inertial Upper Stage (IUS) developed for the NASA Space Shuttle and the USAF Titan space booster. The strapdown RIMU comprises five accelerometers and five gyros, and electronics, arranged in a redundant configuration such that no single component failure compromises system inertial performance. Failure detection and isolation algorithms in the navigation computers automatically eliminate a failed sensor's data from the navigation computations, and the mission navigation operation continues without interruption.

  11. Shuttle program. STS-7 conceptual flight profile. IUS/TDRS-A

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Space Transportation System (STS) Flight Assignment Manifest has has scheduled a Tracking and Data Relay Satellite System (TDRSS) spacecraft for a February 1981 launch on STS Flight 7. The preliminary flight profile that conceptually implements the flight requirements and constraints levied by the STS, inertial upper stage (IUS), and the TDRS spacecraft is presented. The integrated major flight design guidelines and requirements used in the development of the flight profile are included together with a flight sequence of events and time line that describe the profile and reflect implementation of the integrated set of requirements.

  12. STS-43 TDRS-E / IUS is deployed from OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During STS-43, the Tracking and Data Relay Satellite E (TDRS-E), atop the inertial upper stage (IUS) and raised to a 58-degree deployment position in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table with the forward frame ASE latch actuator released and umbilical cables separated, is released by a spring-loaded ejection system and a Super*zip ordnance separation device from Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). TDRS-E/IUS combination rises above OV-104's PLB at approximately 0.4 foot per second. The scene is highlighted against the Earth's limb and the cloud-covered Pacific Ocean below. In the foreground on the port side and mounted on a getaway special (GAS) adapter beam are (forward to aft) the two Shuttle Solar Backscatter Ultraviolet (SSBUV) GAS canisters (one with motorized door assembly (MDA)) and the Tank Pressure Control Experiment (TPCE) GAS canister. Along the starboard sill longeron is the Space Station Heat Pipe Advanced Radiator

  13. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  14. Preliminary analysis of selected gas dynamic problems. [space shuttle main engine main combustion transients and IUS nozzle flow

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.; Farmer, R. C.

    1985-01-01

    The VAST computer code was used to analyze SSME main combustion chamber start-up transients and the IUS flow field for a damaged nozzle was investigated to better understand the gas dynamic considerations involved in vehicle problems, the effect of start transients on the nozzle flow field for the SSME, and the possibility that a damaged nozzle could account for the acceleration anomaly noted on IUS burn. The results obtained were compared with a method of characteristics prediction. Pressure solutions from both codes were in very good agreement and the Mach number solution on the nozzle centerline deviates substantially for the high expansions for the SSME. Since this deviation was unexpected, the phenomenon is being further examined.

  15. The NSF IUSE-EHR Program: What's New (and Old) About It, and Resources for Geoscience Proposers

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2015-12-01

    The NSF Division of Undergraduate Education recently released a new solicitation for the IUSE program -- the latest iteration in a succession of funding programs dating back over 30 years (including the Instrumentation and Laboratory Improvement Program (ILI), the Course and Curriculum Development Program (CCD), the Course Curriculum and Laboratory Improvement Program (CCLI), and the Transforming Undergraduate STEM Education Program (TUES). All of these programs sought/seek to support high quality STEM education for majors and non-majors in lower- and upper-division undergraduate courses. The current IUSE-EHR program is described in a 2-year solicitation that includes two tracks: Engaged Student Learning, and Institutional & Community Transformation. Each track has several options for funding level and project duration. A wide range of activities can be proposed for funding, and the program recognizes the varying needs across STEM disciplines. Geoscientists and other potential IUSE proposers are strongly encouraged to form collaborations with colleagues that conduct educational research and to propose projects that build upon the educational knowledge base in the discipline as well as contribute to it. Achieving this may not be immediately obvious to many geoscientists who have interests in improving student learning in their courses, but are not fluent in the scholarship of education in their field. To lower the barriers that have historically prevented larger numbers of geoscientists from developing their ideas into competitive education-related proposals, we have explored strategies for building and leveraging partnerships, sought to identify available resources for proposers, and explored a range of strategies for engaging and supporting larger numbers of potential geoscience proposers.

  16. Shuttle program standard maneuver sequences for orbiter/upper-stage separation SSUS-A, SSUS-D, and IUS

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1980-01-01

    Descriptions of standard post-ejection maneuver sequences for the deployment of IUS, SSUS-A, and SSUS-D upper stages from the space shuttle orbiter are presented. The sequences were designed to satisfy requirements for limiting the damage inflicted on the orbiter by upper-stage exhaust particles, subject to a further requirement for minimizing the impingement of orbiter thruster plumes on the deployed payload. In all cases it was assumed that the orbital maneuvering system engines would be used to apply the orbiter's major separation velocity increment.

  17. STS-43 TDRS-E / IUS in OV-104's PLB ASE aft frame tilt actuator (AFTA) table

    NASA Technical Reports Server (NTRS)

    1991-01-01

    During STS-43 the Tracking and Data Relay Satellite E (TDRS-E) atop the inertial upper stage (IUS) and positioned in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table with the forward frame ASE latch actuator released and umbilical cables separated is raised by the aft frame ASE electromechanical tilt actuator to a 58-degree deployment position. The scene is highlighted against the Earth's limb. In the foreground on the port side and mounted on a getaway special (GAS) adapter beam are (forward to aft) the two Shuttle Solar Backscatter Ultraviolet (SSBUV) GAS canisters (one with motorized door assembly (MDA)) and the Tank Pressure Control Experiment (TPCE) GAS canister. Along the starboard sill longeron is the Space Station Heat Pipe Advanced Radiator Element II (SHARE-II).

  18. Workers in the VPF observe the lower end of the IUS to be mated to the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the Vertical Processing Facility observe the lower end of the Inertial Upper Stage (IUS) that will be mated with the Chandra X-ray Observatory (out of sight above it). After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93.

  19. Safety, efficacy and patient acceptability of the contraceptive and non-contraceptive uses of the LNG-IUS

    PubMed Central

    Bednarek, Paula H; Jensen, Jeffrey T

    2010-01-01

    Intrauterine devices (IUDs) provide highly effective, long-term, safe, reversible contraception, and are the most widely used reversible contraceptive method worldwide. The levonorgestrel-releasing intrauterine system (LNG-IUS) is a T-shaped IUD with a steroid reservoir containing 52 mg of levonorgestrel that is released at an initial rate of 20 μg daily. It is highly effective, with a typical-use first year pregnancy rate of 0.1% – similar to surgical tubal occlusion. It is approved for 5 years of contraceptive use, and there is evidence that it can be effective for up to 7 years of continuous use. After removal, there is rapid return to fertility, with 1-year life-table pregnancy rates of 89 per 100 for women less than 30 years of age. Most users experience a dramatic reduction in menstrual bleeding, and about 15% to 20% of women become amenorrheic 1 year after insertion. The device’s strong local effects on the endometrium benefit women with various benign gynecological conditions such as menorrhagia, dysmenorrhea, leiomyomata, adenomyosis, and endometriosis. There is also evidence to support its role in endometrial protection during postmenopausal estrogen replacement therapy, and in the treatment of endometrial hyperplasia. PMID:21072274

  20. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 3: (Assessment of technical and cost characteristics of candidate IUS energy storage devices)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Six energy storage technologies (inertial, superconducting magnetic, electrochemical, chemical, compressed air, and thermal) were assessed and evaluated for specific applicability to the IUS. To provide a perspective for the individual storage technologies, a brief outline of the general nature of energy storage and its significance to the user is presented.

  1. IUS guidance algorithm gamma guide assessment

    NASA Technical Reports Server (NTRS)

    Bray, R. E.; Dauro, V. A.

    1980-01-01

    The Gamma Guidance Algorithm which controls the inertial upper stage is described. The results of an independent assessment of the algorithm's performance in satisfying the NASA missions' targeting objectives are presented. The results of a launch window analysis for a Galileo mission, and suggested improvements are included.

  2. IUS solid rocket motor contamination prediction methods

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Kearnes, J. H.

    1980-01-01

    A series of computer codes were developed to predict solid rocket motor produced contamination to spacecraft sensitive surfaces. Subscale and flight test data have confirmed some of the analytical results. Application of the analysis tools to a typical spacecraft has provided early identification of potential spacecraft contamination problems and provided insight into their solution; e.g., flight plan modifications, plume or outgassing shields and/or contamination covers.

  3. Shuttle program. STS-7 feasibility assessment: IUS/TDRS-A

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This Space Transportation System 7 (STS-7) Flight Feasibility Assessment (FFA) provides a base from which the various design, operation, and integration elements associated with Tracking and Data Relay Satellite-A can perform mission planning and analysis. The STS-7 FFA identifies conflicts, issues, and concerns associated with the integrated flight design requirements and constraints.

  4. MObIUS (Massive Object Integrated Universal Store): A Survey Toward a More General Framework

    SciTech Connect

    Sirp, J K; Brugger, S T

    2004-06-07

    General frameworks for distributed computing are slowly evolving out of Grid, Peer Architecture, and Web Services. The following results from a summer long survey into distributing computing practices have revealed three things. One, that Legion and Cactus-G have achieved the most in terms of providing an all-purpose application environment. Two, that extending a local programming environment to operate in a highly distributed fashion can be facilitated with toolkits like Globus. Three, that building a new system from the ground up could be realized, in part, by using some of the following components; an Object Oriented Database, Tapestry, JXTA, BOINC, Globus, component architecture technology, XML and related libraries, Condor-G, Proteus, and ParMETIS.

  5. Art concept of Magellan spacecraft and inertial upper stage (IUS) deployment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft mounted on inertial upper stage drifts above Atlantis, Orbiter Vehicle (OV) 104, after its deployment during mission STS-30 in this artist concept. Solar panels are deployed and in OV-104's open payload bay (PLB) the airborne support equipment (ASE) is visible. Both spacecraft are orbiting the Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar.

  6. Solid rocket technology advancement for Space Tug and IUS applications. [Interim Upper Stage

    NASA Technical Reports Server (NTRS)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    Two-burn restartable solid propellant rocket motors for the kick stage (auxiliary stage) of the Shuttle Tug, or Interim Upper Stage, are described, with details on features and test results of the ignition and quench (thrust termination) systems and procedures, fabrication of propellant and insulation, explosion hazards of propellants, and comparative data on present and future motor design. These rocket motor systems are designed for upper stage augmentation of launch vehicles and possible service in Shuttle-launched outer planet spacecraft.

  7. IUS/payload communication system simulator configuration definition study. [payload simulator for pcm telemetry

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Springett, J. C.

    1978-01-01

    The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required.

  8. IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.

  9. Development and implementation of Shuttle/IUS proximity operations flight design software

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1980-01-01

    The High Fidelity Relative Motion Program (HFRMP), a trajectory/attitude numerical integration program, was developed and implemented on the MPAD HP-9825A desk top computer systems. A solar and a lunar ephemeris is included in the HFRMP along with models of the oblate Earth, a rotating atmosphere, the orbiter's OMS/RCS/DAP system, orbiter vents, rotor dynamics, and upper stage propulsion systems. Although designed primarily for the analysis of proximity operations, it is useful in other areas such as attitude/stability analysis, propulsive consumables estimation, and trajector perturbation studies. An unique identification was assigned to each of the various configurations of the HFRMP that were developed to test new techniques and algorithms are briefly described. These include the HFRMP Versions 03H, 03M, 03T, 03U, and 05D. Development of orbiter/upper stage separation techniques including flight design support for the TDRS-A and Galileo deployment flights and design of standard maneuver sequences is discussed. Also, the development and implementation of the Euler angle conversion program is briefly addressed.

  10. Use of the Mirena LNG-IUS and Paragard CuT380A intrauterine devices in nulliparous women.

    PubMed

    Lyus, Richard; Lohr, Patricia; Prager, Sarah

    2010-05-01

    Two intrauterine devices (IUDs) are available in the United States, the levonorgestrel-bearing intrauterine system (Mirena) and the copper-bearing T380A (Paragard). These devices have very low typical-use failure rates but are used by only a minority of women. In particular, there is concern about their use in nulliparous women. We review the available data to address common concerns about using IUDs in this population and show that nulliparous women desiring effective contraception should be considered candidates for IUDs. PMID:20399942

  11. AUTOMOTIVE DIESEL MAINTENANCE 1, UNIT XVI, I--USE AND CARE OF SMALL HAND TOOLS, II--PRINCIPLES OF THE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF SMALL HAND TOOLS USED IN DIESEL ENGINE MAINTENANCE AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) UNDERSTANDING TORQUE AND HOW IT IS MEASURED, (2) REPAIRING AND REPLACING THREADED…

  12. Split-time artificial insemination in beef cattle: I-Using estrous response to determine the optimal time(s) at which to administer GnRH in beef heifers and postpartum cows.

    PubMed

    Bishop, B E; Thomas, J M; Abel, J M; Poock, S E; Ellersieck, M R; Smith, M F; Patterson, D J

    2016-09-01

    Two experiments evaluated timing of GnRH administration in beef heifers and cows on the basis of estrous status during split-time artificial insemination (AI) after controlled internal drug release (CIDR) based protocols. In experiment 1, estrus was synchronized for 816 pubertal and prepubertal or peripubertal heifers using the 14-day CIDR-PGF2α (PG) protocol, and in experiment 2, estrus was synchronized for 622 lactating cows using the 7-day CO-Synch + CIDR protocol. For both experiments, estrus detection aids (Estrotect) were applied at PG, with estrus recorded at 66 and 90 hours after PG. Treatments were balanced across locations for heifers using reproductive tract score and weight; whereas for cows, treatments were assigned and balanced to treatment according to age, body condition score, and days postpartum. Timing of AI for heifers and cows was on the basis of estrus expression 66 hours after PG. Females in each treatment that exhibited estrus before 66 hours were inseminated at 66 hours, whereas AI was delayed 24 hours until 90 hours after PG for females failing to exhibit estrus before 66 hours. Females in treatment one received GnRH 66 hours after PG irrespective of estrus expression; however, in treatment 2, GnRH was administered coincident with delayed AI only to females not detected in estrus at 66 hours after PG. Among heifers, there was no effect of treatment on overall estrous response (P = 0.49) or AI pregnancy rate (P = 0.54). Pregnancy rate for heifers inseminated at 66 hours was not influenced by GnRH (P = 0.65), and there were no differences between treatments in estrous response during the 24 hours delay period (P = 0.22). Cows in treatment 2 had a greater (P = 0.04) estrous response during the 24-hour delay period resulting in a greater overall estrous response (P = 0.04), but this did not affect AI pregnancy rate at 90 hours (P = 0.51) or total AI pregnancy rate (P = 0.89). Pregnancy rate resulting from AI for cows inseminated at 66 hours was not influenced by GnRH (P = 0.50). In summary, when split-time AI was used with the 14-day CIDR-PG protocol in heifers or the 7-day CO-Synch + CIDR protocol in cows, administration of GnRH at AI to females that exhibited estrus before 66 hours after PG was not necessary. Furthermore, among heifers for which AI was delayed on the basis of failure to exhibit estrus before 66 hours after PG, timing of GnRH (66 vs. 90 hours after PG) was more flexible. Delayed administration of GnRH to 90 hours after PG coincident with AI for cows that failed to exhibit estrus before 66 hours improved overall estrous response; however, in this study, a corresponding increase in pregnancy rate resulting from AI was not observed. PMID:27207474

  13. The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of Chlamydia trachomatis without alterations in vaginal microbiota.

    PubMed

    Liechty, Emma R; Bergin, Ingrid L; Bassis, Christine M; Chai, Daniel; LeBar, William; Young, Vincent B; Bell, Jason D

    2015-11-01

    Progestin-based contraception may impact women's susceptibility to sexually transmitted infection. We evaluated the effect of the levonorgestrel intrauterine system (LNG-IUS) on cervical persistence of Chlamydia trachomatis (CT) in a baboon model. Female olive baboons (Papio anubis) with or without an LNG-IUS received CT or sham inoculations. CT was detected in cervical epithelium with weekly nucleic acid amplification testing (NAAT) and culture. Presence of the LNG-IUS was associated with prolonged persistence of CT. Median time to post-inoculation clearance of CT as detected by NAAT was 10 weeks (range 7-12) for animals with an LNG-IUS and 3 weeks (range 0-12) for non-LNG-IUS animals (P = 0.06). Similarly, median time to post-inoculation clearance of CT by culture was 9 weeks (range 3-12) for LNG-IUS animals and 1.5 weeks (range 0-10) for non-LNG-IUS animals (P = 0.04). We characterized the community structure of the vaginal microbiota with the presence of the LNG-IUS to determine if alterations in CT colonization dynamics were associated with changes in vaginal commensal bacteria. Vaginal swabs were collected weekly for microbiome analysis. Endocervical CT infection was not correlated with alterations in the vaginal microbiota. Together, these results suggest that LNG-IUS may facilitate CT endocervical persistence through a mechanism distinct from vaginal microbial alterations. PMID:26371177

  14. A Factor Analytic Study of the Internet Usage Scale

    ERIC Educational Resources Information Center

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  15. User benefits and funding strategies

    NASA Technical Reports Server (NTRS)

    Beauchamp, N. A.

    1975-01-01

    A three-step, systematic method is described for selecting relevant and highly beneficial payloads for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable cost-sharing strategies which would maximize the number of IUS payloads and the benefits obtainable under a limited NASA budget were also determined.

  16. Beyond Acculturation: Political "Change", Indigenous Knowledges, and Intercultural Higher Education in Mexico

    ERIC Educational Resources Information Center

    Perez-Aguilera, Dulce Abigail; Figueroa-Helland, Leonardo E.

    2011-01-01

    This article critiques the evolution of higher education in Mexico in light of the political "change" that led to the establishment of Intercultural Universities (IUs) for Indigenous communities. We argue that the "change" touted by the post-2000 regime isn't as profound or beneficial as claimed. Although IUs embody valuable efforts, they…

  17. The Marketability of Integrated Energy/Utility Systems: A Guide to the Dollar Savings Potential in Integrated Energy/Utility Systems; for Campuses, Medical Complexes, and Communities; Architect/Engineers, Industrial and Power Plant Owners; Suppliers; and Constructors.

    ERIC Educational Resources Information Center

    Coxe, Edwin F.; Hill, David E.

    This publication acquaints the prospective marketplace with the potential and underlying logic of the Integrated Utility System (IUS) concept. This system holds promise for educational and medical institutions seeking to reduce their energy costs. The generic IUS concept is described and how it can be incorporated into existing heating and…

  18. The New Cosmopolitan Monolingualism: On Linguistic Citizenship in Twenty-First Century Germany

    ERIC Educational Resources Information Center

    Gramling, David

    2009-01-01

    In the early years of the twenty-first century, being German has become a matter of linguistic competence and performance. An acute shift in citizenship statutes at the end of the 1990s brought about a peripatetic departure from Germany's "right of blood" ("ius sanguinis") toward a French-inspired "right of territory" ("ius soli"). Yet in the nine…

  19. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  20. A Comparison of the 27-Item and 12-Item Intolerance of Uncertainty Scales

    ERIC Educational Resources Information Center

    Khawaja, Nigar G.; Yu, Lai Ngo Heidi

    2010-01-01

    The 27-item Intolerance of Uncertainty Scale (IUS) has become one of the most frequently used measures of Intolerance of Uncertainty. More recently, an abridged, 12-item version of the IUS has been developed. The current research used clinical (n = 50) and non-clinical (n = 56) samples to examine and compare the psychometric properties of both…

  1. In Utero Smoke Exposure and Impaired Response to Inhaled Corticosteroids in Children with Asthma

    PubMed Central

    Cohen, Robyn T.; Raby, Benjamin A.; Van Steen, Kristel; Fuhlbrigge, Anne L.; Celedón, Juan C.; Rosner, Bernard A.; Strunk, Robert C.; Zeiger, Robert S.; Weiss, Scott T.

    2010-01-01

    Background Few studies have examined the effects of in utero smoke exposure (IUS) on lung function in children with asthma, and there are no published data on the impact of IUS on treatment outcomes in asthmatic children. Objectives To explore whether IUS exposure is associated with increased airway responsiveness among children with asthma, and whether IUS modifies the response to treatment with inhaled corticosteroids (ICS). Methods To assess the impact of parent-reported IUS exposure on airway responsiveness in childhood asthma we performed a repeated-measures analysis of methacholine PC20 data from the Childhood Asthma Management Program (CAMP), a four-year, multicenter, randomized double masked placebo controlled trial of 1041 children ages 5–12 comparing the long term efficacy of ICS with mast cell stabilizing agents or placebo. Results Although improvement was seen in both groups, asthmatic children with IUS exposure had on average 26% less of an improvement in airway responsiveness over time compared to unexposed children (p=.01). Moreover, while children who were not exposed to IUS who received budesonide experienced substantial improvement in PC20 compared to untreated children (1.25 fold-increase, 95% CI 1.03, 1.50, p=.02) the beneficial effects of budesonide were attenuated among children with a history of IUS exposure (1.04 fold-increase, 95% CI 0.65, 1.68, p=.88). Conclusions IUS reduces age-related improvements in airway responsiveness among asthmatic children. Moreover, IUS appears to blunt the beneficial effects of ICS use on airways responsiveness. These results emphasize the importance of preventing this exposure through smoking cessation counseling efforts with pregnant women. PMID:20673983

  2. The Effect of Age, Parity and Body Mass Index on the Efficacy, Safety, Placement and User Satisfaction Associated With Two Low-Dose Levonorgestrel Intrauterine Contraceptive Systems: Subgroup Analyses of Data From a Phase III Trial

    PubMed Central

    Gemzell-Danielsson, Kristina; Apter, Dan; Hauck, Brian; Schmelter, Thomas; Rybowski, Sarah; Rosen, Kimberly; Nelson, Anita

    2015-01-01

    Objective Two low-dose levonorgestrel intrauterine contraceptive systems (LNG-IUSs; total content 13.5 mg [average approx. 8 μg/24 hours over the first year; LNG-IUS 8] and total content 19.5 mg [average approx. 13 μg/24 hours over the first year; LNG-IUS 13]) have previously been shown to be highly effective (3-year Pearl Indices: 0.33 and 0.31, respectively), safe and well tolerated. The present subgroup analyses evaluated whether or not outcomes were affected by parity, age (18–25 vs 26–35 years), or body mass index (BMI, <30 vs ≥30 kg/m2). Methods Nulliparous and parous women aged 18‒35 years with regular menstrual cycles (21‒35 days) requesting contraception were randomized to 3 years of LNG-IUS 8 or LNG-IUS 13 use. Results In the LNG-IUS 8 and LNG-IUS 13 groups, 1432 and 1452 women, respectively, had a placement attempted and were included in the full analysis set; 39.2%, 39.2% and 17.1% were 18–25 years old, nulliparous and had a BMI ≥30 kg/m2, respectively. Both systems were similarly effective regardless of age, parity or BMI; the subgroup Pearl Indices had widely overlapping 95% confidence intervals. Placement of LNG-IUS 8 and LNG-IUS 13 was easier (p < 0.0001) and less painful (p < 0.0001) in women who had delivered vaginally than in women who had not. The complete/partial expulsion rate was 2.2–4.2% across all age and parity subgroups and higher in parous than in nulliparous women (p = 0.004). The incidence of pelvic inflammatory disease was 0.1–0.6% across all age and parity subgroups: nulliparous and younger women were not at higher risk than parous and older women, respectively. The ectopic pregnancy rate was 0.3–0.4% across all age and parity subgroups. Across all age and parity subgroups, the 3-year completion rate was 50.9–61.3% for LNG-IUS 8 and 57.9–61.1% for LNG-IUS 13, and was higher (p = 0.0001) among older than younger women in the LNG-IUS 8 group only. Conclusions LNG-IUS 8 and LNG-IUS 13 were highly effective

  3. Effects of a Levonorgestrel-Releasing Intrauterine System on the Expression of Steroid Receptor Coregulators in Adenomyosis.

