JFKengine: A Jacobian and Forward Kinematics Generator
Fischer, K.N.
2003-02-13
During robot path planning and control the equations that describe the robot motions are determined and solved. Historically these expressions were derived analytically off-line. For robots that must adapt to their environment or perform a wide range of tasks, a way is needed to rapidly re-derive these expressions to take into account the robot kinematic changes, such as when a tool is added to the end-effector. The JFKengine software was developed to automatically produce the expressions representing the manipulator arm motion, including the manipulator arm Jacobian and the forward kinematic expressions. Its programming interface can be used in conjunction with robot simulation software or with robot control software. Thus, it helps to automate the process of configuration changes for serial robot manipulators. If the manipulator undergoes a geometric change, such as tool acquisition, then JFKengine can be invoked again from the control or simulation software, passing it parameters for the new arm configuration. This report describes the automated processes that are implemented by JFKengine to derive the kinematic equations and the programming interface by which it is invoked. Then it discusses the tree data structure that was chosen to store the expressions, followed by several examples of portions of expressions as represented in the tree. The C++ classes and their methods that implement the expression differentiation and evaluation operations are described. The algorithms used to construct the Jacobian and forward kinematic equations using these basic building blocks are then illustrated. The activity described in this report is part of a larger project entitled ''Multi-Optimization Criteria-Based Robot Behavioral Adaptability and Motion Planning'' that focuses on the development of a methodology for the generalized resolution of robot motion equations with time-varying configurations, constraints, and task objective criteria. A specific goal of this project is the implementation of this generalized methodology in a single general code that would be applicable to the motion planning of a wide class of systems and would automate many of the processes involved in developing and solving the motion planning and controls equations. This project is funded by the U.S. Department of Energy's Environmental Management Science Program (DOE-EMSP) as project EMSP no. 82794 and is transitioning to the DOE-Office of Biological and Environmental Research (OBER) as per FY-02.
Unseren, M.A.; Reister, D.B.
1995-07-01
A method for kinematically modeling a constrained rigid body mechanical system and a method for controlling such a system termed input relegation control (IRC) were applied to resolve the kinematic redundancy of a serial link manipulator moving in an open chain configuration in. A set of equations was introduced to define a new vector variable parameterizing the redundant degrees of freedom (DOF) as a linear function of the joint velocities. The new set was combined with the classical kinematic velocity model of manipulator and solved to yield a well specified solution for the joint velocities as a function of the Cartesian velocities of the end effector and of the redundant DOF variable. In the previous work a technique was proposed for selecting the matrix relating the redundant DOF variable to the joint velocities which resulted in it rows being orthogonal to the rows of the Jacobian matrix. The implications for such a selection were not discussed in. In Part 1 of this report a basis for the joint space is suggested which provides considerable insight into why picking the aforementioned matrix to be orthogonal to the Jacobian is advantageous. A second objective of Part 1 is to compare the IRC method to the Extended Jacobian method of Baillieul and Martin and other related methods.
Challenges of Inversely Estimating Jacobian from Metabolomics Data
Sun, Xiaoliang; Länger, Bettina; Weckwerth, Wolfram
2015-01-01
Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al., 2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined system of equations as JC + CJT = −2D, called Lyapunov Equation in its generic form,1 where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization, and truncated singular value decomposition. Then, we benchmarked these methods on several in silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C, and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data. PMID:26636075
NASA Technical Reports Server (NTRS)
Hsia, T. C.; Lu, G. Z.; Han, W. H.
1987-01-01
In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.
Robust inverse kinematics using damped least squares with dynamic weighting
NASA Technical Reports Server (NTRS)
Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.
1994-01-01
This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.
A Simplified Scheme for Kinematic Source Inversion
NASA Astrophysics Data System (ADS)
Iglesias, A.; Castro-Artola, O.; Singh, S.; Hjorleifsdottir, V.; Legrand, D.
2013-05-01
It is well known that different kinematic source inversion schemes lead to non-unique solutions. For this reason, a simplified scheme, which yields the main characteristics of the rupture process, rather than the details, may be desirable. In this work we propose a modification of the frequency-domain inversion scheme of Cotton & Campillo (1995) to extract kinematic parameters using simplified geometries (ellipses). The forward problem is re-parameterized by including one or two ellipses in which the displacement is smoothly distributed. For the ellipses we invert for the position of the centers within the fault plane, the major and minor semi-axes, the maximum displacements, the angles of rotation and a parameter that controls the distribution of slip. A simulated annealing scheme is used to invert near-source displacements. We first test the method on synthetic displacement records corresponding to the Guerrero-Oaxaca earthquake (20/03/2012, Mw=7.5) by comparing the results obtained from the modified technique with the original method. In the next step, we use displacements obtained by double numerical integration of recorded accelerograms. We find that, in spite of the simple geometry, the modified method leads to a good fit between observed and synthetic displacements and recovers the main rupture characteristics.
Forward and inverse kinematics of double universal joint robot wrists
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.
Inverse kinematics problem in robotics using neural networks
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Lawrence, Charles
1992-01-01
In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.
NASA Astrophysics Data System (ADS)
Akli, Isma; Achour, Noura
2008-06-01
This article presents a differential kinematic study for a car-like mobile system carrying a four degrees of freedom manipulator. The generalized coordinates and velocities of the mobile manipulator are required, when the position and the velocity of the end-effector are imposed in the cartesian space. Our approach consists of planning the motion of the mobile platform with make the onboard manipulator able to follow the cartesian trajectory. The resulted generalized coordinates are exploited to calculate the Forward Differential Kinematic Model. Since the mobile manipulator is redundant regarding to the task, we profit from the system characteristics to augment the jacobian matrix, while integrating additional constraints, to inverse the differential kinematic model.
Inverse Kinematic Analysis of Human Hand Thumb Model
NASA Astrophysics Data System (ADS)
Toth-Tascau, Mirela; Pater, Flavius; Stoia, Dan Ioan; Menyhardt, Karoly; Rosu, Serban; Rusu, Lucian; Vigaru, Cosmina
2011-09-01
This paper deals with a kinematic model of the thumb of the human hand. The proposed model has 3 degrees of freedom being able to model the movements of the thumb tip with respect to the wrist joint centre. The kinematic equations are derived based on Denavit-Hartenberg Convention and solved in both direct and inverse way. Inverse kinematic analysis of human hand thumb model reveals multiple and connected solutions which are characteristic to nonlinear systems when the number of equations is greater than number of unknowns and correspond to natural movements of the finger.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times of several days on such workstations.
Computational neural learning formalisms for manipulator inverse kinematics
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama
1989-01-01
An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.
Adding Image Constraints to Inverse Kinematics for Human Motion Capture
NASA Astrophysics Data System (ADS)
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Perales, Francisco J.
2009-12-01
In order to study human motion in biomechanical applications, a critical component is to accurately obtain the 3D joint positions of the user's body. Computer vision and inverse kinematics are used to achieve this objective without markers or special devices attached to the body. The problem of these systems is that the inverse kinematics is "blinded" with respect to the projection of body segments into the images used by the computer vision algorithms. In this paper, we present how to add image constraints to inverse kinematics in order to estimate human motion. Specifically, we explain how to define a criterion to use images in order to guide the posture reconstruction of the articulated chain. Tests with synthetic images show how the scheme performs well in an ideal situation. In order to test its potential in real situations, more experiments with task specific image sequences are also presented. By means of a quantitative study of different sequences, the results obtained show how this approach improves the performance of inverse kinematics in this application.
Learning inverse kinematics: reduced sampling through decomposition into virtual robots.
de Angulo, Vicente Ruiz; Torras, Carme
2008-12-01
We propose a technique to speedup the learning of the inverse kinematics of a robot manipulator by decomposing it into two or more virtual robot arms. Unlike previous decomposition approaches, this one does not place any requirement on the robot architecture, and thus, it is completely general. Parametrized self-organizing maps are particularly adequate for this type of learning, and permit comparing results directly obtained and through the decomposition. Experimentation shows that time reductions of up to two orders of magnitude are easily attained. PMID:19022727
Kinematic Waveform Inversion: Application in Southwest Iberia Seismicity
NASA Astrophysics Data System (ADS)
Domingues, A. L.; Custodio, S.; Cesca, S.
2011-12-01
The seismic activity that affects the Portuguese territory occurs mainly and more frequently offshore, in the south and southwest of Mainland Portugal. The study of the Portuguese seismicity is conditioned by the poor azimuthal coverage, due to the geographic location of Portugal, and by the large sedimentary basin west of the straight of Gibraltar (Cadiz Basin). In this work we focus on the study of regional seismicity in Portugal (mostly offshore earthquakes) using a recently developed package - the KIWI (Kinematic Waveform Inversion) tools. This new technique performs point and finite source inversions at regional distances. The KIWI routine is a multi-step approach composed of 3 steps, finding different source parameters at different steps. At first, we assume a point source approximation. We initially retrieve the focal mechanism of the earthquake (strike, dip, and rake), the seismic scalar moment M0 and the depth. This inversion step is performed in the spectral domain, by fitting amplitude spectra. In the second step, compressive and dilatation quadrants are retrieved, which is carried out in the time domain. Refined latitude and longitude for the centroid, as well as an earthquake origin time, are also given at this time. The final step of the inversion consists of a simplified finite-fault inversion. We assume the eikonal source model, and determine parameters such as the fault plane orientation (discrimination between fault and auxiliary plane), radius (rupture extension), nucleation point coordinates (indicative of directivity effects) and average rupture velocity of the earthquake. This inversion is performed in the frequency domain by fitting amplitude spectra in a wider frequency band (including higher frequencies). This multi-step approach has the advantage of using different inversion methods, seismic phases and range of frequencies to infer specific parameters. In this work we study 17 regional earthquakes occurred in Southwest Iberia between 2007 and 2009 with moderate magnitude (3.3 to 4.4). The small magnitude of these earthquakes prevents their study with the third step of the algorithm. The solutions obtained are evaluated by a quality criteria and compared with other moment tensor solutions. The quality factor is based on the number of stations and on the misfit between the recorded and the synthetic waveforms. Apart from this study another offshore event was analyzed. The earthquake occurred SW of St Vincent Cape on February 12, 2007 with Mw 5.9. In this study the KIWI tools were employed to infer both the point and finite source parameters of this earthquake. The results of the kinematic source inversion step indicate that the 2007 HAP earthquake ruptured a plane trending WNW-ESE, whereas previous studies suggest that the conjugate fault plane (ENE-WSW) is the true rupture plane. The proposed solution also indicates that the earthquake occurred within the SWIM fault-zone. However, the 46° dip is difficult to reconcile with the sub-vertical nature of the SWIM faults.
Coulomb excitation of radioactive beams in inverse kinematics
Barton, C.J.; Gill, R.L.; Casten, R.F.
1995-10-01
The advent of Radioactive Nuclear Beam facilities will soon open new perspectives for nuclear structure studies. However, they will never provide the same wealth of data as stable beam facilities. Recent studies have shown that B(E2;0{sub 1}{sup +}2{sub 1}{sup +}) values have a high degree of sensitivity to structural features. We developed several techniques to obtain these values by low-energy Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics on low Z targets. The methods are based on the measurement of the decay curve as the Coulomb excited nuclei decay in-flight. The apparatus will be described and recent results of test runs with stable beams will be presented.
Coulomb excitation of radioactive nuclear beams in inverse kinematics
Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |
1996-12-31
Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.
Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.
NASA Technical Reports Server (NTRS)
Kelmar, Laura; Khosla, Pradeep K.
1990-01-01
An algorithm is proposed for automatically generating both the forward and inverse kinematics of a serial-link N-degree-of-freedom reconfigurable manipulator (RM). Generation of the kinematic equations that govern a modular manipulator starts with geometric descriptions of the units, or modules, as well as their sequence in the manipulator. This geometric information is used to obtain the Denavit-Hartenberg (DH) parameters of an RM. The DH kinematic parameters are then used to obtain the forward kinematic transformation of the system. The problem of obtaining the inverse kinematics of RMs is addressed, and the idea of scaling an RM to automate the inverse kinematics and make the procedure as general as possible is proposed.
Deuterated Polyethylene Target Production for Inverse Kinematic Transfer Reactions
NASA Astrophysics Data System (ADS)
Shadrick, S. C.; Kozub, R. L.; Walter, D.; Febbraro, M.; Pain, S. D.
2015-10-01
Inverse kinematic transfer reactions play an important role in the study of nuclear structure far from stability, where the radioactive heavy reactant cannot be used as a target. These reactions can give insights into the production of proton-rich species in nova explosions (rp process) and of heavier, neutron-rich isotopes produced in the r-process, where such unstable isotopes could form and quickly react with neutrons to make even heavier species. In general, deuteron stripping reactions [(d,p), (d,n)] serve to provide the single particle structure needed to understand these nucleosynthesis processes. Such experiments require a target containing deuterium, such as a pure gas jet or a solid compound. In preparation for upcoming experiments using the GODDESS array, deuterated polyethylene films, (C2D4)n, of thicknesses ranging from .04 - 5 mg/cm2 were created. The method used, while similar to previous approaches, involved a number of extra procedures to make the technique more reliable; these procedures will be presented. This research is supported by the Office of Nuclear Physics in the U.S. Department of Energy.
