Science.gov

Sample records for jacobian inverse kinematics

  1. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  2. JFKengine: A Jacobian and Forward Kinematics Generator

    SciTech Connect

    Fischer, K.N.

    2003-02-13

    During robot path planning and control the equations that describe the robot motions are determined and solved. Historically these expressions were derived analytically off-line. For robots that must adapt to their environment or perform a wide range of tasks, a way is needed to rapidly re-derive these expressions to take into account the robot kinematic changes, such as when a tool is added to the end-effector. The JFKengine software was developed to automatically produce the expressions representing the manipulator arm motion, including the manipulator arm Jacobian and the forward kinematic expressions. Its programming interface can be used in conjunction with robot simulation software or with robot control software. Thus, it helps to automate the process of configuration changes for serial robot manipulators. If the manipulator undergoes a geometric change, such as tool acquisition, then JFKengine can be invoked again from the control or simulation software, passing it parameters for the new arm configuration. This report describes the automated processes that are implemented by JFKengine to derive the kinematic equations and the programming interface by which it is invoked. Then it discusses the tree data structure that was chosen to store the expressions, followed by several examples of portions of expressions as represented in the tree. The C++ classes and their methods that implement the expression differentiation and evaluation operations are described. The algorithms used to construct the Jacobian and forward kinematic equations using these basic building blocks are then illustrated. The activity described in this report is part of a larger project entitled ''Multi-Optimization Criteria-Based Robot Behavioral Adaptability and Motion Planning'' that focuses on the development of a methodology for the generalized resolution of robot motion equations with time-varying configurations, constraints, and task objective criteria. A specific goal of this project is

  3. Visualization of redundancy resolution for kinematically redundant robots through the Jacobian null space

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Che; Walker, Ian D.; Cheatham, John B., Jr.

    1992-01-01

    We present a unified formulation for the inverse kinematics of redundant arms, based on a special formulation of the null space of the Jacobian. By extending (appropriately re-scaling) previously used null space parameterizations, we obtain, in a unified fashion, the manipulability measure, the null space projector, and particular solutions for the joint velocities. We obtain the minimum norm pseudo-inverse solution as a projection from any particular solution, and the method provides an intuitive visualization of the self-motion. The result is a computationally efficient, consistent approach to computing redundant robot inverse kinematics.

  4. Challenges of Inversely Estimating Jacobian from Metabolomics Data

    PubMed Central

    Sun, Xiaoliang; Länger, Bettina; Weckwerth, Wolfram

    2015-01-01

    Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al., 2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined system of equations as JC + CJT = −2D, called Lyapunov Equation in its generic form,1 where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization, and truncated singular value decomposition. Then, we benchmarked these methods on several in silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C, and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data. PMID:26636075

  5. Inversion without Explicit Jacobian Calculations in Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Fouchard, A.; Bonnet, S.; Hervé, L.; David, O.

    2014-10-01

    Electrical impedance tomography (EIT) is the inverse problem of finding the internal conductivity distribution of a medium given boundary electrical measurements performed via an electrode array onto its surface. Conventional inversion schemes adopt Tikhonov regularized Newton-type methods. Following a transport back-transport approach, we develop in this work an adjoint approach which allows reducing computational burden in enabling inversion without explicit Jacobian calculation. Forward and back-projection operators are defined from potential gradients, along with their efficient implementation. These derivations allow the transparent use of inversion algorithms. We first check the implementation of operators. We then evaluate how reconstructions perform on simulated noisy data using a preconditioned conjugate gradient. We eventually practice our inversion framework on experimental data acquired in vitro from a saline phantom.

  6. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  7. Robust inverse kinematics using damped least squares with dynamic weighting

    NASA Technical Reports Server (NTRS)

    Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.

    1994-01-01

    This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.

  8. A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators.

    PubMed

    Tchoń, Krzysztof; Jakubiak, Janusz

    2005-10-01

    On the basis of a geometric characterization of repeatability we present a repeatable extended Jacobian inverse kinematics algorithm for mobile manipulators. The algorithm's dynamics have linear invariant subspaces in the configuration space. A standard Ritz approximation of platform controls results in a band-limited version of this algorithm. Computer simulations involving an RTR manipulator mounted on a kinematic car-type mobile platform are used in order to illustrate repeatability and performance of the algorithm. PMID:16240778

  9. Iterative inverse kinematics with manipulator configuration control

    SciTech Connect

    Grudic, G.Z.; Lawrence, P.D.

    1993-08-01

    A new method, termed the offset modification method (OM method), for solving the manipulator inverse kinematics problem is presented. The OM method works by modifying the link offset values of a manipulator until it is possible to derive closed-form inverse kinematics equations for the resulting manipulator (termed the model manipulator). This procedure allows one to derive a set of three nonlinear equations in three unknowns that, when numerically solved, give an inverse kinematics solution for the original manipulator. The OM method can be applied to manipulators with any number of degrees of freedom, as long as the manipulator satisfies a given set of conditions (Theorem 1). The OM method is tested on a 6-degree-of-freedom manipulator that has no known closed-form inverse kinematics equations. It is shown that the OM method is applicable to real-time manipulator control, can be used to guarantee convergence to a desired endpoint position and orientation (if it exists), and allows one to directly choose which inverse kinematics solution the algorithm will converge to (as specified in the model manipulator closed-form inverse kinematics equations). Applications of the method to other 6-DOF manipulator geometries and to redundant manipulators (i.e. greater than 6 DOF geometries) are discussed.

  10. Pseudo-inverse Jacobian control with grey relational analysis for robot manipulators mounted on oscillatory bases

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C. C.; Lo, H.-S.

    2009-10-01

    Interest in complex robotic systems is growing in new application areas. An example of such a robotic system is a dexterous manipulator mounted on an oscillatory base. In literature, such systems are known as macro/micro systems. This work proposes pseudo-inverse Jacobian feedback control laws and applies grey relational analysis for tuning outer-loop PID control parameters of Cartesian computed-torque control law for robotic manipulators mounted on oscillatory bases. The priority when modifying controller parameters should be the top ranking importance among parameters. Grey relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID of the Cartesian computed-torque law to achieve desired performance. Results of this study can be feasible to numerous mechanical systems, such as mobile robots, gantry cranes, underwater robots, and other dynamic systems mounted on oscillatory bases, for moving the end-effector to a desired Cartesian position.

  11. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  12. Geometry and kinematic evolution of inversion structures

    SciTech Connect

    Mitra, S. )

    1993-07-01

    Positive inversion structures form by the compressional reactivation of preexisting extensional structures. Experimental models and observations of natural structures are used to develop quantitative models for the geometry and kinematic evolution of inversion structures. In this paper, I analyze two main formation mechanisms of inversion structures: (1) fault-propagation folding on planar faults, and (2) fault-bend folding on listric faults. Inversion structures formed by fault-propagation folding occur in the southern North Sea, the Central Montana platform, and the Kangean Basin. During extension, a broad fault-propagation (or drape) fold develops above the master fault, with the fault subsequently breaking through the fold. Synextensional growth units deposited in the hanging wall typically thicken into the basin. Compressional reactivation results in slip reversal on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Inversion structures formed by fault-bend folding on listric faults occur in the Taranaki Basin, and possibly in the southern North Sea. Rollover folding in the hanging wall occurs during extension, possibly accompanied by a small component of fault-propagation folding in the vicinity of the fault tip. Deformation is primarily along a system of antithetic faults. Synextensional growth sediments typically thicken into the fault, but also show thinning in the immediate vicinity of the fault. During compression, the extensional fold is first unfolded and then folded into a compressional fault-bend fold. The characteristic variations in bed geometry and thickness provide predictive models for interpreting the subsurface geometries of these two classes of inversion structures in areas with poor seismic data. These models are particularly useful in exploring for structural traps in the complex and relatively unexplored synextensional growth units. 31 refs., 29 figs.

  13. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    PubMed

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. PMID:27139005

  14. Efficient Calculation of Jacobian and Adjoint Vector Products in the Wave Propagational Inverse Problem Using Automatic Differentiation

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas F.; Santosa, Fadil; Verma, Arun

    2000-01-01

    Wave propagational inverse problems arise in several applications including medical imaging and geophysical exploration. In these problems, one is interested in obtaining the parameters describing the medium from its response to excitations. The problems are characterized by their large size, and by the hyperbolic equation which models the physical phenomena. The inverse problems are often posed as a nonlinear data-fitting where the unknown parameters are found by minimizing the misfit between the predicted data and the actual data. In order to solve the problem numerically using a gradient-type approach, one must calculate the action of the Jacobian and its adjoint on a given vector. In this paper, we explore the use of automatic differentiation (AD) to develop codes that perform these calculations. We show that by exploiting structure at 2 scales, we can arrive at a very efficient code whose main components are produced by AD. In the first scale we exploite the time-stepping nature of the hyperbolic solver by using the “Extended Jacobian” framework. In the second (finer) scale, we exploit the finite difference stencil in order to make explicit use of the sparsity in the dependence of the output variables to the input variables. The main ideas in this work are illustrated with a simpler, one-dimensional version of the problem. Numerical results are given for both one- and two- dimensional problems. We present computational templates that can be used in conjunction with optimization packages to solve the inverse problem.

  15. Forward and inverse kinematics of double universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  16. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  17. Integration of additional constraints to Inverse the differential kinematic model for a nonholonomic and redundant mobile manipulator

    NASA Astrophysics Data System (ADS)

    Akli, Isma; Achour, Noura

    2008-06-01

    This article presents a differential kinematic study for a car-like mobile system carrying a four degrees of freedom manipulator. The generalized coordinates and velocities of the mobile manipulator are required, when the position and the velocity of the end-effector are imposed in the cartesian space. Our approach consists of planning the motion of the mobile platform with make the onboard manipulator able to follow the cartesian trajectory. The resulted generalized coordinates are exploited to calculate the Forward Differential Kinematic Model. Since the mobile manipulator is redundant regarding to the task, we profit from the system characteristics to augment the jacobian matrix, while integrating additional constraints, to inverse the differential kinematic model.

  18. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  19. Computational neural learning formalisms for manipulator inverse kinematics

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  20. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  1. A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data - I. 3-D inversion using the explicit Jacobian and a tensor-based formulation

    NASA Astrophysics Data System (ADS)

    Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.

    2016-06-01

    We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.

  2. Improving on Inversions for Kinematic Parameters of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Liu, P.; Custódio, S.; Page, M.

    2007-12-01

    Since the first inversion of strong motion data for the slip during the 1966 Parkfield earthquake, there have been numerous attempts to infer the kinematic parameters of earthquakes. It is grossly inadequate to think of the distribution of final slip as being a kinematic model. Besides the geometry of the fault and the location of the hypocenter, a kinematic model includes the functional form of the slip rate time function, the temporal parameters of the slip rate function (rise time), the rupture time (equivalently the rupture velocity) and the final slip. All of the parameters can be spatially varying on the fault. The fault and the recording stations are located in a velocity/attenuation structure. Besides the basic uncertainty in the Green's functions regarding the correct velocity/attenuation structure, the fundamental problem is nonlinear with respect to the temporal parameters. The other critical pieces of the puzzle are the distribution of stations and the type of data being inverted. Thus it is no surprise that while there are numerous kinematic inversions for a faulting model, there have been far fewer attempts to address the basic question of what can inversions resolve about the faulting. This has related questions, such as what are the errors in the presented models, which depend on what the resolution is, and also what the data and Green's function errors are and how these errors propagate to the solution. In this presentation we review some of the basic findings about resolution as well as present some results on resolution with respect to the combined inversion of seismic and GPS data. Among the results that need to be emphasized is the most obvious that the distribution of stations inherently limits the resolution. A second major conclusion is that the rupture velocity is variable and has a profound effect on the solution. The rupture velocity and the spatial distribution of slip are fundamentally linked; any use or description of a kinematic model

  3. Study on the effect of parameters on source kinematic inversion

    NASA Astrophysics Data System (ADS)

    Wen, J.; Chen, X.

    2011-12-01

    Based on observed seismic waveform data, kinematics inversion is the most effective way to research seismic source. Many kinematics inversion methods have been developed. However, the inversion results from different researchers have big difference, even for the same earthquake. To study how various factors impact on the source inversion, we refer 2010 Haiti earthquake to establish a source model and use the numerical experiments to study how these factors affect the inversion results in multi time window inversion method. Our research indicates: (1) The size of each subfault should be more than half wavelength of S wave, meanwhile, in order to guarantee the accuracy of computation, the Green's function of each subfault should get from the superposition of Green's function of uniformly distributed point source, which has a lag, in this subfault. (2) Too much time windows will increase the non-uniqueness of inverse problem and reduce the rank of coefficient matrix. If single time window could do better, we'd better use single time window in seismic source inversion. (3) Moreover, the change of rupture velocity caused by multi time window will be influenced by the epicenter distance of subfault. Only when the distance is moderate, the change is reasonable. Smaller half width of time window will be good for closer subfaults, and farther subfaults need bigger time windows which have bigger half width. (4) In a word, increasing constraints could increases the rank of coefficient matrix and reduce non-uniqueness of inverse problem. The bigger the weight of time smoothing, the bigger the model fitting parameter; when the weight of space smoothing is about 0.5, the model fitting parameter gets the maximal; the model fitting parameter changes with the weight of moment minimization similar to with the weight of time smoothing. Furthermore, the difference of the waveform fitting parameter with different weight is very small, and the trend of the waveform fitting parameter

  4. Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA

    NASA Astrophysics Data System (ADS)

    Fioretto, E.; Corradi, L.; Montanari, D.; Szilner, S.; Pollarolo, G.; Galtarossa, F.; Ackermann, D.; Montagnoli, G.; Scarlassara, F.; Stefanini, A. M.; Courtin, S.; Goasduff, A.; Haas, F.; Jelavić-Malenica, D.; Michelagnoli, C.; Mijatović, T.; Soić, N.; Ur, C.; Valiente-Dobon, J. J.

    2016-05-01

    In the last period, two classes of experiments have been carried out with the large acceptance magnetic spectrometer PRISMA. In particular, the one- and two-neutron transfer processes at energies ranging from the Coulomb barrier to deep below it and the population of exotic neutron rich nuclei in the A~130 and A~200 mass regions have been studied. Both kinds of experiments have been performed in inverse kinematics identifying in A, Z and velocity the light target-like recoils with PRISMA placed at very forward angles in order to have, at the same time, high efficiency and good energy and mass resolutions.

  5. A study on estimation of planar gait kinematics using minimal inertial measurement units and inverse kinematics.

    PubMed

    Hu, Xinyao; Soh, Gim Song

    2014-01-01

    This paper describes a preliminary study of using four inertial measurement units (IMUs) attached to the heel and pelvis to estimate the joint angles of normal subjects during walking. The IMU, consisting of a 3-D accelerometer and gyroscope, is used to estimate the planar displacement of the heel and pelvis and the angular change of heel in one gait cycle. We then model the gait as a planar 3R serial chain and solve its inverse kinematics by using such information. The results are validated by comparing the estimated joint angles of lower limbs (i.e. hip, knee and ankle angles) with an optical motion capture system. This study can benefit the future research on conducting complete lower limbs kinematics analysis with minimal and unobtrusive wearable sensors. PMID:25571585

  6. Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.

  7. Kinematic Source Inversion Using Smoothly Curved Fault Model

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Aoi, S.; Sekiguchi, H.

    2010-12-01

    necessary to express the fault geometry as curved surface. In this study we develop an inversion method to derive a kinematic source rupture process using a curved fault model. The fault surface is mathematically presented by Non-Uniform Rational B-Spline (NURBS), which offers the flexible surface modeling. Multi-time-window linear waveform inversion scheme is implemented to the curved fault model. Points for calculating Green's function are generated at a shorter interval than subfaults for deriving slip history. This means that each subfault is also expressed by the curved surface, whereas the subfaults were based on the planar elements in most of previous studies that estimated source process on the curved fault. We apply the developed method to the 2008 Northern Iwate earthquake. Large slip areas are estimated at similar locations to the two-plane fault analysis. The synthetic waveforms agree with the observed ones comparably for both fault models. The total seismic moment is smaller for the curved fault than for the two-plane fault, which may indicate that inversion analysis using curved fault model could suppress artificial slip.

  8. Inelastic Proton Scattering on 21Na in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Austin, Roby

    2009-10-01

    R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).

  9. Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects

    PubMed Central

    Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan

    2014-01-01

    Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed. PMID:25469217

  10. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  11. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  12. Development of ORRUBA: A Silicon Array for the Measurement of Transfer Reactions in Inverse Kinematics

    SciTech Connect

    Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, Micah; Jones, K. L.; Kapler, R.; Kozub, R. L.; Livesay, Jake; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Wilson, Gemma L

    2009-01-01

    The development of high quality radioactive beams has made possible the measurement of transfer reactions in inverse kinematics on unstable nuclei. Measurement of (d,p) reactions on neutron-rich nuclei yield data on the evolution of nuclear structure away from stability, and are of astrophysical interest. Experimentally, (d,p) reactions on heavy (Z=50) fission fragments are complicated by the strongly inverse kinematics, and relatively low beam intensities. Consequently, ejectile detection with high resolution in position and energy, a high dynamic range and a high solid angular coverage is required. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new silicon detector array optimized for the measurement of (d,p) reactions in inverse kinematics.

  13. A statistical kinematic source inversion approach based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo

    2014-05-01

    Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and — more generally — how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.

  14. 3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics

    PubMed Central

    Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken

    2010-01-01

    Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051

  15. Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2004-01-01

    Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

  16. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    PubMed

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators. PMID:23918347

  17. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  18. Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))

    SciTech Connect

    Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S

    2009-11-09

    The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.

  19. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics.

    PubMed

    Simkins, Matt

    2016-05-01

    A long-standing problem in muscle control is the "curse of dimensionality". In part, this problem relates to the fact that coordinated movement is only achieved through the simultaneous contraction and extension of multitude muscles to specific lengths. Couched in robotics terms, the problem includes the determination of forward and inverse kinematics. Of the many neurophysiological discoveries in cortex is the existence of position gradients. Geometrically, position gradients are described by planes in Euclidean space whereby neuronal activity increases as the hand approaches locations that lie in a plane. This work demonstrates that position gradients, when coupled with known physiology in the spinal cord, allows for a way to approximate proprioception (forward kinematics) and to specify muscle lengths for goal-directed postures (inverse kinematics). Moreover, position gradients provide a means to learn and adjust kinematics as animals learn to move and grow. This hypothesis is demonstrated using computer simulation of a human arm. Finally, experimental predictions are described that might confirm or falsify the hypothesis. PMID:27225625

  20. Investigating the reliability of kinematic source inversion with dynamic rupture models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S.; Dalguer, L. A.; Clinton, J. F.

    2011-12-01

    An essential element of understanding the earthquake source processes is obtaining a reliable source model via geophysical data inversion. However, the epistemic uncertainties in the kinematic source inversion produce a variety of source model estimates for any given event. Thus, as done in the Source Inversion Validation (SIV) project, it is important to validate our inversion methods with synthetic data by testing forward Green's function calculation and comparing various inversion methods. Spontaneous dynamic rupture modeling, which incorporates the conservation laws of continuum mechanics and the constitutive behavior of rocks under frictional sliding, is capable of producing physically self-consistent kinematic description of the fault and its associated seismic wave propagation resulting in ground motions on the surface. Here we develop accurate dynamic rupture simulation of a vertical strike slip fault. Our source model is composed of well-defined asperities (patches of large stress drop) and we assume that fault rupture is governed by the linear slip weakening friction model. The resulting near-source ground motions dominated by low frequency (up to 1Hz) are used for testing our inversion method. We performed various inversion tests and compared estimated solutions with true solutions obtained by the forward dynamic rupture modeling. Our preliminary results show that estimated model spaces could be significantly perturbed, depending on data and modeling schemes used in the inversion, not only in terms of spatial distribution of model parameters, but also in terms of their auto- and cross-correlation structure. The Bayesian approach in source inversion is becoming increasingly popular because of the recent common availability of high performance computing capabilities. We adopted the Bayesian approach in our source inversion test, so that we can more effectively analyze the uncertainty of estimated models and also implement physically guided regularization

  1. Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics

    NASA Astrophysics Data System (ADS)

    Panin, V.; Taylor, J. T.; Paschalis, S.; Wamers, F.; Aksyutina, Y.; Alvarez-Pol, H.; Aumann, T.; Bertulani, C. A.; Boretzky, K.; Caesar, C.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Enders, J.; Ershova, O.; Geissel, H.; Gernhäuser, R.; Heil, M.; Johansson, H. T.; Jonson, B.; Kelić-Heil, A.; Langer, C.; Le Bleis, T.; Lemmon, R.; Nilsson, T.; Petri, M.; Plag, R.; Reifarth, R.; Rossi, D.; Scheit, H.; Simon, H.; Weick, H.; Wimmer, C.

    2016-02-01

    Quasi-free scattering reactions of the type (p , 2 p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ˜ 400 MeV /u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p , 2 p) cross sections of 15.8(18) mb, 1.9(2) mb and 1.5(2) mb to the low-lying 0p-hole states overlapping with the ground state (3 /2-) and with the bound excited states of 11B at 2.125 MeV (1 /2-) and 5.02 MeV (3 /2-), respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton-proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement.

  2. Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska

    USGS Publications Warehouse

    Oglesby, D.D.; Dreger, Douglas S.; Harris, R.A.; Ratchkovski, N.; Hansen, R.