    PubMed

    Yun, Bo Hyon; Jeon, Young Eun; Seo, Seok Kyo; Park, Joo Hyun; Yoon, Sun Och; Cho, SiHyun; Choi, Young Sik; Lee, Byung Seok

    2015-12-01

    Although the pathophysiology of adenomyosis has not been clarified, it is thought to be related to ectopic endometrium, which depends on hormonal regulation. The levonorgestrel-releasing intrauterine system (LNG-IUS) is effective for the medical treatment of adenomyosis. However, the underlying molecular mechanisms by which LNG-IUS ameliorates adenomyosis pathology remain unclear. This study was designed to compare the expression levels of steroid receptor coregulators in human endometrium of control and participants with adenomyosis and to determine whether LNG-IUS modulated their expression. Immunohistochemistry with H-scores was performed. Steroid receptor coactivators were shown to have significantly decreased expressions at the secretory phase in the LNG-IUS group when compared to the other groups. Expression of transcriptional intermediary factor 2 was lower in the LNG-IUS group than in both the control group (P = .015) and the untreated adenomyosis group (P = .019) during the secretory phase. Amplified in breast cancer 1 expression was higher in the stromal cells of the untreated adenomyosis group than in those of the controls (P = .017) during the secretory phase; however, levels were lower in the LNG-IUS group (P = .005). Nuclear receptor corepressor expression increased during the proliferative phase and decreased during the secretory phase in untreated adenomyosis; this pattern was reversed in the control and LNG-IUS groups. Thus, an altered expression of steroid receptor coregulators may play a role in adenomyosis development and treatment. PMID:26040939

  4. Therapy of heavy menstrual bleeding in Korea: Subanalysis and results from a multinational clinical trial in the Asian region investigating the levonorgestrel-releasing intrauterine system versus conventional therapy

    PubMed Central

    Ling, Xu; Asif, Shaheena; Kraemer, Peter; Hanisch, Jens Ulrich; Inki, Pirjo; Lee, Jung Eun

    2015-01-01

    Objective To compare real-life clinical outcomes with the levonorgestrel-releasing intrauterine system (LNG-IUS) and conventional medical therapies (CMTs), including combined oral contraceptives and oral progestins in the treatment of idiopathic heavy menstrual bleeding (HMB) in South Korea. Methods This prospective, observational cohort study recruited a total of 647 women aged 18 to 45 years, diagnosed with HMB from 8 countries in Asia, including 209 women from South Korea (LNG-IUS, 169; CMTs, 40), who were followed up to one year. The primary outcome was cumulative continuation rate (still treated with LNG-IUS and CMTs) at 12 months. Secondary outcomes included bleeding pattern, assessment of the treatment efficacy by treating physician and safety profile. Results The continuation rate at 12 months was significantly higher with the LNG-IUS than CMTs (85.1% vs. 48.5%, respectively; P<0.0001). The 51.5% of CMTs patients discontinued treatment and 18.8% of LNG-IUS patients discontinued treatment. The most common reasons for discontinuation for CMTs were switching to another treatment and personal reasons. When compared to CMTs, the LNG-IUS offered better reduction in subjectively assessed menstrual blood loss and the number of bleeding days, tolerability and with better efficacy in HMB, as assessed by physician's final evaluation. Conclusion This study provides novel information on the real-life treatment patterns of HMB in South Korea. The efficacy of CMTs was inferior compared to the LNG-IUS in the clinical outcomes measured in this study. Due to the better compliance with LNG-IUS, the cumulative continuation rate is higher than CMTs. We conclude that the LNG-IUS should be used as the first-line treatment for HMB in Korean women, in line with international guidelines. PMID:25798431

  5. Space Transportation System Cargo projects: inertial stage/spacecraft integration plan. Volume 1: Management plan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Kennedy Space Center (KSC) Management System for the Inertial Upper Stage (IUS) - spacecraft processing from KSC arrival through launch is described. The roles and responsibilities of the agencies and test team organizations involved in IUS-S/C processing at KSC for non-Department of Defense missions are described. Working relationships are defined with respect to documentation preparation, coordination and approval, schedule development and maintenance, test conduct and control, configuration management, quality control and safety. The policy regarding the use of spacecraft contractor test procedures, IUS contractor detailed operating procedures and KSC operations and maintenance instructions is defined. Review and approval requirements for each documentation system are described.

  6. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 1: (Executive summary)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.

  7. Q and A: Birth Control for Women with Congenital Heart Disease

    MedlinePlus

    ... copper coil • Progestin releasing coil (Mirena IUS) 4. Sterilization Can I use a condom or diaphragm by ... likely to be a better option. What about sterilization? If you have decided never to have a ...

  8. STS-26 Post-Flight Crew Press Conference

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This video tape contains footage selected and narrated by the STS-26 crew including launch, TDRS-C/IUS (Tracking and Data Relay Satellite C / Inertial Upper Stage) deployment, onboard activities, and landing.

  9. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  10. Current systems: Upper stages

    NASA Technical Reports Server (NTRS)

    Gunn, Charles R.

    1991-01-01

    The United States orbital transfer vehicles are presented: PAM-D (Payload Assist Module); PAM-D2; IUS (Inertial Upper Stage); and TOS (Transfer Orbit Stage). This presentation is represented by viewgraphs.

  11. Overall view of PLB and OMS / RCS engine thrusting

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Overall payload bay (PLB) view shows Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table after IUS Tracking and Data Relay Satellite (TDRS) deploy. Vertical tail and Orbital Maneuvering System (OMS) pods with rear reaction control system (RCS) thruster firing (upfiring) appears in background against blackness of space. Right up jet firing was photographed from more than 18 meters (60 feet) away by crewmembers on flight deck.

  12. Overall view of PLB and OMS / RCS engine thrusting

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Overall payload bay (PLB) view shows Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table after IUS Tracking and Data Relay Satellite (TDRS) deploy. Vertical tail and Orbital Maneuvering System (OMS) pods with rear reaction control system (RCS) thruster firing (sidefiring) appears in background against blackness of space. Right right jet firing was photographed from more than 18 meters (60 feet) away in the cabin of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099.

  13. Evidence-Based Selection of Candidates for the Levonorgestrel Intrauterine Device (IUD)

    PubMed Central

    Callegari, Lisa S.; Darney, Blair G.; Godfrey, Emily M.; Sementi, Olivia; Dunsmoor-Su, Rebecca; Prager, Sarah W.

    2014-01-01

    Background Recent evidence-based guidelines expanded the definition of appropriate candidates for the levonorgestrel-releasing intrauterine system (LNG-IUS). We investigated correlates of evidence-based selection of candidates for the LNG-IUS by physicians who offer insertion. Methods We conducted a mixed-mode (online and mail) survey of practicing family physicians and obstetrician-gynecologists in Seattle. Results A total of 269 physicians responded to the survey (44% response rate). Of the 217 respondents who inserted intrauterine devices, half or fewer routinely recommended the LNG-IUS to women who are nulliparous, younger than 20 years old, or have a history of sexually transmitted infections (STIs). In multivariable analyses, training/resident status was positively associated with recommending the LNG-IUS to women <20 years old (adjusted odds ratio [aOR], 3.6; 95% confidence interval [CI], 1.6–8.0) and women with history of STI (aOR, 3.7; 95% CI, 1.6–8.4). Perceived risk of infection or infertility was negatively associated with recommending the LNG-IUS to nulliparous women (aOR, 0.2; 95% CI, 0.1–0.5) and women with a history of STI (aOR, 0.3; 95% CI, 0.1–0.8). Conclusions Many family physicians and obstetrician-gynecologists who insert the LNG-IUS are overly restrictive in selecting candidates, although those who train residents are more likely to follow evidence-based guidelines. Interventions that address negative bias and perceptions of risks, in addition to improving knowledge, are needed to promote wider use of the LNG-IUS. PMID:24390883

  14. Estimated economic impact of the levonorgestrel intrauterine system on unintended pregnancy in active duty women.

    PubMed

    Heitmann, Ryan J; Mumford, Sunni L; Hill, Micah J; Armstrong, Alicia Y

    2014-10-01

    Unintended pregnancy is reportedly higher in active duty women; therefore, we sought to estimate the potential impact of the levonorgestrel-containing intrauterine system (LNG-IUS) could have on unintended pregnancy in active duty women. A decision tree model with sensitivity analysis was used to estimate the number of unintentional pregnancies in active duty women which could be prevented. A secondary cost analysis was performed to analyze the direct cost savings to the U.S. Government. The total number of Armed Services members is estimated to be over 1.3 million, with an estimated 208,146 being women. Assuming an age-standardized unintended pregnancy rate of 78 per 1,000 women, 16,235 unintended pregnancies occur each year. Using a combined LNG-IUS failure and expulsion rate of 2.2%, a decrease of 794, 1588, and 3970 unintended pregnancies was estimated to occur with 5%, 10% and 25% usage, respectively. Annual cost savings from LNG-IUS use range from $3,387,107 to $47,352,295 with 5% to 25% intrauterine device usage. One-way sensitivity analysis demonstrated LNG-IUS to be cost-effective when the cost associated with pregnancy and delivery exceeded $11,000. Use of LNG-IUS could result in significant reductions in unintended pregnancy among active duty women, resulting in substantial cost savings to the government health care system. PMID:25269131

  15. Failure of gastroenterologists to apply intestinal ultrasound in inflammatory bowel disease in the Asia-Pacific: a need for action.

    PubMed

    Asthana, Anil Kumar; Friedman, Antony B; Maconi, Giovanni; Maaser, Christian; Kucharzik, Torsten; Watanabe, Mamoru; Gibson, Peter R

    2015-03-01

    Intestinal ultrasound (IUS) is a cheap, noninvasive, risk-free procedure that is significantly underutilized in the diagnosis and management of patients with inflammatory bowel disease (IBD) in the Asia-Pacific region. More cost-effective methods of monitoring disease activity are required in light of the increasing global burden of IBD (especially in Asia), the advent of personalized medicine, and the rising cost of healthcare. IUS is a prime example of a technique that meets these needs. Its common clinical applications include assessing the activity and complications of IBD. In continental Europe, countries such as Germany and Italy use this imaging tool as the standard of care and have integrated it into management protocols. There are formal training programs in these countries to train gastroenterologists in IUS, and it is used in an outpatient setting during patient consultations. Barriers to its use in the Asia-Pacific region include lack of experience and research data, and there are few established centers with active training programs. These concerns can be addressed by investing more in IUS service provision and by increasing allocation of resources toward local research and training. Increased uptake of IUS will ultimately benefit patients with IBD. PMID:25529767

  16. Tug fleet and ground operations schedules and controls. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.

  17. Inertial upper stage - Upgrading a stopgap proves difficult

    NASA Astrophysics Data System (ADS)

    Geddes, J. P.

    The technological and project management difficulties associated with the Inertial Upper Stage's (IUS) development and performance to date are assessed, with a view to future prospects for this system. The IUS was designed for use both on the interim Titan 34D booster and the Space Shuttle Orbiter. The IUS malfunctions and cost overruns reported are substantially due to the system's reliance on novel propulsion and avionics technology. Its two solid rocket motors, which were selected on the basis of their inherent safety for use on the Space Shuttle, have the longest burn time extant. A three-dimensional carbon/carbon nozzle throat had to be developed to sustain this long burn, as were lightweight composite wound cases and shirts, insulation, igniters, and electromechanical thrust vector control.

  18. Cost effectiveness in obstetrics and gynecology: The levonorgestrel intrauterine system.

    PubMed

    Mattson, Lisa

    2012-03-01

    Use of evidence-based practices that are both cost-effective and acceptable to patients is now a focus in health care. Considerable cost savings can be realized by reducing unintended pregnancies and improving control of menstrual-related morbidity. The levonorgestrel intrauterine system (LNG-IUS), often referred to by its brand name Mirena, has been approved by the Food and Drug Administration both for contraception and fortreating abnormal uterine bleeding. The device has been available in the United States since 2000 and has been used in Europe since 1990. Despite the fact that several evidence-based guidelines include use of the LNG-IUS, it remains underutilized in this country. This article reviews the benefits of the LNG-IUS as they pertain to women's health and to the cost of health care. PMID:22611822

  19. Satisfaction and health-related quality of life in women with heavy menstrual bleeding; results from a non-interventional trial of the levonorgestrel-releasing intrauterine system or conventional medical therapy

    PubMed Central

    Xu, Ling; Lee, Byung Seok; Asif, Shaheena; Kraemer, Peter; Inki, Pirjo

    2014-01-01

    Purpose To evaluate the patient satisfaction and health related quality of life (HRQoL) for levonorgestrel-releasing intrauterine system (LNG-IUS) versus conventional medical treatments ([CMTs] combined oral contraceptives, oral progestins, and antifibrinolytics, alone or in combination) in Asian women with heavy menstrual bleeding (HMB). Patients and methods A total of 647 patients diagnosed with HMB were recruited to this non-interventional study from the eight participating countries in Asia. Patient satisfaction was recorded at the last visit (at 12 months or premature discontinuation). At each visit (at 3, 6, and 12 months), patients completed the menorrhagia multi-attribute scale (MMAS) to assess HRQoL. Results A total of 83.5% of patients on the LNG-IUS were “very satisfied” or at least “satisfied” with the therapeutic effect of HMB treatment, compared with 59.2% of patients with CMTs (P<0.05). The mean (± standard deviation) MMAS score increased from 41.4±24.5 to 87.7±21.4 in the LNG-IUS arm, and from 44.1±24.9 to 73.1±25.3 in the CMTs arm. This increase was significantly higher in patients on the LNG-IUS, as compared with those on CMTs (P<0.05). The improvement in HRQoL in both treatment groups correlated with the body mass index of the patient, with larger improvement obtained in women with a higher body mass index. Conclusion The majority of women using the LNG-IUS or CMTs for HMB were satisfied with their treatment, and both treatment modalities were associated with significant improvements in HRQoL over time. The improvement was greater with the LNG-IUS, compared with CMTs. PMID:24920936

  20. Geoscience Education Programs in the NSF Division of Undergraduate Education: Different Acronyms with Similar Intent

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2014-12-01

    For the past three decades, the National Science Foundation's (NSF) Division of Undergraduate Education (DUE) has administered a succession of programs intended to improve undergraduate STEM education for all students. The IUSE (Improving Undergraduate STEM Education) program is the latest program in this succession, and reflects an expanded, NSF-wide effort to make sustainable improvements in STEM education on a national scale. The origins and thinking behind IUSE can be in part traced back to precursor programs including: ILI (Instrumentation and Laboratory Improvement), CCD (Course and Curriculum Development), UFE (Undergraduate Faculty Enhancement), CCLI (Course, Curriculum and Laboratory Improvement), and TUES (Transforming Undergraduate Education in STEM), all of which sought to support faculty efforts to investigate and improve curriculum and instructional practice in undergraduate STEM education, and to disseminate effective STEM educational practices for broad adoption. IUSE, like its predecessor programs, is open to all STEM fields, and as such is intended to support improvements in geoscience education, spanning the atmospheric, ocean, and Earth sciences, as well as in environmental science, GIS science, climate change and sustainability/resilience. An emphasis on discipline-based research on learning that had origins in the CCLI and TUES programs is a new priority area in IUSE, with the ambition that projects will take advantage of the integrated expertise of domain scientists, educational practioners, and experts in learning science. We trace and describe the history of undergraduate education efforts with an emphasis placed on the recently introduced IUSE program. Understanding the origin of DUE's IUSE program can provide insights for faculty interested in developing proposals for submission and gain a greater appreciation of trends and priorities within the division.

  1. ISTAR: Intelligent System for Telemetry Analysis in Real-time

    NASA Technical Reports Server (NTRS)

    Simmons, Charles

    1994-01-01

    The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.

  2. Levonorgestrel-Releasing Intrauterine System for Women With Polycystic Ovary Syndrome: Metabolic and Clinical Effects.

    PubMed

    da Silva, Adriana Valerio; de Melo, Anderson Sanches; Barboza, Rebecca Pontelo; de Paula Martins, Wellington; Ferriani, Rui Alberto; Vieira, Carolina Sales

    2016-07-01

    Polycystic ovary syndrome (PCOS) is related to clinical and metabolic comorbidities that may limit the prescription of combined hormonal contraceptives, with consequent need to use progestogen-only contraceptives (POCs). Thus, the objective of the present study was to evaluate the clinical and metabolic effects of a POC, the levonorgestrel-releasing intrauterine system (LNG-IUS), in women with PCOS followed up over a period of 6 months compared to baseline and to women without PCOS. Thus, an observational, prospective, controlled study was conducted on 30 women with a diagnosis of PCOS who presented adverse effect secondary to the use of combined oral contraceptives (nausea, headache, mastalgia or vomiting; PCOS group) paired with 30 ovulatory women without PCOS (control group), both groups being free of comorbidities and having chosen the LNG-IUS as contraceptive. Clinical, laboratory, and ultrasonographic variables were evaluated immediately before LNG-IUS insertion and 6 months after the use of this method. Before LNG-IUS insertion, the PCOS group had higher total testosterone levels (P = .04), lower HDL levels (P = .04), and greater ovarian volume (P < .01) than the control group. Six months after LNG-IUS insertion, there was a 2.3% increase in abdominal circumference (P = .04) and a 3.4% increase in fasting glycemia (P = .02). On the other hand, mean ovarian volume was 10% smaller compared to the volume found before LNG-IUS insertion (P = .04), LDL levels were reduced by 5.2% (P = .03), and total cholesterol levels were reduced by 6.7% (P < .01) compared to baseline evaluation in the PCOS group. The remaining variables did not differ significantly during the 6 months of observation. The control group did not show significant changes compared to the period before LNG-IUS insertion. When the groups were compared after the 6-month follow-up, only glycemia showed a statistically significant variation between the groups, with glycemia levels increasing by 3.4% in

  3. Long-term effects of levonorgestrel-releasing intrauterine system on tamoxifen-treated breast cancer patients: a meta-analysis

    PubMed Central

    Fu, Yun; Zhuang, Zhigang

    2014-01-01

    Objective: The aim of the study is to assess the efficacy of the levonorgestrel-releasing intrauterine system (LNG-IUS) on the tamoxifen-induced endometrial lesions in breast cancer patients. Methods: PubMed and EMBASE databases were searched for eligible studies. Odds ratios were obtained to estimate the association between the LNG-IUS and tamoxifen-induced endometrial lesions. The fixed effects or random-effects model was used to combine data depending on heterogeneity. Results: With three eligible randomized clinical trials involving 359 patients, this analysis demonstrated tamoxifen-treated breast cancer patients using the LNG-IUS derived benefit from de novo polyps prevention (P < 0.0001, OR 0.18, 95% CI: 0.08-0.42). However, the LNG-IUS only showed a trend of maintaining endometrial proliferation or secretory status (P = 0.05, OR 0.36, 95% CI 0.13-1.02) and no statistical difference in atrophic or inactive changes (P = 0.13, OR 0.24, 95% CI 0.04-1.53) or endometrial hyperplasia without atypia (P = 0.08, OR 0.20, 95% CI 0.04-1.18). The LNG-IUS didn’t have an increased incidence in breast cancer recurrence (P = 0.28, OR 1.75, 95% CI: 0.64-4.80) and cancer-induced death (P = 0.71, OR 1.22, 95% CI: 0.42-3.52). Bleeding in the treatment group was statistically more frequent than that in the control group (OR 6.20, 95% CI: 2.99-12.85, P < 0.00001). Conclusions: This analysis verifies the efficacy of the LNG-IUS in preventing tamoxifen-induced polyps. The LNG-IUS didn’t have an increased incidence in breast cancer recurrence and cancer-induced death. Long-term, large randomized studies of the LNG-IUS will be necessary to determine the benefit and risk in tamoxifen-treated breast cancer patients. PMID:25400720

  4. Use of frameless intrauterine devices and systems in young nulliparous and adolescent women: results of a multicenter study

    PubMed Central

    Wildemeersch, Dirk; Jandi, Sohela; Pett, Ansgar; Nolte, Kilian; Hasskamp, Thomas; Vrijens, Marc

    2014-01-01

    Background The purpose of this study was to provide additional data on the experience with frameless copper and levonorgestrel (LNG) intrauterine devices (IUDs) in nulliparous and adolescent women. Methods Nulliparous and adolescent women, 25 years of age or younger, using the frameless copper IUD or the frameless LNG-releasing intrauterine system (IUS), were selected from previous studies and a current multicenter post-marketing study with the frameless copper IUD. The small copper-releasing GyneFix® 200 IUD consists of four copper cylinders, each 5 mm long and only 2.2 mm wide. The frameless FibroPlant® LNG-IUS consists of a fibrous delivery system releasing the hormone levonorgestrel (LNG-IUS). The main features of these intrauterine contraceptives are that they are frameless, flexible, and anchored to the fundus of the uterus. Results One hundred and fifty-four nulliparous and adolescent women participated in the combined study. One pregnancy occurred with the GyneFix 200 IUD after unnoticed early expulsion of the device (cumulative pregnancy rate 1.1 at one year). Two further expulsions were reported, one with the GyneFix 200 IUD and the other with the FibroPlant LNG-IUS. The cumulative expulsion rate at one year was 1.1 with the copper IUD and 2.2 with the LNG-IUS. The total discontinuation rate at one year was low (3.3 and 4.3 with the copper IUD and LNG-IUS, respectively) and resulted in a high rate of continuation of use at one year (96.7 with the copper IUD and 95.7 with the LNG-IUS, respectively). Continuation rates for both frameless copper IUD and frameless LNG-IUS remained high at 3 years (>90%). There were no cases of perforations or pelvic inflammatory disease reported during or following insertion. Conclusion This report confirms earlier studies with frameless devices and suggests that the high user continuation rate is attributable to the optimal relationship between the IUD and the uterine cavity. IUD studies have shown that an IUD that does

  5. Analytical investigation of solid rocket nozzle failure

    NASA Technical Reports Server (NTRS)

    Mccoy, K. E.; Hester, J.

    1985-01-01

    On April 5, 1983, an Inertial Upper Stage (IUS) spacecraft experienced loss of control during the burn of the second of two solid rocket motors. The anomaly investigation showed the cause to be a malfunction of the solid rocket motor. This paper presents a description of the IUS system, a failure analysis summary, an account of the thermal testing and computer modeling done at Marshall Space Flight Center, a comparison of analysis results with thermal data obtained from motor static tests, and describes some of the design enhancement incorporated to prevent recurrence of the anomaly.

  6. Levonorgestrel intrauterine system versus thermal balloon ablation for the treatment of heavy menstrual bleeding: A meta-analysis of randomized controlled trials

    PubMed Central

    YANG, BING-QING; XU, JIE-HAN; TENG, YIN-CHENG

    2015-01-01

    At present, there have been no standard research outcomes as to whether the levonorgestrel intrauterine system (LNG-IUS) or thermal balloon ablation (TBA) is superior for the treatment of patients suffering from heavy menstrual bleeding (HMB). Therefore, in the present study, a meta-analysis of randomized controlled trials (RCTs) was conducted in order to compare the effectiveness and affordability of the LNG-IUS with TBA in the treatment of HMB. A literature search of the following electronic databases was conducted: PubMed, EMBASE, the Cochrane Library, Google Scholar, the Chinese Scientific Journals Database, and the China National Knowledge Infrastructure; and a statistical analysis was performed using RevMan 5.2 software. Seven RCTs involving 467 patients (235 LNG-IUS, 232 TBA) met the inclusion criteria for the present study. As assessed by pictorial blood loss assessment chart (PBAC) scores, the LNG-IUS significantly reduced menstrual bleeding after 24 months [standardized mean difference (SMD), −0.86; 95% confidence interval (CI), −1.22 to −0.50; P<0.00001]. Furthermore, the total treatment cost of the LNG-IUS was lower than that of TBA (SMD, −2.35; 95% CI, −2.98 to −1.72; P<0.00001). However, at the 24 month follow-up, side effects such as amenorrhea occurred more frequently in patients treated with the LNG-IUS, as compared with TBA (relative risk, 2.49; 95% CI, 1.46–4.25; P=0.0008). No significant differences in hemoglobin levels and quality of life were demonstrated between the two treatment groups. The results of the present meta-analysis suggest that the LNG-IUS may be more effective and affordable than TBA as a long-term treatment (24 months) for HMB. However, following 12–24 months of treatment, side effects such as amenorrhea may be more frequent in patients treated with the LNG-IUS. When considering short-term treatment for HMB, controversy remains regarding the two methods and further studies are required to precisely evaluate the

  7. Design synthesis of the SEPS. [Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Horio, S. P.; Watkins, C. L.; Shollenberger, J. M.