Inelastic Proton Scattering on 21Na in Inverse Kinematics
NASA Astrophysics Data System (ADS)
Austin, Roby
2009-10-01
R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).
Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects
Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan
2014-01-01
Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed. PMID:25469217
Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects.
Fitzgerald, Sue-Anne; Brooks, Anna; van der Zwan, Rick; Blair, Duncan
2014-01-01
Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed. PMID:25469217
Inverse kinematic solution for near-simple robots and its application to robot calibration
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Roston, Gerald P.
1986-01-01
This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.
Inverse kinematic analysis of parallel supporting structure based on Rodrigues parameters
NASA Astrophysics Data System (ADS)
Cheng, Gang; Ge, Shi-Rong; Wan, Yong-Jian
2009-05-01
A new method to describe the position-stance of parallel supporting structure is proposed based on Rodrigues theory. Comparing with others methods, the kinematic model with Rodrigues parameters has the advantages including least computational parameters, no trigonometric function calculation and convenient real-time control. The model of the inverse kinematics is established and the inverse solutions of the position-stance are obtained by analyzing the topologic structure of the parallel supporting structure with 3-RPS limb. By analyzing the vectors of the manipulator, the velocity and acceleration models of moving platform, limbs and end-effector arw deduced. According to the designed kinematic track, it is convenient to control accurately the supporting structure by the inverse kinematic model of the mechanism.
NASA Astrophysics Data System (ADS)
Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.
2014-12-01
One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, Micah; Jones, K. L.; Kapler, R.; Kozub, R. L.; Livesay, Jake; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Wilson, Gemma L
2009-01-01
The development of high quality radioactive beams has made possible the measurement of transfer reactions in inverse kinematics on unstable nuclei. Measurement of (d,p) reactions on neutron-rich nuclei yield data on the evolution of nuclear structure away from stability, and are of astrophysical interest. Experimentally, (d,p) reactions on heavy (Z=50) fission fragments are complicated by the strongly inverse kinematics, and relatively low beam intensities. Consequently, ejectile detection with high resolution in position and energy, a high dynamic range and a high solid angular coverage is required. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new silicon detector array optimized for the measurement of (d,p) reactions in inverse kinematics.
Foot inversion-eversion and knee kinematics during walking.
Lafortune, M A; Cavanagh, P R; Sommer, H J; Kalenak, A
1994-05-01
The purpose of this study was to monitor selected aspects of the three-dimensional kinematics of the knee during walking with regular shoes and with modified shoes that induced either pronation or supination of the foot. Steinmann traction pins were inserted into the right tibia and femur of five adult men who had apparently normal lower extremities. Target clusters mounted onto the pins were filmed by four cine cameras operating at 100 frames/sec. Two trials per subject were analyzed for each of the three experimental conditions: regular running shoes, running shoes with a 10 degree valgus wedge, and running shoes with a 10 degree varus wedge. The different types of footwear induced only minor kinematic changes at the knee during the stance phase of walking. The angular patterns of the tibiofemoral joint were modified by less than 1 degree, whereas the translatory patterns were altered by 2 mm. Immediately following foot-strike, the valgus-wedge shoes caused the tibia to rotate internally 4 degrees more than the varus-wedge shoes, but at the tibiofemoral joint no consistent differences in the pattern of internal-external rotation between normal and modified footwear were measureable. These findings suggest that, in the healthy lower extremity, increased internal and external tibial rotation is resolved at the hip joint, with changes at the tibiofemoral joint that barely are detectable with the techniques used in this study. PMID:8207595
NASA Astrophysics Data System (ADS)
Zielke, Olaf; McDougall, Damon; Mai, Martin; Babuska, Ivo
2014-05-01
Seismic, often augmented with geodetic data, are frequently used to invert for the spatio-temporal evolution of slip along a rupture plane. The resulting images of the slip evolution for a single event, inferred by different research teams, often vary distinctly, depending on the adopted inversion approach and rupture model parameterization. This observation raises the question, which of the provided kinematic source inversion solutions is most reliable and most robust, and more generally how accurate are fault parameterization and solution predictions? These issues are not included in "standard" source inversion approaches. Here, we present a statistical inversion approach to constrain kinematic rupture parameters from teleseismic body waves. The approach is based a) on a forward-modeling scheme that computes synthetic (body-)waves for a given kinematic rupture model, and b) on the QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization) library that uses MCMC algorithms and Bayes theorem for sample selection. We present Bayesian inversions for rupture parameters in synthetic earthquakes (i.e. for which the exact rupture history is known) in an attempt to identify the cross-over at which further model discretization (spatial and temporal resolution of the parameter space) is no longer attributed to a decreasing misfit. Identification of this cross-over is of importance as it reveals the resolution power of the studied data set (i.e. teleseismic body waves), enabling one to constrain kinematic earthquake rupture histories of real earthquakes at a resolution that is supported by data. In addition, the Bayesian approach allows for mapping complete posterior probability density functions of the desired kinematic source parameters, thus enabling us to rigorously assess the uncertainties in earthquake source inversions.
Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2004-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators. PMID:23918347
NASA Astrophysics Data System (ADS)
Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.
2015-12-01
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.
Cortical network modeling for inverse kinematic computation of an anthropomorphic finger.
Gentili, Rodolphe J; Oh, Hyuk; Molina, Javier; Contreras-Vidal, José L
2011-01-01
The performance of reaching movements to visual targets requires complex kinematic mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult problem since the relationship between sensory and motor coordinates is highly nonlinear. In this article, we present a neural model able to learn the inverse kinematics of a simulated anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while performing 3D reaching movements. The results revealed that this neural model was able to control accurately and robustly the finger when performing single 3D reaching movements as well as more complex patterns of motion while generating kinematics comparable to those observed in human. The long term goal of this research is to design a bio-mimetic controller providing adaptive, robust and flexible control of dexterous robotic/prosthetics hands. PMID:22256258
NASA Astrophysics Data System (ADS)
Melgar, D.; Bock, Y.
2014-12-01
Rapid kinematic slip inversions immediately following earthquake rupture is traditionally limited to teleseismic data and delayed many hours after large events. Regional data such as strong motion is difficult to incorporate quickly into images of the source process because baseline offsets render the long period portion of the recording unreliable. Recently it's been demonstrated that high rate GPS can potentially produce rapid slip inversions for large events but is limited to very long periods. With an example of the 2011 M9 Tohoku-oki event we will demonstrate that the optimal on-the-fly combination of GPS and strong motion through a seismogeodetic Kalman filter produces reliable, broadband strong motion displacement and velocity waveforms that can be used for kinematic inversion. Through joint inversion of displacement and velocity waveforms we will show that it is possible to obtain a broadband image of the source. Furthermore, we will also show that it is possible to include offshore geophysical observables such as sea surface measurements of tsunami propagation from GPS buoys and ocean bottom pressure sensors into the kinematic inversion. These data better constrain the shallowest part of rupture. We will use the time-dependent deformation of bathymetry predicted from the inversion results as an initial condition for tsunami propagation and inundation modeling. Through a comparison to post-event survey observations we will demonstrate that it is possible to reproduce the inundation pattern along the coastline in great detail and argue that detailed site-specific forecast of tsunami intensity is achievable with current methods and instrumentation.
Neutron Capture Surrogate Reaction on 75As in Inverse Kinematics Using (d,p(gamma))
Peters, W A; Cizewski, J A; Hatarik, R; O?Malley, P D; Jones, K L; Schmitt, K; Moazen, B H; Chae, K Y; Pittman, S T; Kozub, R L; Vieira, D; Jandel, M; Wilhelmy, J B; Matei, C; Escher, J; Bardayan, D W; Pain, S D; Smith, M S
2009-11-09
The {sup 75}As(d,p{gamma}) reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV {gamma}-ray from {sup 76}As in coincidence with ejected protons, from exciting {sup 76}As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover {gamma}-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the {sup 75}As experiment, and the efficacy and future plans of the (d,p{gamma}) surrogate campaign in inverse kinematics, are discussed.
Simkins, Matt
2016-05-01
A long-standing problem in muscle control is the "curse of dimensionality". In part, this problem relates to the fact that coordinated movement is only achieved through the simultaneous contraction and extension of multitude muscles to specific lengths. Couched in robotics terms, the problem includes the determination of forward and inverse kinematics. Of the many neurophysiological discoveries in cortex is the existence of position gradients. Geometrically, position gradients are described by planes in Euclidean space whereby neuronal activity increases as the hand approaches locations that lie in a plane. This work demonstrates that position gradients, when coupled with known physiology in the spinal cord, allows for a way to approximate proprioception (forward kinematics) and to specify muscle lengths for goal-directed postures (inverse kinematics). Moreover, position gradients provide a means to learn and adjust kinematics as animals learn to move and grow. This hypothesis is demonstrated using computer simulation of a human arm. Finally, experimental predictions are described that might confirm or falsify the hypothesis. PMID:27225625
Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger
Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.
2013-01-01
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569
Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.
Gentili, Rodolphe J; Oh, Hyuk; Molina, Javier; Reggia, James A; Contreras-Vidal, José L
2012-01-01
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569
Investigating the reliability of kinematic source inversion with dynamic rupture models
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, S.; Dalguer, L. A.; Clinton, J. F.
2011-12-01
An essential element of understanding the earthquake source processes is obtaining a reliable source model via geophysical data inversion. However, the epistemic uncertainties in the kinematic source inversion produce a variety of source model estimates for any given event. Thus, as done in the Source Inversion Validation (SIV) project, it is important to validate our inversion methods with synthetic data by testing forward Green's function calculation and comparing various inversion methods. Spontaneous dynamic rupture modeling, which incorporates the conservation laws of continuum mechanics and the constitutive behavior of rocks under frictional sliding, is capable of producing physically self-consistent kinematic description of the fault and its associated seismic wave propagation resulting in ground motions on the surface. Here we develop accurate dynamic rupture simulation of a vertical strike slip fault. Our source model is composed of well-defined asperities (patches of large stress drop) and we assume that fault rupture is governed by the linear slip weakening friction model. The resulting near-source ground motions dominated by low frequency (up to 1Hz) are used for testing our inversion method. We performed various inversion tests and compared estimated solutions with true solutions obtained by the forward dynamic rupture modeling. Our preliminary results show that estimated model spaces could be significantly perturbed, depending on data and modeling schemes used in the inversion, not only in terms of spatial distribution of model parameters, but also in terms of their auto- and cross-correlation structure. The Bayesian approach in source inversion is becoming increasingly popular because of the recent common availability of high performance computing capabilities. We adopted the Bayesian approach in our source inversion test, so that we can more effectively analyze the uncertainty of estimated models and also implement physically guided regularization in the prior. In addition, the recent emergence of high-rate Global Navigation Satellite Systems (GNSS) data can considerably improve the observation capabilities for dynamic surface movements (sampling up to 100 Hz) during large earthquakes. GNSS receivers are used to accurately measure both dynamic and static ground displacements without saturation or sensitivity to tilt and with a sampling interval below 1 second and sub-centimeter accuracy across the frequency spectrum. We expect that we can resolve the issue of relative weighting often faced in multiple data inversion, i.e., joint inversion of both geodetic and seismic data, by inverting ground displacement data recorded by the high rate GNSS receivers.
Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics
NASA Astrophysics Data System (ADS)
Panin, V.; Taylor, J. T.; Paschalis, S.; Wamers, F.; Aksyutina, Y.; Alvarez-Pol, H.; Aumann, T.; Bertulani, C. A.; Boretzky, K.; Caesar, C.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Enders, J.; Ershova, O.; Geissel, H.; Gernhäuser, R.; Heil, M.; Johansson, H. T.; Jonson, B.; Kelić-Heil, A.; Langer, C.; Le Bleis, T.; Lemmon, R.; Nilsson, T.; Petri, M.; Plag, R.; Reifarth, R.; Rossi, D.; Scheit, H.; Simon, H.; Weick, H.; Wimmer, C.
2016-02-01
Quasi-free scattering reactions of the type (p , 2 p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ˜ 400 MeV /u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p , 2 p) cross sections of 15.8(18) mb, 1.9(2) mb and 1.5(2) mb to the low-lying 0p-hole states overlapping with the ground state (3 /2-) and with the bound excited states of 11B at 2.125 MeV (1 /2-) and 5.02 MeV (3 /2-), respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton-proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement.
Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska
Oglesby, D.D.; Dreger, Douglas S.; Harris, R.A.; Ratchkovski, N.; Hansen, R.