    2004-01-01

    We perform inverse kinematic and forward dynamic models of the M 7.9 2002 Denali fault, Alaska, earthquake to shed light on the rupture process and dynamics of this event, which took place on a geometrically complex fault system in central Alaska. We use a combination of local seismic and Global Positioning System (GPS) data for our kinematic inversion and find that the slip distribution of this event is characterized by three major asperities on the Denali fault. The rupture nucleated on the Susitna Glacier thrust fault, and after a pause, propagated onto the strike-slip Denali fault. Approximately 216 km to the east, the rupture abandoned the Denali fault in favor of the more southwesterly directed Totschunda fault. Three-dimensional dynamic models of this event indicate that the abandonment of the Denali fault for the Totschunda fault can be explained by the Totschunda fault's more favorable orientation with respect to the local stress field. However, a uniform tectonic stress field cannot explain the complex slip pattern in this event. We also find that our dynamic models predict discontinuous rupture from the Denali to Totschunda fault segments. Such discontinuous rupture helps to qualitatively improve our kinematic inverse models. Two principal implications of our study are (1) a combination of inverse and forward modeling can bring insight into earthquake processes that are not possible with either technique alone, and (2) the stress field on geometrically complex fault systems is most likely not due to a uniform tectonic stress field that is resolved onto fault segments of different orientations; rather, other forms of stress heterogeneity must be invoked to explain the observed slip patterns.

  3. Inverse kinematics (p, n) reactions studies using the WINDS slow neutron detector and the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Yasuda, J.; Sasano, M.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kameda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, S.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.

    2016-06-01

    We have combined the low-energy neutron detector WINDS (Wide-angle Inverse-kinematics Neutron Detectors for SHARAQ) and the SAMURAI spectrometer at RIKEN Nishina Center RI Beam Factory (RIBF) in order to perform (p, n) reactions in inverse kinematics for unstable nuclei in the mass region around A ∼ 100 . In this setup, WINDS is used for detecting recoil neutrons and the SAMURAI spectrometer is used for tagging decay channel of heavy residue. The first experiment by using the setup was performed to study Gamow-Teller transitions from 132Sn in April 2014. The atomic number Z and mass-to-charge ratio A / Q of the beam residues were determined from the measurements of time of flight, magnetic rigidity and energy loss. The obtained A / Q and Z resolutions were σA/Q = 0.14 % and σZ = 0.22 , respectively. Furthermore, owing to the large momentum acceptance (50 %) of SAMURAI, the beam residues associated with the γ , 1n and 2n decay channel were measured in the same magnetic field setting. The kinematic loci of the measured recoil neutron energy and laboratory angle are clearly seen. It shows that the excitation energy up to about 20 MeV can be reconstructed.

  4. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  5. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  6. Simultaneous Inversion of GPS and InSAR for Regional Kinematics and Transients

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2009-12-01

    The growth of continuous GPS networks and acquisition of InSAR data require fully time-dependent methods for their tectonic analyses. We are working on developing the merger of the kinematic block-model approach with transient deformation with the aim of interpreting the entire geodetic time series. The steady linear motions of the GPS sites are estimated through parameters that describe the block motions (angular velocities) plus elastic strain rates from locked faults and anelastic strain rates from distributed deformation. Through the kinematic model, the steady site velocities have a high degree of spatial correlation. Transients such as earthquakes, after-slip, slow-slip events and volcanic sources are described by a small number of free parameters that are estimated by direct inversion of the position time series simultaneously with the kinematic model parameters. InSAR data are used as line-of-sight displacements between two times (acquisition dates) and are matched by the time-dependent deformation model. We utilize both continuous and survey-mode GPS time series. To date we have applied the method to Cascadia, New Zealand, Sumatra, Papua (Indonesia), Yellowstone (Payne et al., this meeting), and Japan (Ohzono et al., this meeting). In addition to the information we can gain about the kinematics and transients, the method has applications in event detection and outlier removal.

  7. A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    NASA Technical Reports Server (NTRS)

    Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.

    1989-01-01

    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.

  8. Kinematic and dynamic inversion of the 16 December earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Lancieri, M.; Madariaga, R. I.; Sobiesiak, M.; Campos, J. A.

    2009-12-01

    We study the kinematic and dynamic rupture propagation of the M 6.7, intraplate, intermediate depth, slab push earthquake that occurred 16 December 2007, a month after the large interplate thrust event of Tocopilla, Chile (M 7.7). The occurrence of a slab push event after a large subduction earthquake is well explained by Coulomb stress transfer and crack dynamics. A dense seismic network, equipped with short period and accelerometers was deployed after the event of 14 November 2007 by the Task Force of GFZ Potsdam and the University of Chile in Santiago. This network was in place on December 16 providing the best seismic data set ever recorded for a Chilean earthquake. We have used it to do a detailed study of rupture processes. We localized the main event of December 16 and the aftershocks that occurred within 24 h of the main event. The main event was located at 43 km depth, while the aftershocks distribution covered a circular zone of 5 to 8 km of radius centered on the main shock epicenter and with depth ranging between [39 - 49] km. The aftershocks are distributed on an almost vertical plane that agrees with the almost vertical plane of the fault mechanism (86° dip) and all the aftershock have the same mechanism as the main event. We used eight of the nearest accelerometric records low pass filtered at 1 Hz, two of which were situated right above the hypocenter. We performed a non-linear kinematic inversion based on the neighborhood algorithm (NA) with an L2 norm. The velocity model was derived from previous work by GFZ. The earthquake is very well modeled by a circular rupture of radius between 5 and 8 km that propagated with a very low rupture velocity, that varies between 1 and 2 km/s. We need only a few non-linear parameters to model this event, parameter space has a dimension close to 6. The kinematic solution was validated using a full dynamic inversion method in which the rupture process is modeled using finite differences on a coarse grid with a slip

  9. Simulation for thick-target yields of transmutation reactions on radioactive targets, based on inverse kinematics

    NASA Astrophysics Data System (ADS)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2016-06-01

    To dispose of long-lived fission products (LLFP) ejected from nuclear reactor plants is one of the most important tasks on nuclear physics and engineering. The experiments with the radiative target are limited, due to the high radioactivity and chemical property of the target. In consequence, the nuclear reaction data for LLFP are insufficient. In this work, we propose a feasible method to obtain the data for radiative targets using inverse kinematics and simulate specific systems to evaluate the thick-target yields of the nuclear transmutation reactions for LLFP.

  10. Simplified Scheme for the Kinematic Inversion of the Rupture Process: Application to Mexican Earthquakes.

    NASA Astrophysics Data System (ADS)

    Castro-Artola, O.; Iglesias Mendoza, A.

    2012-04-01

    Aiming to obtain some information about the rupture process of intermediate to great earthquakes, many waveform inversion schemes have been proposed. Usual methods involve several subfaults on the fault plane to obtain a detailed image of the kinematic rupture process. On the other hand, it has been questioned the resolution over obtained paramters on the inversion process. In the literature contradictory results can be found for the same earthquake, using different schemes. For this reason, recently, simplified schemes of the rupture process have been proposed, while not providing details it can recover their main characteristics. In this work we propose a modification of the Cotton & Campillo (1995) inversion scheme, while unlike considering the problem as a "rupture process tomographic inversion", we invert the main characteristics assuming simplified geometries (ellipses). Based on the work quoted, the direct problem is reparameterized including one or two ellipses in which the maximum displacement is distributed. For the first ellipse, the position of the center within the fault plane, the major and minor semi-axis are inverted. For the second one we invert the position with respect to the first ellipse and the two semi-axis. To avoid the linearization of the problem, we use a simulated annealing scheme for inversion. When there is not enough evidence of the proper fault plane, we perform an inversion for the two nodal planes published to solve the ambiguity between the auxiliary plane and the fault plane that a point source inversion schemes involve. We tested our method for the well studied earthquake September 30th 1999 Oaxaca (Mw=7.5) (e.g. Hernandez et al., 2001) which is one of the intraslab earthquakes within the Northamerican Plate of moderate magnitude and well recorded. The scheme is evaluated as well with the data generated by the "Escenario 2011" framework for an hypothetical earthquake in Guerrero, Mexico. Results will give us the opportunity to

  11. Inverse hydrograph routing optimization model based on the kinematic wave approach

    NASA Astrophysics Data System (ADS)

    Saghafian, B.; Jannaty, M. H.; Ezami, N.

    2015-08-01

    This article presents and validates the inverse flood hydrograph routing optimization model under kinematic wave (KW) approximation in order to produce the upstream (inflow) hydrograph, given the downstream (outflow) hydrograph of a river reach. The cost function involves minimization of the error between the observed outflow hydrograph and the corresponding directly routed outflow hydrograph. Decision variables are the inflow hydrograph ordinates. The KW and genetic algorithm (GA) are coupled, representing the selected methods of direct routing and optimization, respectively. A local search technique is also enforced to achieve better agreement of the routed outflow hydrograph with the observed hydrograph. Computer programs handling the direct flood routing, cost function and local search are linked with the optimization model. The results show that the case study inflow hydrographs obtained by the GA were reconstructed with accuracy. It was also concluded that the coupled KW-GA model framework can perform inverse hydrograph routing with numerical stability.

  12. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation

    PubMed Central

    Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420

  13. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.

    PubMed

    Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420

  14. Inversion kinematics at deep-seated gravity slope deformations revealed by trenching techniques

    NASA Astrophysics Data System (ADS)

    Pasquaré Mariotto, Federico; Tibaldi, Alessandro

    2016-03-01

    We compare data from three deep-seated gravitational slope deformations (DSGSDs) where palaeoseismological techniques were applied in artificial trenches. At all trenches, located in metamorphic rocks of the Italian Alps, there is evidence of extensional deformation given by normal movements along slip planes dipping downhill or uphill, and/or fissures, as expected in gravitational failure. However, we document and illustrate - with the aid of trenching - evidence of reverse movements. The reverse slips occurred mostly along the same planes along which normal slip occurred, and they produced drag folds in unconsolidated Holocene sediments as well as the superimposition of substrate rocks on Holocene sediments. The studied trenches indicate that reverse slip might occur not only at the toe portions of DSGSDs but also in their central-upper portions. When the age relationships between the two deformation kinematics can be determined, they clearly indicate that reverse slips postdate normal ones. Our data suggest that, during the development of long-lived DSGSDs, inversion kinematics may occur in different sectors of the unstable rock mass. The inversion is interpreted as due either to locking of the frontal blocks of a DSGSD or to the relative decrease in the rate of downward movement in the frontal blocks with respect to the rear blocks.

  15. Alpha-particle capture reactions in inverse kinematics relevant to p-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ujić, P.; Lagoyannis, A.; Mertzimekis, T. J.; de Oliveira Santos, F.; Harissopulos, S.; Demetriou, P.; Perrot, L.; Stodel, Ch.; Saint-Laurent, M.-G.; Kamalou, O.; Lefebvre-Schuhl, A.; Spyrou, A.; Amthor, M. A.; Grevy, S.; Caceres, L.; Koivisto, H.; Laitinen, M.; Uusitalo, J.; Julin, R.

    2011-10-01

    The first feasibility study of an α-particle capture reaction in inverse kinematics at energies relevant to the p process was performed at the Wien Filter of the LISE spectrometer at GANIL. Hereby, the 4He(78Kr,γ)82Sr reaction was investigated using as target an 4He-implanted thin Al foil. The analysis of the data has shown that the determination of (α,γ) reaction cross sections at rather low energies around 2 MeV/u in inverse kinematics is indeed feasible regarding the high rejection rate of the primary beam, which in the present work was better than a factor of 109. However, the expected position of the recoils of interest was completely masked by particles of currently unknown origin that could hardly be attributed to scattering of the primary beam. The most probable explanation for the origin of these "pollutants" could be microscopic dust particles of 10 μm diameter and less, that are extremely difficult to avoid in standard experimental conditions. Hence, the use of a gas-jet target instead of a solid one is compulsory.

  16. An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator

    NASA Technical Reports Server (NTRS)

    Naccarato, Frank; Hughes, Peter

    1989-01-01

    A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs.

  17. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.

    2015-11-01

    The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

  18. Kinematic modeling of mobile robot with rocker-bogie link structure

    NASA Astrophysics Data System (ADS)

    Gang, Taig-Gi; Yi, Soo-Yeong

    2005-12-01

    A method for kinematic modeling of a mobile robot with rocker-bogie link mechanism was described. By using the well-known concept of the instantaneous coordinates, it derives the kinematic model for the full six degree of freedom motion including the x, y, and z motions and the pitch, roll, and yaw rotations. The kinematic model here implies both of the forward and the inverse kinematic equations. The forward kinematic equation with the wheel Jacobian matrices can be used to obtain the robot position and orientation from the measured wheel velocities and the rocker-bogie joint angles. On the contrary, the inverse kinematic equation implies a resulting robot motions consisting of body velocity and turning rate from the individual wheel velocities. Through the computer simulation, the kinematic model of the mobile robot was verified.

  19. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  20. Evaluating the effect of network density and geometric distribution on kinematic source inversion models

    NASA Astrophysics Data System (ADS)

    Zhang, Youbing; Song, Seok Goo; Dalguer, Luis; Clinton, John

    2013-04-01

    An essential element of understanding earthquake source processes is obtaining a reliable source model via geophysical data inversion. The most common procedure to determine the kinematic source parameters (final slip, peak slip velocity, rise time and rupture time) is to invert observed ground motions recorded at a number of different stations (typically strong motion accelerometers). Few studies have been dedicated to evaluate the effect of the number of stations and their geometrical distribution on earthquake source parameters. In this paper we investigate these effects by inverting ground motions from synthetic dynamic earthquake rupture models with heterogeneous stress distribution governed by the slip weakening friction law. Our first target model is a buried strike-slip event (Mw 6.5) in a layered half space. The Compsyn code (Spudich and Xu, 2002) was used in the inversion procedure to generate forward synthetic waveforms, and an Evolutionary Algorithm was used to search for the source parameters: peak slip velocity (PSV), rupture time, and rise time at low frequency (up to 1Hz). The regularized Yoffe function was applied as a single window slip velocity function, which is a flexible slip velocity function defined by three independent parameters: the final slip, the slip duration and the duration of the positive slip acceleration, Tacc (Tinti, et al. 2005). The same velocity structure was used for both the foward and inversion modeling and no noise was added to the synthetic ground motions before inversion. We applied the Tikhonov regularization to smooth the final slip on fault, which is controlled by PSV and rise time. Our preliminary results show that: First, we can capture large slip patches of the dynamic models with good ground velocity waveform fitting, using the regularized Yoffe function, which is consistent with the overall properties of dynamic rupture models. Second, the geometry of station distribution is important for finite kinematic source

  1. Analytical and semi-analytical inverse kinematics of SSRMS-type manipulators with single joint locked failure

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; She, Yu; Xu, Yangsheng

    2014-12-01

    Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators. When a joint is locked in an arbitrary position due to some failures, a 7R manipulator degrades to a 6R manipulator. Without a spherical wrist or three consecutive parallel joints, the inverse kinematics of the 6R manipulator is very complex. In this paper, we propose effective methods to resolve the inverse kinematics for different cases of any joint locked in an arbitrary position. Firstly, configuration characteristics of the SSRMS-type redundant manipulators are analyzed. Then, an existing of closed-form inverse kinematics is discussed for locking different joints. Secondly, D-H frames and corresponding D-H parameters of the new 6-DOF manipulator formed by locking a joint in an arbitrary position are re-constructed. A unified table is then created to describe the kinematics for all possible cases of single joint locking failure. Thirdly, completely analytical and semi-analytical methods are presented to solve the inverse kinematics equations, and the former is used for locking joint 1, 2, 6 or 7 while the latter for locking joint 3, 4 or 5. Finally, typical cases for single joint locking are studied. The results verify the proposed methods.

  2. Evaluating the effect of network density and geometric distribution on kinematic source inversion models

    NASA Astrophysics Data System (ADS)

    Zhang, Youbing; Dalguer, Luis A.; Song, Seok Goo; Clinton, John; Giardini, Domenico

    2015-01-01

    The effect of network density and geometric distribution on kinematic non-linear source inversion is investigated by inverting synthetic ground motions from a buried strike-slip fault (Mw 6.5), that have been generated by dynamic spontaneous rupture modelling. For the inversion, we use a physics-based regularized Yoffe function as slip velocity function. We test three different cases of station network geometry: (i) single station, varying azimuth and epicentral distance; (ii) multistation circular configurations, that is stations at similar distances from the fault, and regularly spaced around the fault; (iii) irregular multistation configurations using different numbers of stations. Our results show: (1) single station tests suggest that it may be possible to obtain a relatively good source model even using a single station. The best source model using a single station is obtained with stations at which amplitude ratios between three components are not large. We infer that both azimuthal angle and source-to-station distance play an important role in the design of optimal seismic network for source inversion. (2) Multistation tests show that the quality of the inverted source systematically correlates neither with the number of stations, nor with waveform misfit. (3) Waveform misfit has a direct correlation with the number of stations, resulting in overfitting the observed data without any systematic improvement of the source. It suggests that the best source model is not necessarily derived from the model with minimum waveform misfit. (4) A seismic network with a small number of well-spaced stations around the fault may be sufficient to obtain acceptable source inversion.

  3. Robotic surgery setup simulation with the integration of inverse-kinematics computation and medical imaging.

    PubMed

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hashizume, Makoto; Konishi, Kozo; Hattori, Asaki

    2006-07-01

    At present, there are representative robot operation systems such as da Vinci and ZEUS which have realized minimally invasive surgery by the use of dexterous manipulators. In the operating room, medical staff must prepare and set up an environment in which the robot has optimal freedom of motion and its functions can be fully demonstrated for every case. The range of motion in which the robot can reach and be maneuvered is restricted by the fixed point of the trocar site. We have developed a preoperative planning system with the function of volume rendering of medical images and automatic positioning by applying an inverse-kinematics computation of surgical robot. The motion of a surgical robot can be simulated in advance with the intuitive interface and kinematics computation program running in the background of the system. If robotic surgery planning with volume rendering of DICOM images is possible, the discussion of a surgical plan can be directly made just after the diagnosis considering the patient-specific structure. This kind of setup platform would be essential for the future introduction of surgical robotics into an operating room. PMID:16828195

  4. Inverse-kinematics proton scattering and analysis of 54Ti and 56Ti

    NASA Astrophysics Data System (ADS)

    Blanchard, R. L.; Kustina, J. S.; Riley, L. A.; Agiorgousis, M. L.; Baugher, T. R.; Bazin, D.; Bowry, M.; Cottle, P. D.; Devone, F. G.; Gade, A.; Glowacki, M. T.; Kemper, K. W.; Lunderberg, E.; McPherson, D. M.; Noji, S.; Recchia, F.; Sadler, B. V.; Scott, M.; Weisshaar, D.; Zegers, R. G. T.

    2014-09-01

    In May 2014, several inverse-kinematics proton scattering measurements were made by the Ursinus College nuclear structure group at the Coupled-Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A stable 76Ge primary beam was fragmented, which produced a ``cocktail beam'' of fifty different nuclei. This resulting beam of nuclei passed through the Ursinus College Liquid Hydrogen Target. When the beam nuclei hit the protons in the Liquid Hydrogen Target, they became excited and emitted gamma rays which we collected with the GRETINA gamma ray tracking array. In the present work, we focus on measurements of 54Ti and 56Ti and implications for the possible shell closures at N = 32 and N = 34 . In May 2014, several inverse-kinematics proton scattering measurements were made by the Ursinus College nuclear structure group at the Coupled-Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A stable 76Ge primary beam was fragmented, which produced a ``cocktail beam'' of fifty different nuclei. This resulting beam of nuclei passed through the Ursinus College Liquid Hydrogen Target. When the beam nuclei hit the protons in the Liquid Hydrogen Target, they became excited and emitted gamma rays which we collected with the GRETINA gamma ray tracking array. In the present work, we focus on measurements of 54Ti and 56Ti and implications for the possible shell closures at N = 32 and N = 34 . This work was supported by the NSF under Grant Nos. PHY- 1303480, PHY-1064819, and PHY-1102511. GRETINA was funded by the US DOE. Operation at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under Grant DE-AC02-05CH11231(LBNL).

  5. Inverse-kinematic proton scattering from 52Ca and Implications for the GRETA Array at FRIB

    NASA Astrophysics Data System (ADS)

    Kustina, J. S.; Blanchard, R. L.; Riley, L. A.; Agiorgousis, M. L.; Baugher, T. R.; Bazin, D.; Bowry, M.; Cottle, P. D.; Devone, F. G.; Gade, A.; Glowacki, M. T.; Kemper, K. W.; Lunderberg, E.; McPherson, D. M.; Noji, S.; Recchia, F.; Sadler, B. V.; Scott, M.; Weisshaar, D.; Zegers, R. G. T.

    2014-09-01

    The GRETINA gamma-ray tracking array is used to map the nuclear structure of unstable isotopes at Argonne National Laboratory, Lawrence Berkeley National Laboratory, and the NSCL at Michigan State University. GRETINA consists of 28 germanium crystals each packaged in 7 clusters of four crystals, which are capable of measuring the gamma rays given off by unstable nuclei. GRETINA is the first stage of the planned GRETA array, which will consist of 30 clusters rather than 7. We present a recent inverse-kinematics proton scattering measurement of 52Ca carried out at the NSCL in May 2014. We illustrate the power of the full GRETA array at the planned Facility for Rare Isotope Beams (FRIB) by comparing this measurement with simulations of a similar measurement with GRETA at FRIB. The GRETINA gamma-ray tracking array is used to map the nuclear structure of unstable isotopes at Argonne National Laboratory, Lawrence Berkeley National Laboratory, and the NSCL at Michigan State University. GRETINA consists of 28 germanium crystals each packaged in 7 clusters of four crystals, which are capable of measuring the gamma rays given off by unstable nuclei. GRETINA is the first stage of the planned GRETA array, which will consist of 30 clusters rather than 7. We present a recent inverse-kinematics proton scattering measurement of 52Ca carried out at the NSCL in May 2014. We illustrate the power of the full GRETA array at the planned Facility for Rare Isotope Beams (FRIB) by comparing this measurement with simulations of a similar measurement with GRETA at FRIB. This work was supported by the NSF under Grant Nos. PHY- 1303480, PHY-1064819, and PHY-1102511. GRETINA was funded by the US DOE. Operation at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under Grant DE-AC02-05CH11231(LBNL).