    1975-01-01

    This paper summarizes the most current configuration of the Solar Electric Propulsion Stage (SEPS) design resulting from the synthesis of key tradeoff analyses. The baseline SEPS is a 21-kW propulsion-power vehicle using the Shuttle/Interim Upper Stage (IUS) launch vehicle for planetary and geosynchronous missions. The trade analyses supporting the baseline configuration include ion thruster array pattern, solar array stowage concepts, and number of thrusters and power processors (PP). In addition, an integrated thermal control and structural system was optimized and designed to meet flight loads and dynamics requirements. Payload provisions, mercury propellant refueling, and design compatibility of the SEPS and Shuttle/IUS are presented.

  8. Femilis® 60 Levonorgestrel-Releasing Intrauterine System—A Review of 10 Years of Clinical Experience

    PubMed Central

    Wildemeersch, Dirk; Andrade, Amaury; Goldstuck, Norman

    2016-01-01

    OBJECTIVE The aim of this study was to update the clinical experience with the Femilis® 60 levonorgestrel-releasing intrauterine system (LNG-IUS), now up to 10 years in parous and nulliparous women, particularly with regard to ease and safety of insertion, contraceptive performance, retention, acceptability, continuation of use, impact on menstrual blood loss (MBL), and duration of action. STUDY DESIGN Using the Femilis® 60 LNG-IUS releasing 20 µg of levonorgestrel/day, the following studies were conducted: an open, prospective noncomparative contraceptive study, an MBL study, a perimenopausal study, a study for the treatment of endometrial hyperplasia, and early cancer of the uterus, a residue study. RESULTS A total of 599 Femilis LNG-IUS were inserted in various clinical trials, the majority for contraceptive purposes. The total exposure in the first and second contraceptive studies, covering 558 parous and nulliparous women, was 32,717 woman-months. Femilis has high contraceptive effectiveness as only one pregnancy occurred. Expulsion of the LNG-IUS was rare with only two total and no partial expulsions (stem protruding through the cervical canal) occurred. Femilis was well tolerated, with continuation rates remaining high. Several MBL studies were conducted, totaling 80 heavy and normal menstrual bleeders, using the pictorial bleeding assessment chart method or the quantitative alkaline hematin technique. Virtually all women responded well with strongly reduced menstrual bleeding. Amenorrhea rates were high, up to 80% after three months, and ferritin levels simultaneously increased significantly. The Femilis LNG-IUS was tested in 104 symptomatic perimenopausal women for seamless transition to and through menopause, adding estrogen therapy when required. Patient tolerability appeared high as >80% requested a second and a third LNG-IUS. Twenty women presenting with nonatypical and atypical hyperplasia and one woman presenting with early endometrial carcinoma

  9. SEP ENCKE-87 and Halley rendezvous studies and improved S/C model implementation in HILTOP

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.; Mann, F. I.

    1978-01-01

    Studies were conducted to determine the performance requirements for projected state-of-the-art SEP spacecrafts boosted by the Shuttle/IUS to perform a rendezvous with the comet Halley and a rendezvous with the comet Encke during its 1977 apparition. The spacecraft model of the standard HILTOP computer program was assumed. Numerical and graphical results summarizing the studies are presented.

  10. Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound.

    PubMed

    Clements, Logan W; Collins, Jarrod A; Weis, Jared A; Simpson, Amber L; Adams, Lauryn B; Jarnagin, William R; Miga, Michael I

    2016-01-01

    Soft-tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface-based metrics, and subsurface validation has largely been performed via phantom experiments. The proposed method involves the analysis of two deformation-correction algorithms for open hepatic image-guided surgery systems via subsurface targets digitized with tracked intraoperative ultrasound (iUS). Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration and for use in retrospective deformation-correction algorithms. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. Mean closest-point distances between the feature contours delineated in the iUS images and corresponding three-dimensional anatomical model generated from preoperative tomograms were computed to quantify the extent to which the deformation-correction algorithms improved registration accuracy. The results for six patients, including eight anatomical targets, indicate that deformation correction can facilitate reduction in target error of [Formula: see text]. PMID:27081664

  11. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery.

    PubMed

    Holländer, Jenny; Genina, Natalja; Jukarainen, Harri; Khajeheian, Mohammad; Rosling, Ari; Mäkilä, Ermei; Sandler, Niklas

    2016-09-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used as a model drug to prepare drug-loaded poly(ε-caprolactone)-based filaments with 3 different drug contents, namely 5%, 15%, and 30%, by hot-melt extrusion. The filaments were further used to 3D print IUS. The results showed that the morphology and drug solid-state properties of the filaments and 3D prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between the products. Diffusion of the drug from the polymer was the predominant mechanism of drug release, whereas poly(ε-caprolactone) biodegradation had a minor effect. This study shows that 3D printing is an applicable method in the production of drug-containing IUS and can open new ways in the fabrication of controlled release implantable devices. PMID:26906174

  12. STS-6 sixth Space Shuttle mission. First flight of the Challenger

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A prelaunch summary of the sixth Space Shuttle mission is provided. The Challenger orbiter; launching; uprated engines; lighter weight boosters; lightweight tank; external tank reduction; landing; the tracking and data relay satellite system (TDRSS), TDRS-1 deployment; the inertial upper stage (IUS), the spacewalk;electrophoresis, monodisperse latex reactor, night time/day time optical survey of lightning, and getaway special experiments are described.

  13. Role of the levonorgestrel intrauterine system in effective contraception

    PubMed Central

    Attia, Abdelhamid M; Ibrahim, Magdy M; Abou-Setta, Ahmed M

    2013-01-01

    Norgestrel, a synthetic progestin chemically derived from 19-nortestosterone, is six times more potent than progesterone, with variable binding affinity to various steroid receptors. The levonorgestrel-releasing intrauterine system (LNG IUS) provides a long-acting, highly effective, and reversible form of contraception, with a pearl index of 0.18 per 100 women-years. The locally released hormone leads to endometrial concentrations that are 200–800 times those found after daily oral use and a plasma level that is lower than that with other forms of levonorgestrel-containing contraception. The contraceptive effect of the LNG IUS is achieved mainly through its local suppressive effect on the endometrium, leading to endometrial thinning, glandular atrophy, and stromal decidualization without affecting ovulation. The LNG IUS is generally well tolerated. The main side effects are related to its androgenic activity, which is usually mild and transient, resolving after the first few months. Menstrual abnormalities are also common but well tolerated, and even become desirable (eg, amenorrhea, hypomenorrhea, and oligomenorrhea) with proper counseling of the patient during the choice of the method of contraception. The satisfaction rates after 3 years of insertion are high, reaching between 77% and 94%. The local effect of the LNG IUS on the endometrium and low rates of systemic adverse effects have led to its use in other conditions rather than contraception, as for the treatment of endometrial hyperplasia, benign menorrhagia, endometriosis, adenomyosis, and uterine fibroids. PMID:23990713

  14. Mutual-information-corrected tumor displacement using intraoperative ultrasound for brain shift compensation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2008-03-01

    Intraoperative ultrasound (iUS) has emerged as a practical neuronavigational tool for brain shift compensation in image-guided tumor resection surgeries. The use of iUS is optimized when coregistered with preoperative magnetic resonance images (pMR) of the patient's head. However, the fiducial-based registration alone does not necessarily optimize the alignment of internal anatomical structures deep in the brain (e.g., tumor) between iUS and pMR. In this paper, we investigated and evaluated an image-based re-registration scheme to maximize the normalized mutual information (nMI) between iUS and pMR to improve tumor boundary alignment using the fiducial registration as a starting point for optimization. We show that this scheme significantly (p<<0.001) reduces tumor boundary misalignment pre-durotomy. The same technique was employed to measure tumor displacement post-durotomy, and the locally measured tumor displacement was assimilated into a biomechanical model to estimate whole-brain deformation. Our results demonstrate that the nMI re-registration pre-durotomy is critical for obtaining accurate measurement of tumor displacement, which significantly improved model response at the craniotomy when compared with stereopsis data acquired independently from the tumor registration. This automatic and computationally efficient (<2min) re-registration technique is feasible for routine clinical use in the operating room (OR).

  15. Art concept of Magellan spacecraft deployment from OV-104 during STS-30

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In this artist concept, Magellan spacecraft mounted on inertial upper stage (IUS) drifts away from Atlantis, Orbiter Vehicle (OV) 104, just after deployment during mission STS-30. Magellan, named after the 16th century Portuguese explorer, is shown with solar panels stowed. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P33264.

  16. Dynamics of a b-nut failure

    NASA Astrophysics Data System (ADS)

    Zarubin, Peter V.

    1999-06-01

    In August of 1989, the Galileo spacecraft, consisting of an orbiter and probe, was mounted to an Inertial Upper Stage (IUS) rocket stage being readied for flight aboard NASA's Space Shuttle, 'STS-34,' 'Atlantis.' During routine age testing of an IUS igniter fire line circuit, a 'b-nut' failure occurred. On board the Galileo/IUS first stage rocket motor was a b-nut from this failed lot. There was concern that the mission could be jeopardized if the b-nut failed because of the close proximity of the IUS second stage rocket motor nozzle. A fix had to be made to insure mission success. Chemical Systems Division was called upon to provide high- speed motion picture photography at 3000 frames per second to analyze the dynamics of a b-nut failure, and verify that the fix would prevent damage to the second stage nozzle, should a b-nut failure occur. This report will show how displacement and velocity measurements can be made from 16 mm motion picture film.

  17. Reflected view of the TDRS in the STS-6 Challengers payload bay

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The stowed tracking and data relay satellite (TDRS) and its inertial upper stage (IUS) are seen in duplicate in the frame taken by the STS-6 crew. A reflection in the aft window of the flight deck resulted in the mirage effect of the 'second' TDRS. The three canisters in the aft foreground contain experiments of participants in the STS getaway special (GAS) program.

  18. Defining Distinct Negative Beliefs about Uncertainty: Validating the Factor Structure of the Intolerance of Uncertainty Scale

    ERIC Educational Resources Information Center

    Sexton, Kathryn A.; Dugas, Michel J.

    2009-01-01

    This study examined the factor structure of the English version of the Intolerance of Uncertainty Scale (IUS; French version: M. H. Freeston, J. Rheaume, H. Letarte, M. J. Dugas, & R. Ladouceur, 1994; English version: K. Buhr & M. J. Dugas, 2002) using a substantially larger sample than has been used in previous studies. Nonclinical undergraduate…

  19. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  20. ["ReMeEx", the adjustable-tension suburetral sling in the treatment of stress urinary incontinence due to intrinsic sphincteric dysfunction (type III)].

    PubMed

    Cortese, P; Gallo, F; Gastaldi, E; Schenone, M; Ninotta, G; Gilberti, C

    2009-01-01

    The anti-incontinence methods "tension free" may be insufficient in the treatment of stress urinary incontinence (IUS) due to intrinsic sphincteric dysfunction (ISD). We report our findings on the use of the suburetral sling with adjustable tension "Remeex" sistem in the treatment of 24 patients. METHODS. Between May 2002 and February 2008, 24 patients with IUS of type III, were subjected to suburetral sling "Reemex." Positioning. The intervention provides a vaginal access to the positioning of suburetral sling and an access to the positioning of a varitensor which the wires are connected at the sling seats, recovered by the passage of a Stamey needle carrier of. The average operative time was approximately 70 minutes, the resignation was in I-II day. The tension of the sling was adjusted the day following intervention by turning the screw connected to the varitensor. Patients were followed with physical examination and completed the Korman's questionnaire about the quality of life. RESULTS. At a follow-up average 30 months, 21 patients (87.5%) were perfectly continent with improvement of quality of life. Among the complications, wound infection occurred in 2 patients (8%); 1 (4%) with mild recurrence IUS; 1 (4%) reported "de novo" urgency, 1 (4%) reported urinary retention. CONCLUSIONS. Our data show that the use of the suburetral sling "ReMeEx" is a effective option in the treatment of IUS due to ISD which is a condition often secondary to urogynecologic surgery and refractory to common techniques antincontinence. PMID:21086308

  1. Restructuring/Rebuilding Our Teacher Education Program: One "Block" at a Time.

    ERIC Educational Resources Information Center

    Ridout, Susan; And Others

    The school of education at Indiana University Southeast (IUS) adopted a program to incorporate technology into preservice teacher education and practicum training. Students in the program were nontraditional undergraduate junior and senior level elementary education majors. Students enrolled in a team-taught, 6-semester-hour block of Language…

  2. Expanding Access to a New, More Affordable Levonorgestrel Intrauterine System in Kenya: Service Delivery Costs Compared With Other Contraceptive Methods and Perspectives of Key Opinion Leaders

    PubMed Central

    Rademacher, Kate H; Solomon, Marsden; Brett, Tracey; Bratt, John H; Pascual, Claire; Njunguru, Jesse; Steiner, Markus J

    2016-01-01

    ABSTRACT Background: The levonorgestrel intrauterine system (LNG IUS) is one of the most effective forms of contraception and offers important non-contraceptive health benefits. However, it is not widely available in developing countries, largely due to the high price of existing products. Medicines360 plans to introduce its new, more affordable LNG IUS in Kenya. The public‐sector transfer price will vary by volume between US$12 to US$16 per unit; for an order of 100,000 units, the public-sector transfer price will be approximately US$15 per unit. Methods: We calculated the direct service delivery cost per couple-years of protection (CYP) of various family planning methods. The model includes the costs of contraceptive commodities, consumable supplies, instruments per client visit, and direct labor for counseling, insertion, removal, and resupply, if required. The model does not include costs of demand creation or training. We conducted interviews with key opinion leaders in Kenya to identify considerations for scale-up of a new LNG IUS, including strategies to overcome barriers that have contributed to low uptake of the copper intrauterine device. Results: The direct service delivery cost of Medicines360’s LNG IUS per CYP compares favorably with other contraceptive methods commonly procured for public-sector distribution in Kenya. The cost is slightly lower than that of the 3-month contraceptive injectable, which is currently the most popular method in Kenya. Almost all key opinion leaders agreed that introducing a more affordable LNG IUS could increase demand and uptake of the method. They thought that women seeking the product’s non-contraceptive health benefits would be a key market segment, and most agreed that the reduced menstrual bleeding associated with the method would likely be viewed as an advantage. The key opinion leaders indicated that myths and misconceptions among providers and clients about IUDs must be addressed, and that demand creation

  3. Levonorgestrel-Releasing Intrauterine System vs. Usual Medical Treatment for Menorrhagia: An Economic Evaluation Alongside a Randomised Controlled Trial

    PubMed Central

    Sanghera, Sabina; Roberts, Tracy Elizabeth; Barton, Pelham; Frew, Emma; Daniels, Jane; Middleton, Lee; Gennard, Laura; Kai, Joe; Gupta, Janesh Kumar

    2014-01-01

    Objective To undertake an economic evaluation alongside the largest randomised controlled trial comparing Levonorgestrel-releasing intrauterine device (‘LNG-IUS’) and usual medical treatment for women with menorrhagia in primary care; and compare the cost-effectiveness findings using two alternative measures of quality of life. Methods 571 women with menorrhagia from 63 UK centres were randomised between February 2005 and July 2009. Women were randomised to having a LNG-IUS fitted, or usual medical treatment, after discussing with their general practitioner their contraceptive needs or desire to avoid hormonal treatment. The treatment was specified prior to randomisation. For the economic evaluation we developed a state transition (Markov) model with a 24 month follow-up. The model structure was informed by the trial women's pathway and clinical experts. The economic evaluation adopted a UK National Health Service perspective and was based on an outcome of incremental cost per Quality Adjusted Life Year (QALY) estimated using both EQ-5D and SF-6D. Results Using EQ-5D, LNG-IUS was the most cost-effective treatment for menorrhagia. LNG-IUS costs £100 more than usual medical treatment but generated 0.07 more QALYs. The incremental cost-effectiveness ratio for LNG-IUS compared to usual medical treatment was £1600 per additional QALY. Using SF-6D, usual medical treatment was the most cost-effective treatment. Usual medical treatment was both less costly (£100) and generated 0.002 more QALYs. Conclusion Impact on quality of life is the primary indicator of treatment success in menorrhagia. However, the most cost-effective treatment differs depending on the quality of life measure used to estimate the QALY. Under UK guidelines LNG-IUS would be the recommended treatment for menorrhagia. This study demonstrates that the appropriate valuation of outcomes in menorrhagia is crucial. PMID:24638071

  4. User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs

    NASA Technical Reports Server (NTRS)

    Archer, J. L.; Beauchamp, N. A.; Day, C. F.

    1975-01-01

    The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

  5. Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix

    PubMed Central

    Goldfien, Gabriel A.; Barragan, Fatima; Chen, Joseph; Takeda, Margaret; Irwin, Juan C.; Perry, Jean; Greenblatt, Ruth M.; Smith-McCune, Karen K.

    2015-01-01

    Epidemiological studies indicate that progestin-containing contraceptives increase susceptibility to HIV, although the underlying mechanisms involving the upper female reproductive tract are undefined. To determine the effects of depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) on gene expression and physiology of human endometrial and cervical transformation zone (TZ), microarray analyses were performed on whole tissue biopsies. In endometrium, activated pathways included leukocyte chemotaxis, attachment, and inflammation in DMPA and LNG-IUS users, and individual genes included pattern recognition receptors, complement components, and other immune mediators. In cervical TZ, progestin treatment altered expression of tissue remodeling and viability but not immune function genes. Together, these results indicate that progestins influence expression of immune-related genes in endometrium relevant to local recruitment of HIV target cells with potential to increase susceptibility and underscore the importance of the upper reproductive tract when assessing the safety of contraceptive products. PMID:25634912

  6. Utilization of solid-propellant upper stages in STS payload orbital operations

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1976-01-01

    The main purpose of this report is to discuss techniques of trajectory design, maneuver execution, and stage loading that are compatible with the use of SRM's (solid rocket motors) which, once ignited, must burn to propellant depletion. It is anticipated that some shuttle payloads will use non-IUS (interim upper stage) solid propellant kick stages; therefore this subject is also pertinent to shuttle flights other than those involving the use of the IUS. The SRM utilization techniques can be divided into two major categories: (1) those in which the stage performance is adjusted to match the velocity increment magnitude requirements of a preselected trajectory, and (2) those in which the trajectory is designed to match the velocity increment magnitude capability of the stage(s).

  7. United States orbital transfer vehicle programs

    NASA Technical Reports Server (NTRS)

    Gunn, Charles R.

    1989-01-01

    Five U.S. orbital transfer vehicles carrying spacecraft to higher energy orbits than achievable by the Space Shuttle or various expandable launch vehicles are studied. These vehicles are the Payload Assist Module-Delta (PAM-D), an upgraded version designated PAM-DII, the Inertial Upper Stage (IUS), the U.S. Transfer Orbit Stage (TOS), and the Orbital Maneuvering Vehicle (OMV). Capabilities range from providing spacecraft with only a preprogrammed perigee velocity additions to man-in-the-loop remote controlled spacecraft rendezvous, docking, retrieval, and return to a space base. The PAM-D, PAM-DII, and IUS are mature vehicles currently available for mission support. Characteristics, flight records, and costs are defined. The TOS is being commercially developed while the OMV is government developed. The TOS and OMV capabilities, constraints, and costs are reviewed.

  8. DTB Select: 4 | April 2016.

    PubMed

    2016-04-01

    Nicorandil now second-line in the treatment of stable angina ● EMA to review use of metformin in kidney disease ● PPI use linked to raised risk of kidney disease ● Text messaging and drug adherence ● Specify levonorgestrel-releasing IUS by brand name ● Clarithromycin and cardiovascular risk ● Grapefruit juice and statins ● Can ibuprofen reduce antibiotic prescriptions for uncomplicated UTIs? PMID:27044846

  9. TRW Video News: Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center sponsored video release presents live footage of the Chandra X-ray Observatory prior to STS-93 as well as several short animations recreating some of its activities in space. These animations include a Space Shuttle fly-by with Chandra, two perspectives of Chandra's deployment from the Shuttle, the Chandra deployment orbit sequence, the Initial Upper Stage (IUS) first stage burn, and finally a "beauty shot", which represents another animated view of Chandra in space.

  10. IUE observations of periodic comets Tempel-2, Kopff, and Tempel-1

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.; Festou, Michel C.

    1992-01-01

    We summarize the results of observations made between 10 Jun. - 18 Dec. 1988 with the International Ultraviolet Explorer (IUS) of comet P/Tempel-2 during its 1988 appearance. The derived water production rate and relative gas/dust ratio are compared with those of P/Halley, observed with IUE in 1985-86, and other potential Comet Rendezvous/Asteroid Flyby (CRAF) target comets, P/Kopff and P/Tempel-1, both observed with IUE in 1983.

  11. Association of Short-term Bleeding and Cramping Patterns with Long-Acting Reversible Contraceptive Method Satisfaction

    PubMed Central

    Diedrich, Justin T.; Desai, Sanyukta; Zhao, Qiuhong; Secura, Gina; Madden, Tessa; Peipert, Jeffrey F.