2004-01-01
We perform inverse kinematic and forward dynamic models of the M 7.9 2002 Denali fault, Alaska, earthquake to shed light on the rupture process and dynamics of this event, which took place on a geometrically complex fault system in central Alaska. We use a combination of local seismic and Global Positioning System (GPS) data for our kinematic inversion and find that the slip distribution of this event is characterized by three major asperities on the Denali fault. The rupture nucleated on the Susitna Glacier thrust fault, and after a pause, propagated onto the strike-slip Denali fault. Approximately 216 km to the east, the rupture abandoned the Denali fault in favor of the more southwesterly directed Totschunda fault. Three-dimensional dynamic models of this event indicate that the abandonment of the Denali fault for the Totschunda fault can be explained by the Totschunda fault's more favorable orientation with respect to the local stress field. However, a uniform tectonic stress field cannot explain the complex slip pattern in this event. We also find that our dynamic models predict discontinuous rupture from the Denali to Totschunda fault segments. Such discontinuous rupture helps to qualitatively improve our kinematic inverse models. Two principal implications of our study are (1) a combination of inverse and forward modeling can bring insight into earthquake processes that are not possible with either technique alone, and (2) the stress field on geometrically complex fault systems is most likely not due to a uniform tectonic stress field that is resolved onto fault segments of different orientations; rather, other forms of stress heterogeneity must be invoked to explain the observed slip patterns.
Simultaneous Inversion of GPS and InSAR for Regional Kinematics and Transients
NASA Astrophysics Data System (ADS)
McCaffrey, R.
2009-12-01
The growth of continuous GPS networks and acquisition of InSAR data require fully time-dependent methods for their tectonic analyses. We are working on developing the merger of the kinematic block-model approach with transient deformation with the aim of interpreting the entire geodetic time series. The steady linear motions of the GPS sites are estimated through parameters that describe the block motions (angular velocities) plus elastic strain rates from locked faults and anelastic strain rates from distributed deformation. Through the kinematic model, the steady site velocities have a high degree of spatial correlation. Transients such as earthquakes, after-slip, slow-slip events and volcanic sources are described by a small number of free parameters that are estimated by direct inversion of the position time series simultaneously with the kinematic model parameters. InSAR data are used as line-of-sight displacements between two times (acquisition dates) and are matched by the time-dependent deformation model. We utilize both continuous and survey-mode GPS time series. To date we have applied the method to Cascadia, New Zealand, Sumatra, Papua (Indonesia), Yellowstone (Payne et al., this meeting), and Japan (Ohzono et al., this meeting). In addition to the information we can gain about the kinematics and transients, the method has applications in event detection and outlier removal.
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
{sup 128}Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics
Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.
2008-05-12
The lifetimes of the lowest collective yrast and non-yrast states in {sup 128}Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in {sup 128}Xe were populated using a {sup 128}Xe beam impinging on a {sup nat}Fe target with E({sup 128}Xe){approx_equal}525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated {gamma}-spectra were measured at different plunger distances.
Kinematic and dynamic inversion of the 16 December earthquake in Northern Chile
NASA Astrophysics Data System (ADS)
Ruiz, S.; Lancieri, M.; Madariaga, R. I.; Sobiesiak, M.; Campos, J. A.
2009-12-01
We study the kinematic and dynamic rupture propagation of the M 6.7, intraplate, intermediate depth, slab push earthquake that occurred 16 December 2007, a month after the large interplate thrust event of Tocopilla, Chile (M 7.7). The occurrence of a slab push event after a large subduction earthquake is well explained by Coulomb stress transfer and crack dynamics. A dense seismic network, equipped with short period and accelerometers was deployed after the event of 14 November 2007 by the Task Force of GFZ Potsdam and the University of Chile in Santiago. This network was in place on December 16 providing the best seismic data set ever recorded for a Chilean earthquake. We have used it to do a detailed study of rupture processes. We localized the main event of December 16 and the aftershocks that occurred within 24 h of the main event. The main event was located at 43 km depth, while the aftershocks distribution covered a circular zone of 5 to 8 km of radius centered on the main shock epicenter and with depth ranging between [39 - 49] km. The aftershocks are distributed on an almost vertical plane that agrees with the almost vertical plane of the fault mechanism (86° dip) and all the aftershock have the same mechanism as the main event. We used eight of the nearest accelerometric records low pass filtered at 1 Hz, two of which were situated right above the hypocenter. We performed a non-linear kinematic inversion based on the neighborhood algorithm (NA) with an L2 norm. The velocity model was derived from previous work by GFZ. The earthquake is very well modeled by a circular rupture of radius between 5 and 8 km that propagated with a very low rupture velocity, that varies between 1 and 2 km/s. We need only a few non-linear parameters to model this event, parameter space has a dimension close to 6. The kinematic solution was validated using a full dynamic inversion method in which the rupture process is modeled using finite differences on a coarse grid with a slip weakening friction law. Dynamic stress drop is large, of the order of 10-50 MPa. Results from dynamic inversion are in good agreement with the kinematic inversion, if we impose a rather large average energy release rate of the order of 30 MJ/m2. We have explored a large area of the parameter space in search for solutions with faster rupture speeds but we have failed to find them. It appears then that this earthquake that occurred very close to the transition zone from steady to stick slip propagated very slowly.
NASA Astrophysics Data System (ADS)
Castro-Artola, O.; Iglesias Mendoza, A.
2012-04-01
Aiming to obtain some information about the rupture process of intermediate to great earthquakes, many waveform inversion schemes have been proposed. Usual methods involve several subfaults on the fault plane to obtain a detailed image of the kinematic rupture process. On the other hand, it has been questioned the resolution over obtained paramters on the inversion process. In the literature contradictory results can be found for the same earthquake, using different schemes. For this reason, recently, simplified schemes of the rupture process have been proposed, while not providing details it can recover their main characteristics. In this work we propose a modification of the Cotton & Campillo (1995) inversion scheme, while unlike considering the problem as a "rupture process tomographic inversion", we invert the main characteristics assuming simplified geometries (ellipses). Based on the work quoted, the direct problem is reparameterized including one or two ellipses in which the maximum displacement is distributed. For the first ellipse, the position of the center within the fault plane, the major and minor semi-axis are inverted. For the second one we invert the position with respect to the first ellipse and the two semi-axis. To avoid the linearization of the problem, we use a simulated annealing scheme for inversion. When there is not enough evidence of the proper fault plane, we perform an inversion for the two nodal planes published to solve the ambiguity between the auxiliary plane and the fault plane that a point source inversion schemes involve. We tested our method for the well studied earthquake September 30th 1999 Oaxaca (Mw=7.5) (e.g. Hernandez et al., 2001) which is one of the intraslab earthquakes within the Northamerican Plate of moderate magnitude and well recorded. The scheme is evaluated as well with the data generated by the "Escenario 2011" framework for an hypothetical earthquake in Guerrero, Mexico. Results will give us the opportunity to evaluate their later routinary implementation to the earthquakes occurring within Mexico.
Vortices and Jacobian varieties
NASA Astrophysics Data System (ADS)
Manton, Nicholas S.; Romão, Nuno M.
2011-06-01
We investigate the geometry of the moduli space of N vortices on line bundles over a closed Riemann surface Σ of genus g>1, in the little explored situation where 1≤N
Alpha-particle capture reactions in inverse kinematics relevant to p-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Ujić, P.; Lagoyannis, A.; Mertzimekis, T. J.; de Oliveira Santos, F.; Harissopulos, S.; Demetriou, P.; Perrot, L.; Stodel, Ch.; Saint-Laurent, M.-G.; Kamalou, O.; Lefebvre-Schuhl, A.; Spyrou, A.; Amthor, M. A.; Grevy, S.; Caceres, L.; Koivisto, H.; Laitinen, M.; Uusitalo, J.; Julin, R.
2011-10-01
The first feasibility study of an α-particle capture reaction in inverse kinematics at energies relevant to the p process was performed at the Wien Filter of the LISE spectrometer at GANIL. Hereby, the 4He(78Kr,γ)82Sr reaction was investigated using as target an 4He-implanted thin Al foil. The analysis of the data has shown that the determination of (α,γ) reaction cross sections at rather low energies around 2 MeV/u in inverse kinematics is indeed feasible regarding the high rejection rate of the primary beam, which in the present work was better than a factor of 109. However, the expected position of the recoils of interest was completely masked by particles of currently unknown origin that could hardly be attributed to scattering of the primary beam. The most probable explanation for the origin of these "pollutants" could be microscopic dust particles of 10 μm diameter and less, that are extremely difficult to avoid in standard experimental conditions. Hence, the use of a gas-jet target instead of a solid one is compulsory.
Inversion kinematics at deep-seated gravity slope deformations revealed by trenching techniques
NASA Astrophysics Data System (ADS)
Pasquaré Mariotto, Federico; Tibaldi, Alessandro
2016-03-01
We compare data from three deep-seated gravitational slope deformations (DSGSDs) where palaeoseismological techniques were applied in artificial trenches. At all trenches, located in metamorphic rocks of the Italian Alps, there is evidence of extensional deformation given by normal movements along slip planes dipping downhill or uphill, and/or fissures, as expected in gravitational failure. However, we document and illustrate - with the aid of trenching - evidence of reverse movements. The reverse slips occurred mostly along the same planes along which normal slip occurred, and they produced drag folds in unconsolidated Holocene sediments as well as the superimposition of substrate rocks on Holocene sediments. The studied trenches indicate that reverse slip might occur not only at the toe portions of DSGSDs but also in their central-upper portions. When the age relationships between the two deformation kinematics can be determined, they clearly indicate that reverse slips postdate normal ones. Our data suggest that, during the development of long-lived DSGSDs, inversion kinematics may occur in different sectors of the unstable rock mass. The inversion is interpreted as due either to locking of the frontal blocks of a DSGSD or to the relative decrease in the rate of downward movement in the frontal blocks with respect to the rear blocks.
An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator
NASA Technical Reports Server (NTRS)
Naccarato, Frank; Hughes, Peter
1989-01-01
A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs.
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
Kinematic modeling of mobile robot with rocker-bogie link structure
NASA Astrophysics Data System (ADS)
Gang, Taig-Gi; Yi, Soo-Yeong
2005-12-01
A method for kinematic modeling of a mobile robot with rocker-bogie link mechanism was described. By using the well-known concept of the instantaneous coordinates, it derives the kinematic model for the full six degree of freedom motion including the x, y, and z motions and the pitch, roll, and yaw rotations. The kinematic model here implies both of the forward and the inverse kinematic equations. The forward kinematic equation with the wheel Jacobian matrices can be used to obtain the robot position and orientation from the measured wheel velocities and the rocker-bogie joint angles. On the contrary, the inverse kinematic equation implies a resulting robot motions consisting of body velocity and turning rate from the individual wheel velocities. Through the computer simulation, the kinematic model of the mobile robot was verified.
NASA Astrophysics Data System (ADS)
Xu, Wenfu; She, Yu; Xu, Yangsheng
2014-12-01
Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators. When a joint is locked in an arbitrary position due to some failures, a 7R manipulator degrades to a 6R manipulator. Without a spherical wrist or three consecutive parallel joints, the inverse kinematics of the 6R manipulator is very complex. In this paper, we propose effective methods to resolve the inverse kinematics for different cases of any joint locked in an arbitrary position. Firstly, configuration characteristics of the SSRMS-type redundant manipulators are analyzed. Then, an existing of closed-form inverse kinematics is discussed for locking different joints. Secondly, D-H frames and corresponding D-H parameters of the new 6-DOF manipulator formed by locking a joint in an arbitrary position are re-constructed. A unified table is then created to describe the kinematics for all possible cases of single joint locking failure. Thirdly, completely analytical and semi-analytical methods are presented to solve the inverse kinematics equations, and the former is used for locking joint 1, 2, 6 or 7 while the latter for locking joint 3, 4 or 5. Finally, typical cases for single joint locking are studied. The results verify the proposed methods.
Homological versus algebraic equivalence in a jacobian.
Harris, B
1983-02-01
Let Z be an algebraic p cycle homologous to zero in an algebraic complex manifold V. Associated to Z is a linear function nu on holomorphic (2p + 1)-forms on V, modulo periods, that vanishes if Z is algebraically equivalent to zero in V. I give a formula for nu for the case of V the jacobian of an algebraic curve C and Z=C - C' (C' = "inverse" of C') in terms of iterated integrals of holomorphic 1-forms on C. If C is the degree 4 Fermat curve, I use this formula to show that C - C' is not algebraically equivalent to zero. PMID:16593281
Optimization methods for hyper-redundant robots' inverse kinematics in biomedical applications
NASA Astrophysics Data System (ADS)
Espinoza, Mario Sáenz; Pereira, Ana I.; Gonçalves, José
2012-09-01
The present work describes and compares several approaches applied to compute the inverse kinematics of a ten degrees of freedom hyper-redundant robot. The proposed approaches are based on an exhaustive method and several error-optimization algorithms. The algorithms' performance was evaluated based on two criteria: computational processing time and final actuator positioning error. The results obtained show that for a small number of modules (less or equal to four), the exhaustive method provides the best problem solution: acceptable computational processing time as well as minimum error. However, for larger number of modules, the error-optimization approach has far better performance regarding the error to processing time ratio. The mentioned hyper-redundant robot was projected to be used in biomedical applications.