  6. Over-constrained rigid multibody systems: differential kinematics and fault tolerance

    NASA Astrophysics Data System (ADS)

    Yi, Yong; McInroy, John E.; Chen, Yixin

    2002-07-01

    Over-constrained parallel manipulators can be used for fault tolerance. This paper derives the differential kinematics and static force model for a general over-constrained rigid multibody system. The result shows that the redundant constraints result in constrained active joints and redundant internal force. By incorporating these constraints, general methods for overcoming stuck legs or even the complete loss of legs are derived. The Stewart platform special case is studied as an example, and the relationship between its forward Jacobian and its inverse Jacobian is also found.

  7. Using Statistical Seismicity Constraints in Geodetic Inversions of Crustal Kinematics: Examples from the Aegean Region

    NASA Astrophysics Data System (ADS)

    ozeren, M. S.; Klein, E. C.; Kreemer, C.

    2013-12-01

    Despite the advent of space geodesy, the question of strain rate inversion using geodetic data is still a matter of debate. Traditionally, Global Positioning System (GPS) inversion algorithms aim to obtain a best-fit with GPS velocities, while satisfying the kinematic compatibility conditions. Yet, the strain rates that come out of these inversions are non-unique for a variety of reasons. Perhaps, the most important source of non-uniqueness in the inversion is the way in which the variance-covariance operators are formulated. Even for the isotropic case, there are more than a few ways to approach these formulations (e.g., specifying a priori defined non-uniform distributions rather than single, uniform distributions). Here, we experiment with seismicity-based variance-covariance matrices using a grid system composed of quadrilateral cells. Specifically we imbed the seismicity of the Aegean region directly into the a priori variance-covariance matrices. We normalize the contributions of seismicity within individual cells and from neighboring cells by seismogenic volume. Because recorded seismicity predates emplacement of GPS stations, we use only that portion of the seismic catalog for which we have GPS observations. Unlike Kostrov relation-based inversions that directly link the strain rates to the moment tensor sums, we take the seismicity as a rate-process (assuming that the rates do not change significantly within the time scale we are looking at) and feed this into the variances without any directional information. We do not use the seismicity as a numerical measure of the total seismic deformation; we instead use it as a measure for the capacity of the upper crustal material to deform. This is analogous to simplified effective medium approaches employed in engineering. The earthquakes are spatially non-uniform and likely cause some inelastic deformation in addition to the elastic deformation within the cells used for our numerical calculations. Although these

  8. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  9. Kinematic Slip Model for 12 May 2008 Wenchuan-Beichuan Mw 7.9 Earthquake from Joint Inversion of ALOS, Envisat, and Teleseismic Data

    NASA Technical Reports Server (NTRS)

    Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland

    2008-01-01

    The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).

  10. Gravity modeling: the Jacobian function and its approximation

    NASA Astrophysics Data System (ADS)

    Strykowski, G.; Lauritsen, N. L. B.

    2012-04-01

    In mathematics, the elements of a Jacobian matrix are the first-order partial derivatives of a scalar function or a vector function with respect to another vector. In inversion theory of geophysics the elements of a Jacobian matrix are a measure of the change of the output signal caused by a local perturbation of a parameter of a given (Earth) model. The elements of a Jacobian matrix can be determined from the general Jacobian function. In gravity modeling this function consists of the "geometrical part" (related to the relative location in 3D of a field point with respect to the source element) and the "source-strength part" (related to the change of mass density of the source element). The explicit (functional) expressions for the Jacobian function can be quite complicated and depend both on the coordinates used (Cartesian, spherical, ellipsoidal) and on the mathematical parametrization of the source (e.g. the homogenous rectangular prism). In practice, and irrespective of the exact expression for the Jacobian function, its value on a computer will always be rounded to a finite number of digits. In fact, in using the exact formulas such finite representation may cause numerical instabilities. If the Jacobian function is smooth enough, it is an advantage to approximate it by a simpler function, e.g. a piecewise-polynomial, which numerically is more robust than the exact formulas and which is more suitable for the subsequent integration. In our contribution we include a whole family of the Jacobian functions which are associated with all the partial derivatives of the gravitational potential of order 0 to 2, i.e. including all the elements of the gravity gradient tensor. The quality of the support points for the subsequent polynomial approximation of the Jacobian function is ensured by using the exact prism formulas in quadruple precision. We will show some first results. Also, we will discuss how such approximated Jacobian functions can be used for large scale

  11. Derivation of three closed loop kinematic velocity models using normalized quaternion feedback for an autonomous redundant manipulator with application to inverse kinematics

    SciTech Connect

    Unseren, M.A.

    1993-04-01

    The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.

  12. More power to kinematic earthquake source inversions: With new tools from mismodelling to uncertainties

    NASA Astrophysics Data System (ADS)

    Heimann, Sebastian; Sudhaus, Henriette; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten

    2014-05-01

    The notorious discrepancies among finite fault slip inversion results have attracted much attention over the last years. In consequence, much effort has been put into methods to improve the robustness of such inversions and to quantify uncertainties on results. The techniques exploited include controlling the smoothness of the inferred slip distribution, reducing dimensionality of parameter-space, propagation of observational errors through Bayesian inference, Monte-Carlo modelling and bootstrapping. The difficulties in earthquake finite source parameter estimation arise from three distinct origins: (1) observational errors, (2) the (in)ability of the earthquake source model to represent nature, and (3) mismodelling of synthetic seismograms. While observational errors can often be formally included in the source parameter estimation process, the latter two are much harder to to handle. Appropriateness of the source model (2) is hard to achieve because more realistic models require more model parameters and quickly lead to underdetermined systems. Mismodelling of synthetic seismograms (3) has not been investigated much, probably because the technical effort to deal with it is usually high (because forward modelling may have to be repeated for many earth model variations). In this presentation, we will show that freely available precomputed Green's functions for ensembles of different earth models will make such investigations feasible for routine practice. We will illustrate this with a synthetic test case of a regional kinematic source parameter optimization. The presented work is closely related with the development of a new open source Python toolbox for the handling of precomputed Green's functions and for synthetic seismogram generation (http://emolch.github.io/pyrocko/gf). Ultimately, we would like to launch a community driven open access Green's function sharing platform and web services for synthetic seismogram and test scenario generation (http://kinherd.org/).

  13. Direct measurement of 38K(p , γ) 39Ca in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Lotay, Gavin; Christian, Gregory; Burke, Devin; Chen, Alan; Connolly, Devin; Davids, Barry; Fallis, Jenniffer; Hager, Ulrike; Hutcheon, Dave; Mahl, Adam; Rojas, Alex; Ruiz, Chris; Sun, Xuan

    2014-09-01

    Sensitivity studies have identified 38K(p , γ) 39Ca as one of a handful of significant reactions in ONe novae, with the potential to change 38Ar, 39K, and 40Ca abundances in ONe ejecta by factors of ~18, ~17 and ~24, respectively. We have performed the first ever measurement of this reaction using the DRAGON recoil mass separator at TRIUMF. The experiment was performed in inverse kinematics using a beam of radioactive 38K. To date, this is the most massive projectile ever used in a radiative capture experiment. The astrophysical reaction rate is expected to be dominated by low- l resonances inside the Gamow window. Hence we have focused our efforts on the resonances at Ec.m. = 386, 515, and 689 keV. In this talk, I will present an overview of the experiment and data analysis and show preliminary resonance strengths (or upper limits) measured at each of the three energies. Finally, I will discuss the astrophysical implications of the measurements as they relate to ONe novae.

  14. Investigation of the nuclear matter distribution of 56Ni by elastic proton scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    von Schmid, M.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zamora, J. C.; Zenihiro, J.; the EXL Collaboration

    2015-11-01

    We have measured the nuclear-matter distribution of the doubly-magic N = Z nucleus 56Ni by investigating elastic proton scattering in inverse kinematics. The radioactive beam of 56Ni was injected and stored in the experimental storage ring (ESR, GSI) and interacted with an internal hydrogen gas-jet target. The high revolution frequency of the ions in the ring enabled a high luminosity, despite the low density of the target being used. This way, measurements at very low momentum transfers became possible. By measuring the energy and the scattering angle of the recoiling protons, we were able to separate the elastic reaction channel from inelastic scattering to the first excited {2}+ state of 56Ni and deduced the differential cross section of 56Ni {(p,p)}56 Ni. The data were analyzed within the framework of the Glauber multiple-scattering theory in order to extract the nuclear-matter radius and radial matter distribution of 56Ni. Parameterizing the matter distribution with the phenomenological Symmetrized Fermi distribution, a preliminary value of 3.5 fm for the rms matter radius was deduced. This experiment was part of an EXL (EXotic nuclei studied in Light-ion induced reactions at storage rings) campaign at GSI in 2012 and was the first successful investigation of nuclear reactions with a stored radioactive beam ever.

  15. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-01

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the 6He, 8He, 11Li, and 14Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the 8Li, 9Li, and 12Be nuclei.

  16. Measurement of the ^134Te(d,p)^135Te Reaction in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Pain, Steven

    2007-10-01

    The development of high quality radioactive beams, such as those at the HRIBF at ORNL, has made possible the performance of transfer reactions on unstable nuclei. Measurements of (d,p) reactions on n-rich fission fragments yield data on nuclear structure away from stability, and are of astrophysical interest due to the proximity to suggested r- process paths. The energies and spectroscopic information of single-particle states near to shell closures are of particular importance, since they provide both an important constraint on nuclear structure models and are directly relevant to direct neutron-capture cross sections. The single-neutron states in ^ 135Te, one neutron beyond the N=82 shell closure, are of particular interest, both for r-process nucleosynthesis and its relevance to an isotopic anomaly of Xe found in pre-solar meteoritic grains. The ^134Te(d,p)^135Te reaction has been measured in inverse kinematics at the HRIBF utilizing a beam of ^134Te at 643 MeV and a deuterated plastic target. Proton ejectiles were detected forward and backwards of θlab = 90^o using an early implementation of the Oak Ridge Rutgers University Barrel Array (ORRUBA) in conjunction with SIDAR. Details of the experiment and the current stage of the data analysis will be presented.

  17. MUST II: Large solid angle light charged particle telescope for inverse kinematics studies with radioactive beams

    SciTech Connect

    Pollacco, E.; Atkin, E.; Auger, F.; Baron, P.; Drouart, A.; Rouger, M.; Boujrad, A.; Olivier, L.; Raine, B.; Roussel-Chomaz, P.; Saillant, F.; Tripon, M.

    2003-08-26

    Over the past four years we have studied (p,p'), (d,p) ,(d,3He) and other reactions using radioactive beams in inverse kinematics to obtain spectroscopic information for nuclei away from the valley of stability After a general overview of the experimental method we will describe our ongoing MUST II development. This is to build a very compact (1000cm3) three stage telescope with an active area of 100cm2 with position resolution of 0.7x0.7 mm2 and time of flight measurement. The mass identification and energy dynamic range is of 0.4 to 80 MeV.A up to alpha particles. The compactness of the array is assured through the use of an ASIC development to measure the time of flight and energy. The large solid angle coverage of 2.6sr and compactness of this array will allow it to be used in particle-gamma coincidence experiments.

  18. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    SciTech Connect

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V. Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.

  19. The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., III

    1992-01-01

    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.

  20. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  1. Kinematics Analysis of the Parallel Mechanism with Vertically Fixed Linear Actuators

    NASA Astrophysics Data System (ADS)

    Masuda, Takanori; Fujiwara, Motoyoshi; Arai, Tatsuo

    A 6 degrees of freedom parallel mechanism actuated by vertically fixed linear actuators was developed for heavy material handling and machining. The mechanism allows easy trajectory generation, since the vertical arrangement of the linear actuators simplifies the caluculation of its inverse kinematics. This paper presents inverse kinematics and Jacobian matirix solutions. Way to avoid component interference, which is divided into three types, is proposed. The combination of design parameters is decided by comparing the characteristics of area of movement, resolution and velocity. The working space is then shown. The singularity is analyzed by evaluating determinants of the Jacobian matrix. Lengthening the connecting rods and limiting the range of the end effector rotational angles are effective in avoiding the singular configurations as well as interference. Finally, the developed prototype mechanism is introduced, and its application to tool positioning and machining is described.

  2. Observation of isoscalar multipole strengths in exotic doubly-magic 56Ni in inelastic α scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Bagchi, S.; Gibelin, J.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Achouri, N. L.; Akimune, H.; Bastin, B.; Boretzky, K.; Bouzomita, H.; Caamaño, M.; Càceres, L.; Damoy, S.; Delaunay, F.; Fernández-Domínguez, B.; Fujiwara, M.; Garg, U.; Grinyer, G. F.; Kamalou, O.; Khan, E.; Krasznahorkay, A.; Lhoutellier, G.; Libin, J. F.; Lukyanov, S.; Mazurek, K.; Najafi, M. A.; Pancin, J.; Penionzhkevich, Y.; Perrot, L.; Raabe, R.; Rigollet, C.; Roger, T.; Sambi, S.; Savajols, H.; Senoville, M.; Stodel, C.; Suen, L.; Thomas, J. C.; Vandebrouck, M.; Van de Walle, J.

    2015-12-01

    The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GANIL facility. The centroid of the ISGMR has been obtained at Ex = 19.1 ± 0.5 MeV. Evidence for the low-lying part of the ISGDR has been found at Ex = 17.4 ± 0.7 MeV. The strength distribution for the dipole mode shows similarity with the prediction from the Hartree-Fock (HF) based random-phase approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics.

  3. Tsunami waveform inversion for sea surface displacement following the 2011 Tohoku earthquake: Importance of dispersion and source kinematics

    NASA Astrophysics Data System (ADS)

    Hossen, M. Jakir; Cummins, Phil R.; Dettmer, Jan; Baba, Toshitaka

    2015-09-01

    This paper considers the importance of model parameterization, including dispersion, source kinematics, and source discretization, in tsunami source inversion. We implement single and multiple time window methods for dispersive and nondispersive wave propagation to estimate source models for the tsunami generated by the 2011 Tohoku-Oki earthquake. Our source model is described by sea surface displacement instead of fault slip, since sea surface displacement accounts for various tsunami generation mechanisms in addition to fault slip. The results show that tsunami source models can strongly depend on such model choices, particularly when high-quality, open-ocean tsunami waveform data are available. We carry out several synthetic inversion tests to validate the method and assess the impact of parameterization including dispersion and variable rupture velocity in data predictions on the inversion results. Although each of these effects has been considered separately in previous studies, we show that it is important to consider them together in order to obtain more meaningful inversion results. Our results suggest that the discretization of the source, the use of dispersive waves, and accounting for source kinematics are all important factors in tsunami source inversion of large events such as the Tohoku-Oki earthquake, particularly when an extensive set of high-quality tsunami waveform recordings are available. For the Tohoku event, a dispersive model with variable rupture velocity results in a profound improvement in waveform fits that justify the higher source complexity and provide a more realistic source model.

  4. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Pain, S. D.; Cizewski, J. A.; Hatarik, R.; Jones, K. L.; Thomas, J. S.; Bardayan, D. W.; Blackmon, J. C.; Nesaraja, C. D.; Smith, M. S.; Kozub, R. L.; Johnson, M. S.

    2007-08-01

    The development of high quality radioactive beams, such as those at the HRIBF at Oak Ridge National Laboratory, has made possible the measurement of transfer reactions in inverse kinematics on unstable nuclei. Measurement of (d,p) reactions on neutron-rich nuclei yield data on the evolution of nuclear structure away from stability, and are of astrophysical interest due to the proximity of suggested nuclear burning paths in the astrophysical r-process in supernovae. Experimentally, (d,p) reactions on heavy (Z = 50) fission fragments are complicated by the strongly inverse kinematics, and the relatively low beam intensities. Consequently, ejectile detection with high resolution in position and energy, a high dynamic range and a high solid angular coverage is required. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new silicon detector array currently under construction, optimized for the measurement of (d,p) reactions in inverse kinematics. It consists of two rings of silicon detectors, providing a high solid angular coverage for angles symmetrically forward and backward of 90°. Resistive strip detectors are used to obtain high precision position and energy measurement of reaction ejectiles.

  5. A Real-Time Seismogeodetic Network Using MEMS Accelerometers and Its Performance in Kinematic Slip Inversions

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Haase, J. S.; Melgar, D.; Bock, Y.; Geng, J.; Saunders, J. K.

    2014-12-01

    The seismogeodetic combination of high-rate GPS observables and seismic acceleration captures the broadband on-scale recording of earthquake ground motions. The use of these data for determining rapid centroid moment tensor solutions ("fastCMT") has been demonstrated in the post-analysis of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. This seismogeodetic combination will improve source inversions for future earthquakes, but large-scale accelerometer deployment at the many available permanent GPS stations is limited by the cost of traditional observatory-grade accelerometers. Instead, we improve feasibility by installing SIO Geodetic Modules and low-cost MEMS accelerometers at 17 GPS stations in southern California near the San Andreas, San Jacinto, and Elsinore faults, transmitting data in real time for analysis of seismic velocity and displacement waveforms. We examine the performance of our seismogeodetic subnetwork using the El Mayor-Cucapah earthquake as our focus. We calculate a kinematic slip inversion, using the small set of seismogeodetic waveforms available at the time of the event, and assess the reliability of the result in comparison to the fastCMT solution. We evaluate reliability by using our model to predict ground motion at independent stations, and using recorded data as verification at a range of frequencies. Next we supplement the dataset by including realistic simulated waveforms for the additional 17 seismogeodetic stations, adding realistic seismogeodetic noise, and demonstrate the improved reliability of our result in terms of reducing the space of possible solutions due to better geometric constraints. The MEMS accelerometer has higher noise than the observatory-grade accelerometer, which we quantify using strong motion recordings from a series of UCSD NEES outdoor shaketable experiments conducted in December 2013 and January 2014. Results will provide confidence in the use of the MEMS accelerometer for large-scale deployment as an

  6. Estimating periodic organ motions based on inverse kinematics using tetrahedron mesh registration

    NASA Astrophysics Data System (ADS)

    Kang, Nahyup; Kim, Ji-Yeon; Kim, Kyung Hwan; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Minimally/Non-invasive surgery has become increasingly widespread because of its therapeutic benefits such as less pain, less scarring, and shorter hospital stay. However, it is very difficult to eliminate the target cancer cells selectively without damaging nearby normal tissues and vessels since the tumors inside organs cannot be visually tracked in realtime with the existing imaging devices while organs are deformed by respiration and surgical instruments. Note that realtime 2D US imaging is widely used for monitoring the minimally invasive surgery such as Radiofrequency ablation; however, it is difficult to detect target tumors except high-echogenic regions because of its noisy and limited field of view. To handle these difficulties, we present a novel framework for estimating organ motion and deformed shape during respiration from the available features of 2D US images, by means of inverse kinematics utilizing 3D CT volumes at the inhale and exhale phases. First, we generate surface meshes of the target organ and tumor as well as centerlines of vessels at the two extreme phases considering surface correspondence. Then, the corresponding tetrahedron meshes are generated by coupling the internal components for volumetric modeling. Finally, a deformed organ mesh at an arbitrary phase is generated from the 2D US feature points for estimating the organ deformation and tumor position. To show effectiveness of the proposed method, the CT scans from real patient has been tested for estimating the motion and deformation of the liver. The experimental result shows that the average errors are less than 3mm in terms of tumor position as well as the whole surface shape.

  7. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-06-01

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions. PMID:27194213

  8. Postseismic Deformation Following the 2010 El Mayor-Cucapah Earthquake: Observations, Kinematic Inversions, and Dynamic Models

    NASA Astrophysics Data System (ADS)

    Rollins, Christopher; Barbot, Sylvain; Avouac, Jean-Philippe

    2015-05-01

    Due to its location on a transtensional section of the Pacific-North American plate boundary, the Salton Trough is a region featuring large strike-slip earthquakes within a regime of shallow asthenosphere, high heat flow, and complex faulting, and so postseismic deformation there may feature enhanced viscoelastic relaxation and afterslip that is particularly detectable at the surface. The 2010 El Mayor-Cucapah earthquake was the largest shock in the Salton Trough since 1892 and occurred close to the US-Mexico border, and so the postseismic deformation recorded by the continuous GPS network of southern California provides an opportunity to study the rheology of this region. Three-year postseismic transients extracted from GPS displacement time-series show four key features: (1) 1-2 cm of cumulative uplift in the Imperial Valley and 1 cm of subsidence in the Peninsular Ranges, (2) relatively large cumulative horizontal displacements 150 km from the rupture in the Peninsular Ranges, (3) rapidly decaying horizontal displacement rates in the first few months after the earthquake in the Imperial Valley, and (4) sustained horizontal velocities, following the rapid early motions, that were still visibly ongoing 3 years after the earthquake. Kinematic inversions show that the cumulative 3-year postseismic displacement field can be well fit by afterslip on and below the coseismic rupture, though these solutions require afterslip with a total moment equivalent to at least a earthquake and higher slip magnitudes than those predicted by coseismic stress changes. Forward modeling shows that stress-driven afterslip and viscoelastic relaxation in various configurations within the lithosphere can reproduce the early and later horizontal velocities in the Imperial Valley, while Newtonian viscoelastic relaxation in the asthenosphere can reproduce the uplift in the Imperial Valley and the subsidence and large westward displacements in the Peninsular Ranges. We present two forward

  9. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Kneller, Erik A.; Johnson, Christopher A.; Karner, Garry D.; Einhorn, Jesse; Queffelec, Thomas A.