    2014-01-01

    Objectives To examine the short-term (3 and 6-month), self-reported bleeding and cramping patterns with intrauterine devices (IUDs) and the contraceptive implant, and the association of these symptoms with method satisfaction. Study Design We analyzed 3 and 6-month survey data from IUD and implant users in the Contraceptive CHOICE Project, a prospective cohort study. Participants who received a long-acting reversible contraceptive (LARC) method (levonorgestrel intrauterine system (LNG-IUS), copper IUD, or the etonogestrel implant) and completed their 3- and 6-month surveys were included. Univariable and multivariable analyses were performed to examine the association of bleeding and cramping patterns with short-term satisfaction. Results Our analytic sample included 5,011 CHOICE participants: 3001 LNG-IUS users, 826 copper IUD users, and 1184 implant users. At 3 months, over 65% of LNG-IUS and implant users reported no change or decreased cramping, while 63% of copper IUD users reported increased menstrual cramping. Lighter bleeding was reported by 67% of LNG-IUS users, 58% of implant users, and 8% of copper IUD users. Satisfaction of all LARC methods was high (≥90%) and significantly higher than non-LARC methods (p<0.001). LARC users with increased menstrual cramping (HR 0.96, 95% CI 0.92 – 0.99), heavier bleeding (HR 0.91, 95% CI 0.87 – 0.96), and increased bleeding frequency (HR 0.92, 95% CI 0.89 – 0.96) were less likely to report being very satisfied at 6 months. Conclusion Regardless of the LARC method, satisfaction at 3 and 6 months is very high. Changes in self-reported bleeding and cramping are associated with short-term LARC satisfaction. PMID:25046805

  12. A study of reported factor IX use around the world.

    PubMed

    Stonebraker, J S; Bolton-Maggs, P H B; Brooker, M; Farrugia, A; Srivastava, A

    2011-05-01

    Replacement therapy has significantly improved the life expectancy and lifestyle of people with haemophilia. The objectives of this article were to study the reported factor IX (FIX) use on a country-by-country basis and address the following question: Does the reported FIX use vary by national economies? We obtained data on the reported number of international units (IUs) of FIX used for 90 countries from the Marketing Research Bureau and the World Federation of Hemophilia. Results show that the reported FIX use varies considerably across national economies, even among the wealthiest of countries.Trends suggest that the reported FIX usage increases with increasing economic capacity and has been increasing over time. Trends also suggest that consumption of FIX has been increasing at a greater rate in high income countries. Given these trends, there will likely be an overall increase in the amount of FIX concentrates used in the treatment of haemophilia B. We also found that FIX use both in terms of IUs per capita and IUs per person provide a complete picture of the level of haemophilia care within a country. Such information is critical for planning efforts of national healthcare agencies to determine realistic budget priorities and pharmaceutical manufacturers to determine adequate production levels of FIX concentrates. By improving the data collection and surveillance of FIX use for the treatment of people with haemophilia B, we can identify trends and needs of patients and highlight best treatment practices among countries. PMID:21299742

  13. Temperature Change Induces the Expression of vuuA Encoding Vulnibactin Receptor and crp Encoding Cyclic AMP Receptor Protein in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Ahn, Young-Joon; Kim, Seong-Jung; Yoon, Dae-Heung; Shin, Sung-Heui

    2016-07-01

    Upon entering the human body, Vibrio vulnificus, a gram-negative marine bacterium, must withstand a temperature change (TC) from 25 to 37 °C. This bacterium acquires iron mainly via the vulnibactin receptor (VuuA)-mediated iron uptake system (IUS), which is under the positive control of cyclic AMP receptor protein (CRP), a global regulator responsible for catabolite repression. In this study, we examined the effect of TC on the expression of vuuA and crp, and the reciprocal relation between VuuA-mediated IUS and CRP under iron-limited conditions. Iron limitation increased vuuA expression but decreased crp expression. TC resulted in increased vuuA and crp expression. A crp or vuuA mutation reciprocally decreased vuuA or crp expression. TC could increase vuuA or crp expression even in a crp- or vuuA-mutated background. These results indicate that TC increases the expression of both vuuA and crp by facilitating metabolism under iron-limited conditions, and that CRP and VuuA-mediated IUS interact coordinately toward optimal metabolism in V. vulnificus. PMID:27016238

  14. The levonorgestrel-releasing intrauterine system: Safety, efficacy, and patient acceptability

    PubMed Central

    Beatty, Megan N; Blumenthal, Paul D

    2009-01-01

    The levonorgestrel-releasing intrauterine system (LNG-IUS) is a safe, effective and acceptable form of contraception used by over 150 million women worldwide. It also has a variety of noncontraceptive benefits including treatment for menorrhagia, endometriosis, and endometrial hyperplasia. The LNG-IUS has also been used in combination with estrogen for hormone replacement therapy and as an alternative to hysterectomy. Overall, the system is very well tolerated and patient satisfaction is quite high when proper education regarding possible side effects is provided. However, despite all of the obvious benefits of the LNG-IUS, utilization rates remain quite low in the developed countries, especially in the United States. This is thought to be largely secondary to the persistent negative impressions from the Dalkon Shield intrauterine experience in the 1970s. This history continues to negatively influence the opinions of both patients and health care providers with regards to intrauterine devices. Providers should resolve to educate themselves and their patients on the current indications and uses for this device, as it, and intrauterine contraception in general, remains a largely underutilized approach to a variety of women’s health issues. PMID:19707273

  15. Tracking and Data Relay Satellite launch recovery mission

    NASA Astrophysics Data System (ADS)

    Sackheim, R. L.; Dressler, G. A.

    1984-02-01

    On April 5, 1983, the Tracking and Data Relay Satellite (TDRS), Flight 1, was incorrectly inserted into an elliptical orbit as a result of a malfunction of the Inertial Upper Stage (IUS) injection vehicle. The onboard Reaction Control System (RCS) hyrazine thrusters stabilized the spacecraft following separation from the IUS. Severe damage occurred to both the primary and redundant negative roll thrusters, located near the spacecraft to IUS mating interface, during the separation (at the 180 deg/s tumbling rate) and initialization sequence. In spite of this damage, the onboard RCS provided the necessary impulse to raise the perigee to geosynchronous altitude. Modifications to the attitude control modes were necessary to successfully accomplish the orbit raising without use of negative roll control thrusters and to avoid overheating of other RCS thrusters due to protracted operation (up to 3 hr) at off nominal, worst case duty cycles. The way that the hydrazine fueled RCS provided the impulse to raise TDRS perigee approximately 13,900 km (860 statute miles) to the necessary geosynchronous altitude is investigated. A description of the spacecraft in general and the operation of the two delta V thrusters, in particular, generating an average thrust of 2.7 Nt (0.6 1bf) and consuming a combined total of 363 kg (700 pounds) of hydrazine over 44 hours in 38 separate burns, is also presented.

  16. STS-43 TDRS-E during preflight processing at KSC's VPF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.

  17. Impact of Mindfulness-Based Cognitive Therapy on Intolerance of Uncertainty in Patients with Panic Disorder

    PubMed Central

    Kim, Min Kuk; Lee, Kang Soo; Kim, Borah; Choi, Tai Kiu

    2016-01-01

    Objective Intolerance of uncertainty (IU) is a transdiagnostic construct in various anxiety and depressive disorders. However, the relationship between IU and panic symptom severity is not yet fully understood. We examined the relationship between IU, panic, and depressive symptoms during mindfulness-based cognitive therapy (MBCT) in patients with panic disorder. Methods We screened 83 patients with panic disorder and subsequently enrolled 69 of them in the present study. Patients participating in MBCT for panic disorder were evaluated at baseline and at 8 weeks using the Intolerance of Uncertainty Scale (IUS), Panic Disorder Severity Scale-Self Report (PDSS-SR), and Beck Depression Inventory (BDI). Results There was a significant decrease in scores on the IUS (p<0.001), PDSS (p<0.001), and BDI (p<0.001) following MBCT for panic disorder. Pre-treatment IUS scores significantly correlated with pre-treatment PDSS (p=0.003) and BDI (p=0.003) scores. We also found a significant association between the reduction in IU and PDSS after controlling for the reduction in the BDI score (p<0.001). Conclusion IU may play a critical role in the diagnosis and treatment of panic disorder. MBCT is effective in lowering IU in patients with panic disorder. PMID:27081380

  18. Intrauterine contraceptives: a review of uses, side effects, and candidates.

    PubMed

    Shimoni, Noa'a

    2010-03-01

    This article reviews the two intrauterine devices (IUDs) available in the United States: the TCu380A, marketed as ParaGard (Duramed Pharmaceuticals, Inc. Pomona, NY), and the levonorgestrel-releasing intrauterine system (LNG-IUS), marketed as Mirena (Bayer HealthCare Pharmaceuticals, Inc., Wayne, NJ). The properties of the two devices are detailed, as well as noncontraceptive indications and appropriate candidates for use. Studies consistently demonstrate that the devices are safe, effective, and provide cost savings when compared with other reversible methods. The TCu380A may be used as postcoital contraception with close to 100% effectiveness. Menstrual blood loss is likely to increase with the TCu380A and decrease with the LNG-IUS. Reduction in menstrual blood loss and endometrial suppression make the LNG-IUS an increasingly popular treatment for menorrhagia, endometriosis, adenomyosis, and as an adjunct to estrogen therapy. IUDs may be inserted immediately after a first- or second-trimester abortion, immediately postpartum, and >or=4 weeks postpartum. Candidacy for IUDs has expanded, and includes nulliparous women, adolescents, and women with immunocompromised conditions including HIV. PMID:20352561

  19. Magellan Prelaunch Mission Operations Report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Magellan spacecraft will be launched from Kennedy Space Center (KSC) within a 31-day overall launch period extending from April 28 to May 28, 1989. The launch will use the Shuttle Orbiter Atlantis to lift an Inertial Upper Stage (IUS) and the Magellan Spacecraft into low Earth orbit. After the Shuttle achieves its parking orbit, the IUS and attached Magellan spacecraft are deployed from the payload bay. After a short coast time, the two-stage IUS is fired to inject the Magellan spacecraft into an Earth-Venus transfer trajectory. The Magellan spacecraft is powered by single degree of freedom, sun-tracking, solar panels charging a set of nickel-cadmium batteries. The spacecraft is three-axis stabilized by reaction wheels using gyros and a star sensor for attitude reference. The spacecraft carries a solid rocket motor for Venus Orbit Insertion (VOI). A hydrazine propulsion system allows trajectory correction and prevents saturation of the reaction wheels. Communication with Earth through the Deep Space Network (DSN) is provided by S- and X-band telemetry channels, through alternatively a low, medium, or 3.7 m high-gain parabolic antenna rigidly attached to the spacecraft. The high-gain antenna also serves as the radar and radiometer antenna during orbit around Venus.

  20. From speech to thought: the neuronal basis of cognitive units in non-experimental, real-life communication investigated using ECoG

    PubMed Central

    Derix, Johanna; Iljina, Olga; Weiske, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2014-01-01

    Exchange of thoughts by means of expressive speech is fundamental to human communication. However, the neuronal basis of real-life communication in general, and of verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was to establish an approach for exploring the neuronal processes related to cognitive “idea” units (IUs) in conditions of non-experimental speech production. We investigated whether such units corresponding to single, coherent chunks of speech with syntactically-defined borders, are useful to unravel the neuronal mechanisms underlying real-world human cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed non-experimental, daily hospital conversations, identified IUs in transcriptions of the patients' speech, classified the obtained IUs according to a previously-proposed taxonomy focusing on memory content, and investigated the underlying neuronal activity. In each of our three subjects, we were able to collect a large number of IUs which could be assigned to different functional IU subclasses with a high inter-rater agreement. Robust IU-onset-related changes in spectral magnitude could be observed in high gamma frequencies (70–150 Hz) on the inferior lateral convexity and in the superior temporal cortex regardless of the IU content. A comparison of the topography of these responses with mouth motor and speech areas identified by electrocortical stimulation showed that IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity: 44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis of ECoG recordings during non-experimental communication thus elicits topographically- and functionally-specific effects. We conclude that segmentation of

  1. From speech to thought: the neuronal basis of cognitive units in non-experimental, real-life communication investigated using ECoG.

    PubMed

    Derix, Johanna; Iljina, Olga; Weiske, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2014-01-01

    Exchange of thoughts by means of expressive speech is fundamental to human communication. However, the neuronal basis of real-life communication in general, and of verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was to establish an approach for exploring the neuronal processes related to cognitive "idea" units (IUs) in conditions of non-experimental speech production. We investigated whether such units corresponding to single, coherent chunks of speech with syntactically-defined borders, are useful to unravel the neuronal mechanisms underlying real-world human cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed non-experimental, daily hospital conversations, identified IUs in transcriptions of the patients' speech, classified the obtained IUs according to a previously-proposed taxonomy focusing on memory content, and investigated the underlying neuronal activity. In each of our three subjects, we were able to collect a large number of IUs which could be assigned to different functional IU subclasses with a high inter-rater agreement. Robust IU-onset-related changes in spectral magnitude could be observed in high gamma frequencies (70-150 Hz) on the inferior lateral convexity and in the superior temporal cortex regardless of the IU content. A comparison of the topography of these responses with mouth motor and speech areas identified by electrocortical stimulation showed that IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity: 44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis of ECoG recordings during non-experimental communication thus elicits topographically- and functionally-specific effects. We conclude that segmentation of spontaneous

  2. Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars and Mineralogical Analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, H. H.; Milliken, R.; Fernandez-Remolar, D. C.; Amils, R.; Robertson, K.; Knoll, A. H.

    2015-12-01

    A suite of enigmatic near-infrared reflectance spectra with a 'doublet' absorption between 2.2 and 2.3 µm is observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral images over Ius and Melas Chasma on Mars. The doublet-bearing deposits are found alongside other hydrated minerals including clays, sulfates, and silica, but the mineral(s) responsible for the spectral signature has yet to be identified. Reflectance spectra of rocks and sediments at Rio Tinto, Spain exhibit similar absorptions at airborne, field, and lab spatial scales. Coupled X-ray diffraction and reflectance spectra of these terrestrial examples indicate the absorption arises from a mixture of jarosite, a ferric sulfate, and Al-phyllosilicates (illite/muscovite). Detailed analysis of CRISM data over Ius and Melas Chasma suggests that these deposits also contain mixtures of jarosite and Al-phyllosilicate, where the latter may include halloysite, kaolinite and/or montmorillonite in addition to illite/muscovite. This interpretation is supported because (1) the two absorptions in the doublet feature vary independently, implying the presence of two or more phases, (2) the position of the absorptions is consistent with Al-OH and Fe-OH vibrations in both the Rio Tinto and CRISM spectra and (3) Al-phyllosilicates and jarosite are identified separately in nearby regions. Multiple formation mechanisms are proposed based on stratigraphy in Ius Chasma, where the strength of absorptions varies within a single stratigraphic unit as well as between different units. Mechanisms include authigenic formation of jarosite, which would indicate locally acidic and oxidizing conditions, mixed with detrial Al-phyllosilicates, or authigenic formation of Al-phyllosilicates and jarosite. Each implies different conditions in terms of aqueous geochemistry, redox, and sediment transport. Results from the field, lab, and CRISM analysis will be presented to discuss how placing these spectral

  3. Magellan Post Launch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Magellan was successfully launched by the Space Shuttle Atlantis from the Kennedy Space Center at 2:47 p.m. EDT on May 4, 1989. The Inertial Upper Stage (IUS) booster and attached Magellan Spacecraft were successfully deployed from Atlantis on Rev. 5 as planned, at 06:14 hrs Mission Elapsed Time (MET). The two IUS propulsion burns which began at 07:14 hrs MET and were completed at 07:22 hrs MET, placed the Magellan Spacecraft almost perfectly on its preplanned trajectory to Venus. The IUS was jettisoned at 07:40 hrs MET and Magellan telemetry was immediately acquired by the Deep Space Network (DSN). A spacecraft trajectory correction maneuver was performed on May 21 and the spacecraft is in the planned standard cruise configuration with all systems operating nominally. An initial attempt was made to launch Atlantis on April 28, 1989, but the launch was scrubbed at T-31 sec due to a failure of the liquid hydrogen recirculation pump on Space Shuttle Main Engine #1. The countdown had proceeded smoothly until T-20 min when the Magellan radio receiver "locked-on" the MIL 71 Unified S-Band (USB) transmission as the transmitter power was increased fro 2 kw to 10 kw in support of the orbiter launch. During the planned hold at T-9 min, the USB was confirmed as the source of the receiver "lock" and Magellan's launch readiness was reaffirmed. In addition a five-minute extension of the T-9 hold occurred when a range safety computer went off-line, creating a loss of redundancy in the range safety computer network. Following resumption of the countdown, both the orbiter and Magellan flows proceeded smoothly until the launch was scrubbed at T-31 sec.

  4. Knowledge and attitudes about long-acting reversible contraception among Latina women who desire sterilization

    PubMed Central

    White, Kari; Hopkins, Kristine; Potter, Joseph E.; Grossman, Daniel

    2013-01-01

    Background There is growing interest in increasing the use of long-acting reversible contraception (LARC), and suggestions that such methods may serve as an alternative to sterilization. However, there is little information about whether women who do not want more children would be interested in using LARC methods. Methods We conducted semi-structured interviews with 120 parous Latina women in El Paso, Texas who wanted a sterilization but had not obtained one. We assessed women’s awareness of and interest in using the copper intrauterine device (IUD), levonorgestrel intrauterine system (LNG-IUS), and etonogestrel implant. Findings Overall, 51%, 23% and 47% of women reported they had heard of the copper IUD, LNG-IUS and implant, respectively. More women stated they would use the copper IUD (24%) than the LNG-IUS (14%) or implant (9%). Among women interested in LARC, the most common reasons were that, relative to their current method, LARC methods were more convenient, effective, and provided longer-term protection against pregnancy. Those who had reservations about LARC were primarily concerned with menstrual changes. Women also had concerns about side effects and the methods' effectiveness in preventing pregnancy, preferring to use a familiar method. Conclusions Although these findings indicate many Latina women in this setting do not consider LARC an alternative to sterilization, they point to an existing demand among some who wish to end childbearing. Efforts are needed to improve women’s knowledge and access to a range of methods so they can achieve their childbearing goals. PMID:23816156

  5. Earth orbital assessment of solar electric and solar sail propulsion systems

    NASA Technical Reports Server (NTRS)

    Teeter, R. R.

    1977-01-01

    The earth orbital applications potential of Solar Electric (Ion Drive) and Solar Sail low-thrust propulsion systems are evaluated. Emphasis is placed on mission application in the 1980s. The two low-thrust systems are compared with each other and with two chemical propulsion Shuttle upper stages (the IUS and SSUS) expected to be available in the 1980s. The results indicate limited Earth orbital application potential for the low-thrust systems in the 1980s (primarily due to cost disadvantages). The longer term potential is viewed as more promising. Of the two systems, the Ion Drive exhibits better performance and appears to have better overall application potential.

  6. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  7. In Situ Propellant Production for improved sample return mission performance

    NASA Technical Reports Server (NTRS)

    Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Feingold, H.; Ash, R. L.

    1980-01-01

    In Situ Propellant Production (ISPP) on the surface of a target body is evaluated as a potential way to relax sample return mass constraints and to improve mission performance. Utilization of an oxygen/methane bipropellant combination for primary outbound and return propulsion has a significant favorable impact upon Earth escape requirements. A small sample can be returned from Mars using a single Shuttle/IUS(Twin) launch. Performance and design data are presented for the Mars mission. For sample returns from selected Galilean satellites, launch requirements are reduced by fifteen to forty percent. An assessment is made of overall utility of ISPP to planetary missions.

  8. Astronaut Story Musgrave during STS-6 EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and orbital maneuvering system (OMS) pod are seen backdropped against the blackness of space. The gold-foil protected object on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite (TDRS).

  9. Periodized Daubechies wavelets

    SciTech Connect

    Restrepo, J.M.; Leaf, G.K.; Schlossnagle, G.

    1996-03-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrated by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and their use ius illustrated in the approximation of two commonly used differential operators. The periodization of the connection coefficients in Galerkin schemes is presented in detail.

  10. Final safety analysis report for the Galileo Mission: Volume 2: Summary

    SciTech Connect

    Not Available

    1988-12-15

    The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. This evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.

  11. Vertical jumping biomechanical evaluation through the use of an inertial sensor-based technology.

    PubMed

    Setuain, I; Martinikorena, J; Gonzalez-Izal, M; Martinez-Ramirez, A; Gómez, M; Alfaro-Adrián, J; Izquierdo, M

    2016-01-01

    Progress in micro-electromechanical systems has turned inertial sensor units (IUs) into a suitable tool for vertical jumping evaluation. In total, 9 men and 8 women were recruited for this study. Three types of vertical jumping tests were evaluated in order to determine if the data provided by an IU placed at the lumbar spine could reliably assess jumping biomechanics and to examine the validity of the IU compared with force plate platform recordings. Robust correlation levels of the IU-based jumping biomechanical evaluation with respect to the force plate across the entire analysed jumping battery were found. In this sense, significant and extremely large correlations were found when raw data of both IU and force plate-derived normalised force-time curves were compared. Furthermore, significant and mainly moderate correlation levels were also found between both instruments when isolated resultant forces' peak values of predefined jumping phases of each manoeuvre were analysed. However, Bland and Altman graphical representation demonstrated a systematic error in the distribution of the data points within the mean ±1.96 SD intervals. Using IUs, several biomechanical variables such as the resultant force-time curve patterns of the three different vertical jumps analysed were reliably measured. PMID:26256752

  12. Stomaching uncertainty: Relationships among intolerance of uncertainty, eating disorder pathology, and comorbid emotional symptoms.

    PubMed

    Renjan, Vidhya; McEvoy, Peter M; Handley, Alicia K; Fursland, Anthea

    2016-06-01

    Intolerance of uncertainty (IU) is proposed to be a transdiagnostic vulnerability factor for various emotional disorders. There is robust evidence for the role of IU in anxiety and depressive disorders, but a paucity of evidence in eating disorders (ED). This study evaluated the factorial validity, internal consistency, and convergent validity of the Intolerance of Uncertainty Scale-Short Form (IUS-12; Carleton, Norton, & Asmundson, 2007), and examined whether IU is associated with ED pathology and comorbid emotional symptoms, in a clinical sample with EDs (N=134). A unitary factor solution provided the best fit. The IUS-12 showed excellent internal consistency, and good convergent validity. IU had an indirect effect on dietary restraint, purging, and emotional symptoms via overvaluation of eating, weight, and shape. The indirect effect was not significant for bingeing. Findings provide partial support for the notion that IU is a vulnerability factor for ED pathology and support the notion that IU is a transdiagnostic vulnerability factor for emotional symptoms. Limitations, research implications, and future directions for research are discussed. PMID:27019977

  13. The polymorphism of crime scene investigation: An exploratory analysis of the influence of crime and forensic intelligence on decisions made by crime scene examiners.

    PubMed

    Resnikoff, Tatiana; Ribaux, Olivier; Baylon, Amélie; Jendly, Manon; Rossy, Quentin

    2015-12-01

    A growing body of scientific literature recurrently indicates that crime and forensic intelligence influence how crime scene investigators make decisions in their practices. This study scrutinises further this intelligence-led crime scene examination view. It analyses results obtained from two questionnaires. Data have been collected from nine chiefs of Intelligence Units (IUs) and 73 Crime Scene Examiners (CSEs) working in forensic science units (FSUs) in the French speaking part of Switzerland (six cantonal police agencies). Four salient elements emerged: (1) the actual existence of communication channels between IUs and FSUs across the police agencies under consideration; (2) most CSEs take into account crime intelligence disseminated; (3) a differentiated, but significant use by CSEs in their daily practice of this kind of intelligence; (4) a probable deep influence of this kind of intelligence on the most concerned CSEs, specially in the selection of the type of material/trace to detect, collect, analyse and exploit. These results contribute to decipher the subtle dialectic articulating crime intelligence and crime scene investigation, and to express further the polymorph role of CSEs, beyond their most recognised input to the justice system. Indeed, they appear to be central, but implicit, stakeholders in intelligence-led style of policing. PMID:26583959

  14. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.