Three-body model for the analysis of quasifree scattering reactions in inverse kinematics
NASA Astrophysics Data System (ADS)
Moro, A. M.
2015-10-01
A new method to calculate cross sections for (p ,p n ) and (p ,2 p ) reactions measured under inverse kinematics conditions is proposed. The method uses the prior form of the scattering transition amplitude and replaces the exact three-body wave function appearing in this expression with an expansion in terms of p -n or p -p states, covering the physically relevant excitation energies and partial waves. A procedure of discretization, similar to that used in continuum-discretized coupled-channels calculations, is applied to make this expansion finite and numerically tractable. The proposed formalism is nonrelativistic, but several relativistic kinematical corrections are applied to extend its applicability to energies of current interest. The underlying optical potentials for the entrance and exit channels are generated microscopically by folding an effective density-dependent G matrix with the density of the composite nucleus. Numerical calculations for 12C(p ,2 p ), 12C(p ,p n ), and 23O(p ,p n ) at ˜400 MeV/nucleon are presented to illustrate the method. The role of final-state interactions and Pauli principle between the outgoing nucleons is also discussed.
Inverse-kinematics proton scattering and analysis of 54Ti and 56Ti
NASA Astrophysics Data System (ADS)
Blanchard, R. L.; Kustina, J. S.; Riley, L. A.; Agiorgousis, M. L.; Baugher, T. R.; Bazin, D.; Bowry, M.; Cottle, P. D.; Devone, F. G.; Gade, A.; Glowacki, M. T.; Kemper, K. W.; Lunderberg, E.; McPherson, D. M.; Noji, S.; Recchia, F.; Sadler, B. V.; Scott, M.; Weisshaar, D.; Zegers, R. G. T.
2014-09-01
In May 2014, several inverse-kinematics proton scattering measurements were made by the Ursinus College nuclear structure group at the Coupled-Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A stable 76Ge primary beam was fragmented, which produced a ``cocktail beam'' of fifty different nuclei. This resulting beam of nuclei passed through the Ursinus College Liquid Hydrogen Target. When the beam nuclei hit the protons in the Liquid Hydrogen Target, they became excited and emitted gamma rays which we collected with the GRETINA gamma ray tracking array. In the present work, we focus on measurements of 54Ti and 56Ti and implications for the possible shell closures at N = 32 and N = 34 . In May 2014, several inverse-kinematics proton scattering measurements were made by the Ursinus College nuclear structure group at the Coupled-Cyclotron Facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A stable 76Ge primary beam was fragmented, which produced a ``cocktail beam'' of fifty different nuclei. This resulting beam of nuclei passed through the Ursinus College Liquid Hydrogen Target. When the beam nuclei hit the protons in the Liquid Hydrogen Target, they became excited and emitted gamma rays which we collected with the GRETINA gamma ray tracking array. In the present work, we focus on measurements of 54Ti and 56Ti and implications for the possible shell closures at N = 32 and N = 34 . This work was supported by the NSF under Grant Nos. PHY- 1303480, PHY-1064819, and PHY-1102511. GRETINA was funded by the US DOE. Operation at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under Grant DE-AC02-05CH11231(LBNL).
Inverse-kinematic proton scattering from 52Ca and Implications for the GRETA Array at FRIB
NASA Astrophysics Data System (ADS)
Kustina, J. S.; Blanchard, R. L.; Riley, L. A.; Agiorgousis, M. L.; Baugher, T. R.; Bazin, D.; Bowry, M.; Cottle, P. D.; Devone, F. G.; Gade, A.; Glowacki, M. T.; Kemper, K. W.; Lunderberg, E.; McPherson, D. M.; Noji, S.; Recchia, F.; Sadler, B. V.; Scott, M.; Weisshaar, D.; Zegers, R. G. T.
2014-09-01
The GRETINA gamma-ray tracking array is used to map the nuclear structure of unstable isotopes at Argonne National Laboratory, Lawrence Berkeley National Laboratory, and the NSCL at Michigan State University. GRETINA consists of 28 germanium crystals each packaged in 7 clusters of four crystals, which are capable of measuring the gamma rays given off by unstable nuclei. GRETINA is the first stage of the planned GRETA array, which will consist of 30 clusters rather than 7. We present a recent inverse-kinematics proton scattering measurement of 52Ca carried out at the NSCL in May 2014. We illustrate the power of the full GRETA array at the planned Facility for Rare Isotope Beams (FRIB) by comparing this measurement with simulations of a similar measurement with GRETA at FRIB. The GRETINA gamma-ray tracking array is used to map the nuclear structure of unstable isotopes at Argonne National Laboratory, Lawrence Berkeley National Laboratory, and the NSCL at Michigan State University. GRETINA consists of 28 germanium crystals each packaged in 7 clusters of four crystals, which are capable of measuring the gamma rays given off by unstable nuclei. GRETINA is the first stage of the planned GRETA array, which will consist of 30 clusters rather than 7. We present a recent inverse-kinematics proton scattering measurement of 52Ca carried out at the NSCL in May 2014. We illustrate the power of the full GRETA array at the planned Facility for Rare Isotope Beams (FRIB) by comparing this measurement with simulations of a similar measurement with GRETA at FRIB. This work was supported by the NSF under Grant Nos. PHY- 1303480, PHY-1064819, and PHY-1102511. GRETINA was funded by the US DOE. Operation at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under Grant DE-AC02-05CH11231(LBNL).
Over-constrained rigid multibody systems: differential kinematics and fault tolerance
NASA Astrophysics Data System (ADS)
Yi, Yong; McInroy, John E.; Chen, Yixin
2002-07-01
Over-constrained parallel manipulators can be used for fault tolerance. This paper derives the differential kinematics and static force model for a general over-constrained rigid multibody system. The result shows that the redundant constraints result in constrained active joints and redundant internal force. By incorporating these constraints, general methods for overcoming stuck legs or even the complete loss of legs are derived. The Stewart platform special case is studied as an example, and the relationship between its forward Jacobian and its inverse Jacobian is also found.
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
NASA Technical Reports Server (NTRS)
Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland
2008-01-01
The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).
Gravity modeling: the Jacobian function and its approximation
NASA Astrophysics Data System (ADS)
Strykowski, G.; Lauritsen, N. L. B.
2012-04-01
In mathematics, the elements of a Jacobian matrix are the first-order partial derivatives of a scalar function or a vector function with respect to another vector. In inversion theory of geophysics the elements of a Jacobian matrix are a measure of the change of the output signal caused by a local perturbation of a parameter of a given (Earth) model. The elements of a Jacobian matrix can be determined from the general Jacobian function. In gravity modeling this function consists of the "geometrical part" (related to the relative location in 3D of a field point with respect to the source element) and the "source-strength part" (related to the change of mass density of the source element). The explicit (functional) expressions for the Jacobian function can be quite complicated and depend both on the coordinates used (Cartesian, spherical, ellipsoidal) and on the mathematical parametrization of the source (e.g. the homogenous rectangular prism). In practice, and irrespective of the exact expression for the Jacobian function, its value on a computer will always be rounded to a finite number of digits. In fact, in using the exact formulas such finite representation may cause numerical instabilities. If the Jacobian function is smooth enough, it is an advantage to approximate it by a simpler function, e.g. a piecewise-polynomial, which numerically is more robust than the exact formulas and which is more suitable for the subsequent integration. In our contribution we include a whole family of the Jacobian functions which are associated with all the partial derivatives of the gravitational potential of order 0 to 2, i.e. including all the elements of the gravity gradient tensor. The quality of the support points for the subsequent polynomial approximation of the Jacobian function is ensured by using the exact prism formulas in quadruple precision. We will show some first results. Also, we will discuss how such approximated Jacobian functions can be used for large scale modeling so that the source model can (almost) be of unlimited degree of detail and where the modeling can be conducted without a substantial increase in the computational task. The main idea here is to integrate instead of summing up the partial contributions from the discrete source elements.
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associated with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.
NASA Astrophysics Data System (ADS)
Heimann, Sebastian; Sudhaus, Henriette; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten
2014-05-01
The notorious discrepancies among finite fault slip inversion results have attracted much attention over the last years. In consequence, much effort has been put into methods to improve the robustness of such inversions and to quantify uncertainties on results. The techniques exploited include controlling the smoothness of the inferred slip distribution, reducing dimensionality of parameter-space, propagation of observational errors through Bayesian inference, Monte-Carlo modelling and bootstrapping. The difficulties in earthquake finite source parameter estimation arise from three distinct origins: (1) observational errors, (2) the (in)ability of the earthquake source model to represent nature, and (3) mismodelling of synthetic seismograms. While observational errors can often be formally included in the source parameter estimation process, the latter two are much harder to to handle. Appropriateness of the source model (2) is hard to achieve because more realistic models require more model parameters and quickly lead to underdetermined systems. Mismodelling of synthetic seismograms (3) has not been investigated much, probably because the technical effort to deal with it is usually high (because forward modelling may have to be repeated for many earth model variations). In this presentation, we will show that freely available precomputed Green's functions for ensembles of different earth models will make such investigations feasible for routine practice. We will illustrate this with a synthetic test case of a regional kinematic source parameter optimization. The presented work is closely related with the development of a new open source Python toolbox for the handling of precomputed Green's functions and for synthetic seismogram generation (http://emolch.github.io/pyrocko/gf). Ultimately, we would like to launch a community driven open access Green's function sharing platform and web services for synthetic seismogram and test scenario generation (http://kinherd.org/).
Kinematics of back-arc inversion of the Western Black Sea Basin
NASA Astrophysics Data System (ADS)
Munteanu, I.; Matenco, L.; Dinu, C.; Cloetingh, S.
2011-10-01
Back-arc basin evolution is driven by processes active at the main subduction zone typically assuming the transition from an extensional back-arc, during the retreat of a mature slab, to a contractional basin, during high-strain collisional processes. Such a transition is observed in the Black Sea, where the accurate quantification of shortening effects is hampered by the kinematically unclear geometries of Cenozoic inversion. By means of seismic profiles interpretation, quantified deformation features and associated syn-tectonic geometries on the Romanian offshore, this study demonstrates that uplifted areas, observed by exploration studies, form a coherent thick-skinned thrust system with N-ward vergence. Thrusting inverted an existing geometry made up by successive grabens that were inherited from the Cretaceous extensional evolution. The shortening started during late Eocene times and gradually affected all areas of the Western Black Sea Basin during Oligocene and Miocene times, deformation being coherently correlated across its western margin. The mechanism of this generalized inversion is the transmission of stresses during the collision recorded in the Pontides-Balkanides system. Syn-tectonic sedimentation in the Western Black Sea demonstrates that this process was continuous and took place through the onset of gradual shortening migrating northward. Although the total amount of shortening is roughly constant in an E-W direction, individual thrusts have variable offsets, deformation being transferred between structures located at distance across the strike of the system. The Black Sea example demonstrates that the vergence and offset of thrusts can change rapidly along the strike of such a compressional back-arc system. This generates apparently contrasting geometries that accommodate the same orogenic shortening.
Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian
2015-10-01
Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.
Direct measurement of 38K(p , γ) 39Ca in inverse kinematics
NASA Astrophysics Data System (ADS)
Lotay, Gavin; Christian, Gregory; Burke, Devin; Chen, Alan; Connolly, Devin; Davids, Barry; Fallis, Jenniffer; Hager, Ulrike; Hutcheon, Dave; Mahl, Adam; Rojas, Alex; Ruiz, Chris; Sun, Xuan
2014-09-01
Sensitivity studies have identified 38K(p , γ) 39Ca as one of a handful of significant reactions in ONe novae, with the potential to change 38Ar, 39K, and 40Ca abundances in ONe ejecta by factors of ~18, ~17 and ~24, respectively. We have performed the first ever measurement of this reaction using the DRAGON recoil mass separator at TRIUMF. The experiment was performed in inverse kinematics using a beam of radioactive 38K. To date, this is the most massive projectile ever used in a radiative capture experiment. The astrophysical reaction rate is expected to be dominated by low- l resonances inside the Gamow window. Hence we have focused our efforts on the resonances at Ec.m. = 386, 515, and 689 keV. In this talk, I will present an overview of the experiment and data analysis and show preliminary resonance strengths (or upper limits) measured at each of the three energies. Finally, I will discuss the astrophysical implications of the measurements as they relate to ONe novae.
Measurement of the ^134Te(d,p)^135Te Reaction in Inverse Kinematics
NASA Astrophysics Data System (ADS)
Pain, Steven
2007-10-01
The development of high quality radioactive beams, such as those at the HRIBF at ORNL, has made possible the performance of transfer reactions on unstable nuclei. Measurements of (d,p) reactions on n-rich fission fragments yield data on nuclear structure away from stability, and are of astrophysical interest due to the proximity to suggested r- process paths. The energies and spectroscopic information of single-particle states near to shell closures are of particular importance, since they provide both an important constraint on nuclear structure models and are directly relevant to direct neutron-capture cross sections. The single-neutron states in ^ 135Te, one neutron beyond the N=82 shell closure, are of particular interest, both for r-process nucleosynthesis and its relevance to an isotopic anomaly of Xe found in pre-solar meteoritic grains. The ^134Te(d,p)^135Te reaction has been measured in inverse kinematics at the HRIBF utilizing a beam of ^134Te at 643 MeV and a deuterated plastic target. Proton ejectiles were detected forward and backwards of ?lab = 90^o using an early implementation of the Oak Ridge Rutgers University Barrel Array (ORRUBA) in conjunction with SIDAR. Details of the experiment and the current stage of the data analysis will be presented.