    2012-12-01

    Published plate reconstructions commonly show significant differences in initial plate configuration and syn-extensional opening directions. The variability of published models is primarily due to the difficulty associated with restoring crustal stretching history. Here we present an inverse non-rigid kinematic method that inverts plate motion and present day crustal thickness to approximate the history of bulk lateral strain and crustal thinning associated with lithospheric stretching. The kinematic link between plate motion and bulk crustal thickness that is used with this method is based on insights obtained from geodynamic models. We implement this approach in open source kinematic modeling software and apply it to test new Early Mesozoic plate kinematic models of the Central Atlantic. This application shows that the patterns of stretching inferred from the syn-rift basins of the Newark Supergroup can be explained if (1) syn-rift Euler pole flow lines were parallel to the Grand Banks transform margin and (2) initial formation of the East Coast Margin Igneous Province was coincident with the formation of the Central Atlantic Magmatic Province. These syn-rift to breakup models of the Central Atlantic lead to better constrained models of early seafloor spreading that show full spreading velocities in the ultraslow regime and within the transition from ultraslow to slow spreading regimes.

  10. Probing the cluster structure of 7Li via elastic scattering on protons and deuterons in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Pakou, A.; Soukeras, V.; Cappuzzello, F.; Acosta, L.; Agodi, C.; Aslanoglou, X.; Calabrese, S.; Carbone, D.; Cavallaro, M.; Foti, A.; Keeley, N.; Marquinez-Duran, G.; Martel, I.; Mazzocco, M.; Parascandolo, C.; Pierroutsakou, D.; Rusek, K.; Sgouros, O.; Strano, E.; Zagatto, V. A. B.

    2016-07-01

    Elastic scattering measurements were performed for the 7Li+p system in inverse kinematics at energies of 16, 25, 35, and 38.1 MeV and for the 7Li+d system at 38.1 MeV. The heavy ejectiles were detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud in Catania, Italy. The results are analyzed using the Jeukenne-Lejeune-Mahaux and continuum discretized coupled channel frameworks. In the latter case the cluster structure of 7Li proves to be critical for the theoretical interpretation of the experimental results.

  11. S-Factor measurement of the 12C(p,γ)13N reaction in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Stöckel, Klaus; Reinhardt, Tobias P.; Akhmadaliev, S.; Bemmerer, D.; Gohl, St.; Reinicke, S.; Schmidt, K.; Serfling, M.; Szücs, T.; Takács, M. P.; Wagner, L.; Zuber, K.

    2015-05-01

    Hydrogen rich solid targets have been developed and produced to investigate the 12C(p, γ)13N reaction in inverse kinematics. The SRIM simulation software has been used to determine the parameters for ion implantation in various materials. Nuclear Resonant Reacton Analysis (NRRA) with the resonant reaction 15N(p, αγ)12C has been carried out to measure the hydrogen content of the produced targets. Measurements of the produced targets at the energy range from Ecm = 577 keV down to Ecm = 191 keV, were performed at the 3-MV Tandetron of Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

  12. Geometry and kinematics of Late Cretaceous inversion structures in the Jiuquan Basin, western China

    USGS Publications Warehouse

    Wang, B.; Chen, H.; Yang, S.; Xiao, A.; Cheng, X.; Rupp, J.A.

    2005-01-01

    Late Cretaceous inversion structures, which are significant for oil and gas accumulation, are widely distributed throughout the Jiuquan Basin. These structures are primarily made up of inverted faults and fault-related folds. Most of the axial planes of folds are parallel to inverted faults trending north-east, indicating that the principal stress direction was north-west - south-east in the Late Cretaceous. The average inversion ratios of faults in the four sags that were investigated are 0.39, 0.29, 0.38, 0.32. The average inversion ratio in the Jiuquan Basin is 0.34 and the degree of inversion is moderate to strong. As moderate inversion is suitable for forming excellent hydrocarbon traps, there is considered to be significant potential in the basin for the presence of structural traps. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Development of a High Solid-Angle Silicon Detector Array for Measurement of Transfer Reactions in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Pain, S. D.; Bardayan, D. W.; Blackmon, J. C.; Carter, H. K.; Cizewski, J. A.; Domizioli, C.; Erikson, L.; Harlin, C.; Johnson, M. S.; Jones, K. L.; Kozub, R.; Moazen, B. H.; Nesaraja, C. D.; Smith, M. S.; Thomas, J. S.; Visser, D.

    2004-11-01

    The development of radioactive beams with high quality beam profiles, such as those available at the HRIBF at Oak Ridge National Laboratory, has made the perform transfer reactions in inverse kinematics on unstable nuclei possible. Such measurements on neutron-rich nuclei yield data on the development of nuclear structure away from stability, and are of specific astrophysical interest due to the proximity to the r-process path. With the relatively low intensities currently obtainable with radioactive beams (compared to stable beam intensities), high detection efficiencies are required to make such experiments statistically feasible. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new silicon detector array designed for measurements of transfer reactions in inverse kinematics, consisting of two rings of silicon detector telescopes. These provide high solid angular coverage for angles symmetrically forward and backward of θ = 90^rc. Each telescope consists of a thin transmission detector, and a thick stopping detector, and each detector is divided into four resistive strips, providing position information. Such an arrangement enables particle identification, determination of the emission angles of the detected particles and measurement of their energies. The array is currently in its construction phase. An outline of the arrays scientific motivation and technical aspects will be presented. *This work was supported in part by the U.S. Department of Energy

  14. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    NASA Astrophysics Data System (ADS)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  15. Closed-form inverse kinematics for intra-operative mobile C-arm positioning with six degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lejing; Zou, Rui; Weidert, Simon; Landes, Juergen; Euler, Ekkehard; Burschka, Darius; Navab, Nassir

    2011-03-01

    For trauma and orthopedic surgery, maneuvering a mobile C-arm X-ray device into a desired position in order to acquire the right picture is a routine task. The precision and ease of use of the C-arm positioning becomes even more important for more advanced imaging techniques as parallax-free X-ray image stitching, for example. Standard mobile C-arms have only five degrees of freedom (DOF), which definitely restricts their motions that have six DOF in 3D Cartesian space. We have proposed a method to model the kinematics of the mobile Carm and operating table as an integrated 6DOF C-arm X-ray imaging system.1 This enables mobile C-arms to be positioned relative to the patient's table with six DOF in 3D Cartesian space. Moving mobile C-arms to a desired position and orientation requires finding the necessary joint values, which is an inverse kinematics problem. In this paper, we present closed-form solutions, i.e. analytic expressions, obtained in an algebraic way for the inverse kinematics problem of the 6DOF C-arm model. In addition, we implement a 6DOF C-arm system for interactively radiation-free C-arm positioning based on a continuous guidance from C-arm pose estimation. For this we employ a visual marker pattern attached under the operating table and a mobile C-arm system augmented by a video camera and mirror construction. In our experiment, repositioning C-arm to a pre-defined pose in a phantom study demonstrates the practicality and accuracy of our developed 6DOF C-arm system.

  16. A new approach to solve inverse kinematics of a planar flexible continuum robot

    NASA Astrophysics Data System (ADS)

    Amouri, Ammar; Mahfoudi, Chawki; Zaatri, Abdelouahab; Merabti, Halim

    2014-10-01

    Research on the modeling of continuum robots, focused on ways to constrain the geometrical models, while maintaining maximum specificities and mechanical properties of the robot. In this paper we propose a new numerical solution for solving the inverse geometric model of a planar flexible continuum robot, we assuming that each section is curved in an arc of a circle, while having the central axis of the inextensible structure. The inverse geometric model for one section is calculated geometrically, whereas the extreme points, of each section, used in calculating the inverse geometric model for multi-section is calculated numerically using a particle swarm optimization (PSO) method. Simulation examples of this method are carried to validate the proposed approach.

  17. Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Bock, Y.

    2015-05-01

    Rapid near-source earthquake source modeling relying only on strong motion data is limited by instrumental offsets and magnitude saturation, adversely affecting subsequent tsunami prediction. Seismogeodetic displacement and velocity waveforms estimated from an optimal combination of high-rate GPS and strong motion data overcome these limitations. Supplementing land-based data with offshore wave measurements by seafloor pressure sensors and GPS-equipped buoys can further improve the image of the earthquake source and prediction of tsunami extent, inundation, and runup. We present a kinematic source model obtained from a retrospective real-time analysis of a heterogeneous data set for the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake. Our model is consistent with conceptual models of subduction zones, exhibiting depth dependent behavior that is quantified through frequency domain analysis of slip rate functions. The stress drop distribution is found to be significantly more correlated with aftershock locations and mechanism types when off-shore data are included. The kinematic model parameters are then used as initial conditions in a fully nonlinear tsunami propagation analysis. Notably, we include the horizontal advection of steeply sloping bathymetric features. Comparison with post-event on-land survey measurements demonstrates that the tsunami's inundation and runup are predicted with considerable accuracy, only limited in scale by the resolution of available topography and bathymetry. We conclude that it is possible to produce credible and rapid, kinematic source models and tsunami predictions within minutes of earthquake onset time for near-source coastal regions most susceptible to loss of life and damage to critical infrastructure, regardless of earthquake magnitude.

  18. Kinematic inversion of strong motion data using a Gaussian parameterization of the slip: application to the Iwate-Miyagi earthquake.

    NASA Astrophysics Data System (ADS)

    Lucca, Ernestina; Festa, Gaetano; Emolo, Antonio

    2010-05-01

    We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and the rupture velocity distributions on the fault plane. Kinematic inversion of strong motion data is an ill-conditioned inverse problem, with several solutions available also in the case of noise-free synthetic data (Blind test on earthquake source inversion,http://www.seismo.ethz.ch/staff/martin/BlindTest.html).On the other hand, complete dynamic inversion still looks impracticable, because of an unclear understanding of the physical mechanisms controlling the energy balance at the rupture tip and a strong correlation between the initial stress field and the parameters of the constitutive law. Hence a strong effort is demanded to increase the robustness of the inversion, looking at the details of the slip and rupture velocity parameterization, at the global exploration techniques, at the efficiency of the cost-function in selecting solutions, at the synthesis process in retrieving the stable features of the rupture. In this study, the forward problem, i.e. the ground motion simulation, is solved evaluating the representation integral in the frequency domain by allowing possible rake variation along the fault plane. The Green's tractions on the fault are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique on a Delaunay triangulation of the fault plane. The rupture velocity is finally defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at

  19. Study of 12C excited states decaying into three α particles using the thick target inverse kinematic technique

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; de Souza, R. T.; Hudan, S.; Fang, D.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.

    2016-05-01

    We will show that the Thick Target Inverse Kinematics (TTIK) technique can be used to investigate the breakup of excited selfconjugate nuclei into many alpha particles. Two test runs were performed at Cyclotron Institute of Texas A&M University to study the reaction 20Ne+α at maximum beam energies of 10 and 12 AMeV. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature.

  20. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  1. Kinematic equations for control of the redundant eight-degree-of-freedom advanced research manipulator 2

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.

  2. Kinematic inversion of the Mw 6.0 2004 Parkfield, California, earthquake using elliptical sub-fault approximation

    NASA Astrophysics Data System (ADS)

    Twardzik, C.; Madariaga, R. I.; Das, S.; Custodio, S.; Archuleta, R. J.

    2011-12-01

    We explore a recently developed procedure for kinematic inversion based on elliptical sub-fault approximation. In this method, the slip is modelled by a small set of elliptical patches, each ellipse having a Gaussian distribution of slip. In addition to creating an intrinsically smooth slip distribution inside the slipping region, elliptical patches have the advantage of reducing the number of parameters to invert, since seven parameters are sufficient to describe each patch. We invert near-field strong ground motion data for the 28th September 2004 Parkfield, California, earthquake to test this approach. The dataset consists of 10 digital 3-components 18 s long accelerograms, which were integrated twice to obtain displacement records and filtered between 0.16Hz and 1Hz. Thirty-three digitized analog stations also recorded this earthquake but were not used in the inversion due to absence of absolute timing. However, these stations are used as a additional criteria to test our final model. However, some of these stations are difficult to fit as they lie very close to the fault and exhibit very strong site effects, for example, the influence of fault guided waves which are difficult to model. The best kinematic model is a slip pattern elongated in the strike direction with an average slip of about 0.55 m and a high-slip patch of 1.1 m located 20 km north-west of the hypocenter. Although some studies show evidence of high slip near the hypocenter, we find that the existence of this feature does not improve the fit to the data, and is therefore not resolvable using digital stations only. The final moment is 1.81 x 1018 N m, which is close to the CMT value of 1.13 x 1018 N m. We show that the data can be explained by a rupture propagating at a horizontal speed of 0.9Vs. Our slip distribution is perfectly aligned below a level delineated by small aftershocks at a depth of approximately 6 km, but this level does not coincide with any known structural boundary. By looking

  3. Two measurements of the 22Na+p resonant scattering via thick-target inverse-kinematics method

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Jin, S. J.; Jing, L.; Han, Z. Y.; Bai, X. X.; Guo, B.; Li, Y. J.; Li, Z. H.; Lian, G.; Su, J.; Sun, L. J.; Yan, S. Q.; Zeng, S.; Liu, W. P.; Yamaguchi, H.; Kubono, S.; Hu, J.; Kahl, D.; He, J. J.; Wang, J. S.; Tang, X. D.; Xu, S. W.; Ma, P.; Zhang, N. T.; Bai, Z.; Huang, M. R.; Jia, B. L.; Jin, S. L.; Ma, J. B.; Ma, S. B.; Ma, W. H.; Yang, Y. Y.; Zhang, L. Y.; Jung, H. S.; Moon, J. Y.; Lee, C. S.; Teranishi, T.; Wang, H. W.; Ishiyama, H.; Iwasa, N.; Komatsubara, T.; Brown, B. A.

    2016-02-01

    22Na is an important isotope for the study of extinct radioactivity, meanwhile its sufficiently long half life provides the possibility to observe live 22Na in nearby nova explosions. The 22Na(p,γ) 23Mg is one of the key reactions that influence the 22Na abundance in nova ejecta. To study the proton resonant states in 23Mg relevant to the astrophysical 22Na(p,γ) 23Mg reaction rates, two measurements have been carried out at the CRIB separator of University of Tokyo, and the RIBLL secondary beamline in Lanzhou, respectively. The 22Na secondary beam was produced via the 1H(22Ne, 22Na)n charge exchange reaction. Thick-target inverse-kinematics method is applied to obtain the excitation function of 22Na+p elastic scattering. Extended gas target and solid state polyethylene foil were used in the two measurements, respectively, to map the different excitation energy region of the compound nucleus 23Mg. Several new resonant levels are observed and their contribution to the 22Na(p,γ) 23Mg reaction rate is evaluated.

  4. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  5. Using synthetic kinematic source inversions with dynamic rupture models to evaluate the effect of seismic network density and geometry in near-field source inversions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Dalguer, L. A.; Song, S.; Clinton, J. F.

    2013-12-01

    Detailed source imaging of the spatial and temporal slip distribution of earthquakes is a main research goal for seismology. In this study we investigate how the number and geometrical distribution of seismic stations affect finite kinematic source inversion results by inverting ground motions derived from a known synthetic dynamic earthquake rupture model, which is governed by the slip weakening friction law with heterogeneous stress distribution. Our target dynamic rupture model is a buried strike-slip event (Mw 6.5) in a layered half space (Dalguer & Mai, 2011) with broadband synthetic ground motions created at 168 near-field stations. In the inversion, we modeled low frequency (under 1Hz) waveforms using a genetic algorithm in a Bayesian framework (Moneli et al. 2008) to retrieve peak slip velocity, rupture time, and rise time of the source. The dynamic consistent regularized Yoffe function (Tinti et al. 2005) was applied as a single window slip velocity function. Tikhonov regularization was used to smooth final slip. We tested three station network geometry cases: (a) single station, in which we inverted 3 component waveforms from a single station varying azimuth and epicentral distance; (b) multi-station configurations with similar numbers of stations all at similar distances from, but regularly spaced around the fault; (c) irregular multi-station configurations using different numbers of stations. For analysis, waveform misfits are calculated using all 168 stations. Our results show: 1) single station tests suggest that it may be possible to obtain a relatively good source model even using one station, with a waveform misfit comparable to that obtained with the best source model. The best single station performance occurs with stations in which amplitude ratios between the three components are not large, indicating that P & S waves are all present. We infer that both body wave radiation pattern and distance play an important role in selection of optimal

  6. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  7. The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface

    PubMed Central

    2014-01-01

    Background There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface. Methods Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses. Results No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively. Conclusion These findings provide preliminary evidence

  8. Pre-stack full wavefield inversion for elastic parameters of TI media

    NASA Astrophysics Data System (ADS)

    Zhang, Meigen; Huang, Zhongyu; Li, Xiaofan; Wang, Miaoyue; Xu, Guangyin

    2006-03-01

    Pre-stack full wavefield inversion for the elastic parameters of transversely isotropical media is implemented. The Jacobian matrix is derived directly with the finite element method, just like the full wavefield forward modelling. An absorbing boundary scheme combining Liao's transparent boundary condition with Sarma's attenuation boundary condition is applied to the forward modelling and Jacobian calculation. The input data are the complete ground-recorded wavefields containing full kinematic and dynamic information for the seismic waves. Inversion with such data is desirable as it should improve the accuracy of the estimated parameters and also reduce data pre-processing, such as wavefield identification and separation. A scheme called energy grading inversion is presented to deal with the instability caused by the large energy difference between different arrivals in the input data. With this method, parameters in the shallow areas, which mainly affect wave patterns with strong energy, converge before those of deeper media. Thus, the number of unknowns in each inversion step is reduced, and the stability and reliability of the inversion process is greatly improved. As a result, the scheme is helpful to reduce the non-uniqueness in the inversion. Two synthetic examples show that the inversion system is reliable and accurate even though initial models deviate significantly from the actual models. Also, the system can accurately invert for transversely isotropic model parameters even with the introduction of strong random noise.

  9. Study of Gamow-Teller transitions from 132Sn via the (p,n) reaction at 220 MeV/u in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Sasano, M.; Yasuda, J.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kamaeda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, K.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.

    2016-01-01

    The charge-exchange (p,n) reaction at 220 MeV has been measured to extract the strength distribution of Gamow-Teller transitions from the doubly magic unstable nucleus 132Sn. A recently developed experimental technique of measuring the (p,n) reaction in inverse kinematics has been applied to the study of unstable nuclei in the mass region around A˜100 for the first time. We have combined the low-energy neutron detector WINDS and the SAMURAI spectrometer at the RIKEN radioactive isotope beam factory (RIBF). The particle identification plot for the reaction residues obtained by the spectrometer provides the clear separation of the CE reaction channel from other background events, enabling us to identify kinematic curves corresponding the (p, n) reaction. Further analysis to reconstruct the excitation energy spectrum is ongoing.

  10. A Jacobian elliptic single-field inflation

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Gallo, Emanuel

    2015-06-01

    In the scenario of single-field inflation, this field is described in terms of Jacobian elliptic functions. This approach provides, when constrained to particular cases, analytic solutions already known in the past, generalizing them to a bigger family of analytical solutions. The emergent cosmology is analyzed using the Hamilton-Jacobi approach and then the main results are contrasted with the recent measurements obtained from the Planck 2015 data.

  11. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  12. Human Hand Kinematic Modeling Based on Robotic Concepts for Digit Animation with Dynamic Constraints

    NASA Astrophysics Data System (ADS)

    Tondu, Bertrand

    The recent development of highly anthropomorphic avatars in computer graphics has emphasized the importance of accurate hand kinematic models. Although kinematic methods derived from robotics have recently been applied to the modeling of hands, we consider that original/new and relevant results can be brought into play with the use of more advanced applications of robotic techniques to human hand kinematic modeling. Our chapter analyses some of these questions both in the non-differential and differential fields. More specifically, we study how to integrate the peculiar natural digit movement constraints into robotics-based inverse kinematic modeling. As a result, we propose an original approach based on an interpretation of each joint dynamic constraint as a linear joint synergy. This leads to defining the considered digit as a serial chain kinematically redundant in position and reducing the dimension of its joint space by associated joint synergies. The method is applied to the Cartesian positioning simulation of a 4 d.o.f. index model; a comparison with a Jacobian pseudo-inverse-based approach emphasizes its relevance.

  13. Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application.

    PubMed

    Wang, Lejing; Fallavollita, Pascal; Zou, Rui; Chen, Xin; Weidert, Simon; Navab, Nassir

    2012-05-01

    For trauma and orthopedic surgery, maneuvering a mobile C-arm fluoroscope into a desired position to acquire an X-ray is a routine surgical task. The precision and ease of use of the C-arm becomes even more important for advanced interventional imaging techniques such as parallax-free X-ray image stitching. Today's standard mobile C-arms have been modeled with only five degrees of freedom (DOF), which definitely restricts their motions in 3-D Cartesian space. In this paper, we present a method to model both the mobile C-arm and patient's table as an integrated kinematic chain having six DOF without constraining table position. The closed-form solutions for the inverse kinematics problem are derived in order to obtain the required values for all C-arm joint and table movements to position the fluoroscope at a desired pose. The modeling method and the closed-form solutions can be applied to general isocentric or nonisocentric mobile C-arms. By achieving this we develop an efficient and intuitive inverse kinematics-based method for parallax-free panoramic X-ray imaging. In addition, we implement a 6-DOF C-arm system from a low-cost mobile fluoroscope to optimally acquire X-ray images based solely on the computation of the required movement for each joint by solving the inverse kinematics on a continuous basis. Through simulation experimentation, we demonstrate that the 6-DOF C-arm model has a larger working space than the 5-DOF model. C-arm repositioning experiments show the practicality and accuracy of our 6-DOF C-arm system. We also evaluate the novel parallax-free X-ray stitching method on phantom and dry bones. Using five trials, results show that parallax-free panoramas generated by our method are of high visual quality and within clinical tolerances for accurate evaluation of long bone geometry (i.e., image and metric measurement errors are less than 1% compared to ground-truth). PMID:22293978

  14. An analysis of the kinematics and dynamics of underactuated manipulators

    SciTech Connect

    Jain, A.; Rodriguez, G.