    PubMed

    Genina, Natalja; Holländer, Jenny; Jukarainen, Harri; Mäkilä, Ermei; Salonen, Jarno; Sandler, Niklas

    2016-07-30

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug in this study. Out of the twelve tested grades of the EVA five were printable. One of them showed superior print quality and was further investigated by printing drug-loaded filaments, containing 5% and 15% indomethacin. The feedstock filaments were fabricated by hot-melt extrusion (HME) below the melting point of the drug substance and the IUS and SR were successfully printed at the temperature above the melting point of the drug. As a result, the drug substance in the printed prototypes showed to be at least partly amorphous, while the drug in the corresponding HME filaments was crystalline. This difference affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable prototypes. PMID:26545484

  15. Impact of a new levonorgestrel intrauterine system, Levosert®, on heavy menstrual bleeding: results of a one-year randomised controlled trial

    PubMed Central

    Nollevaux, Fabrice; Nizet, Dominique; Wijzen, Fabienne; Gordenne, Valérie; Tasev, Niso; Segedi, Dimitrije; Marinescu, Bogdan; Enache, Andreea; Parhomenko, Vadim; Frankenne, Francis; Foidart, Jean-Michel

    2014-01-01

    Objective To evaluate a new levonorgestrel-releasing intrauterine system (LNG-IUS) called Levosert® for the treatment of heavy menstrual bleeding (HMB) in comparison to the reference product Mirena®. Methods A multicentre, randomised, controlled trial, in non-menopausal women diagnosed with functional HMB (defined as menstrual blood loss [MBL] ≥ 80 mL) randomised to either Levosert® or Mirena® and followed for up to one year. MBL was evaluated using a validated modified version of the Wyatt pictogram. Results A total of 280 women were randomised (141 to Levosert® and 139 to Mirena®). During the one-year treatment period, both Levosert® and Mirena® dramatically decreased MBL and increased haemoglobin and ferritin levels. There were no statistically significant differences between Levosert® and Mirena® regarding any of the parameters evaluated during the study. Similar bleeding patterns were observed in both groups. Levosert® was inserted with the same ease as Mirena®. Both treatments were associated with identical expulsion rates and no perforations occurred in either treatment group. Conclusion Levosert®, a new LNG-IUS designed to release the same daily amount of LNG as Mirena®, is highly effective in the treatment of HMB. No differences were observed between Levosert® and Mirena® regarding all evaluated outcomes, including safety profile. PMID:24666176

  16. An executive review of sludge pretreatment by sonication.

    PubMed

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2015-11-01

    Ultrasonication (US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonication disintegration of sludge as a consequence. The objective of this work is to present an extensive review of evaluation approaches of sludge US pretreatment efficiency. Besides, optimization methodologies of related parameters, the differences of optimum values and the similarities of affecting trends on cavitation and sludge pretreatment efficiency were specifically pointed out, including ambient conditions, ultrasonic properties, and sludge characteristics. The research is a prerequisite for optimization of sludge US pretreatment efficiency in lab-scale and practical application. There is not-yet a comprehensive method to evaluate the efficiency of sludge US pretreatment, but some main parameters commonly used for this purpose are degree of sludge disintegration, proteins, particle size reduction, etc. Regarding US parameters, power input PUS, intensity IUS, and frequency FS seem to have significant effects. However, the magnitude of the effect of PUS and probe size in terms of IUS has not been clearly detailed. Investigating very low FS seems interesting but has not yet been taken into consideration. In addition, static pressure effect has been marginally studied only and investigation on the effect of pH prior to US process has been restricted. Their effects therefore should be varied separately and simultaneously with other related parameters, i.e. process conditions, ultrasonic properties, and sludge characteristics, to optimize sludge US pretreatment process. PMID:26574097

  17. Internet use and misuse. Preliminary findings from a new assessment instrument.

    PubMed

    Rotunda, Robert J; Kass, Steven J; Sutton, Melanie A; Leon, David T

    2003-09-01

    The internet is an affordable and easily accessible technology that has many potential applications to psychology. Interactive technologies engage users psychologically and may facilitate adaptive and maladaptive behaviors. This research explored the Internet-use patterns, psychological characteristics, and negative consequences associated with online activities of 393 college students using the Internet Use Survey (IUS), a self-report instrument designed to administer online. Results indicated that participants spent an average of 3.3 total hours per day on the Internet during the past 12 months and used the medium for multiple purposes. Although participants reported the occurrence of some potentially negative consequences related to Internet use, the prevalence rates for most problematic behaviors were generally low. Exploratory principal component analysis of the IUS subscale that attempts to measure Internet-related impairment revealed four factors: absorption, negative consequences, disrupted sleep, and deception. All of these factors were then significantly related to a measure of boredom proneness. This research supports the necessity for multidimensional assessment (e.g., frequency and context) of Internet usage to enhance our understanding of how this new technology interfaces with users psychologically and behaviorally. PMID:12971124

  18. Chandra X-Ray Observatory Pointing Control System Performance During Transfer Orbit and Initial On-Orbit Operations

    NASA Technical Reports Server (NTRS)

    Quast, Peter; Tung, Frank; West, Mark; Wider, John

    2000-01-01

    The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.

  19. Contraception for the HIV-Positive Woman: A Review of Interactions between Hormonal Contraception and Antiretroviral Therapy

    PubMed Central

    Robinson, Jennifer A.; Jamshidi, Roxanne; Burke, Anne E.

    2012-01-01

    Background. Preventing unintended pregnancy in HIV-positive women can significantly reduce maternal-to-child HIV transmission as well as improve the woman's overall health. Hormonal contraceptives are safe and effective means to avoid unintended pregnancy, but there is concern that coadministration of antiretroviral drugs may alter contraceptive efficacy. Materials and Methods. We performed a literature search of PubMed and Ovid databases of articles published between January 1980 and February 2012 to identify English-language reports of drug-drug interactions between hormonal contraceptives (HCs) and antiretroviral drugs (ARVs). We also reviewed the FDA prescribing information of contraceptive hormone preparations and antiretrovirals for additional data and recommendations. Results. Twenty peer-reviewed publications and 42 pharmaceutical package labels were reviewed. Several studies of combined oral contraceptive pills (COCs) identified decreased serum estrogen and progestin levels when coadministered with certain ARVs. The contraceptive efficacy of injectable depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) were largely unaffected by ARVs, while data on the contraceptive patch, ring, and implant were lacking. Conclusions. HIV-positive women should be offered a full range of hormonal contraceptive options, with conscientious counseling about possible reduced efficacy of COCs and the contraceptive implant when taken with ARVs. DMPA and the LNG-IUS maintain their contraceptive efficacy when taken with ARVs. PMID:22927715

  20. Chandra X-Ray Observatory Arrives at KSC for Processing

    NASA Astrophysics Data System (ADS)

    1999-04-01

    The Chandra X-ray Observatory, scheduled to launch aboard Space Shuttle Columbia on mission STS-93, arrived at 2:45 p.m. EST today at the Kennedy Space Center's Shuttle Landing Facility aboard an Air Force C-5 Galaxy airplane. The telescope was shipped from the TRW plant in Redondo Beach, CA, with departure from Los Angeles International Airport occurring earlier this morning. A second airplane also brought the necessary ground support equipment to KSC for the campaign of final prelaunch integration and testing. The ground support equipment is being off loaded today. The Chandra Observatory is to be taken off the airplane early Friday morning and transported to the Vertical Processing Facility located in the KSC Industrial Area. There, the telescope will undergo final installation of associated electronic components, be tested, fueled, and mated with the Inertial Upper Stage (IUS) booster. A set of integrated tests will follow. A major milestone is the test using the Cargo Integrated Test Equipment (CITE) to verify that Chandra and the Inertial Upper Stage will have the ability to receive and reply to commands once aboard the Space Shuttle. Also, an end-to-end test will verify the communications systems of the payload and its ability to communicate through the Tracking and Data Relay Satellite system with Mission Control in Houston and the Chandra ground station located in Cambridge, MA. The Chandra/IUS combination will then be ready to go to the launch pad. Once in the payload changeout room at Pad 39-B, the protective cocoon will be removed from around the telescope and it will be installed into Space Shuttle Columbia. An Integrated Verification Test will be conducted to check all of the electrical connections and the ability of the astronauts to send and receive commands from Columbia's flight deck. The end-to-end test will be repeated at the pad. Finally the IUS will go through a simulated countdown to verify its readiness for launch. Chandra will use the world

  1. Use of mixed-treatment-comparison methods in estimating efficacy of treatments for heavy menstrual bleeding

    PubMed Central

    2013-01-01

    Background A variety of pharmacological and surgical treatments have been developed for heavy menstrual bleeding (HMB), which can have negative physical, social, psychological, and economic consequences. We conducted a systematic literature review and mixed-treatment-comparison (MTC) meta-analysis of available data from randomized controlled trials (RCTs) to derive estimates of efficacy for 8 classes of treatments for HMB, to inform health-economic analysis and future studies. Methods A systematic review identified RCTs that reported data on menstrual blood loss (MBL) at baseline and one or more follow-up times. Eight treatment classes were considered: COCs, danazol, endometrial ablation, LNG-IUS, placebo, progestogens given for less than 2 weeks out of 4 during the menstrual cycle, progestogens given for close to 3 weeks out of 4, and TXA. The primary measure of efficacy was the proportion of women who achieved MBL < 80 mL per cycle (month), as measured by the alkaline hematin method. A score less than 100 on an established pictorial blood-loss assessment chart (PBAC) was considered an acceptable substitute for MBL < 80 mL. Estimates of efficacy by treatment class and time were obtained from a Bayesian MTC model. The model also included effects for treatment class, study, and the combination of treatment class and study and an adjustment for baseline mean MBL. Several methodological challenges complicated the analysis. Some trials reported various summary statistics for MBL or PBAC, requiring estimation (with less precision) of % MBL < 80 mL or % PBAC < 100. Also, reported follow-up times varied substantially. Results The evidence network involved 34 RCTs, with follow-up times from 1 to 36 months. Efficacy at 3 months of follow-up (estimated as the posterior median) ranged from 87.5% for the levonorgestrel-releasing intrauterine system (LNG-IUS) to 14.2% for progestogens administered for less than 2 weeks out of 4 in the menstrual cycle. The 95% credible intervals

  2. STS-43 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).

  3. STS-121: Discovery Spacewalk Overview Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing began with the introduction of Tomas Gonzalez-Torres (Lead Extra Vehicular Activity Officer). The spacewalk team included Pierce Sellers (EV-1), Mike Fossum (EV-2) and Mark Kelly (coordinator and pilot). Three new EMU's (space suits) were provided with hardware upgrades (warning systems). The 1st EVA would take place on flight day 5 and would include the exchange of the 3 EMU's. The 1st task was the installation of the blade locker, a device used to prevent severing of cables. The team will also install the Interface Umbilical System (IUS) which is an extension cord for the mobile transporter. EVA-2 task will be to replace the old Trailing Umbilical System (TUS) with a new one.

  4. STS-41 mission charts, computer-generated and artist concept drawings, photos

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 related charts, computer-generated and artist concept drawings, and photos of the Ulysses spacecraft and mission flight path provided by the European Space Agency (ESA). Charts show the Ulysses mission flight path and encounter with Jupiter (45980, 45981) and sun (illustrating cosmic dust, gamma ray burst, magnetic field, x-rays, solar energetic particles, visible corona, interstellar gas, plasma wave, cosmic rays, solar radio noise, and solar wind) (45988). Computer-generated view shows the Ulysses spacecraft (45983). Artist concept illustrates Ulysses spacecraft deploy from the space shuttle payload bay (PLB) with the inertial upper stage (IUS) and payload assist module (PAM-S) visible (45984). Ulysses spacecraft is also shown undergoing preflight testing in the manufacturing facility (45985, 45986, 45987).

  5. Commercial launch vehicles and upper stages

    NASA Technical Reports Server (NTRS)

    Mahon, J.; Wild, J.

    1984-01-01

    Since the beginning of the space age in October 1957, a family of expendable launch vehicles, capable of launching a wide range of payloads, was developed along with the Space Shuttle and a number of upper stages. A brief description is presented of selected orbits which have proved to be most useful for initial or conceptual understanding of space operations, taking into account direct injection and Hohman transfers, and synchronous and sun-synchronous orbits. Early American boosters are discussed along with current expendable launch vehicles, giving attention to the Vanguard, Redstone and Juno, Saturn 1B and Saturn V, Scout, the Atlas booster, Atlas Centaur, Delta, Titan IIIC, and Ariane. Details regarding the Space Shuttle are considered along with PAM-D, PAM-A, PAM-DII, TOS, IUS, Centaur-G, and Syncom-IV and Intelsat-VI.

  6. Solar electric propulsion combined with earth gravity assist - A new potential for planetary exploration

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G.; Flandro, G. A.

    1976-01-01

    The need to shorten mission time (travel time to target planet) in missions to the outer planets prompts a search for alternatives to one-way minimum-energy transfers while continuing to minimize on-power thrusts. Gravity assists via swing-bys of inner planets are examined, with emphasis on a projected Venus-earth gravity assist (VEGA) and a combined solar electric propulsion and earth gravity assist (SEEGA). Gravity assists are also examined as essential for missions with sample returns back to earth. Possible use of such techniques in the Shuttle Interim Upper Stage (IUS) program is considered. Various SEEGA and VEGA trajectories are discussed and charted, and time lost in the launch orbit to earth re-encounter time is weighed against time gained by faster speed toward the mission destination.

  7. Centaur Propellant Thermal Conditioning Study

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.

    1976-01-01

    A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.

  8. Mission options for the first SEPS application. [rendezvous with near earth asteroids and comets

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1981-01-01

    Missions to comets and asteroids are primary candidates for Solar Electric Propulsion System (SEPS) applications. NASA estimates that the first SEPS mission might be launched as early as 1988. This paper presents mission opportunities available for launches between 1988 and early 1991 and discusses the performance capabilities of the current SEPS. Use of a Shuttle Two-Stage IUS and/or a Shuttle Wide Tank Centaur launch vehicle is assumed in the performance assessment. The list of possible first SEPS missions consists of nine missions to comets of primary interest and examples of multiple asteroid rendezvous missions. Both an earth crossing asteroid and a main belt asteroid are considered as first possible targets in the multiple asteroid rendezvous examples. Mission opportunity and performance maps for Eros and Anteros are presented which provide exact performance data and optimal launch and arrival dates for any launch year.

  9. In-flight rescue of stranded TDRS-1 spacecraft

    NASA Astrophysics Data System (ADS)

    Schmeichel, H.; Ehlers, B. J.

    On April 4, 1983, the first Tracking and Data Relay Satellite (TDRS-1), one of six to be built for SPACECOM and NASA, was launched by the Space Shuttle Challenger. During the ascent to geosynchronous orbit, the Inertial Upper Stage (IUS) booster malfunctioned, leaving TDRS stranded in a low, elliptical orbit. This report describes the amazing satellite recovery from a wild tumble and the dramatic three-month rescue effort to move TDRS into synchronous orbit. It took a total burn time of 44 hours from a pair of tiny one-pound thrusters, about 800 pounds of propellant, an adaptable, robust attitude control system and much resourcefulness from ground operators to accomplish this feat. TDRS-1 reached its proper earth orbit on June 29, 1983 and then began its ten-year mission as a data relay satellite.

  10. Art concept of Magellan spacecraft in cruise configuration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  11. One- and two-phase nozzle flows

    SciTech Connect

    Chang, I.S.

    1980-01-01

    A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.

  12. STS-34 Galileo / Shuttle Solar Backscatter UV (SSBUV) flight configurations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept of Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB) titled STS-34 GALILEO/SSBUV shows the flight configuration of the Shuttle Solar Backscatter Ultraviolet (UV) (SSBUV) and the Galileo spacecraft and inertial upper stage (IUS). An inset shows the details of the SSBUV get away special (GAS) canisters. SSBUV canisters will be mounted on a GAS adapter beam assembly (GABA) or gas bridge assembly (GBA) on OV-104's PLB starboard wall. One GAS canister has a motorized door assembly (MDA). During STS-34, SSBUV instrument will calibrate similar ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites (NOAA-9 and NOAA-11). SSBUV uses the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard TIROS spacecraft, as the Shuttle and the satellite pass over the same Earth location within a one hour window. SSBUV is managed by Goddard Space

  13. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  14. Tug fleet and ground operations schedules and controls. Volume 2: part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This Tug Fleet and Ground Operations Schedules and Controls Study addresses both ground operational data and technical requirements that span the Tug planning phase and operations phase. A similar study covering mission operations (by others) provides the complimentary flight operations details. The two studies provide the planning data requirements, resource allocation, and control milestones for supporting the requirements of the STS program. This Tug Fleet and Ground Operations Schedules and Controls Study incorporates the basic ground operations requirements and concepts provided by previous studies with the interrelationships of the planning, IUS transition, and Tug fleet operations phases. The interrelationships of these phases were studied as a system to optimize overall program benefits and minimize operational risk factors.

  15. Flight test results of the inertial upper stage redundant inertial measurement unit redundancy management technique

    NASA Astrophysics Data System (ADS)

    Goodstein, R.; Tse, B. K.; Winkel, D. J.; Halliday, C.

    1984-01-01

    Inertial Upper Stage (IUS) vehicles have been deployed once from a Titan T-34D booster and once from Space Shuttle Challenger to carry spacecraft to geosynchronous orbit. Telemetry data have been analyzed showing the performance of the failure detection and isolation scheme for the redundant inertial measurement unit (RIMU). On the T-34D flight, no built-in test failure events occurred and no failure detection thresholds were exceeded for as long as telemetry was available. On the Space Shuttle flight, considerable failure detection activity took place during which the RIMU indicated continuous proper navigation functioning until gyro maximum rates were exceeded. Adjustments to the algorithm and additional pre-flight tests should reduce the undesired activity while preserving performance on subsequent flights.

  16. STS-93: Crew Interview - Cady Coleman

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of a preflight interview with Mission Specialist Catherine G. Coleman is presented. The interview addresses many different questions including why Coleman wanted to be an astronaut, why she wanted to become a chemist, and how this historic flight (first female Commander of a mission) will influence little girls. Other interesting information that this one-on-one interview discusses is the deployment of the Chandra satellite, why people care about x ray energy, whether or not Chandra will compliment the other X Ray Observatories currently in operation, and her responsibilities during the major events of this mission. Coleman mentions the Inertial Upper Stage (IUS) rocket that will deploy Chandra, and the design configuration of Chandra that will allow for the transfer of information. The Southwest Research Ultraviolet Imaging System (SWUIS) Telescope on board Columbia, the Plant Growth Investigation in Microgravity (PGIM) experiment, and the two observatories presently in orbit (Gamma Ray Observatory, and Hubble Space Telescope) are also discussed.

  17. CH and barium metal-deficient giants in the Vilnius photometric system. I.

    NASA Astrophysics Data System (ADS)

    Sleivyte, J.

    The results of a photoelectric photometry of 27 CH and barium giants in the Vilnius photometric system are presented. For eleven of them color temperatures are determined using Baumert (1972) and Mendoza and Johnson (1965) infrared photometry corrected for interstellar reddening taken from Bartkevičius and Šleivyte(1983). In the dereddened (U-P)0, (V-S)0 diagram all these carbon-rich metal-deficient giants are situated above the sequence of solar-composition giants, contrary to oxygen-rich metal-deficient giants which lie below this sequence. Such difference in the behaviour of these types of stars probably is a consequence of their O/C abundance ratio.

  18. Shuttle Atlantis to deploy Galileo probe toward Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-34 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-34 is to deploy the Galileo planetary exploration spacecraft into low earth orbit. Following deployment, Galileo will be propelled on a trajectory, known as Venus-Earth-Earth Gravity Assist (VEEGA), by an inertial upper stage (IUS). The objectives of the Galileo mission are to study the chemical composition, state, and dynamics of the Jovian atmosphere and satellites, and investigate the structure and physical dynamics of the Jovian magnetosphere. Secondary STS-34 payloads include the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument; the Mesoscale Lightning Experiment (MLE); and various other payloads involving polymer morphology, the effects of microgravity on plant growth hormone, and the growth of ice crystals.

  19. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  20. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    SciTech Connect

    Not Available

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  1. Space tug/shuttle interface compatibility study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Shuttle interfaces required for space tug accommodation are primarily involved with supporting and servicing the tug during launch countdown, flight, and postlanding; deploying and retrieving the tug on orbit; and maintaining control over the tug when it is in or near the orbiter. Each of these interface areas was investigated to determine the best physical and operational method of accomplishing the required functions, with an overriding goal of establishing simple and flexible orbiter interface requirements suitable for tug, tug payloads, IUS and other cargo. It is concluded the orbiter payload accommodations and the MSFC baseline tug are generally interface compatible. Specific minor changes to tug and orbiter interfaces were identified to provide full compatibility. A system concept for supporting and deploying tug from orbiter is described.

  2. Cost overruns will affect Galileo mission

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Recent news of the cost overruns in the development of the shuttle's upper stages that will affect launching of the proposed Galileo mission prompted the following statement from Robert A. Frosch, on the eve of his resignation from the post of NASA Administrator: You know that we have been carrying out a concentrated study of Shuttle upper stages for 2 1/2 months now. This study was initiated in early November when we became concerned with the continued rapid escalation of estimated costs for the three-stage IUS (inertial upper stage). We have decided on the best course of action for the future, and I want to outline for you how I believe the nation should proceed.

  3. Technology status of a fluorine-hydrazine propulsion system for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Bond, D. L.

    1979-01-01

    The basic technology exists and a system integration program is well underway to allow incorporation of a fluorine-hydrazine propulsion system into future spacecraft required for unmanned planetary missions. These spacecraft would be inserted in earth orbit using the Space Transportation System Shuttle and given its initial sendoff by the Inertial Upper Stage (IUS). The design of a typical propulsion system, assessment of thermal and structural impacts on a selected spacecraft and comparative studies with conventional propulsion systems have been completed. A major part of the current JPL Program involves assembly of a 3650 N thrust demonstration system using titanium tanks, flight weight components and structure. This system will be used to demonstrate the state-of-the-art throughout a representative flight system's qualification.

  4. SPS transportation requirements: economical and technical

    SciTech Connect

    Koelle, D.E.

    1981-01-01

    The SPS (Solar Power Satellite) launch operations require a new heavy lift launch vehicle with more than 200 Mg (tons) in geosynchronous orbit. The specific transportation costs have to be two orders of magnitude lower than the specific launch cost of the Shuttle + IUS, in order to make the SPS launch economically feasible. This requirement can only be fulfilled by a fully reusable heavy lift cargo vehicle. However, even in this case the present range of cost for the launch of a 5 GW power satellite is 2 to 6 billion US dollars (50 to 150 dollars/kg to GEO). The major transportation cost criteria are discussed. The cost trends are shown graphically and a resulting transportation system with minimum cost is presented. Finally, a possible implementation scheme is shown for an internatinal effort to meet this space transportation challenge. 3 references.

  5. Education in Sustainable Energy by European Projects

    NASA Astrophysics Data System (ADS)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    completion. Students also show a great deal of interest towards this course. More information are available on www.school4energy.net/ , www.ises.org/schools/ - The newest is the project "Intelligent Use of Energy in School", starting in this school year. This European project is part of Intelligent Energy program, aims to promote a more efficient way of using energy in every day life among secondary schools students and teachers. IUSES will show secondary school students the basic principles of energy efficiency and give a comprehensive guide to saving energy in their everyday lives. IUSES is currently developing a behaviour-oriented educational kit including: handbooks, multimedia animations and experiment tool-kit. The educational kit will be freely available for downloading on this web site. The project will also include the launch of the European Energy Saving Award in 14 different countries which will reward schools and students that improve their energy efficiency. More information is available on www.iuses.eu or www.iuses.ro

  6. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  7. Advances in contraception: IUDs from a managed care perspective.