Cerebellum-inspired neural network solution of the inverse kinematics problem.
Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan
2015-12-01
The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot. PMID:26438095
NASA Astrophysics Data System (ADS)
von Schmid, M.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zamora, J. C.; Zenihiro, J.; the EXL Collaboration
2015-11-01
We have measured the nuclear-matter distribution of the doubly-magic N = Z nucleus 56Ni by investigating elastic proton scattering in inverse kinematics. The radioactive beam of 56Ni was injected and stored in the experimental storage ring (ESR, GSI) and interacted with an internal hydrogen gas-jet target. The high revolution frequency of the ions in the ring enabled a high luminosity, despite the low density of the target being used. This way, measurements at very low momentum transfers became possible. By measuring the energy and the scattering angle of the recoiling protons, we were able to separate the elastic reaction channel from inelastic scattering to the first excited {2}+ state of 56Ni and deduced the differential cross section of 56Ni {(p,p)}56 Ni. The data were analyzed within the framework of the Glauber multiple-scattering theory in order to extract the nuclear-matter radius and radial matter distribution of 56Ni. Parameterizing the matter distribution with the phenomenological Symmetrized Fermi distribution, a preliminary value of 3.5 fm for the rms matter radius was deduced. This experiment was part of an EXL (EXotic nuclei studied in Light-ion induced reactions at storage rings) campaign at GSI in 2012 and was the first successful investigation of nuclear reactions with a stored radioactive beam ever.
NASA Astrophysics Data System (ADS)
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.
2015-05-01
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the 6He, 8He, 11Li, and 14Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the 8Li, 9Li, and 12Be nuclei.
Pollacco, E.; Atkin, E.; Auger, F.; Baron, P.; Drouart, A.; Rouger, M.; Boujrad, A.; Olivier, L.; Raine, B.; Roussel-Chomaz, P.; Saillant, F.; Tripon, M.
2003-08-26
Over the past four years we have studied (p,p'), (d,p) ,(d,3He) and other reactions using radioactive beams in inverse kinematics to obtain spectroscopic information for nuclei away from the valley of stability After a general overview of the experimental method we will describe our ongoing MUST II development. This is to build a very compact (1000cm3) three stage telescope with an active area of 100cm2 with position resolution of 0.7x0.7 mm2 and time of flight measurement. The mass identification and energy dynamic range is of 0.4 to 80 MeV.A up to alpha particles. The compactness of the array is assured through the use of an ASIC development to measure the time of flight and energy. The large solid angle coverage of 2.6sr and compactness of this array will allow it to be used in particle-gamma coincidence experiments.
Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V. Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.
2015-05-15
In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
On the kinematic design of spherical three-degree-of-freedom parallel manipulators
Gosselin, C.M.; Lavoie, E. )
1993-08-01
This article studies the kinematic design of different types of spherical three-degree-of-freedom parallel manipulators. The mechanical architectures presented have been introduced elsewhere. However, designs having at least one isotropic configuration are suggested here for the first time. Isotropic configurations are defined, in turn, as those configurations in which the Jacobian matrix, mapping the angular velocity vector of the effector into the joint velocities, is proportional to an orthogonal matrix. First, a review of the direct and inverse kinematics of spherical three-degree-of-freedom parallel manipulators is outlined, and a general form for the Jacobian matrix is given. Parallel manipulators with revolute or prismatic actuators are discussed. Then, the concept of kinematic conditioning is recalled and used as a performance index for the optimization of the manipulators. It is shown that this leads to designs having at least one isotropic configuration. Finally, a few examples of such designs are presented. 15 refs.
On the kinematic design of spherical three-degree-of-freedom parallel manipulators
NASA Astrophysics Data System (ADS)
Gosselin, Clement M.; Lavoie, Eric
1993-08-01
This article studies the kinematic design of different types of spherical three-degree-of-freedom parallel manipulators. The mechanical architectures presented have been introduced elsewhere. However, designs having at least one isotropic configuration are suggested here for the first time. Isotropic configurations are defined, in turn, as those configurations in which the Jacobian matrix, mapping the angular velocity vector of the effector into the joint velocities, is proportional to an orthogonal matrix. First, a review of the direct and inverse kinematics of spherical three-degree-of-freedom parallel manipulators is outlined, and a general form for the Jacobian matrix is given. Parallel manipulators with revolute or prismatic actuators are discussed. Then, the concept of kinematic conditioning is recalled and used as a performance index for the optimization of the manipulators. It is shown that this leads to designs having at least one isotropic configuration. Finally, a few examples of such designs are presented.
Kinematics Analysis of the Parallel Mechanism with Vertically Fixed Linear Actuators
NASA Astrophysics Data System (ADS)
Masuda, Takanori; Fujiwara, Motoyoshi; Arai, Tatsuo
A 6 degrees of freedom parallel mechanism actuated by vertically fixed linear actuators was developed for heavy material handling and machining. The mechanism allows easy trajectory generation, since the vertical arrangement of the linear actuators simplifies the caluculation of its inverse kinematics. This paper presents inverse kinematics and Jacobian matirix solutions. Way to avoid component interference, which is divided into three types, is proposed. The combination of design parameters is decided by comparing the characteristics of area of movement, resolution and velocity. The working space is then shown. The singularity is analyzed by evaluating determinants of the Jacobian matrix. Lengthening the connecting rods and limiting the range of the end effector rotational angles are effective in avoiding the singular configurations as well as interference. Finally, the developed prototype mechanism is introduced, and its application to tool positioning and machining is described.
NASA Astrophysics Data System (ADS)
Bagchi, S.; Gibelin, J.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Achouri, N. L.; Akimune, H.; Bastin, B.; Boretzky, K.; Bouzomita, H.; Caamaño, M.; Càceres, L.; Damoy, S.; Delaunay, F.; Fernández-Domínguez, B.; Fujiwara, M.; Garg, U.; Grinyer, G. F.; Kamalou, O.; Khan, E.; Krasznahorkay, A.; Lhoutellier, G.; Libin, J. F.; Lukyanov, S.; Mazurek, K.; Najafi, M. A.; Pancin, J.; Penionzhkevich, Y.; Perrot, L.; Raabe, R.; Rigollet, C.; Roger, T.; Sambi, S.; Savajols, H.; Senoville, M.; Stodel, C.; Suen, L.; Thomas, J. C.; Vandebrouck, M.; Van de Walle, J.
2015-12-01
The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at the GANIL facility. The centroid of the ISGMR has been obtained at Ex = 19.1 ± 0.5 MeV. Evidence for the low-lying part of the ISGDR has been found at Ex = 17.4 ± 0.7 MeV. The strength distribution for the dipole mode shows similarity with the prediction from the Hartree-Fock (HF) based random-phase approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics.
NASA Astrophysics Data System (ADS)
Hossen, M. Jakir; Cummins, Phil R.; Dettmer, Jan; Baba, Toshitaka
2015-09-01
This paper considers the importance of model parameterization, including dispersion, source kinematics, and source discretization, in tsunami source inversion. We implement single and multiple time window methods for dispersive and nondispersive wave propagation to estimate source models for the tsunami generated by the 2011 Tohoku-Oki earthquake. Our source model is described by sea surface displacement instead of fault slip, since sea surface displacement accounts for various tsunami generation mechanisms in addition to fault slip. The results show that tsunami source models can strongly depend on such model choices, particularly when high-quality, open-ocean tsunami waveform data are available. We carry out several synthetic inversion tests to validate the method and assess the impact of parameterization including dispersion and variable rupture velocity in data predictions on the inversion results. Although each of these effects has been considered separately in previous studies, we show that it is important to consider them together in order to obtain more meaningful inversion results. Our results suggest that the discretization of the source, the use of dispersive waves, and accounting for source kinematics are all important factors in tsunami source inversion of large events such as the Tohoku-Oki earthquake, particularly when an extensive set of high-quality tsunami waveform recordings are available. For the Tohoku event, a dispersive model with variable rupture velocity results in a profound improvement in waveform fits that justify the higher source complexity and provide a more realistic source model.
NASA Astrophysics Data System (ADS)
Goldberg, D.; Haase, J. S.; Melgar, D.; Bock, Y.; Geng, J.; Saunders, J. K.
2014-12-01
The seismogeodetic combination of high-rate GPS observables and seismic acceleration captures the broadband on-scale recording of earthquake ground motions. The use of these data for determining rapid centroid moment tensor solutions ("fastCMT") has been demonstrated in the post-analysis of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. This seismogeodetic combination will improve source inversions for future earthquakes, but large-scale accelerometer deployment at the many available permanent GPS stations is limited by the cost of traditional observatory-grade accelerometers. Instead, we improve feasibility by installing SIO Geodetic Modules and low-cost MEMS accelerometers at 17 GPS stations in southern California near the San Andreas, San Jacinto, and Elsinore faults, transmitting data in real time for analysis of seismic velocity and displacement waveforms. We examine the performance of our seismogeodetic subnetwork using the El Mayor-Cucapah earthquake as our focus. We calculate a kinematic slip inversion, using the small set of seismogeodetic waveforms available at the time of the event, and assess the reliability of the result in comparison to the fastCMT solution. We evaluate reliability by using our model to predict ground motion at independent stations, and using recorded data as verification at a range of frequencies. Next we supplement the dataset by including realistic simulated waveforms for the additional 17 seismogeodetic stations, adding realistic seismogeodetic noise, and demonstrate the improved reliability of our result in terms of reducing the space of possible solutions due to better geometric constraints. The MEMS accelerometer has higher noise than the observatory-grade accelerometer, which we quantify using strong motion recordings from a series of UCSD NEES outdoor shaketable experiments conducted in December 2013 and January 2014. Results will provide confidence in the use of the MEMS accelerometer for large-scale deployment as an alternative to an observatory-grade accelerometer, as well as the prospects for the increased station density to improve the source parameters of future events, in particular a large earthquake forecast for the southern San Andreas fault.
Estimating periodic organ motions based on inverse kinematics using tetrahedron mesh registration
NASA Astrophysics Data System (ADS)
Kang, Nahyup; Kim, Ji-Yeon; Kim, Kyung Hwan; Lee, Hyong-Euk; Kim, James D. K.
2013-03-01
Minimally/Non-invasive surgery has become increasingly widespread because of its therapeutic benefits such as less pain, less scarring, and shorter hospital stay. However, it is very difficult to eliminate the target cancer cells selectively without damaging nearby normal tissues and vessels since the tumors inside organs cannot be visually tracked in realtime with the existing imaging devices while organs are deformed by respiration and surgical instruments. Note that realtime 2D US imaging is widely used for monitoring the minimally invasive surgery such as Radiofrequency ablation; however, it is difficult to detect target tumors except high-echogenic regions because of its noisy and limited field of view. To handle these difficulties, we present a novel framework for estimating organ motion and deformed shape during respiration from the available features of 2D US images, by means of inverse kinematics utilizing 3D CT volumes at the inhale and exhale phases. First, we generate surface meshes of the target organ and tumor as well as centerlines of vessels at the two extreme phases considering surface correspondence. Then, the corresponding tetrahedron meshes are generated by coupling the internal components for volumetric modeling. Finally, a deformed organ mesh at an arbitrary phase is generated from the 2D US feature points for estimating the organ deformation and tumor position. To show effectiveness of the proposed method, the CT scans from real patient has been tested for estimating the motion and deformation of the liver. The experimental result shows that the average errors are less than 3mm in terms of tumor position as well as the whole surface shape.
Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A
2016-01-01
The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions. PMID:27194213
NASA Astrophysics Data System (ADS)
Rollins, Christopher; Barbot, Sylvain; Avouac, Jean-Philippe
2015-05-01
Due to its location on a transtensional section of the Pacific-North American plate boundary, the Salton Trough is a region featuring large strike-slip earthquakes within a regime of shallow asthenosphere, high heat flow, and complex faulting, and so postseismic deformation there may feature enhanced viscoelastic relaxation and afterslip that is particularly detectable at the surface. The 2010 El Mayor-Cucapah earthquake was the largest shock in the Salton Trough since 1892 and occurred close to the US-Mexico border, and so the postseismic deformation recorded by the continuous GPS network of southern California provides an opportunity to study the rheology of this region. Three-year postseismic transients extracted from GPS displacement time-series show four key features: (1) 1-2 cm of cumulative uplift in the Imperial Valley and 1 cm of subsidence in the Peninsular Ranges, (2) relatively large cumulative horizontal displacements 150 km from the rupture in the Peninsular Ranges, (3) rapidly decaying horizontal displacement rates in the first few months after the earthquake in the Imperial Valley, and (4) sustained horizontal velocities, following the rapid early motions, that were still visibly ongoing 3 years after the earthquake. Kinematic inversions show that the cumulative 3-year postseismic displacement field can be well fit by afterslip on and below the coseismic rupture, though these solutions require afterslip with a total moment equivalent to at least a earthquake and higher slip magnitudes than those predicted by coseismic stress changes. Forward modeling shows that stress-driven afterslip and viscoelastic relaxation in various configurations within the lithosphere can reproduce the early and later horizontal velocities in the Imperial Valley, while Newtonian viscoelastic relaxation in the asthenosphere can reproduce the uplift in the Imperial Valley and the subsidence and large westward displacements in the Peninsular Ranges. We present two forward models of dynamically coupled deformation mechanisms that fit the postseismic transient well: a model combining afterslip in the lower crust, Newtonian viscoelastic relaxation in a localized zone in the lower crust beneath areas of high heat flow and geothermal activity, and Newtonian viscoelastic relaxation in the asthenosphere; and a second model that replaces the afterslip in the first model with viscoelastic relaxation with a stress-dependent viscosity in the mantle. The rheology of this high-heat-flow, high-strain-rate region may incorporate elements of both these models and may well be more complex than either of them.
Development of a kinematically focused neutron source with the p(7Li,n)7Be inverse reaction
NASA Astrophysics Data System (ADS)
Lebois, M.; Wilson, J. N.; Halipré, P.; Leniau, B.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Verney, D.
2014-01-01
Directional beams of neutrons can be produced, if a nuclear reaction, which emits neutrons, is initiated in inverse kinematics with a heavy ion projectile bombarding a light target. In this paper we investigate the use of the p(7Li,n)7Be inverse reaction to produce kinematically focused, quasi-mono-energetic neutron beams with a view to develop such an unusual neutron source for fundamental and applied nuclear physics studies. An experiment was carried out to validate the concept and to test the viability of two types of hydrogen-rich solid targets: polypropylene and TiH2. Neutron time-of-flight/energy spectra at 3 m distance from the source have been measured at 7Li bombarding energies of 13.5, 15, 15.5, 16, and 17 MeV, and neutron backgrounds from parasitic reactions have been characterized. The neutron angular distribution in the laboratory has been measured at 15 MeV. A Monte-Carlo code based on two-body relativistic kinematics has been developed and validated by comparison with the experimental data. Code-based extrapolations have then been used to deduce neutron energy spectra and maximum neutron fluxes available for future irradiation of samples placed in the neutron beam at small distances. For neutrons produced with thin (4 μm) and thick (28 μm) polypropylene targets the maximum available fluxes are calculated to be 107n/s/sr and 7×107 n/s/sr respectively. The development of a dedicated facility to produce kinematically focused neutrons is discussed.
Study of the {sup 56}Ni({sup 3}He,d){sup 57}Cu reaction in inverse kinematics.
Jiang, C. L.; Rehm, K. E.; Ackermann, D.; Ahmad, I.; Greene, J. P.; Harss, B.; Henderson, D.; Henning, W. F.; Janssens, R. V. F.; Nolen, J.; Pardo, R. C.; Reiter, P.; Schiffer, J. P.; Seweryniak, D.; Sonzogni, A.; Uusitalo, J.; Wiedenhoever, I.; Wuosmaa, A. H.; Brumwell, F.; McMichael, G.; Paul, M.; Segel, R. E.; Hebrew Univ.; Northwestern Univ.
2009-01-01
Measurements of (3He,d) reactions can provide information on the proton widths of states that play a role in astrophysically important (p,?) reactions. We report on the first study of the (3He,d) reaction in inverse kinematics with a 56Ni (T1/2=6.1 d) ion beam. The Q-value resolution of keV achieved in this experiment was sufficient to separate the transitions populating the ground state and the 1/2--5/2- doublet at Ex 1.1 MeV in 57Cu. Prospects for similar (3He,d) experiments with improved energy resolution are also discussed.
Geometry and kinematics of Late Cretaceous inversion structures in the Jiuquan Basin, western China
Wang, B.; Chen, H.; Yang, S.; Xiao, A.; Cheng, X.; Rupp, J.A.
2005-01-01
Late Cretaceous inversion structures, which are significant for oil and gas accumulation, are widely distributed throughout the Jiuquan Basin. These structures are primarily made up of inverted faults and fault-related folds. Most of the axial planes of folds are parallel to inverted faults trending north-east, indicating that the principal stress direction was north-west - south-east in the Late Cretaceous. The average inversion ratios of faults in the four sags that were investigated are 0.39, 0.29, 0.38, 0.32. The average inversion ratio in the Jiuquan Basin is 0.34 and the degree of inversion is moderate to strong. As moderate inversion is suitable for forming excellent hydrocarbon traps, there is considered to be significant potential in the basin for the presence of structural traps. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.
2013-05-01
This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.
Gibbs vector kinematics and inverse dynamics for decoupled spacecraft attitude maneuvers
NASA Technical Reports Server (NTRS)
Dwyer, T. A. W., III
1986-01-01
By use of Gibbs vectors as kinematic variables, multi-axial spacecraft equations of rotational motion are shown to be globally and rationally feedback-equivalent to a set of unconstrained and decoupled harmonic oscillators, driven by generalized acceleration commands. Advantages over alternative formulations with Euler angles and quaternions are pointed out.
NASA Astrophysics Data System (ADS)
LarrasoañA, Juan Cruz; ParéS, Josep MaríA.; MilláN, HéCtor; Del Valle, JoaquíN.; Pueyo, Emilio Luis
2003-12-01
The Pamplona Fault in the Pyrenees is a major transverse structure that has been classically interpreted as a strike-slip fault. However, lack of consensus concerning the sense of movement casts doubt on its actual kinematics and, as a consequence, its role in the Cenozoic evolution of the Pyrenees remains controversial. In order to assess its kinematics, we have conducted a paleomagnetic, structural, and stratigraphic study focused on the Mesozoic and Tertiary sedimentary rocks that outcrop around the southern segment of the fault. Restoration of balanced cross sections allows us to examine the present-day spatial relationship of the sedimentary sequences on both sides of the fault and to reconstruct the geometry of the extensional basins formed during Mesozoic rifting episodes in the Bay of Biscay and Pyrenean domains. Paleomagnetic results indicate that no significant tectonic rotations occurred around the fault during Tertiary inversion of the Pyrenees. The lack of tectonic rotations and revaluation of previous hypotheses argues against a strike-slip movement of the fault. We propose a new model in which the Pamplona Fault is treated as a large-scale "hanging wall drop" fault whose kinematics was determined by variations in the geometry and thickness of Mesozoic sequences on both sides of the fault. These variations influenced the geometry of the thrust sheet developed during Tertiary compression. We are unaware of any other transverse fault that has been interpreted in this fashion; thus the Pamplona Fault serves as a case study for the evolution of transverse faults involved in basin inversion processes.
Kinematic Point Source Moment Tensor Inversion Using a Hierarchical Bayesian Approach
NASA Astrophysics Data System (ADS)
Mustać, Marija; Tkalčić, Hrvoje
2014-05-01
The seismic moment tensor (MT) reveals details about source processes within the Earth that cause earthquakes. Although uncertainties in MT inversions are important for estimating solution robustness, they are rarely available. When earthquake location is simultaneously recovered with the MT, uncertainties in structural Green's functions also need to be included in the method. The problem becomes nonlinear and uncertainties in the source mechanism cannot be calculated in a simple manner. We have developed a method and software for a hierarchical Bayesian MT inversion to study moderate earthquakes and explosions generating waveform data at regional distances. The Bayesian inversion gives a posterior probability distribution of model parameters, based on prior knowledge about the MT and the model likelihood, determined by the data. MT uncertainties can then be estimated from the posterior probability distribution. The hierarchical Bayes approach enables us to recover the nature of the data noise and the weight of each waveform, treating them as unknowns in the inversion. Critically, data noise covariance matrix is implemented to account for measurement and theory errors. This knowledge, in turn, enables us to recover the solution within a reasonable range of uncertainty; in other words, it prevents us from "fitting the noise" that can lead to erroneous solutions and interpretation. Synthetic experiments were performed to test the codes, particularly the retrieval of non double-couple components of the MT. A suite of synthetic and observed focal mechanisms was used to create the synthetic data. Additionally, we add noise to synthetic data (as a fraction of data rms) to test its effect on the inversion. Experiments are performed using uncorrelated Gaussian white noise, as well as using correlated noise. Parameter space for the event mechanism is sampled exhaustively, while the code rapidly converges towards the input hypocenter location. Both the input mechanism and noise level were retrieved in the inversion. The codes are currently being applied on real data to test earthquakes in a variety of tectonic settings.
Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data
NASA Astrophysics Data System (ADS)
Melgar, D.; Bock, Y.
2015-05-01
Rapid near-source earthquake source modeling relying only on strong motion data is limited by instrumental offsets and magnitude saturation, adversely affecting subsequent tsunami prediction. Seismogeodetic displacement and velocity waveforms estimated from an optimal combination of high-rate GPS and strong motion data overcome these limitations. Supplementing land-based data with offshore wave measurements by seafloor pressure sensors and GPS-equipped buoys can further improve the image of the earthquake source and prediction of tsunami extent, inundation, and runup. We present a kinematic source model obtained from a retrospective real-time analysis of a heterogeneous data set for the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake. Our model is consistent with conceptual models of subduction zones, exhibiting depth dependent behavior that is quantified through frequency domain analysis of slip rate functions. The stress drop distribution is found to be significantly more correlated with aftershock locations and mechanism types when off-shore data are included. The kinematic model parameters are then used as initial conditions in a fully nonlinear tsunami propagation analysis. Notably, we include the horizontal advection of steeply sloping bathymetric features. Comparison with post-event on-land survey measurements demonstrates that the tsunami's inundation and runup are predicted with considerable accuracy, only limited in scale by the resolution of available topography and bathymetry. We conclude that it is possible to produce credible and rapid, kinematic source models and tsunami predictions within minutes of earthquake onset time for near-source coastal regions most susceptible to loss of life and damage to critical infrastructure, regardless of earthquake magnitude.
Inelastic proton scattering on the radioactive nuclei {sup 18}Ne and {sup 20}O in inverse kinematics
Cottle, P. D.; Riley, L. A.; Jewell, J. K.; Kemper, K. W.; Glasmacher, T.; Blumenfeld, Y.; Marechal, F.; Suomijaervi, T.; Chromik, M.; Ibbotson, R. W.; Scheit, H.; Hirzebruch, S. E.; Morrissey, D. J.
1998-12-21
Elastic and inelastic scattering to the 2{sub 1}{sup +} state of the single closed shell radioactive nuclei {sup 18}Ne and {sup 20}O have been measured in inverse kinematics with a beam energies of 30 MeV/u. The matrix element determined for the 0{sub gs}{sup +}{yields}2{sub 1}{sup +} transitions in these reactions are compared with the corresponding electromagnetic matrix elements to determine M{sub n}/M{sub p}, the ratio of the neutron and proton multipole matrix elements. A comparison between the M{sub n}/M{sub p} values in {sup 20}O and {sup 18}O suggests that the matrix element ratio is increasing as the neutron number increases. The M{sub n}/M{sub p} result for {sup 18}Ne is consistent with one obtained from a comparison of electromagnetic data from the mirror nuclei {sup 18}O and {sup 18}Ne.
Experimental study of the {sup 56}Ni({sup 3}He,d){sup 57}Cu reaction in inverse kinematics
Jiang, C. L.; Rehm, K. E.; Ackermann, D.; Ahmad, I.; Greene, J. P.; Harss, B.; Henderson, D.; Henning, W. F.; Janssens, R. V. F.; Nolen, J.; Pardo, R. C.; Reiter, P.; Schiffer, J. P.; Seweryniak, D.; Sonzogni, A.; Uusitalo, J.; Wiedenhoever, I.; Wuosmaa, A. H.; Brumwell, F.; McMichael, G.
2009-10-15
Measurements of ({sup 3}He,d) reactions can provide information on the proton widths of states that play a role in astrophysically important (p,{gamma}) reactions. We report on the first study of the ({sup 3}He,d) reaction in inverse kinematics with a {sup 56}Ni (T{sub 1/2}=6.1 d) ion beam. The Q-value resolution of {approx} keV achieved in this experiment was sufficient to separate the transitions populating the ground state and the 1/2{sup -}-5/2{sup -} doublet at E{sub x}{approx}1.1 MeV in {sup 57}Cu. Prospects for similar ({sup 3}He,d) experiments with improved energy resolution are also discussed.
NASA Astrophysics Data System (ADS)
Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.
2015-08-01
A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 88 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -?m thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4? ?-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 .