    1993-08-01

    The dynamics and kinematics of manipulators that have fewer actuators than degrees of freedom are studied. These underactuated manipulators arise in a number of important applications such as free-flying space robots, hyperredundant manipulators, manipulators with structural flexibility, etc. In the analysis such underactuated manipulators are decomposed into component active and passive arms. This decomposition allows techniques previously developed for regular (fully actuated) manipulators to be applied to underactuated systems. Spatial operator identities are used to develop closed-form expressions for the generalized accelerations for the system. These expressions form the basis for a recursive dynamics algorithm. The structure of this algorithm is a hybrid of known forward and inverse dynamics algorithms for regular manipulators. Expressions and computational algorithms are also developed for the generalized and disturbance Jacobians for underactuated manipulators. The application of the results in the paper to space manipulators is also described.

  15. The application of striation analysis and focal mechanism stress inversion in deducing the kinematic history of faults: Examples from the Bristol Channel UK and the Ionian Zone Greece

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Miliorizos, Marios N.; Oshoano Aipoh, Hilary

    2013-04-01

    The present work compliments the application of a methodology, in reviewing and investigating further the kinematic history of faults, based on striation analysis and stress inversion of earthquake focal mechanisms and combines them to refine tectonic modelling and hence improve further hazard assessment. Two areas are chosen for this application: the Bristol Channel, UK and the Ionian Zone, Greece. Striation analysis is carried out in two complementary fault terranes. The first along the northern margin of the Inner Bristol Channel, UK, offers a natural laboratory to study in detail the reactivation history of the inverted Bristol Channel basin; and, the second along the north western coastline of the Ionian Zone, Greece, presents an opportunity to illustrate the relationship between movement of a framework of faults within the external orogenic zone of the Hellenides and the stress deduced from focal mechanisms of earthquakes in the region. The UK example reveals phases of Mesozoic negative inversion of Late Palaeozoic basement frontal and oblique ramp thrust faults, followed by Caenozoic positive inversions of Mesozoic normal and strike slip faults. The Greek example shows an equally composite history of faulting; Tethyan basement strata contain normal faults that pass up sequence and across unconformities into Mesozoic and Caenozoic strata, with thrusts and positively inverted faults recording typical dextral transpression. The fault framework in older strata and the veneers of Recent strata above them display Neotectonic fault histories of sinistral transtension, in addition to the transpression. Since the Ionian Zone lies suitably in the external zone, deformation favours the reactivation of fault lineaments, rather than the genesis of pristine faults. Both examples are used to demonstrate this structural principle. Focal mechanisms of Greek earthquake data are used in stress inversion and the results are applied upon the inherited fault framework and are

  16. Inverse Kinematic Study of the Alg26(d ,p )27Al Reaction and Implications for Destruction of 26Al in Wolf-Rayet and Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Margerin, V.; Lotay, G.; Woods, P. J.; Aliotta, M.; Christian, G.; Davids, B.; Davinson, T.; Doherty, D. T.; Fallis, J.; Howell, D.; Kirsebom, O. S.; Mountford, D. J.; Rojas, A.; Ruiz, C.; Tostevin, J. A.

    2015-08-01

    In Wolf-Rayet and asymptotic giant branch (AGB) stars, the Alg26(p ,γ )27Si reaction is expected to govern the destruction of the cosmic γ -ray emitting nucleus 26Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the Alg26(d ,p )27Al reaction as a method for constraining the strengths of key astrophysical resonances in the Alg26(p ,γ )27Si reaction. In particular, the results indicate that the resonance at Er=127 keV in 27Si determines the entire Alg26(p ,γ )27Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.

  17. "Phoswich Wall": A charged-particle detector array for inverse-kinematic reactions with the Gretina/GRETA γ-ray arrays

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.

    2015-08-01

    A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 8×8 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -μm thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4π γ-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 °.

  18. Inverse kinematics of redundant systems driver IKORv1.0-2.0 (full space parameterization with orientation control, platform mobility, and portability)

    SciTech Connect

    Hacker, C.J.; Fries, G.A.; Pin, F.G.

    1997-01-01

    Few optimization methods exist for path planning of kinematically redundant manipulators. Among these, a universal method is lacking that takes advantage of a manipulator`s redundancy while satisfying possibly varying constraints and task requirements. Full Space Parameterization (FSP) is a new method that generates the entire solution space of underspecified systems of algebraic equations and then calculates the unique solution satisfying specific constraints and optimization criteria. The FSP method has been previously tested on several configurations of the redundant manipulator HERMIES-III. This report deals with the extension of the FSP driver, Inverse Kinematics On Redundant systems (IKOR), to include three-dimensional manipulation systems, possibly incorporating a mobile platform, with and without orientation control. The driver was also extended by integrating two optimized versions of the FSP solution generator as well as the ability to easily port to any manipulator. IKOR was first altered to include the ability to handle orientation control and to integrate an optimized solution generator. The resulting system was tested on a 4 degrees-of-redundancy manipulator arm and was found to successfully perform trajectories with least norm criteria while avoiding obstacles and joint limits. Next, the system was adapted and tested on a manipulator arm placed on a mobile platform yielding 7 degrees of redundancy. After successful testing on least norm trajectories while avoiding obstacles and joint limits, IKORv1.0 was developed. The system was successfully verified using comparisons with a current industry standard, the Moore Penrose Pseudo-Inverse. Finally, IKORv2.0 was created, which includes both the one shot and two step methods, manipulator portability, integration of a second optimized solution generator, and finally a more robust and usable code design.

  19. An Inverse Method to Derive the Kinematic History of Rifted Margin Formation Using a New Model of Sea Floor Spreading Initiation

    NASA Astrophysics Data System (ADS)

    Healy, D.; Kusznir, N.

    2004-05-01

    Recent discoveries of depth-dependent stretching and mantle exhumation at rifted continental margins require new models of margin formation. A two-dimensional coupled fluid mechanics/thermal kinematic model of sea-floor spreading initiation has been developed to predict the deformational and thermal evolution of rifted continental margins through time. The model can also include the effects of pre-breakup pure-shear stretching of continental lithosphere. Rifted margin lithosphere thinning and thermal evolution is dependent on ocean-ridge spreading rate (Vx), the mantle upwelling velocity beneath the ridge axis (Vz), and the pre-breakup lithosphere stretching factor (a). The model predicts the thinning of the upper crust, lower crust and lithospheric mantle of the continental margin, and the history of rifted margin subsidence, water depths and top basement heat-flow. We apply inverse methods to this new forward model of rifted margin formation to explore how successfully model input parameters may be extracted from observational data at rifted margins. The ability of the inverse method to find a unique solution has been established using synthetic data from forward modelling. Output parameters from the inversion are the horizontal and vertical velocities of sea-floor spreading, their variation with time, and the initial pre-breakup lithosphere stretching factor. Initial inversion tests used forward model predictions of the stretching of the upper crust, the whole crust and the whole lithosphere. These model predictions control the variation of crustal thickness and lithosphere temperature beneath the thinned continental margin and adjacent ocean, which in turn control margin subsidence and gravity anomaly. For application of the inversion procedure to observed data on rifted margins, the input data used are measured bathymetry, sediment thickness, gravity anomaly and upper crustal stretching. The forward problem is characterised by a non-linear relationship between

  20. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.

    PubMed

    Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C

    2015-06-01

    This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length. PMID:25970238

  1. Extraction of Gamow-Teller strength distributions from 56Ni and 55Co via the (p,n) reaction in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Sasano, M.; Perdikakis, G.; Zegers, R. G. T.; Austin, Sam M.; Bazin, D.; Brown, B. A.; Caesar, C.; Cole, A. L.; Deaven, J. M.; Ferrante, N.; Guess, C. J.; Hitt, G. W.; Honma, M.; Meharchand, R.; Montes, F.; Palardy, J.; Prinke, A.; Riley, L. A.; Sakai, H.; Scott, M.; Stolz, A.; Suzuki, T.; Valdez, L.; Yako, K.

    2012-09-01

    Background: Gamow-Teller (GT) transition strength distributions in stable and unstable pf-shell isotopes are key inputs for estimating electron-capture rates important for stellar evolution. Charge-exchange experiments at intermediate beam energies have long been used to test theoretical predictions for GT strengths, but previous experiments were largely restricted to stable nuclei. Since a large fraction of the nuclei relevant for astrophysical applications (including key nuclei such as 56Ni) are unstable, new methods are needed to perform charge-exchange experiments in inverse kinematics with unstable isotopes.Purpose: The 56Ni(p,n) and 55Co(p,n) reactions were measured in inverse kinematics in order to extract GT strengths for transitions to 56Cu and 55Ni, respectively. The extracted strength distributions were compared with shell-model predictions in the pf shell using the KB3G and GXPF1J interactions. By invoking isospin symmetry, these strength distributions are relevant for electron captures on the ground states of 56Ni and 55Ni to final states in 56Co and 55Co, respectively.Method: Differential cross sections and excitation energy spectra for the 56Ni(p,n) and 55Co(p,n) reactions were determined by measuring neutrons recoiling from a liquid hydrogen target into the Low Energy Neutron Detector Array. GT contributions to the spectra were extracted by using a multipole decomposition analysis and were converted to strengths by employing the proportionality between GT strength and differential cross section at zero linear momentum transfer.Results: GT strengths from 56Ni and 55Co were extracted up to excitation energies of 8 and 15 MeV, respectively. Shell-model calculations performed in the pf shell with the GXPF1J interaction reproduced the experimental GT strength distributions better than calculations with the KB3G interaction.Conclusions: A new technique for measuring (p,n) charge-exchange reactions on unstable nuclei was successfully developed. It can be

  2. Off-diagonal Jacobian support for Nodal BCs

    SciTech Connect

    Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.

    2015-01-01

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  3. Analytical Jacobian and its application to tilted-wave interferometry.

    PubMed

    Fortmeier, Ines; Stavridis, Manuel; Wiegmann, Axel; Schulz, Michael; Osten, Wolfgang; Elster, Clemens

    2014-09-01

    Tilted-wave interferometry (TWI) is a novel optical measurement principle for the measurement of aspherical surfaces. For the reconstruction of the wavefront and the surface under test, respectively, perturbation methods are applied, which require the calculation of the Jacobian matrix. For the practical use of the instrument, a fast and exact calculation of the Jacobian matrices is crucial, since this strongly influences the calculation times of the TWI. By applying appropriate approaches in optical perturbation methods we are able to calculate the required Jacobian matrices analytically when the nominal optical path through the system is given. As a result, calculation times for the TWI can be considerably reduced. We finally illustrate the improved TWI procedure and apply methods of optimal design to determine optimal positions of the surface under test. For such applications the fast calculation of the Jacobian matrices is essential. PMID:25321510

  4. Kinematic source parameters determined by time-dependent moment-tensor inversion and an analysis of teleseismic first motions

    SciTech Connect

    Sipkin, S.A.; Needham, R.E.

    1990-01-01

    A waveform-inversion technique was applied to the digitally recorded long-period P-waveform data from the Global Digital Seismograph Network for the May 2 earthquake. The solution was constrained to be purely deviatoric but not to be a double couple. The source depth was determined by finding a trial depth that minimized the misfit to the data. By allowing the elements of the moment tensor to be independent, arbitrary functions of time, a gross estimate of the source-time history of the rupture process was obtained. A moderately well constrained fault-plane solution was also obtained by fitting the available long-and short-period teleseismic first-motion data. The strike, dip, and rake of the first-motion solution are 307{degree}, 70{degree}, and 90{degree}, respectively. This solution is very close to the best double-couple of the step-function moment-tensor solution of 303{degree}, 72{degree}, and 97{degree}. The best fitting depth is 11 km and the scalar moment is 4.7 {times} 10{sup 25} dyne-cm. The non-double-couple part of the moment tensor is 28%. This substantial non-double-couple component is apparently due to source complexity in which the strike of the fault plane rotated clockwise during rupture, from a strike of approximately 292{degree} to a strike of 302{degree}.

  5. Differential Kinematics Of Contemporary Industrial Robots

    NASA Astrophysics Data System (ADS)

    Szkodny, T.

    2014-08-01

    The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented

  6. A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake

    USGS Publications Warehouse

    Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.

    2007-01-01

    We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.

  7. Finite fault kinematic inversion of the 2012, May 20th and 29th Emilia-Romagna, Northern Italy, Earthquakes.

    NASA Astrophysics Data System (ADS)

    Cirella, A.; Piatanesi, A.; Molinari, I.

    2015-12-01

    In this study, we investigate the rupture process of the 2012, May 20 and 29, Mw 6.1 and 5.9, respectively, Emilia-Romagna, Northern Italy, earthquakes. The two earthquakes struck a densely populated region, causing 26 fatalities and significantly damaging the economy of the region. We image the rupture history of these events, by separately and jointly inverting strong motions, GPS displacements and High-Rate GPS data. The region of interest is a sedimentary basin (the Po Plain) surrounded by the northern Apennines; and it is characterized by a significant presence of fluid and strong heterogeneities leading to remarkable site effects and liquefaction phenomena; for these reasons we adopt an ad-hoc velocity profiles at each station, by inverting in a low-intermediate frequency band (0 - 0.25 Hz). We use a two-stage non-linear inversion technique that, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage the algorithm performs a statistical analysis of the ensemble providing us the best-fitting model, the average model, and the associated standard deviation, coefficient of variation, moda and median distributions. The goal of our work is to constrain the earthquake rupture history and to assess the associated model uncertainty, to better understand the mechanics of the causative fault as well as the observed ground shaking.

  8. Rapid kinematic finite-fault inversion for an Mw 7+ scenario earthquake in the Marmara Sea: an uncertainty study

    NASA Astrophysics Data System (ADS)

    Diao, Faqi; Wang, Rongjiang; Aochi, Hideo; Zhang, Yong; Walter, Thomas R.

    2016-04-01

    During the last century, the North Anatolian Fault (NAF) generated a series of devastating earthquakes, which generally propagated westwards, such that the main Marmara fault segment as a seismic gap. For the nearby megacity Istanbul, rapid seismic hazard assessment is currently of great importance. A key issue is how a strong earthquake in the Marmara Sea can be characterized reliably and rapidly using the seismic network currently operating in this region. In the frame of the MARsite project, several scenario earthquakes on the main Marmara fault are simulated through dynamic modelling based on a 3-D structure model. The synthetic datasets are then used to reconstruct the source processes of the causal events with a recently developed iterative deconvolution and stacking method based on simplified 1-D Earth structure models. The results indicate that, by using certain a priori information about the fault geometry and focal mechanism, the tempo-spatial slip patterns of the input scenarios can be well resolved robustly. If reasonable uncertainties are considered for the a priori information, the key source parameters, such as moment magnitude, fault size and slip centroid, can still be estimated robustly, while the detailed tempo-spatial rupture pattern may reveal significant variations. To reduce the effect induced by employing the inaccurate event location and focal mechanism, a new approach for absolute source imaging is proposed and tested for near real-time source inversion under the current network configuration in the Marmara Sea region. The results obtained are meaningful particularly for developing the rapid earthquake response system for the megacity Istanbul.

  9. Rapid kinematic finite-fault inversion for an Mw 7+ scenario earthquake in the Marmara Sea: an uncertainty study

    NASA Astrophysics Data System (ADS)

    Diao, Faqi; Wang, Rongjiang; Aochi, Hideo; Walter, Thomas R.; Zhang, Yong; Zheng, Yong; Xiong, Xiong

    2016-02-01

    During the 20th century, a series of devastating earthquakes occurred along the North Anatolian Fault. These generally propagated westwards, such that the main fault segment beneath the Marmara Sea appears as a seismic gap. For the nearby megacity Istanbul, rapid seismic hazard assessment is currently of great importance. A key issue is how a strong earthquake in the Marmara Sea can be characterized reliably and rapidly using the seismic network currently operating in this region. In order to investigate this issue, several scenario earthquakes on the main Marmara fault are simulated through dynamic modelling based on a 3-D structure model. The synthetic datasets are then used to reconstruct the source processes of the causal events with a recently developed iterative deconvolution and stacking method based on simplified 1-D Earth structure models. The results indicate that, by using certain a priori information about the fault geometry and focal mechanism, the tempo-spatial slip patterns of the input scenarios can be well resolved. If reasonable uncertainties are considered for the a priori information, the key source parameters, such as moment magnitude, fault size and slip centroid, can still be estimated reliably, while the detailed tempo-spatial rupture pattern may reveal significant variations. To reduce the effect induced by employing the inaccurate event location and focal mechanism, a new approach for absolute source imaging is proposed and tested. We also investigate the performance of the new source imaging tool for near real-time source inversion under the current network configuration in the Marmara Sea region. The results obtained are meaningful particularly for developing the rapid earthquake response system for the megacity Istanbul.

  10. A Study of Primary Collision Dynamics in Inverse-Kinematics Reaction of 78Kr on 40Ca at a Bombarding Energy of 10 MeV per Nucleon

    NASA Astrophysics Data System (ADS)

    Henry, Eric M.

    The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to

  11. Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data

    NASA Astrophysics Data System (ADS)

    Asano, Kimiyuki; Iwata, Tomotaka

    2016-08-01

    The 2016 Kumamoto earthquake sequence started with an MJMA 6.5 foreshock occurring along the northern part of the Hinagu fault, central Kyushu, Japan, and the MJMA 7.3 mainshock occurred just 28 h after the foreshock. We analyzed the source rupture processes of the foreshock and mainshock by using the kinematic waveform inversion technique on strong motion data. The foreshock was characterized by right-lateral strike-slip occurring on a nearly vertical fault plane along the northern part of the Hinagu fault, and it had two large-slip areas: one near the hypocenter and another at a shallow depth. The rupture of the mainshock started from the deep portion of a northwest-dipping fault plane along the northern part of the Hinagu fault, then continued to transfer to the Futagawa fault. Most of the significant slip occurred on the Futagawa fault, and the shallow portion of the Hinagu fault also had a relatively large slip. The slip amount on the shallowest subfaults along the Futagawa fault was approximately 1-4 m, which is consistent with the emergence of surface breaks associated with this earthquake. Right-lateral strike-slip dominated on the fault segment along the Hinagu fault, but normal-slip components were estimated to make a significant contribution on the fault segment along the Futagawa fault. The large fault-parallel displacements recorded at two near-fault strong motion stations coincided with the spatiotemporal pattern of the fault slip history during the mainshock. The spatial relationship between the rupture areas of the foreshock and mainshock implies a complex fault structure in this region.

  12. Joint contribution to fingertip movement during a number entry task: an application of Jacobian matrix.

    PubMed

    Qin, Jin; Trudeau, Matthieu; Buchholz, Bryan; Katz, Jeffrey N; Xu, Xu; Dennerlein, Jack T

    2014-04-01

    Upper extremity kinematics during keyboard use is associated with musculoskeletal health among computer users; however, specific kinematics patterns are unclear. This study aimed to determine the dynamic roles of the shoulder, elbow, wrist and metacarpophalangeal (MCP) joints during a number entry task. Six subjects typed in phone numbers using their right index finger on a stand-alone numeric keypad. The contribution of each joint of the upper extremity to the fingertip movement during the task was calculated from the joint angle trajectory and the Jacobian matrix of a nine-degree-of-freedom kinematic representation of the finger, hand, forearm and upper arm. The results indicated that in the vertical direction where the greatest fingertip movement occurred, the MCP, wrist, elbow (including forearm) and shoulder joint contributed 10.2%, 55.6%, 27.7% and 6.5%, respectively, to the downward motion of the index finger averaged across subjects. The results demonstrated that the wrist and elbow contribute the most to the fingertip vertical movement, indicating that they play a major role in the keying motion and have a dynamic load beyond maintaining posture. PMID:24144858

  13. On closed form expressions for the singular-value decomposition of an orientational Jacobian and its application to a motion simulator

    SciTech Connect

    Roberts, R.G.; Repperger, D.W.

    1999-01-01

    This article presents some results on the closed-form, singular-value decomposition of the orientational Jacobian for three- and four-degree-of-freedom wristlike mechanisms. These results are used to study the kinematics of a centrifuge simulator, and to determine the centrifuge`s limitations in achieving maximum angular velocities. Also, the issue of fault tolerance for a redundant wrist is addressed.

  14. Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions

    ERIC Educational Resources Information Center

    Garcia-Hoz, A. Martinez; Chacon, R.

    2011-01-01

    We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…

  15. On the equivariant algebraic Jacobian for curves of genus two

    NASA Astrophysics Data System (ADS)

    Athorne, Chris

    2012-04-01

    We present a treatment of the algebraic description of the Jacobian of a generic genus two plane curve which exploits an SL2(k) equivariance and clarifies the structure of Flynn's 72 defining quadratic relations. The treatment is also applied to the Kummer variety.

  16. Generic robotic kinematic generator for virtual environment interfaces

    NASA Astrophysics Data System (ADS)

    Flueckiger, Lorenzo; Piguet, Laurent; Baur, Charles

    1996-12-01

    The expansion of robotic systems' performance, as well as the need for such machines to work in complex environments (hazardous, small, distant, etc.), involves the need for user interfaces which permit efficient teleoperation. Virtual Reality based interfaces provide the user with a new method for robot task planning and control: he or she can define tasks in a very intuitive way by interacting with a 3D computer generated representation of the world, which is continuously updated thanks to multiple sensors fusion and analysis. The Swiss Federal Institute of Technology has successfully tested different kinds of teleoperations. In the early 90s, a transatlantic teleoperation of a conventional robot manipulator with a vision feedback system to update the virtual world was achieved. This approach was then extended to perform teleoperation of several mobile robots (Khepera, Koala) as well as to control microrobots used for microsystems' assembly in the micrometer range. One of the problems encountered with such an approach is the necessity to program a specific kinematic algorithm for each kind of manipulator. To provide a more general solution, we started a project aiming at the design of a 'kinematic generator' (CINEGEN) for the simulation of generic serial and parallel mechanical chains. With CINEGEN, each manipulator is defined with an ascii file description and its attached graphics files; inserting a new manipulator simply requires a new description file, and none of the existing tools require modification. To have a real time behavior, we have chosen a numerical method based on the pseudo-Jacobian method to generate the inverse kinematics of the robot. The results obtained with an object-oriented implementation on a graphic workstation are presented in this paper.