    PubMed

    Doyle, John; Stern, Lee; Hagan, Michael; Hao, Jiayi; Gricar, Joseph

    2008-01-01

    Contraceptive use in the United States is virtually universal among women of reproductive age. However, unplanned pregnancies continue to occur and can be largely attributed to the nonuse and misuse of contraception. Reducing unintended pregnancies constitutes a critical goal for managed care and the public. This can be achieved in part with intrauterine devices (IUDs), which are an effective method of contraception that require a one-time insertion and stay in place for 5-10 years. Therefore, compliance issues are largely mitigated, and actual use efficacy is the same as perfect use efficacy. The IUD is also reversible, unlike tubal ligation, and could potentially be the contraceptive of choice in today's environment. Unfortunately, safety concerns surrounding the use of older IUDs have precluded many women from recognizing the benefits of their use. Currently, the only approved IUDs in the United States are ParaGard, the copper IUD, and Mirena, the levonorgestrel-releasing intrauterine system (LNG-IUS). These devices offer superior safety profiles compared with those products that were withdrawn from the market in the 1970s. In addition to a favorable safety and tolerability profile, the LNG-IUS offers an advantage over copper IUDs, demonstrating improved efficacy in preventing intrauterine and ectopic pregnancies. Successful communication between patients and providers regarding the improved safety and efficacy of newer IUDs will ensure an appropriate place in therapy. Thus, greater numbers of women will recognize the IUD as a safe, cost-effective means to contraception, thereby reducing the economic and social burdens associated with unplanned pregnancies. PMID:18681819

  8. Intrauterine contraception in nulliparous women: a prospective survey

    PubMed Central

    Kutler, Beth A

    2016-01-01

    Background Intrauterine contraception is a first-line option for young women, yet relatively few prospective studies have been performed in nulliparous women using currently available devices, and many providers are still reluctant to provide this option. Methods Between January 2012 and June 2014, 109 nulliparous women, aged 18–30 years, who had an intrauterine device (IUD) placed at a student health clinic [88 levonorgestrel-intrauterine system (LNG-IUS) users and 21 Cu T 380A (IUD) users] were surveyed at 1, 6, 12 and 18 months after insertion. Results Overall satisfaction was high; at follow-up survey 83% of 100 women (mean use 13.4 months) were ‘happy’ or ‘very happy’ with their IUD, and there were no differences in satisfaction between the two IUD types. Some 75% of participants stated that the insertion procedure went ‘very well’, despite 78% rating insertion pain as moderate to severe, and 46% experiencing vasovagal symptoms. The 12-month continuation rate was 89%, with discontinuations for expulsion (3%), side effects (6%), lack of anticipated benefit (1%) and pregnancy (1%). Users of the Cu T 380A were more likely to have heavy menses (74% vs 2%; p<0.0001) or moderate to severe cramping (68% vs 20%; p=0.0002) compared with LNG-IUS users. There were no uterine perforations or diagnoses of pelvic inflammatory disease. The rate of failed insertions during the study period was 6.2%. Conclusions Despite significant symptoms with insertion, intrauterine contraception is safe, effective and ultimately well tolerated in nulliparous women and should be provided to this population in both university and community health settings. PMID:25854550

  9. Knowledge and attitudes of Latin American obstetricians and gynecologists regarding intrauterine contraceptives

    PubMed Central

    Bahamondes, Luis; Makuch, Maria Y; Monteiro, Ilza; Marin, Victor; Lynen, Richard

    2015-01-01

    Background Intrauterine contraceptives (IUCs), including the copper intrauterine device and the levonorgestrel-releasing intrauterine system (LNG-IUS), are among the reversible contraceptive methods with high effectiveness. However, use is low in many settings, including some Latin American countries, mainly due to the influences of myths, fears, and negative attitudes, not only of users and potential users, but also of different cadres of health care professionals. The purpose of this study was to assess the knowledge and attitudes of a group of Latin American obstetricians and gynecologists regarding IUCs. Methods A survey was conducted during a scientific meeting organized in Chile in 2014 to present and discuss updated information about contraception. Obstetricians and gynecologists from 12 Latin American countries, who reported that they provide daily contraception services in both the public and private sectors, participated in the meeting. Participants who agreed to take part in the survey responded to a multiple-choice questionnaire on issues regarding knowledge, use, and attitudes about IUCs. Results Of the 210 obstetricians and gynecologists participating in the meeting, the respondents to each question varied from 168 (80.0%) to 205 (97.6%). Almost 50% recognized that the failure rate of combined oral contraceptives, patches, and vaginal rings is 8%–10%. Furthermore, 10% of the participants did not recognize the high contraceptive effectiveness of long-acting reversible contraceptive methods. Additionally, almost 80% of the respondents answered that they did not offer IUCs to nulligravidas and almost 10% did not offer IUCs to adolescents, albeit almost 90% of the respondents reported that nulligravidas are candidates for an LNG-IUS. Conclusion Some deficiencies and contradictions in terms of knowledge and attitudes were identified from the answers of the Latin American obstetricians and gynecologists who participated in the survey. The knowledge and

  10. Prevalence, Incidence, and Factor Concentrate Usage Trends of Hemophiliacs in Taiwan

    PubMed Central

    Tu, Tsu-Chiang; Liou, Wen-Shyong; Chou, Tsui-Yun; Lin, Tsung-Kun; Lee, Chuan-Fang; Chen, Jye-Daa; Cham, Thau-Ming

    2013-01-01

    Purpose Hemophilia A and B (HA, HB) are the most common X-linked inherited bleeding disorders. The introduction of factor concentrates has allowed for control of the lifelong chronic disease. However, no studies have been published regarding the epidemiology of hemophilia in Taiwan. Our aim was to determine the prevalence, incidence, and mortality rate, as well as trends in the use of factor concentrates, in individuals with hemophilia in Taiwan. Materials and Methods A retrospective study was conducted using the National Health Insurance Research Database between 1997 and 2007. Results We identified 988 males with hemophilia (HA : HB ratio=5.4 : 1). The mean prevalence per 100000 males was 6.7±0.1 for HA and 1.2±0.1 for HB. The estimated mean annual incidence per live male birth was 1 in 10752 for HA and 1 in 47619 for HB. Standardized mortality ratios for males with hemophilia (all severities) or severe hemophilia were 1.3- and 2.1-fold higher than that of the general male population, respectively. Mean factor VIII (FVIII) and factor IX (FIX) usage was 1.5003±0.4029 and 0.3126±0.0904 international units (IUs) per capita, respectively. Mean FVIII and FIX usage per patient with hemophilia (all severities) or severe hemophilia was 44027±11532 and 72341±17298, respectively, and 49407±13015 and 74369±18411 IUs per person with HA or HB, respectively. Conclusion Our data revealed epidemiologic and factor concentrate usage trends in males with hemophilia in Taiwan, highlighting a need for improvements in the mandatory National Health Insurance registry. A better-designed, patient-centered registry system would enable more detailed patient information collection and analysis, improving subsequent care. PMID:23225801

  11. Prenatal Substance Exposure: What Predicts Behavioral Resilience by Early Adolescence?

    PubMed Central

    Liebschutz, Jane; Crooks, Denise; Rose-Jacobs, Ruth; Cabral, Howard J; Heeren, Timothy C; Gerteis, Jessie; Appugliese, Danielle P.; Heymann, Orlaith D.; Lange, Allison V.; Frank, Deborah A.

    2015-01-01

    Understanding behavioral resilience among at-risk adolescents may guide public policy decisions and future programs. We examined factors predicting behavioral resilience following intrauterine substance exposure (IUSE) in a prospective longitudinal birth-cohort study of 136 early adolescents (age 12.4–15.9) at-risk for poor behavioral outcomes. We defined behavioral resilience as a composite measure of lack of early substance use initiation (before age 14), lack of risky sexual behavior, or lack of delinquency. IUSEs included in this analysis were cocaine (IUCE), tobacco (IUTE), alcohol (IUAE), and marijuana (IUME). We recruited participants from Boston Medical Center as mother-infant dyads between 1990 and 1993. The majority of the sample was African-American/Caribbean (88%) and 49% female. In bivariate analyses, none and lower IUCE level predicted resilience compared to higher IUCE, but this effect was not found in an adjusted model. Instead, strict caregiver supervision (adjusted odds ratio (AOR)=6.02, 95% confidence interval (CI)=1.90–19.00, p=0.002), lower violence exposure (AOR=4.07, 95% CI=1.77–9.38, p<0.001), and absence of intrauterine tobacco exposure (AOR=3.71, 95% CI= 1.28–10.74, p=0.02) predicted behavioral resilience. In conclusion, caregiver supervision in early adolescence, lower violence exposure in childhood, and lack of intrauterine tobacco exposure predict behavioral resilience among a cohort of early adolescents with significant social and environmental risk. Future interventions should work to enhance parental supervision as a way to mitigate the effects of adversity on high-risk groups of adolescents. PMID:26076097

  12. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  13. Photobiology of vitamin D in mushrooms and its bioavailability in humans.

    PubMed

    Keegan, Raphael-John H; Lu, Zhiren; Bogusz, Jaimee M; Williams, Jennifer E; Holick, Michael F

    2013-01-01

    Mushrooms exposed to sunlight or UV radiation are an excellent source of dietary vitamin D2 because they contain high concentrations of the vitamin D precursor, provitamin D2. When mushrooms are exposed to UV radiation, provitamin D2 is converted to previtamin D2. Once formed, previtamin D2 rapidly isomerizes to vitamin D2 in a similar manner that previtamin D3 isomerizes to vitamin D3 in human skin. Continued exposure of mushrooms to UV radiation results in the production of lumisterol2 and tachysterol2. It was observed that the concentration of lumisterol2 remained constant in white button mushrooms for up to 24 h after being produced. However, in the same mushroom tachysterol2 concentrations rapidly declined and were undetectable after 24 h. Shiitake mushrooms not only produce vitamin D2 but also produce vitamin D3 and vitamin D4. A study of the bioavailability of vitamin D2 in mushrooms compared with the bioavailability of vitamin D2 or vitamin D3 in a supplement revealed that ingestion of 2000 IUs of vitamin D2 in mushrooms is as effective as ingesting 2000 IUs of vitamin D2 or vitamin D3 in a supplement in raising and maintaining blood levels of 25-hydroxyvitamin D which is a marker for a person's vitamin D status. Therefore, mushrooms are a rich source of vitamin D2 that when consumed can increase and maintain blood levels of 25-hydroxyvitamin D in a healthy range. Ingestion of mushrooms may also provide the consumer with a source of vitamin D3 and vitamin D4. PMID:24494050

  14. Cost-effectiveness of diagnostic strategies for the management of abnormal uterine bleeding (heavy menstrual bleeding and post-menopausal bleeding): a decision analysis.

    PubMed Central

    Cooper, Natalie A M; Barton, Pelham M; Breijer, Maria; Caffrey, Orla; Opmeer, Brent C; Timmermans, Anne; Mol, Ben W J; Khan, Khalid S; Clark, T Justin

    2014-01-01

    BACKGROUND Heavy menstrual bleeding (HMB) and post-menopausal bleeding (PMB) together constitute the commonest gynaecological presentation in secondary care and impose substantial demands on health service resources. Accurate diagnosis is of key importance to realising effective treatment, reducing morbidity and, in the case of PMB, reducing mortality. There are many tests available, including transvaginal scan (TVS), endometrial biopsy (EBx), saline infusion sonography and outpatient hysteroscopy (OPH); however, optimal diagnostic work-up is unclear. OBJECTIVES To determine the most cost-effective diagnostic testing strategy for the diagnosis and treatment of (i) HMB and (ii) PMB. DATA SOURCES Parameter inputs were derived from systematic quantitative reviews, individual patient data (IPD) from existing data sets and focused searches for specific data. In the absence of data estimates, the consensus view of an expert clinical panel was obtained. METHODS Two clinically informed decision-analytic models were constructed to reflect current service provision for the diagnostic work-up of women presenting with HMB and PMB. The model-based economic evaluation took the form of a cost-effectiveness analysis from the perspective of the NHS in a contemporary, 'one-stop' secondary care clinical setting, where all indicated testing modalities would be available during a single visit. RESULTS Two potentially cost-effective testing strategies for the initial investigation of women with HMB were identified: OPH alone or in combination with EBx. Although a combination testing strategy of OPH + EBx was marginally more effective, the incremental cost-effectiveness ratio (ICER) was approximately £21,000 to gain one more satisfied patient, whereas for OPH it was just £360 when compared with treatment with the levonorgestrel intrauterine system (LNG-IUS) without investigation. Initial testing with OPH was the most cost-effective testing approach for women wishing to preserve

  15. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Abercromby, Kira J.; Abell, Paul

    2009-01-01

    A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer

  16. Management of menorrhagia in women with inherited bleeding disorders: general principles and use of desmopressin.

    PubMed

    Rodeghiero, F

    2008-01-01

    The haemostatic system has a central role in controlling the amount and the duration of menstrual bleeding, thus abnormally prolonged or profuse bleeding does occur in most women affected by inherited bleeding disorders. Whereas irregular, premenarchal or postmenopausal uterine bleeding is unusual in inherited or acquired heamorrhagic disorders, severe acute bleeding and menorrhagia at menarche and chronic menorrhagia during the entire reproductive life are common manifestations. Prevalence and morbidity of menorrhagia in inherited bleeding disorders have been poorly investigated. It can be estimated that 40% to 60% of currently menstruating women with type 1 or 2 and more than 60% of women with type 3 VWD complain of menorrhagia with a significant impact on their quality of life. Menorrhagia may be particularly distressing in adolescents because of their delicate emotional equilibrium. Similar epidermiology has been described in other inherited disorders like factor XI deficiency, platelet functional defects and in carriers of haemophilia A and B. Women presenting with ''isolated'' menorrhagia, that is without significant additional bleeding symptoms, a situation reported by up to 15% of healthy women, do not demand investigation to exclude an occult bleeding disorder. A multidisciplinary approach is required for diagnosis and treatment. Gynaecological supervision is always required to exclude organic causes unmasked by the bleeding disorder. Treatment options are similar to those for menorrhagia in general with the addition of desmopressin and replacement therapy and the exclusion of non-steroidal anti-inflammatory drugs. The therapeutic plan should take into consideration the patient's preferences, age and severity of bleeding. Iron supplementation is of paramount importance. Remedies used in clinical practice for menorrhagia in general (tranexamic acid, combined oral contraceptives [COC], levonorgestrel intrauterine system [LNG-IUS]) are first tried. In case of

  17. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  18. Sniff and mimic - Intranasal oxytocin increases facial mimicry in a sample of men.

    PubMed

    Korb, Sebastian; Malsert, Jennifer; Strathearn, Lane; Vuilleumier, Patrik; Niedenthal, Paula

    2016-08-01

    The neuropeptide oxytocin (OT) has many potential social benefits. For example, intranasal administration of OT appears to trigger caregiving behavior and to improve the recognition of emotional facial expressions. But the mechanism for these effects is not yet clear. Recent findings relating OT to action imitation and to the visual processing of the eye region of faces point to mimicry as a mechanism through which OT improves processing of emotional expression. To test the hypothesis that increased levels of OT in the brain enhance facial mimicry, 60 healthy male participants were administered, in a double-blind between-subjects design, 24 international units (IUs) of OT or placebo (PLA) through nasal spray. Facial mimicry and emotion judgments were recorded in response to movie clips depicting changing facial expressions. As expected, facial mimicry was increased in the OT group, but effects were strongest for angry infant faces. These findings provide further evidence for the importance of OT in social cognitive skills, and suggest that facial mimicry mediates the effects of OT on improved emotion recognition. PMID:27283377

  19. Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism

    NASA Astrophysics Data System (ADS)

    Tsige, Meaza; Ruiz, Javier; del Río, Ian A.; Jiménez-Díaz, Alberto

    2016-06-01

    The Valles Marineris canyon system in Mars shows large landslides across its walls, which can be 40 km wide and up to 60 km long, with fall scarps height as high as 7 km. These landslides were produced through a large mass movement at high speed by gravity across the trough floor. Although the triggering factors are unclear, several mechanisms have been proposed as, among others, large amounts of subsurface water, quake produced through normal faulting close to the canyon walls, and meteoritic impacts. In this work we examine the limit equilibrium slope stability of three landslides (placed respectively at Ius, Candor, and Melas Chasmata), which can be considered representative, with the aims of constraining their formation conditions. Our results suggest that external factors (as high pore fluid pressure, seismic loading or rock mass disturbance) do not seem necessary for the failure of slopes if they are composed of unconsolidated materials, while high pore water pressure or ground acceleration are needed to trigger slides in slopes composed of strong basaltic-like materials. Moreover, the presence of sub-surface ice would contribute to slope stability. As a whole, our findings point to ground shaking due to meteorite impacts as the main triggering force for most landslides in the Valles Marineris.

  20. Cataloging Common Sedimentary and Deformation Features in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Urso, A.; Okubo, C. H.

    2015-12-01

    The sedimentary deposits in the Valles Marineris region of Mars are investigated to build a catalog of sedimentary and deformational features. The occurrence of these features provides new and important constraints on the origins of these sedimentary deposits and of their broader geologic histories. Regional surveys and mapping of these features is warranted given the plethora of recently acquired observations by the Mars Reconnaissance Orbiter. Select sedimentary and deformational features were identified using High Resolution Imaging Science Experiment (HiRISE) observations and stereo pairs, along with Context camera images. Feature locations were cataloged using Java Mission-planning and Analysis for Remote Sensing (JMARS) the geospatial information system. Images acquired in and around Hebes, Ophir, Tithonium, Candor, Ius, Melas and Coprates Chasmata were the focus of this investigation. Mass wasting processes, soft-sediment deformation structures, and fan-like deposits are known to occur in abundance across the Valles Marineris region. For this reason, the features recorded in this investigation were landslides, contorted bedding, injectites, putative mud volcanoes, faults, folds, and fan-shaped deposits. Landslides, faults, and fan-shaped deposits were found to be common occurrences, while contorted bedding, injectites, putative mud volcanoes, and folds occur less frequently and in clusters. The placement and frequency of these features hint at past tectonic and depositional processes at work in Valles Marineris. This catalogue of sedimentary and deformational features in the Valles Marineris region of Mars is being used to define targets for future HiRISE observations.

  1. Factors affecting the age-C resident fish community along shorelines of the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Gadomski, D.M.; Wagner, P.G.

    2009-01-01

    The Hanford Reach is one of the few remaining unimpounded sections of the Columbia River. However, because of flow management at upstream dams, there are often large fluctuations in water level. To determine how environmental conditions might affect age-0 resident fishes in the Hanford Reach, we evaluated species composition, distribution, abundance, and standard lengths of larval and juvenile fishes along shoreline habitats during July and August 1998, 1999, and 2000. Catches in beach seine hauls during all three years were highly variable. The four most abundant taxa collected were three cyprinids, peamouth (Mylocheilus caurinus), northern pikeminnow (Plychocheilus oregonensis), and redside shiner (Richardson ius balteatus); and suckers (Catostoinus spp.). Highest overall catches were in sloughs of the Hanford Reach in 1999, a year with high flows, lower water level fluctuations, and more vegetation. Mean shoreline summer water temperatures were higher in 1998 than in 1999 and 2000, and mean lengths of the four most abundant taxa in late August were also greater in 1998, due presumably to enhanced growth or an earlier spawning season. In spite of flow fluctuations, overall catches of age-0 resident fishes were greater in the riverine Hanford Reach compared to past catches in a more lentic Columbia River reservoir. High abundances of age-0 resident fishes in the Hanford Reach could be due to more spawning and rearing habitat in this structurally complex area, and may mitigate for negative effects of variable flow regimes.

  2. Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism

    NASA Astrophysics Data System (ADS)

    Tsige, Meaza; Ruiz, Javier; del Río, Ian A.; Jiménez-Díaz, Alberto

    2016-04-01

    The Valles Marineris canyon system in Mars shows large landslides across its walls, which can be 40 km wide and up to 60 km long, with fall scarps height as high as 7 km. These landslides were produced through a large mass movement at high speed by gravity across the trough floor. Although the triggering factors are unclear, several mechanisms have been proposed as, among others, large amounts of subsurface water, quake produced through normal faulting close to the canyon walls, and meteoritic impacts. In this work we examine the limit equilibrium slope stability of three landslides (placed respectively at Ius, Candor, and Melas Chasmata), which can be considered representative, with the aims of constraining their formation conditions. Our results suggest that external factors (as high pore fluid pressure, seismic loading or rock mass disturbance) do not seem necessary for the failure of slopes if they are composed of unconsolidated materials, while high pore water pressure or ground acceleration are needed to trigger slides in slopes composed of strong basaltic-like materials. Moreover, the presence of sub-surface ice would contribute to slope stability. As a whole, our findings point to ground shaking due to meteorite impacts as the main triggering force for most landslides in the Valles Marineris.

  3. STS-26 Preflight Press Briefing: Flight Crew and TDRS. Part 7 of 9

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This NASA KSC video release presents part of a press conference held prior to Discovery flight STS-26, the first shuttle mission flown following the 51-L Challenger accident. The first portion of the video presents the 5 member flight crew, (Frederick H. Hauck, Commander, Richard O. Covey, Pilot, John M. Lounge, Mission Specialist, George D. Nelson, Mission Specialist, and David C. Hilmers, Mission Specialist) answering questions posed by scientific journalists. Inquiries are made regarding the approximately 250 changes implemented on the orbiter and boosters, failures that occurred during 51-L, astronaut attitudes about flying the first mission since the Challenger accident, and the issue of range safety. The second part of the video includes viewgraph presentations given by Dr. Dale W. Harris (TDRS Project Manager, Goddard Space Flight Center(GSFC)) and Gary A. Morse (Network Director, GSFC) that discuss the primary payload, the NASA Tracking and Data Relay Satellite-3 (TDRS-3) that is attached to an Inertial Upper Stage (IUS), and is the second TDRS deployed.

  4. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  5. STS-44 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-44 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-fourth flight of the Space Shuttle Program and the tenth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-53 (LWT-46); three Space Shuttle main engines (SSME's) (serial numbers 2015, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-047. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L019A for the left SRB and 360W019B for the right SRB. The primary objective of the STS-44 mission was to successfully deploy the Department of Defense (DOD) Defense Support Program (DSP) satellite/inertial upper stage (IUS) into a 195 nmi. earth orbit at an inclination of 28.45 deg. Secondary objectives of this flight were to perform all operations necessary to support the requirements of the following: Terra Scout, Military Man in Space (M88-1), Air Force Maui Optical System Calibration Test (AMOS), Cosmic Radiation Effects and Activation Monitor (CREAM), Shuttle Activation Monitor (SAM), Radiation Monitoring Equipment-3 (RME-3), Visual Function Tester-1 (VFT-1), and the Interim Operational Contamination Monitor (IOCM) secondary payloads/experiments.

  6. Daugiakriterinės analizės taikymas žemės sklypų kadastro duomenų kokybei vertinti

    NASA Astrophysics Data System (ADS)

    Jonauskienė, Irina; Demčiuk, Svetlana

    2009-01-01

    Nagrinėjama žemės sklypų kadastrinių duomenų kokybės vertinimo taikant daugiakriterinės analizės metodus problema. Prieš įvedant žemės sklypų duomenis į bendras duomenų bazes bei pažymint žemės sklypus kadastro žemėlapyje, svarbu atlikti kadastrinių matavimų ir kadastro duomenų kokybės kontrolę bei objektyviais rodikliais įvertinti patikimumą. Skaičiavimų eksperimentas atliktas i\\vsplėstiniu artumo idealiajam ta\\vskui (TOPSIS) metodu, nustatyta aštuonių alternatyvų (Vilniaus apskrities savivaldybių) prioritetinė eilė pagal jų kadastro duomenų kokybę išrei\\vskiančius rodiklius bei jų reikšmingumą.

  7. STS-41 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  8. Satellite operations support expert system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Satellite Operations Support Expert System is an effort to identify aspects of satellite ground support activity which could profitably be automated with artificial intelligence (AI) and to develop a feasibility demonstration for the automation of one such area. The hydrazine propulsion subsystems (HPS) of the International Sun Earth Explorer (ISEE) and the International Ultraviolet Explorer (IUS) were used as applications domains. A demonstration fault handling system was built. The system was written in Franz Lisp and is currently hosted on a VAX 11/750-11/780 family machine. The system allows the user to select which HPS (either from ISEE or IUE) is used. Then the user chooses the fault desired for the run. The demonstration system generates telemetry corresponding to the particular fault. The completely separate fault handling module then uses this telemetry to determine what and where the fault is and how to work around it. Graphics are used to depict the structure of the HPS, and the telemetry values displayed on the screen are continually updated. The capabilities of this system and its development cycle are described.

  9. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  10. The Intrauterine Device in Women with Diabetes Mellitus Type I and II: A Systematic Review

    PubMed Central

    Goldstuck, Norman D.; Steyn, Petrus S.

    2013-01-01

    Background. Women with diabetes mellitus type I and type II need effective contraception for personal and medical reasons. Long acting reversible contraceptive (LARC) methods are among the most efficient and cost-effective methods. Study Design. We searched the Popline, PubMed, and clinicaltrials.gov databases from 1961 to March 2013 for studies on the efficacy of the IUD in diabetic women and the possible changes it may produce in laboratory parameters. Studies of at least 30 subjects with DM1 or DM2 who were studied for 6 to 12 months depending on the method of analysis were eligible. Results. The search produced seven articles which gave event rate efficacy evaluable results and three which evaluated the effect of the IUD on laboratory parameters. One of the earlier efficacy studies showed an abnormally high pregnancy rate which sparked a controversy which is discussed in the Introduction section. The remaining 6 studies produced acceptable pregnancy rates. The three laboratory studies showed that the copper and levonorgestrel releasing IUD/IUS do not affect the diabetic state in any way. Conclusions. The copper bearing and levonorgestrel releasing IUDs are safe and effective in women with diabetes type I and diabetes type II although the evidence in the latter is limited. PMID:24396605

  11. Final safety analysis report for the Galileo Mission. Volume 1: Reference design document

    NASA Astrophysics Data System (ADS)

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume 1, this document, provides the background design information required to understand the analyses presented in Volumes 2 and 3. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume 1 which provide detailed material properties for the RTG.