NASA Astrophysics Data System (ADS)
Sanetullaev, Alisher
Transfer reactions have been the classic tool for studying the angular distributions, the excitation energies, and the spectroscopic factors of possible single-particles states. With the advent of radioactive beams, there has been a renewed effort to utilize these beams in transfer reactions in inverse kinematics. The exact shell structure of the unstable doubly magic nucleus 56Ni has attracted a lot of interest recently. To test if 56Ni has a closed f7/2 orbital, we have carried out the 56Ni(p,d)55Ni transfer reaction measurement with the radioactive 56Ni beam in inverse kinematics for the first time at the NSCL using the HiRA array and S800 spectrograph. The spectroscopic factor predicted by the independent particle model is 8, shell-model calculations give value of 6.8. We have extracted spectroscopic factors of the 56Ni(p,d)55Ni reaction, for the ground and two excited states of 55Ni. The neutron SF value of 7 for the 56Ni(p,d)55Ni ground state agrees with shell-model calculations supports the view that 56Ni is a closed shell nucleus. This result supports the use of 56Ni as a core in shell-model calculations. Another important goal was to study the structure of 55Ni by determining the spin and parities of excited states. We have assigned an ℓ value of 1 to first excited state of 55Ni for 2.089 MeV state of 55Ni. We have extracted a spectroscopic factor of 0.14 for this state. This serves as a second test of the shell model, and the results agree with the shell model calculations. We have confirmed the tentative ℓ = 0 assumption for 3.185 MeV state. A neutron spectroscopic factor of 1.2 was obtained for this state.
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.
Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.
Pin, F.G.; Belmans, P.F.R.; Culioli, J.C.; Carlson, D.D.; Tulloch, F.A.
1994-12-31
A new analytical method to resolve underspecified systems of algebraic equations is presented. The method is referred to as the Full Space Parameterization (FSP) method and utilizes easily- calculated projected solution vectors to generate the entire space of solutions of the underspecified system. Analytic parameterizations for both the space of solutions and the null space of the system reduce the determination of a task-requirement-based single solution to a m {minus} n dimensional problem, where m {minus} n is the degree of underspecification, or degree of redundancy, of the system. An analytical solution is presented to directly calculate the least-norm solution from the parameterized space and the results are compared to solutions of the standard pseudo-inverse algorithm which embodies the (least-norm) Moore-Penrose generalized inverse. Application of the new solution method to a variety of systems and task requirements are discussed and sample results using four-link planar manipulators with one or two degrees of redundancy and a seven degree-of-freedom manipulator with one or four degrees of redundancy are presented to illustrate the efficiency of the new FSP method and algorithm.
NASA Astrophysics Data System (ADS)
Serra, Eugenio Maria Toraldo; Emolo, Antonio; Orefice, Antonella; Zollo, Aldo
2013-08-01
We present an approach to infer the slip and rupture velocity distributions on the fault plane from the non-linear inversion of the apparent source time functions, obtained from the empirical Green's function deconvolution method. The main advantage of this technique is that it allows overcoming, in the forward modelling, the limitations related to the computation of the Green's function, as the choice of a correct and reliable earth propagation model. We perform a parameter resolution and uncertainty study, which is based on the analysis of the misfit function in the neighbourhood of the best-fitting model. In this paper, we present the results obtained by applying the technique to synthetic and real records from an Mw 4 event which occurred during the 2009 L'Aquila (central Italy) aftershock sequence. Results show a heterogeneous slip distribution, characterized by two main high slip patches located NW of the hypocentre and an average slip of 3.7 cm, corresponding to a seismic model of about 0.82 1015 Nm.
NASA Astrophysics Data System (ADS)
Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.
2015-10-01
Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.
Two measurements of the 22Na+p resonant scattering via thick-target inverse-kinematics method
NASA Astrophysics Data System (ADS)
Wang, Y. B.; Jin, S. J.; Jing, L.; Han, Z. Y.; Bai, X. X.; Guo, B.; Li, Y. J.; Li, Z. H.; Lian, G.; Su, J.; Sun, L. J.; Yan, S. Q.; Zeng, S.; Liu, W. P.; Yamaguchi, H.; Kubono, S.; Hu, J.; Kahl, D.; He, J. J.; Wang, J. S.; Tang, X. D.; Xu, S. W.; Ma, P.; Zhang, N. T.; Bai, Z.; Huang, M. R.; Jia, B. L.; Jin, S. L.; Ma, J. B.; Ma, S. B.; Ma, W. H.; Yang, Y. Y.; Zhang, L. Y.; Jung, H. S.; Moon, J. Y.; Lee, C. S.; Teranishi, T.; Wang, H. W.; Ishiyama, H.; Iwasa, N.; Komatsubara, T.; Brown, B. A.
2016-02-01
22Na is an important isotope for the study of extinct radioactivity, meanwhile its sufficiently long half life provides the possibility to observe live 22Na in nearby nova explosions. The 22Na(p,γ) 23Mg is one of the key reactions that influence the 22Na abundance in nova ejecta. To study the proton resonant states in 23Mg relevant to the astrophysical 22Na(p,γ) 23Mg reaction rates, two measurements have been carried out at the CRIB separator of University of Tokyo, and the RIBLL secondary beamline in Lanzhou, respectively. The 22Na secondary beam was produced via the 1H(22Ne, 22Na)n charge exchange reaction. Thick-target inverse-kinematics method is applied to obtain the excitation function of 22Na+p elastic scattering. Extended gas target and solid state polyethylene foil were used in the two measurements, respectively, to map the different excitation energy region of the compound nucleus 23Mg. Several new resonant levels are observed and their contribution to the 22Na(p,γ) 23Mg reaction rate is evaluated.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Dalguer, L. A.; Song, S.; Clinton, J. F.
2013-12-01
Detailed source imaging of the spatial and temporal slip distribution of earthquakes is a main research goal for seismology. In this study we investigate how the number and geometrical distribution of seismic stations affect finite kinematic source inversion results by inverting ground motions derived from a known synthetic dynamic earthquake rupture model, which is governed by the slip weakening friction law with heterogeneous stress distribution. Our target dynamic rupture model is a buried strike-slip event (Mw 6.5) in a layered half space (Dalguer & Mai, 2011) with broadband synthetic ground motions created at 168 near-field stations. In the inversion, we modeled low frequency (under 1Hz) waveforms using a genetic algorithm in a Bayesian framework (Moneli et al. 2008) to retrieve peak slip velocity, rupture time, and rise time of the source. The dynamic consistent regularized Yoffe function (Tinti et al. 2005) was applied as a single window slip velocity function. Tikhonov regularization was used to smooth final slip. We tested three station network geometry cases: (a) single station, in which we inverted 3 component waveforms from a single station varying azimuth and epicentral distance; (b) multi-station configurations with similar numbers of stations all at similar distances from, but regularly spaced around the fault; (c) irregular multi-station configurations using different numbers of stations. For analysis, waveform misfits are calculated using all 168 stations. Our results show: 1) single station tests suggest that it may be possible to obtain a relatively good source model even using one station, with a waveform misfit comparable to that obtained with the best source model. The best single station performance occurs with stations in which amplitude ratios between the three components are not large, indicating that P & S waves are all present. We infer that both body wave radiation pattern and distance play an important role in selection of optimal station. 2) Multi-station tests indicate irregular distribution of stations with different azimuths and distances around the fault provides the best source models. The minimum waveform misfit is obtained using the all-168 stations, but source model is not significant improved by using denser network. It suggests the best source model is not necessarily derived from the model with minimum waveform misfit. 3) Number of stations affects the estimated source image, but a surprisingly small number of well-spaced stations appear sufficient to obtain acceptable solutions in our study. This study is done under unrealistic conditions, e.g. no noise on ground motions, fault geometry and velocity structure are perfectly known. However, we argue that it provides basic guidelines for seismic / GNSS network geometry for the study source models from real earthquakes. Also, this study suggests a-priori physical constraints for the earthquake source is required to exclude unrealistic models. A pseudo-dynamic source inversion, in which the correlation structures between source parameters inferred from dynamic rupture models (Song et al 2013, in review), will support such constraints, and is currently work in progress.
NASA Astrophysics Data System (ADS)
Roma, Maria; Pla, Oriol; Butillé, Mireia; Roca, Eduard; Ferrer, Oriol
2015-04-01
The widespread extensional deformation that took place during Jurassic to Cretaceous times in the Western Europe and north-Atlantic realm resulted in the formation of several rift systems. Some of the basins associated to these rifts show broad syncline-shapes filled by thick sedimentary successions deposited overlying a hyperextended crust (i.e., Parentis, Cameros, Organyà or Columbrets basins in Iberia). The development of these syncline basins has been associated to the slip of low-angle lithospheric-scale extensional faults with ramp/flat geometries. The shape and kinematics of such faults have been usually established using the architecture of syn-kinematic layers and assuming a complete coupling of the hangingwall rocks and a layer parallel flexural slip deformation mechanism. However almost all these basins include pre-kinematic Upper Triassic salt layers which undubtoufully acted as an effective detachment decoupling the structure of sub- and suprasalt units. The presence of this salt is denoted by the growth of salt structures as diapirs or salt walls at the edges of these basins where the overburden was thinner. During latest Cretaceous and Cenozoic these basins were partially inverted and often incorporated into thrust-and-fold belts as the Pyrenees . Contractional deformation resulted in the reactivation of major extensional faults and, above the salt, the squeezing of pre-existent salt structures. The pre-kinematic salt clearly acted again as as a major detachment decoupling the contractional deformation. Using an experimental approach (scaled sand-box models) the aim of our research is threefold: 1) to determine the geometrical features of the hangingwall above a convex upwards ramp of a low angle extensional fault with and without pre-kinematic salt, and consequently; 2) to decipher the role played by a pre-kinematic viscous layer, such as salt, in the development of these syncline basins; and 3) to characterize the contractional deformation that took place in them during a later contractional inversion. To achieve this goal an experimental program including seven different sand-box models has been carried out. The experimental results show that fault shape controls the geometry and the kinematic evolution of the ramp synclines formed on the hangingwall during extension and subsequent inversion. Regarding this, the experiments also demonstrate that the presence of a viscous layer changed significantly the kinematic of the basin developing two clearly different structural styles above and below the polymer. The kinematic of this basin during extension change dramatically when the silicone layer was depleted with the formation of primary welds. Since this moment model's kinematic becomes similar to the models without silicone. During the inversion, models show that low shortening produced the contractional reactivation of the major fault arched and uplifted the basin. In this scenario, if salt is rather continuous, took place an incipient reactivation of the silicone layer as a contractional detachment. By contrast, high shortening produces the total inversion of the detachment faults and the pop-up of the extensional basin. Finally, models are compared with different natural analogues from Iberia validating previous published interpretations or proposing new interpretations inferring the geometry of the major fault, specially if the presence of a salt interlayer in the deformed rocks is known or suspected.
2014-01-01
Background There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface. Methods Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses. Results No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively. Conclusion These findings provide preliminary evidence suggesting that wearing high-top shoes can, in certain conditions, induce a delayed pre-activation timing and decreased amplitude of evertor muscle activity, and may therefore have a detrimental effect on establishing and maintaining functional ankle joint stability. PMID:24548559
NASA Astrophysics Data System (ADS)
Ruiz, S.; Madariaga, R.
2012-04-01
The Maule 2010 Mw 8.8 Chile and Tohoku 2011 Mw 9.0 earthquakes were recorded by continuous GPS (cGPS) and Strong Motion (SM) instruments, with good resolution at low and high frequencies, respectively. The dual behavior of low and high frequencies during large earthquakes is an important issue in seismic hazard because the highest seismic intensities are associated mainly with high frequency waves, while low frequency waves are associated with tsunami generation and the largest coseismic displacements. Previous works proposed that most of the low frequency waves were generated in the shallow part of the contact, while that high frequency waves were released in the deeper zone of the plate interface. We made kinematic inversions in different frequency bands using cGPS and SM to study the seismic ruptures and their frequency behavior. The AXITRA spectral code was used to simulate wave propagation in a flat layered medium. We used two approaches to model the source: elliptical patches and fixed rectangular mesh. Both models fit more than 90% of the variance. Our inversions for Tohoku earthquake show low frequency energy released in the shallow part of the interface and high frequency release in its deeper part, similar to findings in previous works. For Maule, on the other hand, we propose that the main high frequency source was located in the northern part of the rupture, not necessarily in the deeper contact zone that could not be broken during this earthquake. We think that high frequency is concentrated in the boundaries of the rupture caused by the arrest of the rupture propagation. The Maule rupture had a direction of propagation mainly from south to north generating a concentration of high frequency waves in small zones of the northern edge of the rupture. The Tohoku earthquake had a direction of propagation mainly from shallow depth to the deeper part of the plate interface generating more high frequency waves in small zones of the deeper edges. The Maule 2010 earthquake was recorded by several SM that previously recorded the Valparaiso 1985 Mw 8.0 earthquake. The Japanese strong motion networks have recorded several Mw ~ 8.0 earthquakes, like the Tokachi-oki 2003 earthquake. The comparison of SM of both mega-earthquakes with Mw ~ 8.0 earthquakes shows remarkable similarities: similar peak ground acceleration, peak ground velocity, duration of strong motion and high frequency spectrum. These similarities confirm our previous conclusions that high frequency are released by small zones where rupture is stopped by seismic barriers. Finally, the dual frequency behavior of seismic ruptures explains why at high frequencies the seismic intensities for mega-earthquakes are similar to those of Mw ~ 8.0 earthquakes and why for low frequency the seismic hazard of mega-earthquakes is higher generating larger tsunami propagation and coseismic displacements.