  17. Kinematic synthesis and analysis of a novel class of six-DOF parallel minimanipulators

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Farhad

    A new class of six degree of freedom (six-DOF) parallel minimanipulators is introduced. The minimanipulators are designed to provide high resolution and high stiffness in fine-manipulation operations. Two-DOF planar mechanisms (e.g., five-bar linkages, pantographs) and inextensible limbs are used to improve positional resolution and stiffness of the minimanipulators. The two-DOF mechanisms serve as drivers for the minimanipulators. The minimanipulators require only three inextensible limbs and, unlike most of the six-limbed parallel manipulators, their direct kinematics can be reduced to solving a polynomial in a single variable. All of the minimanipulator actuators are base-mounted. As a result, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. Inverse kinematics of the minimanipulators has been reduced to solving three decoupled quadratic equations, each of which contains only one unknown. Kinematic inversion is used to reduce the direct kinematics of the minimanipulator to an eighth-degree polynomial in the square of a single variable. Hence, the maximum number of assembly configurations for the minimanipulator is sixteen. It is proved that the sixteen solutions are eight pairs of reflected configurations with respect to the plane passing through the lower ends of the three limbs. The Jacobian and stiffness matrices of two types of minimanipulators are derived. It is shown that, at a central configuration, the stiffness matrix of the first type minimanipulator (driven by bidirectional linear stepper motors) can be decoupled, if proper design parameters are chosen. It is also shown that the stiffness of the minimanipulators is higher than that of the Stewart platform. Guidelines for obtaining large stiffness values and for designing the drivers of the second type minimanipulator (simplified five-bar linkages) are established. An algorithm is developed to determine the workspace of the minimanipulators. Given any

  18. Kinematic analysis of the ARID manipulator

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed.

  19. Semistable modifications of families of curves and compactified Jacobians

    NASA Astrophysics Data System (ADS)

    Esteves, Eduardo; Pacini, Marco

    2016-04-01

    Given a family of nodal curves, a semistable modification of it is another family made up of curves obtained by inserting chains of rational curves of any given length at certain nodes of certain curves of the original family. We give comparison theorems between torsion-free, rank-1 sheaves in the former family and invertible sheaves in the latter. We apply them to show that there are functorial isomorphisms between the compactifications of relative Jacobians of families of nodal curves constructed through Caporaso's approach and those constructed through Pandharipande's approach.

  20. Inverse Kinematic Study of the (26g)Al(d,p)(27)Al Reaction and Implications for Destruction of (26)Al in Wolf-Rayet and Asymptotic Giant Branch Stars.

    PubMed

    Margerin, V; Lotay, G; Woods, P J; Aliotta, M; Christian, G; Davids, B; Davinson, T; Doherty, D T; Fallis, J; Howell, D; Kirsebom, O S; Mountford, D J; Rojas, A; Ruiz, C; Tostevin, J A

    2015-08-01

    In Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction. In particular, the results indicate that the resonance at E(r)=127  keV in (27)Si determines the entire (26g)Al(p,γ)(27)Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars. PMID:26296114

  1. A Parallel, Fully Coupled, Fully Implicit Solution to Reactive Transport in Porous Media Using the Preconditioned Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita

    2013-03-01

    Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.

  2. Validation of linearity assumptions for using tsunami waveforms in joint inversion of kinematic rupture models: Application to the 2010 Mentawai Mw 7.8 tsunami earthquake

    NASA Astrophysics Data System (ADS)

    Yue, Han; Lay, Thorne; Li, Linyan; Yamazaki, Yoshiki; Cheung, Kwok Fai; Rivera, Luis; Hill, Emma M.; Sieh, Kerry; Kongko, Widjo; Muhari, Abdul

    2015-03-01

    Tsunami observations have particular importance for resolving shallow offshore slip in finite-fault rupture model inversions for large subduction zone earthquakes. However, validations of amplitude linearity and choice of subfault discretization of tsunami Green's functions are essential when inverting tsunami waveforms. We explore such validations using four tsunami recordings of the 25 October 2010 Mentawai Mw 7.8 tsunami earthquake, jointly inverted with teleseismic body waves and 1 Hz GPS (high-rate GPS) observations. The tsunami observations include near-field and far-field deep water recordings, as well as coastal and island tide gauge recordings. A nonlinear, dispersive modeling code, NEOWAVE, is used to construct tsunami Green's functions from seafloor excitation for the linear inversions, along with performing full-scale calculations of the tsunami for the inverted models. We explore linearity and finiteness effects with respect to slip magnitude, variable rake determination, and subfault dimensions. The linearity assumption is generally robust for the deep water recordings, and wave dispersion from seafloor excitation is important for accurate description of near-field Green's functions. Breakdown of linearity produces substantial misfits for short-wavelength signals in tide gauge recordings with large wave heights. Including the tsunami observations in joint inversions provides improved resolution of near-trench slip compared with inversions of only seismic and geodetic data. Two rupture models, with fine-grid (15 km) and coarse-grid (30 km) spacing, are inverted for the Mentawai event. Stronger regularization is required for the fine model representation. Both models indicate a shallow concentration of large slip near the trench with peak slip of ~15 m. Fully nonlinear forward modeling of tsunami waveforms confirms the validity of these two models for matching the tsunami recordings along with the other data.

  3. Evaluating foot kinematics using magnetic resonance imaging: from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation.

    PubMed

    Fassbind, Michael J; Rohr, Eric S; Hu, Yangqiu; Haynor, David R; Siegler, Sorin; Sangeorzan, Bruce J; Ledoux, William R

    2011-10-01

    The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject's foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject's foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time. PMID:22070336

  4. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    SciTech Connect

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  5. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.

    PubMed

    Bonnet, Vincent; Mazzà, Claudia; Fraisse, Philippe; Cappozzo, Aurelio

    2013-07-01

    This study aimed at the real-time estimation of the lower-limb joint and torso kinematics during a squat exercise, performed in the sagittal plane, using a single inertial measurement unit placed on the lower back. The human body was modeled with a 3-DOF planar chain. The planar IMU orientation and vertical displacement were estimated using one angular velocity and two acceleration components and a weighted Fourier linear combiner. The ankle, knee, and hip joint angles were thereafter obtained through a novel inverse kinematic module based on the use of a Jacobian pseudoinverse matrix and null-space decoupling. The aforementioned algorithms were validated on a humanoid robot for which the mechanical model used and the measured joint angles virtually exhibited no inaccuracies. Joint angles were estimated with a maximal error of 1.5°. The performance of the proposed analytical and experimental methodology was also assessed by conducting an experiment on human volunteers and by comparing the relevant results with those obtained through the more conventional photogrammetric approach. The joint angles provided by the two methods displayed differences equal to 3±1°. These results, associated with the real-time capability of the method, open the door to future field applications in both rehabilitation and sport. PMID:23392337

  6. The 2014 Pisagua-Iquique earthquakes: high-resolution kinematic source models by joint inversion of the strong-motion and GPS data

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Zhang, Yong; Schurr, Bernd; Dahm, Torsten

    2016-04-01

    By combining the complementary advantages of conventional inversion and back-projection methods, we have developed an iterative deconvolution and stacking (IDS) approach for imaging earthquake rupture processes with near-field complete waveform data. This new approach does not need any manual adjustment of the physical (empirical) constraints, such as restricting the rupture time and duration, smoothing the spatiotemporal slip distribution, etc., and therefore has the ability to image complex multiple ruptures automatically. A high-resolution (ca.  10 km) source imaging is achieved for the 2014 Pisagua-Iquique earthquakes by applying the IDS approach to the regional strong-motion and GPS data jointly. It reveals more physical insights into the rupture process. For such large earthquakes, there exists generally a clear rupture front propagating with a finite velocity, but no clear healing front following the rupture front, implying that single rupturing is special, multiple rupturing is general. Each of the two earthquakes consists of several major sub-events and numerous coseismic early aftershocks, which can trigger each other statically and/or dynamically. The peak fault slip is generally not formed by a single rise-time, but through a cumulative process that can last as long as the whole earthquake duration. The rupture plane of large earthquakes might not be a simple smooth surface, but a rough surface or even a rupture zone with certain thickness (a few km?) consistent with the aftershock clustering around the fault.

  7. Solving Nonlinear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method

    SciTech Connect

    J. D. Hales; S. R. Novascone; R. L. Williamson; D. R. Gaston; M. R. Tonks

    2012-06-01

    The solution of the equations governing solid mechanics is often obtained via Newton's method. This approach can be problematic if the determination, storage, or solution cost associated with the Jacobian is high. These challenges are magnified for multiphysics applications with many coupled variables. Jacobian-free Newton-Krylov (JFNK) methods avoid many of the difficulties associated with the Jacobian by using a finite difference approximation. BISON is a parallel, object-oriented, nonlinear solid mechanics and multiphysics application that leverages JFNK methods. We overview JFNK, outline the capabilities of BISON, and demonstrate the effectiveness of JFNK for solid mechanics and solid mechanics coupled to other PDEs using a series of demonstration problems.

  8. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    SciTech Connect

    Brown, J.; Brune, P.

    2013-07-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  9. Timing and Kinematics of Cretaceous to Paleogene inversion at the SE margin of the Central European Basin System: Part 2, Thermochronology

    NASA Astrophysics Data System (ADS)

    Hoffmann, V.-E.; Dunkl, I.; von Eynatten, H.; Jähne, F.; Voigt, T.; Kley, J.

    2009-04-01

    During the Late Cretaceous to Early Tertiary some parts of the Central European Basin System (CEBS) were uplifted along NW-SE to WNW-ESE striking compressive fault systems. As a result Pre-Zechstein (Permian) basement is exposed at the southern border of the CEBS from Central Germany to the sudetes still further east (e.g. Harz Mountains, Thuringian Forest). Thrust-related basins like the Subhercynian Cretaceous Basin (SCB) in the foreland of the Harz Mountains accumulated up to 2500m of siliciclastic and chemical sediments in only 10 million years (Late Turonian to Lower Campanian, Voigt et al., 2006). By means of low-temperature thermochronology it is possible to characterise these basin inversion processes with respect to timing, pattern and rates of cooling and exhumation. Differed authors have already applied Apatite Fission Track analysis (AFT) in certain areas of the southern margin of CEBS. Thomson and Zeh (2000) published AFT apparent ages of 69 to 81 Ma for the Ruhla Crystalline Complex in the Thuringian Forest. Similar AFT-ages (73-84 Ma) of granitoids from the Harz Mountains were reported by Thomson et al. (1997). The late Carboniferous felsic volcanic rocks near Halle yield a much broader range of AFT apparent ages (75-108 Ma; Jacobs and Breitkreuz, 2003). Comparable AFT-ages (84-90 Ma) had been also observed for gabbros from the north-eastern part of the Mid German Crystalline High (Ventura et al. 2003). The present study tries to bridge some of the major gaps in the regional distribution of thermochronological data by analysing samples from central and southern parts of the CEBS. Overall almost 50 AFT-ages from Saxony-Anhalt, Lower Saxony, Thuringia, Hesse and North Rhine-Westphalia were measured. Emphasis is placed on the regions from the Harz Mountains to the Rhenish Uplands and the Thuringian Forest and its foreland. Furthermore, apatite (U-Th)/He thermochronology is used to better constrain the time-temperature history models. Apart from some

  10. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    USGS Publications Warehouse

    Prejean, S.; Ellsworth, W.; Zoback, M.; Waldhauser, F.

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  11. On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models

    NASA Astrophysics Data System (ADS)

    Spurr, Robert; Christi, Matt

    2014-07-01

    The linearized radiative transfer models VLIDORT and LIDORT will deliver profile weighting functions (Jacobians) with respect to layer optical properties. We derive transformation rules for the conversion of layer Jacobian output to weighting functions defined for level (layer boundary) quantities such as volume mixing ratio, temperature and pressure. In a related development, we discuss the derivation of bulk-property atmospheric Jacobians with respect to quantities such as the temperature shift, the surface pressure and scaling parameters for constituent profiles. We also present some rules for calculating Jacobians for parameters characterizing aerosol loading regimes. An appendix contains linearization (with respect to temperature and pressure) of the trace species cross-sections derived from the HITRAN line spectroscopy data base.

  12. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis☆

    PubMed Central

    Nakamura, Kunio; Guizard, Nicolas; Fonov, Vladimir S.; Narayanan, Sridar; Collins, D. Louis; Arnold, Douglas L.

    2013-01-01

    Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing–remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4–5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials. PMID:24266007

  13. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro

    2015-04-01

    Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.

  14. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  15. Kinematic functions for the 7 DOF robotics research arm

    NASA Technical Reports Server (NTRS)

    Kreutz, K.; Long, M.; Seraji, Homayoun

    1989-01-01

    The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.

  16. Using ADIFOR and ADIC to provide Jacobians for the SNES component of PETSc

    SciTech Connect

    Wu, Po-Ting; Bischof, C.H.; Hovland, P.D.

    1997-11-01

    The solution of large-scale nonlinear problems is important to many areas of computational science. The SNES component of PETSc provides a robust and flexible suite of numerical routines for the solving such problems. These routines generally utilize the Jacobian matrix. We present a strategy for using ADIFOR or ADIC to assist in the development of a subroutine for computing this matrix. We illustrate this strategy using one of the PETSc example programs and four different approaches to computing the Jacobian via automatic differentiation.

  17. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    SciTech Connect

    Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  18. Fault tolerant kinematic control of hyper-redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.

    1994-01-01

    Hyper-redundant spatial manipulators possess fault-tolerant features because of their redundant structure. The kinematic control of these manipulators is investigated with special emphasis on fault-tolerant control. The manipulator tasks are viewed in the end-effector space while actuator commands are in joint-space, requiring an inverse kinematic algorithm to generate joint-angle commands from the end-effector ones. The rate-inverse kinematic control algorithm presented in this paper utilizes the pseudoinverse to accommodate for joint motor failures. An optimal scale factor for the robust inverse is derived.

  19. On the kinematic analysis of robotic mechanisms

    SciTech Connect

    Nielsen, J.; Roth, B.

    1999-12-01

    The kinematic analyses, of manipulators and other robotic devices composed of mechanical links, usually depend on the solution of sets of nonlinear equations. There are a variety of both numerical and algebraic techniques available to solve such systems of equations and to give bounds on the number of solutions. These solution methods have also led to an understanding of how special choices of the various structural parameters of a mechanism influence the number of solutions inherent to the kinematic geometry of a given structure. In this paper, results from studying the kinematic geometry of such systems are reviewed, and the three most useful solution techniques are summarized. The solution techniques are polynomial continuation, Groebner bases, and elimination. The authors then discuss the results that have been obtained with these techniques in the solution of two basic problems, namely, the inverse kinematics for serial-chain manipulators, and the direct kinematics of in-parallel platform devices.

  20. A Unified Microwave Radiative Transfer Model with Jacobian for General Stratified Media

    NASA Astrophysics Data System (ADS)

    Tian, Miao

    A unified microwave radiative transfer (UMRT) model is developed for rapid, stable and accurate level-centric calculation of the thermal radiation emitted from any geophysical medium comprised of planar layers of either densely or tenuously distributed, moderately sized spherical scatterers. The formulation includes rapid calculation of the tangent linear relationship (i.e., Jacobian) between the observed brightness temperature and any relevant radiative and geophysical layer parameters, such as the scattering and absorption coefficients, temperature, temperature lapse rate, and medium layer thickness. UMRT employs a rapid multistream scattering-based discrete ordinate eigenanalysis solution with a layer-adding algorithm stabilized by incorporating symmetrization of the discretized differential radiative transfer equations and analytical diagonalization and factorization of the resulting symmetric and positive definite matrices. It is based on the discrete ordinate tangent linear radiative transfer model of Voronovich et al. (2004), but extended to include both Mie and dense media scattering theories and employ refractive layers. Other nontrivial extensions are: 1) exact modeling of linearized temperature profiles and resulting radiation streams across medium layers, 2) compensation for refracted radiation streams using Snell's law, the Fresnel reflectivity and transmissivity coefficients, and a cubic spline interpolation matrix, and 3) seamless calculation of associated Jacobians for both sparse and dense medium parameters. Details of the UMRT Jacobian formulation are presented. The entire formulation has been programmed in Matlab and validated through both energy conservation and numerical Jacobian intercomparisons. Comparisons of the upwelling brightness temperatures over dry snow and ice from simulations and field measurements are presented and discussed.

  1. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng

    2012-03-01

    Image formation in fluorescence diffuse optical tomography is critically dependent on construction of the Jacobian matrix. For clinical and preclinical applications, because of the highly heterogeneous characteristics of the medium, Monte Carlo methods are frequently adopted to construct the Jacobian. Conventional adjoint Monte Carlo method typically compute the Jacobian by multiplying the photon density fields radiated from the source at the excitation wavelength and from the detector at the emission wavelength. Nonetheless, this approach assumes that the source and the detector in Green's function are reciprocal, which is invalid in general. This assumption is particularly questionable in small animal imaging, where the mean free path length of photons is typically only one order of magnitude smaller than the representative dimension of the medium. We propose a new method that does not rely on the reciprocity of the source and the detector by tracing photon propagation entirely from the source to the detector. This method relies on the perturbation Monte Carlo theory to account for the differences in optical properties of the medium at the excitation and the emission wavelengths. Compared to the adjoint methods, the proposed method is more valid in reflecting the physical process of photon transport in diffusive media and is more efficient in constructing the Jacobian matrix for densely sampled configurations.

  2. Flux Jacobian matrices and generaled Roe average for an equilibrium real gas

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1988-01-01

    Inviscid flux Jacobian matrices and their properties used in numerical solutions of conservation laws are extended to general, equilibrium gas laws. Exact and approximate generalizations of the Roe average are presented. Results are given for one-dimensional flow, and then extended to three-dimensional flow with time-varying grids.

  3. Kinematic resection

    NASA Astrophysics Data System (ADS)

    Shevlin, Fergal P.

    1995-01-01

    A new geometric formulation is given for the problem of determining position and orientation of a satellite scanner from error-prone ground control point observations in linear pushbroom imagery. The pushbroom satellite resection problem is significantly more complicated than that of the conventional frame camera because of irregular platform motion throughout the image capture period. Enough ephemeris data are typically available to reconstruct satellite trajectory and hence the interior orientation of the pushbroom imagery. The new approach to resection relies on the use of reconstructed scanner interior orientation to determine the relative orientations of a bundle of image rays. The absolute position and orientation which allows this bundle to minimize its distance from a corresponding set of ground control points may then be found. The interior orientation is represented as a kinematic chain of screw motions, implemented as dual-number quaternions. The motor algebra is used in the analysis since it provides a means of line, point, and motion manipulation. Its moment operator provides a metric of distance between the image ray and the ground control point.

  4. A Constrained Multibody System Dynamics Avoiding Kinematic Singularities

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Fang; Yan, Chang-Dau; Jeng, Shyr-Long; Cheing, Wei-Hua

    In the analysis of constrained multibody systems, the constraint reaction forces are normally expressed in terms of the constraint equations and a vector of Lagrange multipliers. Because it fails to incorporate conservation of momentum, the Lagrange multiplier method is deficient when the constraint Jacobian matrix is singular. This paper presents an improved dynamic formulation for the constrained multibody system. In our formulation, the kinematic constraints are still formulated in terms of the joint constraint reaction forces and moments; however, the formulations are based on a second-order Taylor expansion so as to incorporate the rigid body velocities. Conservation of momentum is included explicitly in this method; hence the problems caused by kinematic singularities can be avoided. In addition, the dynamic formulation is general and applicable to most dynamic analyses. Finally the 3-leg Stewart platform is used for the example of analysis.

  5. Modal kinematics for multisection continuum arms.

    PubMed

    Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G

    2015-06-01

    This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs. PMID:25969947

  6. ADIFOR working note {number_sign}2: Using ADIFOR to compute dense and sparse Jacobians

    SciTech Connect

    Bischof, C.; Hovland, P.

    1992-01-01

    ADIFOR is a source translator that, given a collection of Fortran subroutines for the computation of a ``function,`` produces Fortran code for the computation of the derivatives of this function. More specifically, ADIFOR produces code to compute the matrix-matrix product JS, where J is the Jacobian of the ``function`` with respect to the user-defined independent variables, and S is the composition of the derivative objects corresponding to the independent variables. This interface is flexible; by setting S = x, one can compute the matrix-vector product Jx, or by setting S = I, one can compute the whole Jacobian J. Other initializations of S allow one to exploit a known sparsity structure of J. This paper illustrates the proper initialization of ADIFOR-generated derivative codes and the exploitation of a known structure of J.

  7. ADIFOR working note. number sign. 2: Using ADIFOR to compute dense and sparse Jacobians

    SciTech Connect

    Bischof, C.; Hovland, P.

    1992-01-01

    ADIFOR is a source translator that, given a collection of Fortran subroutines for the computation of a function,'' produces Fortran code for the computation of the derivatives of this function. More specifically, ADIFOR produces code to compute the matrix-matrix product JS, where J is the Jacobian of the function'' with respect to the user-defined independent variables, and S is the composition of the derivative objects corresponding to the independent variables. This interface is flexible; by setting S = x, one can compute the matrix-vector product Jx, or by setting S = I, one can compute the whole Jacobian J. Other initializations of S allow one to exploit a known sparsity structure of J. This paper illustrates the proper initialization of ADIFOR-generated derivative codes and the exploitation of a known structure of J.