  12. BVRI photometric observations and light-curve analysis of GEO objects

    NASA Astrophysics Data System (ADS)

    Cardona, Tommaso; Seitzer, Patrick; Rossi, Alessandro; Piergentili, Fabrizio; Santoni, Fabio

    2016-08-01

    BVRI photometric observations of Geosynchronous Earth Orbit (GEO) objects were conducted with the 1.5 m Cassini Telescope located in Loiano, Italy. The observatory is operated by the INAF (National Institute for Astrophysics) Astronomical Observatory of Bologna, Italy. The Ritchey-Chrétien optical system is equipped with the BFOSC (Bologna Faint Object Spectrograph and Camera), a multipurpose instrument for imaging and spectroscopy, with an EEV CCD (1340 × 1300 pixel). This paper deals with the results of the photometric observations of several targets from the SSN (Space Surveillance Network) catalog that were acquired in May and December 2013. In particular: 1 piece of debris from Ekran: SSN 29014 1 piece of debris from LES 8: SSN 13753 5 SL-12 rocket bodies: SSN 38104, 17125, 20926, 17705 and 27444 2 IUS rocket bodies: SSN 19913, 21641 3 operational GEO satellite: SSN 34810, 27509, 28912 1 non-operational GEO satellites: SSN 02653 Observations of Landolt standard fields were performed for calibration purposes. In addition, long exposures with sidereal tracking with no filter have been taken where the object image is trailed to study the brightness variability over timescales of a second. This paper describes the results of the code developed in order to detect the primary frequencies of the object's brightness variation.

  13. An analytic-geometric model of the effect of spherically distributed injection errors for Galileo and Ulysses spacecraft - The multi-stage problem

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Mcronald, Angus D.

    1988-01-01

    In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.

  14. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  15. Personal view: Hormones and depression in women.

    PubMed

    Studd, J

    2015-02-01

    Depression is more common in women, occurring at times of hormonal fluctuations as premenstrual depression, postnatal depression and perimenopausal depression. These are all related to changes in hormone levels and constitute the diagnosis of reproductive depression. There is a risk that severe premenstrual depression can be misdiagnosed as bipolar disorder and that women will be started on inappropriate antidepressants or mood-stabilizing therapy. The most effective treatment for severe premenstrual syndrome is by suppression of ovulation and suppression of the cyclical hormonal changes by transdermal estrogens or by GnRH analogs. Postnatal depression is more common in women with a history of premenstrual depression and also responds to transdermal estrogens. Transdermal testosterone gel can be also used in women who suffer loss of energy and loss of libido which may be due to the inappropriate prescription of antidepressants. There is also a role for the Mirena IUS and laparoscopic hysterectomy and oophorectomy in women who are progestogen-intolerant. The hormonal causation of certain common types of depression in women and the successful treatment by estrogens should be understood by psychiatrists and gynecologists. PMID:25040604

  16. Final Environmental Impact Statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The Tier 1 (program level) EIS (NASA 1988a) considered the Titan IV launch vehicle as an alternative booster stage for launch in May 1991 or later. The May 1991 Venus launch opportunity is considered a planetary back-up for the Magellan (Venus Radar Mapper) mission, the Galileo mission, and the Ulysses mission. Plans were underway to enable the use of a Titan IV launch vehicle for the planetary back-up. However, in November 1988, the U.S. Air Force, which procures the Titan IV for NASA, notified NASA that it could not provide a Titan IV vehicle for the May 1991 launch opportunity due to high priority Department of Defense requirements. Consequently, NASA terminated all mission planning for the Titan IV planetary back-up. A minimum of 3 years is required to implement mission-specific modifications to the basic Titan IV launch configuration; therefore, insufficient time is available to use a Titan IV vehicle in May 1991. Thus, the Titan IV launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS) for the May 1991 launch opportunity.

  17. Liftoff of STS-26

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to being Mission STS-26 on 29 September 1988,11:37:00 a.m. EDT. The 26th shuttle mission lasted four days, one hour, zero minutes, and 11 seconds. Discovery landed 3 October 1988, 9:37:11 a.m. PDT, on Runway 17 at Edwards Air Force Base, California. Its primary payload, NASA Tracking and Data Relay Satellite-3 (TDRS-3) attached to an Inertial Upper Stage (IUS), became the second TDRS deployed. After deployment, IUS propelled the satellite to a geosynchronous orbit. The crew consisted of Frederick H. Hauck, Commander; Richard O. Covey, Pilot; John M. Lounge, Mission Specialist 1; George D. Nelson, Mission Specialist 2; and David C. Hilmers, Mission Specialist 3. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  18. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  19. Draft environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of: (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG).

  20. Shuttle Carrier Aircraft (SCA) Fleet Photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main

  1. STS-31 on Runway 22 at Edwards with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When

  2. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long

  3. Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment

    NASA Technical Reports Server (NTRS)

    1998-01-01

    fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. Shuttle Enterprise Being Worked on in Hangar

    NASA Technical Reports Server (NTRS)

    1983-01-01

    laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is

  5. STS Challenger Mated to 747 SCA for Initial Delivery to Florida

    NASA Technical Reports Server (NTRS)

    1982-01-01

    , weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  6. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  9. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long

  10. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden

  11. Shuttle Discovery Mated to 747 SCA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45

  12. STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  14. Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment

    NASA Technical Reports Server (NTRS)

    1998-01-01

    , and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in

  16. Shuttle Atlantis Returning to Kennedy Space Center after 10-Month Refurbishment

    NASA Technical Reports Server (NTRS)

    1998-01-01

    launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  17. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    . The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden

  19. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was

  20. Shuttle Atlantis Returning to Kennedy Space Center after 10-Month Refurbishment

    NASA Technical Reports Server (NTRS)

    1998-01-01

    , and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    . They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden

  2. Shuttle Columbia Mated to 747 SCA with Crew

    NASA Technical Reports Server (NTRS)

    1981-01-01

    payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle

  3. STS-66 Edwards Landing Approach

    NASA Technical Reports Server (NTRS)

    1994-01-01

    future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the

  4. STS-66 Edwards Landing with Drag Chute

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the

  5. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards

  6. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  7. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary

  8. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site

  9. STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  10. One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator

    NASA Astrophysics Data System (ADS)

    Gourronc, Marine; Bourgeois, Olivier; Mège, Daniel; Pochat, Stéphane; Bultel, Benjamin; Massé, Marion; Le Deit, Laetitia; Le Mouélic, Stéphane; Mercier, Denis

    2014-01-01

    Self-consistent landform assemblages suggest that Valles Marineris, the giant valley system that stretches along the Martian equator, was entirely glaciated during Late Noachian to Early Hesperian times and still contains huge volumes of fossil ice. Some of these glacial landform assemblages are illustrated here, with representative examples selected in three regions: Ius Chasma, Central Candor Chasma and the junction between Coprates Chasma and Capri Chasma. A morphological boundary separating an upper spur-and-gully morphology from a smooth basal escarpment has been spectacularly preserved along valley walls throughout Valles Marineris. The boundary winds around topographic obstacles and displays long-wavelength variations in elevation. It is associated with lateral benches, hanging valleys and truncated spurs. Comparisons with terrestrial analogs indicate that it is most reasonably interpreted as a glacial trimline. Chasma floors are covered by various kinds of terrains, including hummocky terrains, platy terrains, lateral banks, layered benches and a draping mantle. Landforms in these terrains and their spatial relationship with the interpreted trimline suggest that they correspond to various disintegration stages of an ancient glacial fill, currently protected by a superficial cover of ablation till. Altogether, these landforms and terrains compose a full glacial landsystem with wet-based glaciers that were able to flow and slide over their beds. It was most probably fed by ice accumulating at low elevations directly from the atmosphere onto valley floors and walls, with only minor contributions from tributary glaciers flowing down from higher elevations. Similar fossil glacial landsystems dating back from the early Martian history are to be expected in many other low-latitude troughs such as chasmata, chaos, valleys, impact craters and other basins.

  11. Alternative routes to the leader male role in a multi-level society: follower vs. solitary male strategies and outcomes in hamadryas baboons.

    PubMed

    Pines, Mathew; Saunders, Julian; Swedell, Larissa

    2011-07-01

    The nested one-male units (OMUs) of the hamadryas baboon are part of a complex social system in which "leader" males achieve near exclusive mating access by forcibly herding females into permanent consortships. Within this multi-level social system (troops, bands, clans and OMUs) are two types of prereproductive males--the follower and solitary male--whose different trajectories converge on the leader role. Here we compare OMU formation strategies of followers, who associate with a particular OMU and may have social access to females, with those of solitary males, who move freely within the band and do not associate regularly with OMUs. Data were derived from 42 OMU formations (16 by followers and 26 by solitary males) occurring over 8 years in a hamadryas baboon band at the Filoha site in Ethiopia. "Initial units" (IUs) with sexually immature females (IU strategy) were formed by 44% of followers and 46% of solitary males. The remaining followers took over mature females when their leader was deposed (challenge strategy) or disappeared (opportunistic strategy), or via a seemingly peaceful transfer (inheritance strategy). Solitary males took over mature females from other clans and bands, but mainly from old, injured or vanished leaders within their clan (via both the challenge and opportunistic strategies). Former followers of an OMU were more successful at taking over females from those OMUs than any other category of male. Despite this advantage enjoyed by ex-follower leaders, ex-solitary leaders were equally capable of increasing their OMU size at a comparable rate in their first 2 years as a leader. These results demonstrate the potential for males to employ both multiple roles (follower vs. solitary male) and multiple routes (IU, inheritance, challenge, opportunistic) to acquire females and become a leader male in a mating system characterized by female defense polygyny in a competitive arena. PMID:21433048

  12. An integrated model-based neurosurgical guidance system

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2010-02-01

    Maximal tumor resection without damaging healthy tissue in open cranial surgeries is critical to the prognosis for patients with brain cancers. Preoperative images (e.g., preoperative magnetic resonance images (pMR)) are typically used for surgical planning as well as for intraoperative image-guidance. However, brain shift even at the start of surgery significantly compromises the accuracy of neuronavigation, if the deformation is not compensated for. Compensating for brain shift during surgical operation is, therefore, critical for improving the accuracy of image-guidance and ultimately, the accuracy of surgery. To this end, we have developed an integrated neurosurgical guidance system that incorporates intraoperative three-dimensional (3D) tracking, acquisition of volumetric true 3D ultrasound (iUS), stereovision (iSV) and computational modeling to efficiently generate model-updated MR image volumes for neurosurgical guidance. The system is implemented with real-time Labview to provide high efficiency in data acquisition as well as with Matlab to offer computational convenience in data processing and development of graphical user interfaces related to computational modeling. In a typical patient case, the patient in the operating room (OR) is first registered to pMR image volume. Sparse displacement data extracted from coregistered intraoperative US and/or stereovision images are employed to guide a computational model that is based on consolidation theory. Computed whole-brain deformation is then used to generate a model-updated MR image volume for subsequent surgical guidance. In this paper, we present the key modular components of our integrated, model-based neurosurgical guidance system.

  13. Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document

    SciTech Connect

    Not Available

    1988-12-15

    The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source. The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.

  14. Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation.

    PubMed

    Mikirova, Nina A; Casciari, Joseph J; Hunninghake, Ronald E; Beezley, Margaret M

    2011-01-01

    Being overweight or obese is associated with an increased risk for the development of non-insulin-dependent diabetes mellitus, hypertension, and cardiovascular disease. Dyslipidemia of obesity is characterized by elevated fasting triglycerides and decreased high-density lipoprotein-cholesterol concentrations. Endothelial damage and dysfunction is considered to be a major underlying mechanism for the elevated cardiovascular risk associated with increased adiposity. Alterations in endothelial cells and stem/endothelial progenitor cell function associated with overweight and obesity predispose to atherosclerosis and thrombosis. In our study, we analyzed the effect of a low calorie diet in combination with oral supplementation by vitamins, minerals, probiotics and human chorionic gonadotropin (hCG, 125-180 IUs) on the body composition, lipid profile and CD34-positive cells in circulation. During this dieting program, the following parameters were assessed weekly for all participants: fat free mass, body fat, BMI, extracellular/intracellular water, total body water and basal metabolic rate. For part of participants blood chemistry parameters and circulating CD34-positive cells were determined before and after dieting. The data indicated that the treatments not only reduced body fat mass and total mass but also improved the lipid profile. The changes in body composition correlated with the level of lipoproteins responsible for the increased cardiovascular risk factors. These changes in body composition and lipid profile parameters coincided with the improvement of circulatory progenitor cell numbers. As the result of our study, we concluded that the improvement of body composition affects the number of stem/progenitor cells in circulation. PMID:21850193

  15. Enabling Field Experiences in Introductory Geoscience Classes through the Use of Immersive Virtual Reality

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.; Smith, E.; Sellers, V.; Wyant, P.; Boyer, D. M.; Mobley, C.; Brame, S.

    2015-12-01

    Although field experiences are an important aspect of geoscience education, the opportunity to provide physical world experiences to large groups of introductory students is often limited by access, logistical, and financial constraints. Our project (NSF IUSE 1504619) is investigating the use of immersive virtual reality (VR) technologies as a surrogate for real field experiences in introductory geosciences classes. We are developing a toolbox that leverages innovations in the field of VR, including the Oculus Rift and Google Cardboard, to enable every student in an introductory geology classroom the opportunity to have a first-person virtual field experience in the Grand Canyon. We have opted to structure our VR experience as an interactive game where students must explore the Canyon to accomplish a series of tasks designed to emphasize key aspects of geoscience learning. So far we have produced two demo products for the virtual field trip. The first is a standalone "Rock Box" app developed for the iPhone, which allows students to select different rock samples, examine them in 3D, and obtain basic information about the properties of each sample. The app can act as a supplement to the traditional rock box used in physical geology labs. The second product is a fully functioning VR environment for the Grand Canyon developed using satellite-based topographic and imagery data to retain real geologic features within the experience. Players can freely navigate to explore anywhere they desire within the Canyon, but are guided to points of interest where they are able to complete exercises that will be aligned with specific learning goals. To this point we have integrated elements of the "Rock Box" app within the VR environment, allowing players to examine 3D details of rock samples they encounter within the Grand Canyon. We plan to provide demos of both products and obtain user feedback during our presentation.

  16. Graphical user interfaces for simulation of brain deformation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Valdes, Pablo; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2010-02-01

    In image-guided neurosurgery, preoperative images are typically used for surgical planning and intraoperative guidance. The accuracy of preoperative images can be significantly compromised by intraoperative brain deformation. To compensate for brain shift, biomechanical finite element models have been used to assimilate intraoperative data to simulate brain deformation. The clinical feasibility of the approach strongly depends on its accuracy and efficiency. In order to facilitate and streamline data flow, we have developed graphical user interfaces (GUIs) to provide efficient image updates in the operating room (OR). The GUIs are organized in a top-down hierarchy with a main control panel that invokes and monitors a series of sub-GUIs dedicated to perform tasks involved in various aspects of computations of whole-brain deformation. These GUIs are used to segment brain, generate case-specific brain meshes, and assign and visualize case-specific boundary conditions (BC). Registration between intraoperative ultrasound (iUS) images acquired pre- and post-durotomy is also facilitated by a dedicated GUI to extract sparse displacement data used to drive a biomechanical model. Computed whole-brain deformation is then used to morph preoperative MR images (pMR) to generate a model-updated image set (i.e., uMR) for intraoperative guidance (accuracy of 1-2 mm). These task-driven GUIs have been designed to be fault-tolerant, user-friendly, and with sufficient automation. In this paper, we present the modular components of the GUIs and demonstrate the typical workflow through a clinical patient case.

  17. Fetal lung and placental methylation is associated with in utero nicotine exposure

    PubMed Central

    Chhabra, Divya; Sharma, Sunita; Kho, Alvin T; Gaedigk, Roger; Vyhlidal, Carrie A; Leeder, J Steven; Morrow, Jarrett; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G; DeMeo, Dawn L

    2014-01-01

    In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10−03), ANKRD33B (P = 3.12 × 10−03), CNTD2 (P = 4.9 × 10−03) and DPP10 (P = 5.43 × 10−03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10−06 − 3.48 × 10−05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases. PMID:25482056

  18. The Use of Long Acting Reversible Contraceptives and the Relationship between Discontinuation Rates due to Menopause and to Female and Male Sterilizations.

    PubMed

    Ferreira, Jessica Mayra; Monteiro, Ilza; Castro, Sara; Villarroel, Marina; Silveira, Carolina; Bahamondes, Luis

    2016-05-01

    Introduction Women require effective contraception until they reach menopause. The long acting reversible contraceptives (LARC) and the depot-medroxyprogesterone acetate (DMPA, Depo-Provera®, Pfizer, Puurs, Belgium) are great options and can replace possible sterilizations. Purpose To assess the relationship between the use of LARCs and DMPA and terminations ascribed to menopause and sterilizations in a Brazilian clinic. Methods We reviewed the records of women between 12 and 50 years of age attending the clinic that chose to use a LARC method or DMPA. Cumulative termination rates due to sterilization or because the woman had reached menopause were computed using single decrement life-table analysis over 32 years. We also examined all records of surgical sterilization at our hospital between the years 1980-2012. Results Three hundred thirty-two women had continuously used the same contraceptive until menopause, and 555 women had discontinued the method because they or their partners underwent sterilization. From year 20 to year 30 of use, levonorgestrel intrauterine-releasing system (LNG-IUS - Mirena®, Bayer Oy, Turku, Finland; available since 1980), copper intrauterine device (IUD - available since 1980) and DMPA users showed a trend of cumulative higher discontinuation rates due to menopause when compared with the discontinuation rates due to sterilization. Over the study period, a steep decline in the use of sterilization occurred. Conclusion Over the past 15 years of research we have observed a trend: women usually preferred to continue using LARC methods or DMPA until menopause rather than decide for sterilization, be it their own, or their partners'. The annual number of sterilizations dropped in the same period. The use of LARC methods and DMPA until menopause is an important option to avoid sterilization, which requires a surgical procedure with potential complications. PMID:27187927

  19. Ocean Tracks: College Edition - Promoting Data Literacy in Science Education at the Undergraduate Level

    NASA Astrophysics Data System (ADS)

    Kochevar, R. E.; Krumhansl, R.; Louie, J.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.

    2015-12-01

    Ocean Tracks is a Web-based interactive learning experience which allows users to explore the migrations of marine apex predators, and the way their behaviors relate to the physical and chemical environment surrounding them. Ocean Tracks provides access to data from the Tagging of Pelagic Predators (TOPP) program, NOAA's Global Drifter Program, and Earth-orbiting satellites via the Ocean Tracks interactive map interface; customized data analysis tools; multimedia supports; along with laboratory modules customized for undergraduate student use. It is part of a broader portfolio of projects comprising the Oceans of Data Institute, dedicated to transforming education to prepare citizens for a data-intensive world. Although originally developed for use in high school science classrooms, the Ocean Tracks interface and associated curriculum has generated interest among instructors at the undergraduate level, who wanted to engage their students in hands-on work with real scientific datasets. In 2014, EDC and the Scripps Institution of Oceanography received funding from NSF's IUSE program for Ocean Tracks: College Edition, to investigate how a learning model that includes a data interface, set of analysis tools, and curricula can be used to motivate students to learn and do science with real data; bringing opportunities to engage broad student populations, including both in-classroom and remote, on-line participants, in scientific practice. Phase 1, completed in the summer of 2015, was a needs assessment, consisting of a survey and interviews with students in oceanography classes at the Scripps Institution of Oceanography and Palomar Community College; a document review of course syllabi and primary textbooks used in current college marine science courses across the country; and interviews and a national survey of marine science faculty. We will present the results of this work, and will discuss new curriculum materials that are being classroom tested in the fall of 2015.

  20. Draft Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Ulysses spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special(PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG). The potential effects considered in this EIS include risks of air and water quality impacts, local land area contamination, adverse health and safety impacts, the disturbance of biotic resources, impacts on wetland areas or areas containing historical sites, and socioeconomic impacts. Intensive analysis of the possible accidents associated with the proposed action are underway and preliminary results indicate small health or environmental risks. The results of a Final Safety Analysis Report will be available for inclusion into the final EIS.

  1. STS-70 Space Shuttle Mission Report - September 1995

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

  2. Lakes in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Lucchitta, Baerbel K.

    2010-10-01

    The paper reviews the evolution of hypotheses of lakes in Valles Marineris through observations made from the time of Mariner and continuing through the Viking, MGS, MO, MEx, and MRO missions. Several pertinent findings from these missions are addressed, including: The morphology and composition of the interior layered deposits (ILD); the question whether ILD are deposited inside the troughs or exhumed from the walls; the possible existence of ancestral basins; the derivation of water; arguments for an origin as aqueous, eolian, or pyroclastic sediments, or sub/ice volcanoes; origin of inclined layers, mounds and moats; and age relations of features within and peripheral to the troughs. A possible scenario begins with the collapse of ice-charged ground into ancestral basins along structural planes of weakness due to Tharsis stresses, about 3.5 Ga ago. The basins rapidly filled with water from ground ice, subterranean aquifers, or nearby valley networks. The water spilled out of the peripheral troughs and flowed across high plateaus into early outflow channels. The ancestral basins then filled with sediments derived from valley networks or from trapped eolian or pyroclastic deposits. Alternatively, volcanoes rose under the water or ice to form tuyas. The water was highly acidic, and sediments may have been deposited directly as evaporites or were later altered to evaporites by the brines or by hydrothermal activity. Percolating fluids produced iron oxide concretions. Similar alteration would have affected the putative volcanoes. Most of the ILD were emplaced early in the troughs' history. Shortly thereafter, more water erupted from the peripheral troughs and formed additional chaos and outflow channels. The ancestral basins were breached by erosion and tectonism, and the through-going Coprates/Ius graben system developed. Major lakes within the Valles Marineris dried up and vigorous wind erosion reduced the friable, evaporite-rich sediments to isolated mounds

  3. Identification and spatial distribution of light-toned deposits enriched in Al-phyllosilicates on the plateaus around Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Le Deit, L.; Flahaut, J.; Quantin, C.; Allemand, P.

    2009-12-01

    The plateaus around Valles Marineris consist in series of mafic rocks suggested to be flood basalts (McEwen et al., 1998), lavas interbedded with sediments (Malin and Edgett, 2000), layered intrusive rocks (Williams et al., 2003), or lava flows dated from the Noachian to the late Hesperian epochs (Scott and Carr, 1978). Recent studies show the occurrence of light layered deposits of hundred meters thick cropping out on plateaus near Ius Chasma, Melas Chasma, Candor Chasma, Juventae Chasma and Ganges Chasma deposited during the Hesperian epoch by fluvio-lacustrine processes (Weitz et al., 2009), or by air-fall processes (Le Deit et al., 2009). These layered deposits are enriched in hydrated minerals including opaline silica (Milliken et al., 2008), hydroxylated ferric sulfates (Bishop et al., 2009), and possibly Al-rich phyllosilicates (Le Deit et al., 2009). We identified another type of formation corresponding to light-toned massive deposits cropping out around Valles Marineris. It appears that these light-toned deposits are associated to bright, rough, and highly cratered terrains, located beneath a dark and thin capping unit. Previous studies report the occurrence of phyllosilicates on few locations around Valles Marineris based on OMEGA data analyses (Gondet et al., 2007; Carter et al., 2009). The analysis of CRISM data show that the light-toned deposits are associated with spectra displaying absorption bands at 1.4 μm, 1.9 μm, and a narrow band at 2.2 μm. These spectral characteristics are consistent with the presence of Al-rich phyllosilicates such as montmorillonite, or illite in the light-toned deposits. They constitute dozens of outcrops located on the plateaus south and east of Coprates Chasma and Capri Chasma, and west of Ganges Chasma. All outcrops investigated so far are present over Noachian terrains mapped as the unit Npl2 by Scott and Tanaka (1986), and Witbeck et al. (1991). These light-toned deposits could result from in situ aqueous alteration

  4. Reproducibility of a Long-Range Swept Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers

    PubMed Central

    Grulkowski, Ireneusz; Liu, Jonathan J.; Zhang, Jason Y.; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Cable, Alex E.; Duker, Jay S.

    2013-01-01

    Purpose To demonstrate a novel swept source optical coherence tomography (SS-OCT) imaging device employing a vertical cavity surface-emitting laser (VCSEL) capable of imaging the full eye length and to introduce a method employing this device for non-contact optical ocular biometry. To compare the measurements of intraocular distances using this SS-OCT instrument with commercially available optical and ultrasound biometers. To evaluate the intersession reproducibility of measurements of intraocular distances using SS-OCT. Design Evaluation of technology Participants Twenty eyes of 10 healthy subjects imaged at the New England Eye Center at Tufts Medical Center and Massachusetts Institute of Technology between May and September 2012. Methods Averaged central depth profiles were extracted from volumetric SS-OCT datasets. The intraocular distances such as central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), crystalline lens thickness (LT), vitreous depth (VD), and axial eye length (AL) were measured and compared with a partial coherence interferometry (PCI) device (IOL Master; Carl Zeiss Meditec, Inc.), as well as an immersion ultrasound (IUS) A-scan biometer (Axis-II PR; Quantel Medical, Inc.). Main Outcome Measures Reproducibility of the measurements of intraocular distances, correlation coefficients, intraclass correlation coefficients Results The standard deviations of the repeated measurements of intraocular distances using SS-OCT were: 6 μm (CCT), 16 μm (ACD), 14 μm (AD), 13 μm (LT), 14 μm (VD) and 16 μm (AL). Strong correlations between all three biometric instruments were found for AL (r > 0.98). AL measurement using SS-OCT correlates better with IOL Master (r = 0.998) than with immersion ultrasound (r = 0.984). SS-OCT and IOL Master measured higher AL values than ultrasound (175 μm and 139 μm). No statistically significant difference of ACD between optical (SS-OCT or IOL Master) and ultrasound method was detected. High

  5. Atmospheric Effects in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 3, 2004 This image shows two representations of the same infra-red image covering parts of Ius Chasma and Oudemans Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    This image is dominated by atmospheric effects. The pink/magenta colors inside the canyon show areas with a large amount of atmospheric dust. In the bottom half of the image, the patchy blue/cyan colors indicate the presence of water ice clouds out on the plains. Water ice clouds and high amounts of dust do not generally occur at the same place and time on Mars because the dust absorbs sunlight and heats the atmosphere. The more dust that is present, the warmer the atmosphere becomes, sublimating the water ice into water vapor and dissipating any clouds.

    Image information: IR instrument. Latitude -8.2, Longitude 267.9 East (92.1.West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  6. Lietuvos erdvinės informacijos sklaidos galimybės ir perspektyvos

    NASA Astrophysics Data System (ADS)

    Beconytė, Giedrė; Papšienė, Lina; Kryžanauskas, Audrius

    2010-01-01

    Padidėjęs erdvinių duomenų ir jų naudojimo poreikis paskatino kurti erdvinių duomenų infrastruktūras, leidžiančias teikti erdvinius duomenis aprašančią informaciją bei pačius duomenis iš įvairių šaltinių, nepriklausomai kur jie bebūtų bei duomenų formato ar struktūros. Lietuvoje dauguma erdvinių duomenų rinkinių "izoliuoti", o informacija apie juos sunkiai prieinama, todėl buvo siekiama sukurti modernią visą šalį apimančią vieną viešojo sektoriaus erdvinių duomenų paie\\vskos ir perdavimo sistemą. 2009 m. buvo sukurta Lietuvos erdvinės informacijos infrastruktūra (LEII), suteikianti priemones užtikrinti nacionalinių erdvinių duomenų pasiekiamumą ir teikimą internetu naudotojams jiems priimtinu būdu. Pagrindinis Europos Bendrijos erdvinės informacijos infrastruktūros (INSPIRE) kūrimo tikslas - pasiekti visų Bendrijos narių erdvinės informacijos suderinamumą. Įvairiose šalyse duomenų kaupimo, tvarkymo ir teikimo praktika skirtinga, todėl yra kuriamos bendros, vienijančios INSPIRE temų erdvinių duomenų rinkinių specifikacijos. Europos Bendrijos narės bus įpareigotos teikti duomenis INSPIRE laikantis šių specifkacijų, todėl atsiras galimybė iš skirtingų Europos Bendrijos valstybių gautus erdvinius duomenis sujungti ir naudoti kaip bendrus. Sukūrus LEII, Lietuvoje technologi\\vskai pasirengta teikti erdvinius duomenis bei yra sukaupti 56 oficialių duomenų rinkiniai, atitinkantys INSPIRE temas. Nors kol kas visi duomenų rinkiniai ne visi\\vskai atitinka patvirtintąsias specifikacijas, taikant Lietuvos erdvinės informacijos infrastruktūros technologijas, duomenis galima transformuoti į reikiamą struktūrą teikimo proceso metu.

  7. New SHRIMP zircon age constraints on the evolution of crystalline basement in Eastern Lithuania (East European Craton)

    NASA Astrophysics Data System (ADS)

    Vejelyte, I.; Bogdanova, S.; Yi, K.; Cho, M.

    2012-04-01

    The crystalline crust in Lithuania was formed between ca. 1.9 and 1.8 Ga during the Svecofennian orogeny. Major tectonic domains include the West Lithuanian Granulite Domain and the East Lithuanian Domain occupying either side of the Mid-Lithuanian Suture Zone, and in the southeast the Belarus-Podlasie-Granulite Belt. The study area is situated within the Drūkšiai-Polotsk Deformation Zone (DPDZ) in the East Lithuanian Domain, which is well defined by gravity and magnetic linear anomalies. In this study, zircons separated from two deformed granitoids of the DPDZ were dated using the Sensitive High-Resolution Ion Microprobe (SHRIMP IIe) at the Korea Basic Science Institute (KBSI). The Novikai-1 granite defines two age groups of zircon. One group represents the inherited zircon cores dated at 1907, 1900, and 1887 Ma, respectively. The other comprises the magmatic age of metamictized cores and overgrowth rims that yielded a mean 207Pb/206Pb age of 1793.2±6.5 Ma (n=19, MSWD=2.4). The latter is broadly similar to the zircon 207Pb /206Pb age (1830±20 Ma) of charnockitic rocks in the West Lithuanian Granulite Domain (Claesson et al., 2001) and to 1.81-1.77 Ga of TIB-1 type granitoids in Sweden (Åhäll & Larson 2000; Andersson et al., 2004). This felsic magmatism suggests the development of an active continental margin of the East European Craton in the late Palaeoproterozoic. The Tverečius deformed grandiorite contains well-preserved and oscillatory-zoned zircon grains, which yielded a mean 207Pb/206Pb age of 1542±17 (n=20, MSWD=1.8). This age is consistent with that of the rapakivi granitoids in the Svecofennian domain and of the Mesoproterozoic AMCG granitoids in the Mazury complex, NE Poland (Wiszniewska et al., 2007). Taken together, magmatic activities in the crystalline basement of eastern Lithuania thus correlate well with those in the Baltic Shield, defined by both the Paleoproterozoic orogenic event and the Mesoproterozoic intracratonic extension. This is a

  8. The protective effect of heat acclimation from hypoxic damage in the brain involves changes in the expression of glutamate receptors

    PubMed Central

    Yacobi, Assaf; Stern Bach, Yael; Horowitz, Michal

    2014-01-01

    Long-term heat acclimation (34 °C, 30d) alters the physiological responses and the metabolic state of organisms. It also improves ability to cope with hypoxic stress via a cross-tolerance mechanism. Within the brain, the hippocampal and frontal cortex neurons are the most sensitive to hypoxia and cell death is mainly caused by calcium influx via glutamate-gated ion channels, specifically NMDA and AMPA receptors. GluN1 subunit levels of NMDA-R correspond to NMDA-R levels. GluN2B/GluN2A subunit ratio is a qualitative index of channel activity; a higher ratio implies lower calcium permeability. The GluA2 subunit of AMPA-R controls channel permeability by inhibiting calcium penetration. Here, in rats model we (i)used behavioral-assessment tests to evaluate heat acclimation mediated hypoxic (15’ 4.5 ± 0.5% O2) neuroprotection, (ii) measured protein and transcript levels of NMDA-R and AMPA-R subunits before and after hypoxia in the hippocampus and the frontal cortex, to evaluate the role of Ca2+ in neuro-protection/cross-tolerance. Behavioral tests confirmed hypoxic tolerance in long-term (30d) but not in short-term (2d) heat acclimated rats. Hypoxic tolerance in the long-term acclimated phenotype was accompanied by a significant decrease in basal NMDA receptor GluN1 protein and an increase in its mRNA. The long-term acclimated rats also showed post ischemic increases in the GluN2B/GluN2A subunit ratio and GluA2 subunit of the AMPA receptor, supporting the hypothesis that reduced calcium permeability contributes to heat acclimation mediated hypoxia cross-tolerance. Abrupt post ischemic change in GluN2B/GluN2A subunit ratio with no change in NMDA-R subunits transcript levels implies that post-translational processes are inseparable acclimatory cross-tolerance mechanism.

  9. NSF Support for Physics at the Undergraduate Level: A View from Inside

    NASA Astrophysics Data System (ADS)

    McBride, Duncan

    2015-03-01

    NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF

  10. Final Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Final (Tier 2) Environmental Impact Statement (FEIS) addresses the environmental impacts which may be caused by implementation of the Ulysses mission, a space flight mission to observe the polar regions of the Sun. The proposed action is completion of preparation and operation of the Ulysses spacecraft, including its planned launch at the earliest available launch opportunity on the Space Transportation System (STS) Shuttle in October 1990 or in the backup opportunity in November 1991. The alternative is canceling further work on the mission. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. This alternative was further evaluated and eliminated from consideration when, in November 1988, the U.S. Air Force, which procures the Titan 4, notified that it could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The Titan 4 launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) for the November 1991 launch opportunity. The only expected environment effects of the proposed action are associated with normal launch vehicle operation and are treated elsewhere. The environmental impacts of normal Shuttle launches were addressed in existing NEPA documentation and are briefly summarized. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects were judged insufficient to preclude Shuttle launches. There could also be environmental impacts associated with the accidental release of radiological material during launch, deployment, or interplanetary trajectory injection of the Ulysses spacecraft. Intensive analysis indicates that the probability of release is small. There are no environmental

  11. Topography of Valles Marineris: Implications for erosional and structural history

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1994-01-01

    Compilation of a simplified geologic/geomorphic map onto digital terrain models of the Valles Marineris permitted an evaluation of elevations in the vicinity of the troughs and the calculation of depth of troughs below surrounding plateaus, thickness of deposits inside the troughs, volumes of void spaces above geologic/geomorphic units, and volumes of deposits. The central troughs north Ophir, north and central Candor, and north Melas Chasmata lie as much as 11 km below the adjacent plateaus. In Ophir and Candor chasmata, interior layered deposits reach 8 km in elevation. If the deposits are lacustrine and if all troughs were interconnected, lake waters standing 8 km high would have spilled out of Coprates Chasma onto the surrounding plateaus having surface elevations of only 4-5 km. On the other hand, the troughs may not have been interconnected at the time of interior-deposit emplacement; they may have formed isolated ancestral basins. The existence of such basins is supported by independent structural and stratigraphic evidence. The ancestral basins may have eventually merged, perhaps through renewed faulting, to form northern subsidiary troughs in Ophir and Candor Chasmata and the Coprates/north Melas/Ius graben system. The peripheral troughs are only 2-5 km deep, shallower than the central troughs. Chaotic terrain is seen in the peripheral troughs near a common contour level of about 4 km on the adjacent plateaus, which supports the idea of release of water under artesian pressure from confined aquifers. The layered deposits in the peripheral troughs may have formed in isolated depressions that harbored lakes and predated the formation of the deep outflow channels. (If these layered deposits are of volcanic origin, they may have been emplaced beneath ice in the manner of table mountains.) Areal and volumetric computations show that erosion widened the troughs by about one-third and that deposits occupy one-sixth of the interior space. Even though the volume

  12. Geomorphological and mineralogical mapping of Hebes Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Gwinner, K.; Gendrin, A.; Fueten, F.; Stesky, R.; Pelkey, S.; Zegers, T.; Bibring, J. P.; Jaumann, R.; Neukum, G.

    Despite more than three decades of analysis, the origin of the Interior Layered Deposits (ILD) in the Valles Marineris (VM) trough system is still unknown. The advance of new remote sensing data obtained by the recent planetary missions Mars Global Surveyor (MGS), Mars Odyssey (MO), and Mars Express (MEX) allow investigation of the morphology and composition in unprecedented detail. This study focusses on Hebes Chasma in the central VM, which is unique because it contains a huge mesa of ILD in a completely closed depression. We used topographic data from the HRSC camera onboard MEX to analyze the geometry of layering in Hebes Mensa with the Orion structural analysis software. Strike and dip were measured in 50m/px gridded Digital Elevation Models and corresponding orthoimages. These data have a higher spatial resolution than those used in an earlier study. We find that the layers dip gently in the downslope direction. These results are in agreement with our earlier results in Hebes Chasma and with our similar ILD studies in western Candor and Ophir Chasmata, also based on HRSC topography. A mineralogic map indicating concentrations of polyhydrated sulfates, kieserite, and oxides was produced from OMEGA spectral data. It shows that these alteration minerals are only observed in low-lying areas, which are not covered by landslides. We consider a lacustrine origin of the ILD in Hebes Chasma as unlikely. The downslope dipping of ILD layers is in agreement with a draping process, e.g., pyroclastic fall deposits from a W-E trending volcanic vent, or a series of WNW-ESE trending vents in an en echelon alignment. Thin, finely layered deposits on top of the plateaus surrounding vm (e.g., west of Juventae or south of Ius ChasmaTA) could represent that portion of the pyroclastics which escaped the troughs and were distributed on the adjacent high plains. The occurrence of alteration minerals only in very deep portions of Hebes Chasma also argues against a deposition in a deep

  13. Shuttle Atlantis Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1985-01-01

    into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise

  14. STS-31 on Runway 22 at Edwards with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When

  15. STS-36 on Edwards Runway with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a

  16. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was

  17. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards

  18. STS-36 Shuttle in Mate-Demate Device (MDD) Close-up

    NASA Technical Reports Server (NTRS)

    1990-01-01

    scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle

  19. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  20. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  1. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space

  2. STS-76 - SCA 747 Aircraft Takeoff for Delivery to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  3. Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    . They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden

  4. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in

  5. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards

  6. STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  7. Shuttle Carrier Aircraft (SCA) Fleet Photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main

  8. STS-68 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  9. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a

  10. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In

  11. STS-66 Edwards Landing with Drag Chute

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the

  12. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  13. STS-68 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the

  14. STS-66 Edwards Landing Approach

    NASA Technical Reports Server (NTRS)

    1994-01-01

    future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the

  15. Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing

  16. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the

  17. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  18. STS-67 Endeavour Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1995-01-01

    into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and

  19. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  20. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Acedillo, Shannen; Braham, Stephen; Brown, Adrian; Elphic, Richard; Fong, Terry; Glass, Brian; Hoftun, Christopher; Johansen, Brage W.; Lorber, Kira; Mittlefehldt, David; Takagi, Yuta; Thomas, Peter; West, Michael; West, Stephen; Zolensky, Michael

    2015-01-01

    The proposed Noctis Landing Site/Exploration Zone (LS/EZ) is shown in Figure 1. Our preliminary study suggests that the proposed site meets all key Science and Resources (incl. Civil Engineering) requirements. The site is of significant interest, as the EZ not only offers a large number and wide range of regions of interest (ROIs) for short-term exploration, it is also located strategically at the crossroads between Tharsis and Valles Marineris, which are key for long-term exploration. The proposed site contains Regions of Interest (ROIs) that meet the following Science requirements: -­- Access to (1) deposits with a high preservation potential for evidence of past habitability and fossil biosignatures and (2) sites that are promising for present habitability. The site presents a wide variety of ROIs qith likely aqueous features and deposits, including sinous channels and valleys, slope gullies, lobate debris aprons, impact craters with lobate ejecta flows, and "bathtub ring" deposits. Neutron spectrometry also suggests hydrogen is present within the topmost 0.3 m or so of 4 to 10 wt% WEH (Water Equivalent Hydrogen). -­- Noachian and/or Hesperian rocks in a stratigraphic context that have a high likelihood of containing trapped atmospheric gases. Collapsed canyon rim material with preserved stratigraphy is abundantly present and accessible. -­- Exposures of at least two crustal units that have regional or global extents, that are suitable for radiometric dating, and that have relative ages that sample a significant range of martian geological time. Canyons floors in Ius Chasma, Tithonium Chasma, and plateau tops on Tharsis and in Sinai Planum offer access to distinct crustal units of regional extent. -­- Access to outcrops with linked morphological and/or geochemical signatures indicative of aqueous or groundwater/ mineral interactions. Iron and sulfur-bearing deposits on canyon floors in Noctis Labyrinthus, and in Ius Chasma (IC) and Tithonium Chasma (TC

  1. STS-58 Landing at Edwards with Drag Chute

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the

  2. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in

  3. STS-29 Landing Approach at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle

  4. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long

  5. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long

  6. Shuttle Enterprise Mated to 747 SCA in Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    . When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour

  7. STS-64 and 747-SCA Ferry Flight Takeoff

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of

  8. STS-58 Landing at Edwards with Drag Chute

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the

  9. STS-68 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  10. STS-29 Landing Approach at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle

  11. STS-49 Shuttle Endevour in Mate-Demate Device being Loaded onto SCA-747 - Front View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a

  12. Shuttle Enterprise Mated to 747 SCA in Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    . When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour

  13. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  14. Shuttle Enterprise Mated to 747 SCA on Ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17

  15. Shuttle Atlantis Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1985-01-01

    into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise

  16. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the

  17. STS-36 Shuttle in Mate-Demate Device (MDD) Close-up

    NASA Technical Reports Server (NTRS)

    1990-01-01

    scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle

  18. Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing

  19. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a

  20. STS-64 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of

  1. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in

  2. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space

  3. STS-40 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1991-01-01

    . When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour

  4. STS-76 - SCA 747 Aircraft Takeoff for Delivery to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981

  5. STS-64 and 747-SCA Ferry Flight Takeoff

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of

  6. STS-37 Shuttle Crew after Edwards landing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the

  7. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards

  8. STS-36 on Edwards Runway with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a

  9. STS-68 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a

  10. Shuttle Atlantis Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1988-01-01

    , provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site

  11. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In

  12. STS-55 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1993-01-01

    , however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and

  13. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or

  14. STS-68 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1994-01-01

    be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the

  15. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary

  16. Shuttle Endevour Loaded onto SCA-747 Exiting the Mate-Demate Device for Return to Kennedy Space Cent

    NASA Technical Reports Server (NTRS)

    1992-01-01

    laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a

  17. STS-67 Endeavour Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1995-01-01

    into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and

  18. STS-55 Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1993-01-01

    , however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and

  19. Chronicles of recent disasters. Are Agencies and Civil Protections getting sloppy?

    NASA Astrophysics Data System (ADS)

    Miozzo, D.; Altamura, M.; Ferraris, L.; Musso, L.

    2010-09-01

    Numerical Weather Prediction (NWP) models and forecasts have a paramount role in the real time decision making command chain. It is thanks to them that Civil Protection (CP) across Europe and the World were able to redeploy towards preventing calamities rather than passively awaiting for their happening. However, from the implementation of these new methodological and procedural instruments stems the process of codification of a generalized Ius Commune. This natural drive towards Positive Law grants the fruition and tutelage of new rights but, if not adequately controlled, can initiate vicious circles leading towards the overcriminalization of the system. Trials, intended against CP operators and guardians or guarantors, according to civil law acception, showed how meteorological weather prediction can be faulty and dangerously underestimate an incoming event. The margin of error unfolds on both a temporal and a spatial plan. The discrepancy which emerged from ex post analysis (Molini et al. 2009) tells us that state of the art instruments can possibly induce CP operators to make wrong decisions. In addition to these computational and modelling problems, the complex orography of our territories impedes to deterministically asses and characterize hydrometeorological risk. The best instrument in our hands, a part from radar and satellite data (which both have a yet important delay in the acquisition of data due to its transfer), is still represented by NWP models and by the experience of whom, on a daily basis, issues meteorological bulletins and alert whom are the foremost link between CPs and the population. Envisaging the problem of the overcriminalization phenomenon and its social consequences, unpredicted flash floods are extremely rare to count. Nevertheless they do happen and create the basis for a much more dangerous problem: the lowering of the alert threshold to an excessively precautionary level, thus, eliminating any kind of discretionality in assessing

  20. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  1. New Mars Camera's First Image of Mars from Mapping Orbit (Full Frame)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The high resolution camera on NASA's Mars Reconnaissance Orbiter captured its first image of Mars in the mapping orbit, demonstrating the full resolution capability, on Sept. 29, 2006. The High Resolution Imaging Science Experiment (HiRISE) acquired this first image at 8:16 AM (Pacific Time). With the spacecraft at an altitude of 280 kilometers (174 miles), the image scale is 25 centimeters per pixel (10 inches per pixel). If a person were located on this part of Mars, he or she would just barely be visible in this image.

    The image covers a small portion of the floor of Ius Chasma, one branch of the giant Valles Marineris system of canyons. The image illustrates a variety of processes that have shaped the Martian surface. There are bedrock exposures of layered materials, which could be sedimentary rocks deposited in water or from the air. Some of the bedrock has been faulted and folded, perhaps the result of large-scale forces in the crust or from a giant landslide. The image resolves rocks as small as small as 90 centimeters (3 feet) in diameter. It includes many dunes or ridges of windblown sand.

    This image (TRA_000823_1720) was taken by the High Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft on Sept. 29, 2006. Shown here is the full image, centered at minus 7.8 degrees latitude, 279.5 degrees east longitude. The image is oriented such that north is to the top. The range to the target site was 297 kilometers (185.6 miles). At this distance the image scale is 25 centimeters (10 inches) per pixel (with one-by-one binning) so objects about 75 centimeters (30 inches) across are resolved. The image was taken at a local Mars time of 3:30 PM and the scene is illuminated from the west with a solar incidence angle of 59.7 degrees, thus the sun was about 30.3 degrees above the horizon. The season on Mars is northern winter, southern summer.

    [Photojournal note: Due to the large sizes of the high

  2. CRISM's First 'Targeted' Observation of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This shows the first site on Mars imaged by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) using its full-resolution hyperspectral capability, with a 'targeted image.'

    During a targeted image, CRISM's movable gimbal tracks a point on the surface, and slowly scans across it for about three minutes. The image is built up one line at a time, and each pixel in the image is measured in 544 colors covering 0.36-3.92 micrometers. During this time the Mars Reconnaissance Orbiter's range to the target starts at about 410 kilometers (250 miles), decreases to about 290 kilometers (190 miles) when the spacecraft makes its closest approach, and increases again to 410 kilometers at the end of the image. The change in geometry during image acquisition gives each CRISM targeted image a characteristic hourglass shape.

    This first targeted image was acquired at 1515 UTC (11:15 a.m. EDT) on Sept. 29, 2006, near 7.7 degrees south latitude, 270.5 degrees east longitude. Only minimal processing and map projection of the data have been done. At the center of the image the spatial resolution is as good as 18 meters (60 feet) per pixel. The three wavelengths shown here provide an approximate true color representation. The hourglass-shaped image covers an area about 13 kilometers (8 miles) north-south and, at the narrowest point, about 9 kilometers (5.6 miles) east-west. The upper left panel shows the image's regional context, on a mosaic from the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS) taken in infrared frequencies. This western part of the Valles Marineris canyon system is called Ius Chasma. The canyon system is about five kilometers (about three miles) deep and exposes ancient rocks from deep in the crust. The lower left panel shows local context, using a THEMIS visible-wavelengths image (THEMIS-VIS), which is comparable in resolution to CRISM data. Outcrops of light-toned layered rocks 1-2 kilometers (0.6-1.2 miles) across are