  8. Determination of caustic surfaces using point spread function and ray Jacobian and Hessian matrices.

    PubMed

    Lin, Psang Dain

    2014-09-10

    Existing methods for determining caustic surfaces involve computing either the flux density singularity or the center of curvature of the wavefront. However, such methods rely rather heavily on ray tracing and finite difference methods for estimating the first- and second-order derivative matrices (i.e., Jacobian and Hessian matrices) of a ray. The main reason is that previously the analytical expressions of these two matrices have been tedious or even impossible. Accordingly, the present study proposes a robust numerical method for determining caustic surfaces based on a point spread function and the established analytical Jacobian and Hessian matrices of a ray by our group. It is shown that the proposed method provides a convenient and computationally straightforward means of determining the caustic surfaces of both simple and complex optical systems without the need for analytical equations, and is substantially different from the two existing methods. PMID:25321667

  9. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards' equation

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-08-01

    We develop a new approach for solving the nonlinear Richards' equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioning strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. We also show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.

  10. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation

    DOE PAGESBeta

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2016-08-01

    We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less

  11. Kinematics Analysis of an Aided Robot for Needle Insertion

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Gao, Dedong; Wang, Shan; Bai, Huiquan; Zheng, Haojun

    The kinematic relationship between the needle base and the robot's joints is analyzed. The analysis process is based on the aided needle-insertion robot built by our group. The thinking of needle-inserting procedure is confirming the needle base's posture before the needle inserted into tissue. The method of Denavit-Hartenberg (D-H) parameters is used to establish a link robot body-frames with the structural characteristics of the robot. After analysing kinematics, the kinematics equation is presented. The kinematics inverse solutions are obtained with the analytical method and geometry analysis method.

  12. Principal Component Geostatistical Approach for large-dimensional inverse problems

    PubMed Central

    Kitanidis, P K; Lee, J

    2014-01-01

    The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best. PMID:25558113

  13. Principal Component Geostatistical Approach for large-dimensional inverse problems

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.; Lee, J.

    2014-07-01

    The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best.

  14. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Popov, A.

    2015-12-01

    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results

  15. Fisher information for inverse problems and trace class operators

    NASA Astrophysics Data System (ADS)

    Nordebo, S.; Gustafsson, M.; Khrennikov, A.; Nilsson, B.; Toft, J.

    2012-12-01

    This paper provides a mathematical framework for Fisher information analysis for inverse problems based on Gaussian noise on infinite-dimensional Hilbert space. The covariance operator for the Gaussian noise is assumed to be trace class, and the Jacobian of the forward operator Hilbert-Schmidt. We show that the appropriate space for defining the Fisher information is given by the Cameron-Martin space. This is mainly because the range space of the covariance operator always is strictly smaller than the Hilbert space. For the Fisher information to be well-defined, it is furthermore required that the range space of the Jacobian is contained in the Cameron-Martin space. In order for this condition to hold and for the Fisher information to be trace class, a sufficient condition is formulated based on the singular values of the Jacobian as well as of the eigenvalues of the covariance operator, together with some regularity assumptions regarding their relative rate of convergence. An explicit example is given regarding an electromagnetic inverse source problem with "external" spherically isotropic noise, as well as "internal" additive uncorrelated noise.

  16. Acceleration of k-Eigenvalue / Criticality Calculations using the Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Dana Knoll; HyeongKae Park; Chris Newman

    2011-02-01

    We present a new approach for the $k$--eigenvalue problem using a combination of classical power iteration and the Jacobian--free Newton--Krylov method (JFNK). The method poses the $k$--eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a 1-D, one group problem and two 2-D two group problems and provide comparison to other efforts using silmilar algorithmic approaches.

  17. Assessing the quality of curvilinear coordinate meshes by decomposing the Jacobian matrix

    NASA Technical Reports Server (NTRS)

    Kerlick, G. D.; Klopfer, G. H.

    1982-01-01

    An algebraic decomposition of the Jacobian matrix which relates physical and computational variables is presented. This invertible decomposition parameterizes the mesh by the physically intuitive qualities of cell orientation, cell orthogonality, cell volume, and cell aspect ratio. The decomposition can be used to analyze numerically generated curvilinear coordinate meshes and to assess the contribution of the mesh to the truncation error for any specific differential operator and algorithm. This is worked out in detail for Laplace's equation in nonconservative and conservative forms. The analysis is applied to the solution of the full potential code TAIR, showing grid plots, carpet plots, and truncation error for a NACA 0012 airfoil.

  18. Regularity of mappings inverse to Sobolev mappings

    SciTech Connect

    Vodop'yanov, Sergei K

    2012-10-31

    For homeomorphisms {phi}:{Omega}{yields}{Omega}' on Euclidean domains in R{sup n}, n{>=}2, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class. This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class W{sup 1}{sub n-1} such that rankD{phi}(x){<=}n-2 almost everywhere on the zero set of the Jacobian det D{phi}(x). Bibliography: 65 titles.

  19. 3D-marine tCSEM inversion using model reduction in the Rational Krylov subspace

    NASA Astrophysics Data System (ADS)

    Sommer, M.; Jegen, M. D.

    2014-12-01

    Computationally, the most expensive part of a 3D time domain CSEM inversion is the computation of the Jacobian matrix in every Gauss-Newton step. An other problem is its size for large data sets. We use a model reduction method (Zaslavsky et al, 2013), that compresses the Jacobian by projecting it with a Rational Krylov Subspace (RKS). It also reduces the runtime drastically, compared to the most common adjoint approach and was implemented on GPU.It depends on an analytic derivation of the implicit Anzatz function, which solves Maxwell's diffusion equation in the Eigenspace giving a Jacobian dependent on the Eigenpairs and its derivatives of the forward problem. The Eigenpairs are approximated by Ritz-pairs in the Rational Krylov subspace. Determination of the derivived Ritz-pairs is the most time consuming and was fully GPU-optimized. Furthermore, the amount of inversion cells is reduced by using Octree meshes. The gridding allows for the incorporation of complicated survey geometries, as they are encountered in marine CSEM datasets.As a first result, the Jacobian computation is, even on a Desktop, faster than the most common adjoint approach on a super computer for realistic data sets. We will present careful benchmarking and accuracy tests of the new method and show how it can be applied to a real marine scenario.

  20. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  1. Extending the Belavin-Knizhnik "wonderful formula" by the characterization of the Jacobian

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2012-10-01

    A long-standing question in string theory is to find the explicit expression of the bosonic measure, a crucial issue also in determining the superstring measure. Such a measure was known up to genus three. Belavin and Knizhnik conjectured an expression for genus four which has been proved in the framework of the recently introduced vector-valued Teichmüller modular forms. It turns out that for g ≥ 4 the bosonic measure is expressed in terms of such forms. In particular, the genus four Belavin-Knizhnik "wonderful formula" has a remarkable extension to arbitrary genus whose structure is deeply related to the characterization of the Jacobian locus. Furthermore, it turns out that the bosonic string measure has an elegant geometrical interpretation as generating the quadrics in ℙ g-1 characterizing the Riemann surface. All this leads to identify forms on the Siegel upper half-space that, if certain conditions related to the characterization of the Jacobian are satisfied, express the bosonic measure as a multiresidue in the Siegel upper half-space. We also suggest that it may exist a super analog on the super Siegel half-space.

  2. Jacobian variety and integrable system — after Mumford, Beauville and Vanhaecke

    NASA Astrophysics Data System (ADS)

    Inoue, Rei; Konishi, Yukiko; Yamazaki, Takao

    2007-02-01

    Beauville [A. Beauville, Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta. Math. 164 (1990) 211-235] introduced an integrable Hamiltonian system whose general level set is isomorphic to the complement of the theta divisor in the Jacobian of the spectral curve. This can be regarded as a generalization of the Mumford system [D. Mumford, Tata Lectures on Theta II, Birkhäuser, 1984]. In this article, we construct a variant of Beauville's system whose general level set is isomorphic to the complement of the intersection of the translations of the theta divisor in the Jacobian. A suitable subsystem of our system can be regarded as a generalization of the even Mumford system introduced by Vanhaecke [P. Vanhaecke, Linearising two-dimensional integrable systems and the construction of action-angle variables, Math. Z. 211 (1992) 265-313; P. Vanhaecke, Integrable systems in the realm of algebraic geometry, in: Lecture Notes in Mathematics, vol. 1638, 2001].

  3. Code Coupling via Jacobian-Free Newton-Krylov Algorithms with Application to Magnetized Fluid Plasma and Kinetic Neutral Models

    SciTech Connect

    Joseph, Ilon

    2014-05-27

    Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.

  4. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  5. Application of the least-squares inversion method: Fourier series versus waveform inversion

    NASA Astrophysics Data System (ADS)

    Min, Dong-Joo; Shin, Jungkyun; Shin, Changsoo

    2015-11-01

    We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the

  6. Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators

    SciTech Connect

    Tashmasebi, F. . Goddard Space Flight Center); Tsai, Lung-Wen . Dept. of Mechanical Engineering)

    1992-01-01

    The Jacobian and stiffness matrices of two types of novel, six-DOF parallel minimanipulators are derived. A minimanipulator consists of three inextensible limbs, each of which is driven by a two-DOF driver. Bilinear stepper motors are used as drivers in the first type minimanipulator, whereas five-bar linkages are used as drivers in the second type minimanipulator. All of the minimanipulator actuators are base-mounted. Inextensible limbs (and five-bar linkage drivers in the second type minimanipulator) improve positional resolution and stiffness of the minimanipulators in certain directions. It is shown that, at the central configuration, the stiffness matrix of the first type minimanipulator can be diagonalized (decoupled). It is also shown that the first type minimanipulator can be designed to possess direct or torsional isotropic stiffness properties. Moreover, guidelines for designing the drivers of the second type minimanipulator are established. 20 refs.

  7. Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators

    SciTech Connect

    Tashmasebi, F.; Tsai, Lung-Wen

    1992-08-01

    The Jacobian and stiffness matrices of two types of novel, six-DOF parallel minimanipulators are derived. A minimanipulator consists of three inextensible limbs, each of which is driven by a two-DOF driver. Bilinear stepper motors are used as drivers in the first type minimanipulator, whereas five-bar linkages are used as drivers in the second type minimanipulator. All of the minimanipulator actuators are base-mounted. Inextensible limbs (and five-bar linkage drivers in the second type minimanipulator) improve positional resolution and stiffness of the minimanipulators in certain directions. It is shown that, at the central configuration, the stiffness matrix of the first type minimanipulator can be diagonalized (decoupled). It is also shown that the first type minimanipulator can be designed to possess direct or torsional isotropic stiffness properties. Moreover, guidelines for designing the drivers of the second type minimanipulator are established. 20 refs.

  8. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  9. New 3D parallel SGILD modeling and inversion

    SciTech Connect

    Xie, G.; Li, J.; Majer, E.

    1998-09-01

    In this paper, a new parallel modeling and inversion algorithm using a Stochastic Global Integral and Local Differential equation (SGILD) is presented. The authors derived new acoustic integral equations and differential equation for statistical moments of the parameters and field. The new statistical moments integral equation on the boundary and local differential equations in domain will be used together to obtain mean wave field and its moments in the modeling. The new moments global Jacobian volume integral equation and the local Jacobian differential equations in domain will be used together to update the mean parameters and their moments in the inversion. A new parallel multiple hierarchy substructure direct algorithm or direct-iteration hybrid algorithm will be used to solve the sparse matrices and one smaller full matrix from domain to the boundary, in parallel. The SGILD modeling and imaging algorithm has many advantages over the conventional imaging approaches. The SGILD algorithm can be used for the stochastic acoustic, electromagnetic, and flow modeling and inversion, and are important for the prediction of oil, gas, coal, and geothermal energy reservoirs in geophysical exploration.

  10. Visual servoing of robot manipulators -- Part 1: Projective kinematics

    SciTech Connect

    Ruf, A.; Horaud, R.

    1999-11-01

    Visual servoing of robot manipulators is a key technique where the appearance of an object in the image plane is used to control the velocity of the end-effector such that the desired position is reached in the scene. The vast majority of visual servoing methods proposed so far uses calibrated robots in conjunction with calibrated cameras. It has been shown that the behavior of visual control loops does not degrade too much in the presence of calibration errors. Nevertheless, camera and robot calibration are complex and time-consuming processes requiring special-purpose mechanical devices, such as theodolites and calibration jigs. In this paper, the authors, suggest formulating a visual servoing control loop in nonmetric space, which in this case amounts to the projective space in which a triangulation of the scene using an uncalibrated stereo rig is expressed. The major consequence of controlling the robot in nonmetric space rather than in Euclidean space is that both the robot's direct kinematic map and the robot's Jacobian matrix must be defined in this space as well. Finally, they provide a practical method to estimate the projective kinematic model and they describe some preliminary simulated experiments that use this nonmetric model to perform stereo-based servoing. Nevertheless, in-depth analysis of projective control will be the topic of a forthcoming paper.

  11. An optimal resolved rate law for kinematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Bourgeois, B. J.

    1987-01-01

    The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.

  12. Kinematic analysis of platform-type robotic manipulators

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolun

    New methods are developed for the kinematic analysis of serial and platform-type parallel robotic manipulators, including forward and inverse kinematic solutions, singularity identifications and workspace evaluation. Differences between serial and platform-type parallel manipulators, which can provide substantially improved end-point rigidity compared with the conventional serial robotic arms, are addressed. The problem of determining the screw parameters of rigid body motion from initial and final position data is discussed, as a basis to search for a general and efficient procedure to solve the complex forward kinematics problem of platform-type manipulators. Several Screw-Theory based approaches for solving the inverse instantaneous problem of 6 DOF serial manipulators are studied and compared in terms of their computational efficiency, accuracy, sensitivity to data error and capability of dealing with singularities. A modified Vector Decomposition method is then proposed for solving the IIK problem and for singularity analysis of serial kinematic chains, the method is especially effective when applied to the wrist partitioned serial manipulators, which are essential components to any platform-type parallel manipulators. By using the data of three point positions, velocities, and accelerations of the end effector a general method is developed for solving the forward kinematics problem, including position, velocity and acceleration kinematics, of platform-type manipulators. The solution procedure can be applied to a wide variety of platform-type manipulators such as the 6 DOF Steward Platform manipulator and other models. It is found that while the solution for the forward position kinematics of a platform-type manipulator can be obtained by solving a non-linear system of equations, the closed-form solutions for forward rate and acceleration kinematics can be found by solving a system of linear equations. Based on the proposed kinematic formulations, an algorithm

  13. Three tooth kinematic coupling

    DOEpatents

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  14. Three tooth kinematic coupling

    SciTech Connect

    Hale, L.C.

    2000-05-23

    A three tooth kinematic coupling is disclosed based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  15. Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians.

    PubMed

    Baetens, Jan M; De Baets, Bernard

    2010-09-01

    Originally, cellular automata (CA) have been defined upon regular tessellations of the n-dimensional Euclidean space, while CA on irregular tessellations have received only little attention from the scientific community, notwithstanding serious shortcomings are associated with the former manner of subdividing Rn. In this paper we present a profound phenomenological study of two-state, two-dimensional irregular CA from a dynamical systems viewpoint. We opted to exploit properly defined quantitative measures instead of resorting to qualitative methods for discriminating between behavioral classes. As such, we employ Lyapunov exponents, measuring the divergence rate of close trajectories in phase space, and Jacobians, formulated using Boolean derivatives and expressing the sensitivity of a cellular automaton to its inputs. Both are stated for two-state CA on irregular tessellations, enabling us to characterize these discrete dynamical systems, and advancing us to propose a classification scheme for this CA family. In addition, a relationship between these quantitative measures is established in extension of the insights already developed for the classical CA paradigm. Finally, we discuss the repercussions on the CA dynamics that arise when the geometric variability of the spatial entities is taken into account during the CA simulation. PMID:20887052

  16. Tetrahedral element shape optimization via the Jacobian determinant and condition number.

    SciTech Connect

    Freitag, L. A.; Knupp, P. M.

    1999-07-30

    We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.

  17. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  18. Kinematics of Tape Recording.

    ERIC Educational Resources Information Center

    Coleman, J. J.

    1982-01-01

    Describes mathematics of the nonliner relationships between a constant-speed, capstan-driven magnetic tape transport mechanism and a constant-angular-velocity take-up reel. The relationship, derived from the sum of a partial, serves in recognition of a finite tape. Thickness can serve as an example of rotational kinematics. (Author/SK)

  19. Teaching about Kinematics

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    2009-01-01

    Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…

  20. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    SciTech Connect

    Andersen, David R.; Bershady, Matthew A. E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.

  1. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  2. Bayesian Kinematic Finite Fault Source Models (Invited)

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Simons, M.; Beck, J. L.

    2010-12-01

    Finite fault earthquake source models are inherently under-determined: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are only limited observations at the Earth's surface. Traditional inverse techniques rely on model constraints and regularization to generate one model from the possibly broad space of all possible solutions. However, Bayesian methods allow us to determine the ensemble of all possible source models which are consistent with the data and our a priori assumptions about the physics of the earthquake source. Until now, Bayesian techniques have been of limited utility because they are computationally intractable for problems with as many free parameters as kinematic finite fault models. We have developed a methodology called Cascading Adaptive Tempered Metropolis In Parallel (CATMIP) which allows us to sample very high-dimensional problems in a parallel computing framework. The CATMIP algorithm combines elements of simulated annealing and genetic algorithms with the Metropolis algorithm to dynamically optimize the algorithm's efficiency as it runs. We will present synthetic performance tests of finite fault models made with this methodology as well as a kinematic source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake was well recorded by multiple ascending and descending interferograms and a network of high-rate GPS stations whose records can be used as near-field seismograms.

  3. Microwave spectrum of the HD2O+ ion: inversion-rotation transitions and inversion splitting.

    PubMed

    Furuya, Takashi; Saito, Shuji

    2008-01-21

    Inversion-rotation spectral lines of the dideuterated hydronium ion, HD2O+, have been observed by a source-modulation millimeter- to submillimeter-wave spectrometer. The ion was generated by a hollow-cathode discharge in a gas mixture of D2O and H2O in a free-space cell. Ten inversion-rotation lines were measured precisely for the lowest pair of inversion doublets in the frequency region from 380 to 730 GHz. The observed lines include the most astronomically important transitions, 0(00) (-)-1(10)+ for the para species at 380 538.031(32) MHz and 1(01) (-)-1(11)+ for the ortho species at 728 420.189(34) MHz, which could be used as a radio astronomical probe investigating interstellar chemistry of deuterium fractionation. An analysis of the measured lines has yielded the rotational constants in the ground doublet states and the inversion splitting. The inversion splitting in the ground state was determined to be 808 866(34) MHz, that is, 26.980 87(113) cm(-1), where the numbers in parentheses give uncertainties estimated from the Jacobian matrix of the assumed centrifugal distortion constants. The determined inversion splitting is off by -0.51 cm(-1) from the predicted value of 27.49 cm(-1) by Rajamaki et al. using high-order coupled cluster ab initio calculation [J. Chem. Phys. 118, 10929 (2003)], and by -0.0510 cm(-1) from the observed value of 27.0318(72) cm(-1) by Dong et al. using high-resolution jet-cooled infrared spectroscopy [J. Chem. Phys. 122, 224301 (2005)] beyond the quoted uncertainty. PMID:18205502

  4. Global inversion for anisotropy during full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Debens, H. A.; Warner, M.; Umpleby, A.

    2015-12-01

    Full-waveform inversion (FWI) is a powerful tool for quantitative estimation of high-resolution high-fidelity models of subsurface seismic parameters, typically P-wave velocity. The solution to FWI's posed nonlinear inverse problem is obtained via an iterative series of linearized local updates to a start model, assuming this model lies within the basin of attraction to the global minimum. Thanks to many successful published applications to three-dimensional (3D) field datasets, its advance has been rapid and driven in large-part by the oil and gas industry. The consideration of seismic anisotropy during FWI is of vital importance, as it holds influence over both the kinematics and dynamics of seismic waveforms. If not appropriately taken into account then inadequacies in the anisotropy model are likely to manifest as significant error in the recovered velocity model. Conventionally, anisotropic FWI employs either an a priori anisotropy model, held fixed during FWI, or it uses a multi-parameter local inversion scheme to recover the anisotropy as part of the FWI; both of these methods can be problematic. Constructing an anisotropy model prior to FWI often involves intensive (and hence expensive) iterative procedures, such as travel-time tomography or moveout velocity analysis. On the other hand, introducing multiple parameters to FWI itself increases the complexity of what is already an underdetermined inverse problem. We propose that global rather than local FWI can be used to recover the long-wavelength acoustic anisotropy model, and that this can then be followed by more-conventional local FWI to recover the detailed model. We validate this approach using a full 3D field dataset, demonstrating that it avoids problems associated to crosstalk that can bedevil local inversion schemes, and reconciles well with in situ borehole measurements. Although our approach includes a global inversion for anisotropy, it is nonetheless affordable and practical for 3D field data.

  5. Jacobian-free Newton Krylov discontinuous Galerkin method and physics-based preconditioning for nuclear reactor simulations

    SciTech Connect

    HyeongKae Park; Robert R. Nourgaliev; Richard C. Martineau; Dana A. Knoll

    2008-09-01

    We present high-order accurate spatiotemporal discretization of all-speed flow solvers using Jacobian-free Newton Krylov framework. One of the key developments in this work is the physics-based preconditioner for the all-speed flow, which makes use of traditional semi-implicit schemes. The physics-based preconditioner is developed in the primitive variable form, which allows a straightforward separation of physical phenomena. Numerical examples demonstrate that the developed preconditioner effectively reduces the number of the Krylov iterations, and the efficiency is independent of the Mach number and mesh sizes under a fixed CFL condition.

  6. Implicit solution of Navier-Stokes equations on staggered curvilinear grids using a Newton-Krylov method with a novel analytical Jacobian.

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez

    2015-11-01

    Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.

  7. Shot-put kinematics

    NASA Astrophysics Data System (ADS)

    DeLuca, R.

    2005-11-01

    The problem of the optimum throw in the shot-put discipline is analysed by relaxing the assumption that the height H, from which the athlete releases the shot, does not depend on the angle θ which the arm of the putter makes with the horizontal axis. In this context, the kinematics of the shot-put is studied and results are compared with the traditional analysis, which considers the height H, the angle θ and the modulus V0 of the initial velocity of the metal sphere as independent parameters.

  8. Kinematics of Strong Discontinuities

    NASA Technical Reports Server (NTRS)

    Peterson, K.; Nguyen, G.; Sulsky, D.

    2006-01-01

    Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.

  9. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  10. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  11. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  12. Rattlesnake strike behavior: kinematics

    PubMed

    Kardong; v

    1998-03-01

    The predatory behavior of rattlesnakes includes many distinctive preparatory phases leading to an extremely rapid strike, during which venom is injected. The rodent prey is then rapidly released, removing the snake's head from retaliation by the prey. The quick action of the venom makes possible the recovery of the dispatched prey during the ensuing poststrike period. The strike is usually completed in less than 0.5 s, placing a premium on an accurate strike that produces no significant errors in fang placement that could result in poor envenomation and subsequent loss of the prey. To clarify the basis for effective strike performance, we examined the basic kinematics of the rapid strike using high-speed film analysis. We scored numerous strike variables. Four major results were obtained. (1) Neurosensory control of the strike is based primarily upon sensory inputs via the eyes and facial pits to launch the strike, and upon tactile stimuli after contact. Correction for errors in targeting occurs not by a change in strike trajectory, but by fang repositioning after the jaws have made contact with the prey. (2) The rattlesnake strike is based upon great versatility and variation in recruitment of body segments and body postures. (3) Forces generated during acceleration of the head are transferred to posterior body sections to decelerate the head before contact with the prey, thereby reducing impact forces upon the snake's jaws. (4) Body acceleration is based on two patterns of body displacement, one in which acute sections of the body open like a gate, the other in which body segments flow around postural curves similar to movements seen during locomotion. There is one major implication of these results: recruitment of body segments, launch postures and kinematic features of the strike may be quite varied from strike to strike, but the overall predatory success of each strike by a rattlesnake is very consistent.

    PMID:9464964

  13. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    SciTech Connect

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before

  14. Kinematics and control of a fully parallel force-reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.; Nguyen, Charles C.; Antrazi, Sami S.; Chiou, Peter C.

    1993-01-01

    Design of a parallel force-reflecting hand controller that implements a friction- and inertia canceling control loop about the entire mechanism based on wrench sensing in the mechanism handgrip is discussed. Kinematics of the controller under consideration is analyzed and results are presented using a closed-form solution for the inverse kinematics and Newton-Raphson's method for the forward kinematics. Results indicate that the force control scheme based on a handgrip force sensor provides smaller steady-state errors than the scheme without a handigrip sensor.

  15. Numerical implementation, verification and validation of two-phase flow four-equation drift flux model with Jacobian-free Newton–Krylov method

    DOE PAGESBeta

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-08-24

    This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less

  16. Comparison of iterative methods and preconditioners for two-phase flow in porous media using exact and approximate Jacobians

    NASA Astrophysics Data System (ADS)

    Büsing, Henrik

    2013-04-01

    Two-phase flow in porous media occurs in various settings, such as the sequestration of CO2 in the subsurface, radioactive waste management, the flow of oil or gas in hydrocarbon reservoirs, or groundwater remediation. To model the sequestration of CO2, we consider a fully coupled formulation of the system of nonlinear, partial differential equations. For the solution of this system, we employ the Box method after Huber & Helmig (2000) for the space discretization and the fully implicit Euler method for the time discretization. After linearization with Newton's method, it remains to solve a linear system in every Newton step. We compare different iterative methods (BiCGStab, GMRES, AGMG, c.f., [Notay (2012)]) combined with different preconditioners (ILU0, ASM, Jacobi, and AMG as preconditioner) for the solution of these systems. The required Jacobians can be obtained elegantly with automatic differentiation (AD) [Griewank & Walther (2008)], a source code transformation providing exact derivatives. We compare the performance of the different iterative methods with their respective preconditioners for these linear systems. Furthermore, we analyze linear systems obtained by approximating the Jacobian with finite differences in terms of Newton steps per time step, steps of the iterative solvers and the overall solution time. Finally, we study the influence of heterogeneities in permeability and porosity on the performance of the iterative solvers and their robustness in this respect. References [Griewank & Walther(2008)] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [Huber & Helmig(2000)] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [Notay(2012)] Notay, Y., 2012. Aggregation-based algebraic multigrid for convection

  17. Joint inversion of acoustic and resistivity data for the estimation of gas hydrate concentration

    USGS Publications Warehouse

    Lee, Myung W.

    2002-01-01

    Downhole log measurements, such as acoustic or electrical resistivity logs, are frequently used to estimate in situ gas hydrate concentrations in the pore space of sedimentary rocks. Usually the gas hydrate concentration is estimated separately based on each log measurement. However, measurements are related to each other through the gas hydrate concentration, so the gas hydrate concentrations can be estimated by jointly inverting available logs. Because the magnitude of slowness of acoustic and resistivity values differs by more than an order of magnitude, a least-squares method, weighted by the inverse of the observed values, is attempted. Estimating the resistivity of connate water and gas hydrate concentration simultaneously is problematic, because the resistivity of connate water is independent of acoustics. In order to overcome this problem, a coupling constant is introduced in the Jacobian matrix. In the use of different logs to estimate gas hydrate concentration, a joint inversion of different measurements is preferred to the averaging of each inversion result.

  18. Robust Inversion and Data Compression in Control Allocation

    NASA Technical Reports Server (NTRS)

    Hodel, A. Scottedward

    2000-01-01

    We present an off-line computational method for control allocation design. The control allocation function delta = F(z)tau = delta (sub 0) (z) mapping commanded body-frame torques to actuator commands is implicitly specified by trim condition delta (sub 0) (z) and by a robust pseudo-inverse problem double vertical line I - G(z) F(z) double vertical line less than epsilon (z) where G(z) is a system Jacobian evaluated at operating point z, z circumflex is an estimate of z, and epsilon (z) less than 1 is a specified error tolerance. The allocation function F(z) = sigma (sub i) psi (z) F (sub i) is computed using a heuristic technique for selecting wavelet basis functions psi and a constrained least-squares criterion for selecting the allocation matrices F (sub i). The method is applied to entry trajectory control allocation for a reusable launch vehicle (X-33).

  19. Detailed solution to a complex kinematics chain manipulator

    SciTech Connect

    March-Leuba, S; Jansen, J F; Kress, R L; Babcock, S M

    1992-01-01

    This paper presents a relatively simple method based on planar geometry to analyze the inverse kinematics for closed kinematics chain (CKC) mechanisms. Although the general problem and method of approach are well defined, the study of the inverse kinematics of a closed-chain mechanism is a very complicated one. The current methodology allows closed-form solutions to be found, if a solution exists, for the displacements and velocities of all manipulator joints. Critical design parameters can be identified and optimized by using symbolic models. This paper will focus on planar closed-chain structures extended with a rotational base. However, with open and CKC mechanisms combined in different planes, the extension to the case is straightforward. Further, real-time algorithms are developed that can be handled by existing microprocessor technology. To clarify the methodology, the Soldier Robot Interface Project (SRIP) manipulator is analyzed, and a graphic simulation is presented as a verification of the results. This manipulator has 17 links, 24 one-degree-of-freedom (DOF) joints, and 7 CKC loops working in a plane and a rotational base, which determine its 3 DOFs. The SRIP manipulator allows a decoupled linear motion along the vertical or horizontal directions using only one of its linear actuators. The symbolic solution for the inverse kinematics allows optimization to be performed to further decouple the Cartesian motions by changing link lengths of the manipulator. The conclusion achieved by the optimization is that only two link lengths need to be changed to tune the manipulator for a perfect decoupling at each area of the workspace.

  20. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  1. Geometry and evolution of structural traps formed by inversion structures

    SciTech Connect

    Mitra, S. )

    1994-07-01

    Inversion structures form by compressional reactivation of preexisting extensional structures. Experimental models and observations of natural structures are used to develop quantitative models for the geometry and kinematic evolution of inversion structures. Two main mechanisms of formation of inversion structures are analyzed: (1) fault-propagation folding on planar faults, and (2) fault-bend folding on listric faults. Inversion structures formed by fault-propagation folding are characterized by the upward termination of a basement fault into a tight fold and thickening of synextensional units into the basin. Inversion structures formed by fault-bend folding are characterized by open-fold geometries and thickening of synextensional units into the fault zone. Characteristic variations in fold geometry and bed thickness provide predictive models for interpreting the subsurface geometries of these two classes of inversion structures in areas with poor seismic data. Examples of both types of structures are described from the Taranaki basin, the southern North Sea, and the Kangean Basin.

  2. Development of fully Bayesian multiple-time-window source inversion

    NASA Astrophysics Data System (ADS)

    Kubo, Hisahiko; Asano, Kimiyuki; Iwata, Tomotaka; Aoi, Shin

    2016-03-01

    In the estimation of spatiotemporal slip models, kinematic source inversions using Akaike's Bayesian Information Criterion (ABIC) and the multiple-time-window method have often been used. However, there are cases in which conventional ABIC-based source inversions do not work well in the determination of hyperparameters when a non-negative slip constraint is used. In order to overcome this problem, a new source inversion method was developed in this study. The new method introduces a fully Bayesian method into the kinematic multiple-time-window source inversion. The multiple-time-window method is one common way of parametrizing a source time function and is highly flexible in terms of the shape of the source time function. The probability distributions of model parameters and hyperparameters can be directly obtained by using the Markov chain Monte Carlo method. These probability distributions are useful for simply evaluating the uniqueness and reliability of the derived model, which is another advantage of a fully Bayesian method. This newly developed source inversion method was applied to the 2011 Ibaraki-oki, Japan, earthquake (Mw 7.9) to demonstrate its usefulness. It was demonstrated that the problem with using the conventional ABIC-based source inversion method for hyperparameter determination appeared in the spatiotemporal source inversion of this event and that the newly developed source inversion could overcome this problem.

  3. Why Teach Kinematics?

    NASA Astrophysics Data System (ADS)

    Dykstra, Dewey

    2002-05-01

    The development of two new units for the Powerful Ideas in Physical Science (PIPS) Project of the American Association of Physics Teachers, funded by the National Science Foundation has motivated another look at the learning and teaching of kinematics and force. These and some of the other units of the PIPS Project are unique in that they advocate and model a particular student understanding driven approach to instruction as opposed to the more common content driven approach. Several novel ways to view the results of using these new motion and force materials are introduced and made possible by a diagnostic capable of indicating the degree of presence of multiple views (the Force and Motion Conceptual Evaluation by Thornton and Sokoloff). The performance of individuals on pre and post diagnostic measures ranges widely from almost no change to more than 6 standard deviations. Factors are identified which appear to differentiate the student performances. The identification of these factors motivated additional rounds of modifications to the materials, departing even further from a content driven orientation toward an even more student understanding driven approach. The resulting instruction appears to induce routinely even under adverse teaching and learning conditions 2.5 standard deviations change in the class average on the pre to the post instruction diagnostic scores.

  4. CME Kinematics and Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, C.-H.; Gallagher, P. T.

    The goal of this study is to investigate the driving mechanisms of CMEs and to infer the magnetic field properties at the onset of the instability. We use EIT 195 Å images and LASCO white-light coronagraph data of a CME event that occurred on 17 December 2006. It was a long-duration event, and was associated with an occulted C2.1 class flare. To determine the driving mechanism, we quantitatively and qualitatively compared the observationally obtained kinematic evolution with that predicted by three CME models: the breakout model (BO, see Antiochos et al. 1999; Lynch et al. 2008; DeVore and Antiochos 2008), the catastrophe model (CM, see Priest and Forbes 2000), and the toroidal instability model (TI, see Chen 1989; Kliem and Török 2006). Our results indicate that this CME is best represented by the CM model. We infer that, at the onset of the instability, the Alfvén speed is approximately 120 km s-1 and the height of the flux rope is roughly 100-200Mm. These parameter values are related to the magnetic environment and the loop geometry and can be used to infer the magnetic condition at the onset of the eruption.We intend to submit the full analysis to A&A.

  5. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  6. Tensor networks from kinematic space

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2016-07-01

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry, obtaining a detailed agreement which includes the entwinement sector. We discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.

  7. Tensor networks from kinematic space

    DOE PAGESBeta

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2016-07-20

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry,more » obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.« less

  8. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  9. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-01

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884

  10. Kinematics and kinetics of an accidental lateral ankle sprain.

    PubMed

    Kristianslund, Eirik; Bahr, Roald; Krosshaug, Tron

    2011-09-23

    Ankle sprains are common during sporting activities and can have serious consequences. Understanding of injury mechanisms is essential to prevent injuries, but only two previous studies have provided detailed descriptions of the kinematics of lateral ankle sprains and measures of kinetics are missing. In the present study a female handball player accidentally sprained her ankle during sidestep cutting in a motion analysis laboratory. Kinematics and kinetics were calculated from 240 Hz recordings with a full-body marker setup. The injury trial was compared with two previous (non-injury) trials. The injury trial showed a sudden increase in inversion and internal rotation that peaked between 130 and 180 ms after initial contact. We observed an attempted unloading of the foot from 80 ms after initial contact. As the inversion and internal rotation progressed, the loads were likely to exceed injury threshold between 130 and 180 ms. There was a considerable amount of dorsiflexion in the injury trial compared to neutral flexion in the control trials, similar to the previously published kinematical descriptions of lateral ankle sprains. The present study also adds valuable kinetic information that improves understanding of the injury mechanism. PMID:21824618

  11. Kinematic analysis of a flexible six-DOF parallel mechanism.

    PubMed

    Jing, Feng-Shui; Tan, Min; Hou, Zeng-Guang; Liang, Zi-Ze; Wang, Yun-Kuan; Gupta, Madan M; Nikiforuk, Peter N

    2006-04-01

    In this paper, a new type of six-degrees of freedom (DOF) flexible parallel mechanism (FPM) is presented. This type of parallel mechanism possesses several favorable properties: (1) its number of DOFs is independent of the number of serial chains which make up the mechanism; (2) it has no kinematical singularities; (3) it is designed to move on rails, and therefore its workspace is much larger than that of a conventional parallel manipulator; and (4) without changing the number of DOFs and the kinematics of the mechanisms, the number of the serial chains can be reconfigured according to the needs of the tasks. These properties make the mechanism very preferable in practice, especially for such tasks as joining huge ship blocks, in which the manipulated objects vary dramatically both in weights and dimensions. Furthermore, the mechanism can be used as either a fully actuated system or an underactuated system. In the fully actuated case, the mechanism has six DOF motion capabilities and manipulation capabilities. However, in the underactuated case, the mechanism still has six DOF motion capabilities, but it has only five DOF manipulation capabilities. In this paper, both the inverse and forward kinematics are studied and expressed in a closed form. The workspace and singularity analysis of the mechanism are also presented. An example is presented to illustrate how to calculate the kinematics of the mechanism in both fully-actuated and underactuated cases. Finally, an application of such a mechanism to manufacturing industry is introduced. PMID:16602597

  12. Error analysis and optimization of a 3-degree of freedom translational Parallel Kinematic Machine

    NASA Astrophysics Data System (ADS)

    Shankar Ganesh, S.; Koteswara Rao, A. B.

    2014-06-01

    In this paper, error modeling and analysis of a typical 3-degree of freedom translational Parallel Kinematic Machine is presented. This mechanism provides translational motion along the Cartesian X-, Y- and Z-axes. It consists of three limbs each having an arm and forearm with prismatic-revolute-revolute-revolute joints. The moving or tool platform maintains same orientation in the entire workspace due to its joint arrangement. From inverse kinematics, the joint angles for a given position of tool platform necessary for the error modeling and analysis are obtained. Error modeling is done based on the differentiation of the inverse kinematic equations. Variation of pose errors along X, Y and Z directions for a set of dimensions of the parallel kinematic machine is presented. A non-dimensional performance index, namely, global error transformation index is used to study the influence of dimensions and its corresponding global maximum pose error is reported. An attempt is made to find the optimal dimensions of the Parallel Kinematic Machine using Genetic Algorithms in MATLAB. The methodology presented and the results obtained are useful for predicting the performance capability of the Parallel Kinematic Machine under study.

  13. Visualized kinematics code for two-body nuclear reactions

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2016-05-01

    The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.

  14. Kinematics of a New High Precision Three Degree-of-Freedom Parallel Manipulator

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2005-01-01

    Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most sixteen assembly configurations for the manipulator. In addition, it is shown that the sixteen solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

  15. A mechanical supination sprain simulator for studying ankle supination sprain kinematics.

    PubMed

    Chan, Yue-Yan; Fong, Daniel Tik-Pui; Yung, Patrick Shu-Hang; Fung, Kwai-Yau; Chan, Kai-Ming

    2008-08-01

    This study presents a free-fall mechanical supination sprain simulator for evaluating the ankle joint kinematics during a simulated ankle supination sprain injury. The device allows the foot to be in an anatomical position before the sudden motion, and also allows different degrees of supination, or a combination of inversion and plantarflexion. Five subjects performed simulated supination sprain trials in five different supination angles. Ankle motion was captured by a motion analysis system, and the ankle kinematics were reported in plantarflexion/dorsiflexion, inversion/eversion and internal/external rotation planes. Results showed that all sprain motions were not pure single-plane motions but were accompanied by motion in other two planes, therefore, different degrees of supination were achieved. The presented sprain simulator allows a more comprehensive study of the kinematics of ankle sprain when compared with some previous laboratory research designs. PMID:18617179

  16. Clifford Fibrations and Possible Kinematics

    NASA Astrophysics Data System (ADS)

    McRae, Alan S.

    2009-07-01

    Following Herranz and Santander [Herranz F.J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998), 59-84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967), 1605-1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra.

  17. Functional kinematics of the wrist.

    PubMed

    Rainbow, M J; Wolff, A L; Crisco, J J; Wolfe, S W

    2016-01-01

    The purpose of this article is to review past and present concepts concerning functional kinematics of the healthy and injured wrist. To provide a context for students of the wrist, we describe the progression of techniques for measuring carpal kinematics over the past century and discuss how this has influenced today's understanding of functional kinematics. Next, we provide an overview of recent developments and highlight the clinical relevance of these findings. We use these findings and recent evidence that supports the importance of coupled motion in early rehabilitation of radiocarpal injuries to develop the argument that coupled motion during functional activities is a clinically relevant outcome; therefore, clinicians should develop a framework for its dynamic assessment. This should enable a tailored and individualized approach to the treatment of carpal injuries. PMID:26568538

  18. Kinematic sensitivity of robot manipulators

    NASA Technical Reports Server (NTRS)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  19. Kinematics of KPG 390

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-06-01

    In this work we present scanning Fabry-Perot Hα observations of the isolated interacting galaxy pair NGC 5278/9 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.

  20. KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS

    SciTech Connect

    Salerno, R. J.

    1994-06-01

    solution techniques are developed for solving the "forward" or "direct" and "inverse" kinematic problems for these geometries. The" forward" kinematic problem is that of finding the position and orientation of the distal end of the VGT relative to the proximal end, given the specific displacements of the (linear) actuators. This problem is rarely solvable in closed form. However, powerful iterative algorithms capable of solution in real time on typical modern robot control hardware are presented. The "inverse" kinematic problem is that of finding the required actuator displacements given the position and orientation of the distal end of the VGT relative to the proximal end. For specific VGT geometries, closed-form solutions are presented. For the more general problem, iterative algorithms capable of solution in real time are again derived and presented.

  1. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  2. Occupant Kinematics in Laboratory Rollover Tests: PMHS Response.

    PubMed

    Lessley, David J; Riley, Patrick; Zhang, Qi; Foltz, Patrick; Overby, Brian; Heltzel, Sara; Sochor, Mark; Crandall, Jeff; Kerrigan, Jason R

    2014-11-01

    The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions. Whole-body kinematics were measured using a 3D motion capture system that quantified occupant displacement relative to the vehicle buck for the X-axis (longitudinal), Y-axis (lateral), and Z-axis (vertical) directions. Additionally the spine was divided into five segments to describe intrasegmental kinematics of the spine, including segment rotations as well as spinal extension and compression. The reported data represent the most complete set of kinematic response targets for a restrained occupant in a variety of dynamic rollover conditions, and are immediately useful for efforts to evaluate and improve existing ATDs and computational models for use in the rollover crash environment. PMID:26192958

  3. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    SciTech Connect

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-06-15

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian

  4. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    SciTech Connect

    Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.

    2015-10-15

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.

  5. Kinematic Parameters of Signed Verbs

    ERIC Educational Resources Information Center

    Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina

    2013-01-01

    Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production…

  6. Top quark mass and kinematics

    SciTech Connect

    Barberis, Emanuela; /Northeastern U.

    2006-05-01

    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  7. Kinematic support using elastic elements

    NASA Technical Reports Server (NTRS)

    Geirsson, Arni; Debra, Daniel B.

    1988-01-01

    The design of kinematic supports using elastic elements is reviewed. The two standard methods (cone, Vee and flat and three Vees) are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the bench relative to the base when the base strains due to temperature variations and shifting loads. Space applications are also considered.

  8. PC-based artificial neural network inversion for airborne time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Guang; Ma, Ming-Yao; Che, Hong-Wei; Yang, Er-Wei; Ji, Yan-Ju; Yu, Sheng-Bao; Lin, Jun

    2012-03-01

    Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.

  9. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part II - A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix

    SciTech Connect

    Knupp, P.M.

    1999-03-26

    Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.

  10. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for