NASA Astrophysics Data System (ADS)
Sasano, M.; Yasuda, J.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kamaeda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, K.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.
2016-01-01
The charge-exchange (p,n) reaction at 220 MeV has been measured to extract the strength distribution of Gamow-Teller transitions from the doubly magic unstable nucleus 132Sn. A recently developed experimental technique of measuring the (p,n) reaction in inverse kinematics has been applied to the study of unstable nuclei in the mass region around A˜100 for the first time. We have combined the low-energy neutron detector WINDS and the SAMURAI spectrometer at the RIKEN radioactive isotope beam factory (RIBF). The particle identification plot for the reaction residues obtained by the spectrometer provides the clear separation of the CE reaction channel from other background events, enabling us to identify kinematic curves corresponding the (p, n) reaction. Further analysis to reconstruct the excitation energy spectrum is ongoing.
{sup 34}P({sup 7}Li,{sup 7}Be+{gamma}) Reaction at 100A MeV in Inverse Kinematics
Zegers, R. G. T.; Meharchand, R.; Brown, B. A.; Guess, C. J.; Hitt, G. W.; Shimbara, Y.; Bazin, D.; Diget, C. A.; Hausmann, M.; Vaman, C.; Weisshaar, D.; Yurkon, J.; Austin, Sam M.; Tur, C.; Gade, A.; King, M.; Miller, D.; Signoracci, A.; Starosta, K.; Voss, P.
2010-05-28
We report on the first successful extraction of a {beta}{sup +} Gamow-Teller strength distribution from a radioactive isotope in an intermediate-energy charge-exchange experiment in inverse kinematics. The ({sup 7}Li,{sup 7}Be+{gamma}(429 keV)) reaction at 100A MeV was used to measure Gamow-Teller transition strengths from {sup 34}P to states in {sup 34}Si. The results show that little mixing occurs between sd and pf shell configurations for the low-lying 0{sup +} and 2{sup +} states even though {sup 34}Si neighbors the island of inversion and low-lying 2({h_bar}/2{pi}){omega} intruder states exist. Shell-model calculations in the sdpf model space are consistent with these findings.
Human Hand Kinematic Modeling Based on Robotic Concepts for Digit Animation with Dynamic Constraints
NASA Astrophysics Data System (ADS)
Tondu, Bertrand
The recent development of highly anthropomorphic avatars in computer graphics has emphasized the importance of accurate hand kinematic models. Although kinematic methods derived from robotics have recently been applied to the modeling of hands, we consider that original/new and relevant results can be brought into play with the use of more advanced applications of robotic techniques to human hand kinematic modeling. Our chapter analyses some of these questions both in the non-differential and differential fields. More specifically, we study how to integrate the peculiar natural digit movement constraints into robotics-based inverse kinematic modeling. As a result, we propose an original approach based on an interpretation of each joint dynamic constraint as a linear joint synergy. This leads to defining the considered digit as a serial chain kinematically redundant in position and reducing the dimension of its joint space by associated joint synergies. The method is applied to the Cartesian positioning simulation of a 4 d.o.f. index model; a comparison with a Jacobian pseudo-inverse-based approach emphasizes its relevance.
Homological versus algebraic equivalence in a jacobian
Harris, Bruno
1983-01-01
Let Z be an algebraic p cycle homologous to zero in an algebraic complex manifold V. Associated to Z is a linear function ν on holomorphic (2p + 1)-forms on V, modulo periods, that vanishes if Z is algebraically equivalent to zero in V. I give a formula for ν for the case of V the jacobian of an algebraic curve C and Z=C - C′ (C′ = “inverse” of C′) in terms of iterated integrals of holomorphic 1-forms on C. If C is the degree 4 Fermat curve, I use this formula to show that C - C′ is not algebraically equivalent to zero. PMID:16593281
NASA Astrophysics Data System (ADS)
Melis, Nikolaos S.; Miliorizos, Marios N.; Oshoano Aipoh, Hilary
2013-04-01
The present work compliments the application of a methodology, in reviewing and investigating further the kinematic history of faults, based on striation analysis and stress inversion of earthquake focal mechanisms and combines them to refine tectonic modelling and hence improve further hazard assessment. Two areas are chosen for this application: the Bristol Channel, UK and the Ionian Zone, Greece. Striation analysis is carried out in two complementary fault terranes. The first along the northern margin of the Inner Bristol Channel, UK, offers a natural laboratory to study in detail the reactivation history of the inverted Bristol Channel basin; and, the second along the north western coastline of the Ionian Zone, Greece, presents an opportunity to illustrate the relationship between movement of a framework of faults within the external orogenic zone of the Hellenides and the stress deduced from focal mechanisms of earthquakes in the region. The UK example reveals phases of Mesozoic negative inversion of Late Palaeozoic basement frontal and oblique ramp thrust faults, followed by Caenozoic positive inversions of Mesozoic normal and strike slip faults. The Greek example shows an equally composite history of faulting; Tethyan basement strata contain normal faults that pass up sequence and across unconformities into Mesozoic and Caenozoic strata, with thrusts and positively inverted faults recording typical dextral transpression. The fault framework in older strata and the veneers of Recent strata above them display Neotectonic fault histories of sinistral transtension, in addition to the transpression. Since the Ionian Zone lies suitably in the external zone, deformation favours the reactivation of fault lineaments, rather than the genesis of pristine faults. Both examples are used to demonstrate this structural principle. Focal mechanisms of Greek earthquake data are used in stress inversion and the results are applied upon the inherited fault framework and are postulated to reactivate it. For example, structures are selected in the field from the tectonised strata of northern Corfu and from recent geological maps of north western Greece. These data are used in conjunction with the results of stress inversion of focal mechanisms, in order to anticipate and then test the gross senses of fault reactivation. Tests are investigated using structural field techniques and available international striation analysis software modules. The defined framework analysis is applied to both the data from ancient faults, in UK and the focal mechanisms of earthquakes, in Greece. Stress tensors are calculated and fault kinematic histories are evaluated. Hence, this application permits the effects of a modern stress regime to be deduced for a known fault framework, in order to complete and understand fully the kinematic history to the present day. As a corollary, the significant field techniques of tracing major fault lines across regional unconformities and measuring the sense of displacements across these stratigraphic boundaries permit kinematic histories to be defined more precisely in both terranes, than by using only structural techniques.
NASA Astrophysics Data System (ADS)
Margerin, V.; Lotay, G.; Woods, P. J.; Aliotta, M.; Christian, G.; Davids, B.; Davinson, T.; Doherty, D. T.; Fallis, J.; Howell, D.; Kirsebom, O. S.; Mountford, D. J.; Rojas, A.; Ruiz, C.; Tostevin, J. A.
2015-08-01
In Wolf-Rayet and asymptotic giant branch (AGB) stars, the Alg26(p ,γ )27Si reaction is expected to govern the destruction of the cosmic γ -ray emitting nucleus 26Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the Alg26(d ,p )27Al reaction as a method for constraining the strengths of key astrophysical resonances in the Alg26(p ,γ )27Si reaction. In particular, the results indicate that the resonance at Er=127 keV in 27Si determines the entire Alg26(p ,γ )27Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.
Hacker, C.J.; Fries, G.A.; Pin, F.G.
1997-01-01
Few optimization methods exist for path planning of kinematically redundant manipulators. Among these, a universal method is lacking that takes advantage of a manipulator`s redundancy while satisfying possibly varying constraints and task requirements. Full Space Parameterization (FSP) is a new method that generates the entire solution space of underspecified systems of algebraic equations and then calculates the unique solution satisfying specific constraints and optimization criteria. The FSP method has been previously tested on several configurations of the redundant manipulator HERMIES-III. This report deals with the extension of the FSP driver, Inverse Kinematics On Redundant systems (IKOR), to include three-dimensional manipulation systems, possibly incorporating a mobile platform, with and without orientation control. The driver was also extended by integrating two optimized versions of the FSP solution generator as well as the ability to easily port to any manipulator. IKOR was first altered to include the ability to handle orientation control and to integrate an optimized solution generator. The resulting system was tested on a 4 degrees-of-redundancy manipulator arm and was found to successfully perform trajectories with least norm criteria while avoiding obstacles and joint limits. Next, the system was adapted and tested on a manipulator arm placed on a mobile platform yielding 7 degrees of redundancy. After successful testing on least norm trajectories while avoiding obstacles and joint limits, IKORv1.0 was developed. The system was successfully verified using comparisons with a current industry standard, the Moore Penrose Pseudo-Inverse. Finally, IKORv2.0 was created, which includes both the one shot and two step methods, manipulator portability, integration of a second optimized solution generator, and finally a more robust and usable code design.
Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.
Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C
2015-06-01
This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length. PMID:25970238
NASA Astrophysics Data System (ADS)
Yue, Han
In this thesis, I summarize the research that I have done at UC Santa Cruz involving my development of joint inversion approaches using hr-GPS, teleseismic body and surface waves, regional seismic, campaign GPS, InSAR and tsunami datasets, to investigate the kinematic rupture patterns of large earthquakes. In eight different studies of rupture models of the 2011 Tohoku earthquake, 2012 Indo-Australia earthquake, 2012 Costa Rica earthquake, 2013 Craig earthquake, 2010 Mentawai earthquake, 2013 Pakistan earthquake, 2010 Chile earthquake and 2014 Iquique earthquake, I adopted each available dataset progressively in my joint inversion algorithm, so that in my current approach I can model all of the types of datasets simultaneously. As noted in this thesis, the teleseismic datasets provide good temporal resolution of the rupture process, while geodetic datasets have good spatial resolution. Tsunami datasets have good spatial resolution of slip near the trench. The joint inversion combines the advantage of each dataset, yielding stable and high- resolution rupture models with detailed spatial and temporal information. Resolving a robust and detailed rupture model helps us to understand co-seismic rupture properties, such as depth dependent energy release patterns, super-shear rupture, and tsunami excitation. Comparing the inter-seismic locking pattern and post-seismic stress release pattern with the co-seismic rupture model helps to investigate the locking and releasing behavior of the fault plane through the earthquake cycle, the stress release level of large earthquakes and the relationship between the main shock ruptures, aftershocks and non-seismogenic deformation.
Off-diagonal Jacobian support for Nodal BCs
Peterson, John W.; Andrs, David; Gaston, Derek R.; Permann, Cody J.; Slaughter, Andrew E.
2015-01-01
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite element codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
Analytical Jacobian and its application to tilted-wave interferometry.
Fortmeier, Ines; Stavridis, Manuel; Wiegmann, Axel; Schulz, Michael; Osten, Wolfgang; Elster, Clemens
2014-09-01
Tilted-wave interferometry (TWI) is a novel optical measurement principle for the measurement of aspherical surfaces. For the reconstruction of the wavefront and the surface under test, respectively, perturbation methods are applied, which require the calculation of the Jacobian matrix. For the practical use of the instrument, a fast and exact calculation of the Jacobian matrices is crucial, since this strongly influences the calculation times of the TWI. By applying appropriate approaches in optical perturbation methods we are able to calculate the required Jacobian matrices analytically when the nominal optical path through the system is given. As a result, calculation times for the TWI can be considerably reduced. We finally illustrate the improved TWI procedure and apply methods of optimal design to determine optimal positions of the surface under test. For such applications the fast calculation of the Jacobian matrices is essential. PMID:25321510
NASA Astrophysics Data System (ADS)
Fichtner, Andreas; Tkalčić, Hrvoje
2010-09-01
The accurate modelling and prediction of volcanic eruptions depends critically on information concerning the interaction between the caldera and the underlying magma chamber. Knowledge concerning the kinematics of a caldera in the course of an eruption is therefore essential. Here we provide detailed seismological constraints on the kinematics of a volcanic caldera drop and the geometry of a caldera ring fault. For this we performed a finite-source inversion of the September 29, 1996 Bárdarbunga, Iceland, earthquake that was caused by caldera subsidence. Our methodology is based on spectral element simulations of seismic wave propagation through a realistic model of the Icelandic crust and upper mantle. A particularly robust feature is the initiation of the rupture in the north-western part of the ring fault that is about 10 km in diameter. From there it spread to the other fault segments within about 3 s. Without invoking super-shear propagation sensu stricto, we can explain this unusually fast rupture propagation by the triggering of fault segments through P waves that propagated across the caldera. Our results favour outward-dipping fault segments in the western half of the ring fault, while the eastern half is preferentially inward-dipping. This variability may reflect structural heterogeneities or an irregular magma chamber geometry. The individual segments of the caldera ring fault radiated approximately equal amounts of energy. This indicates that the caldera dropped coherently as one single block. The work presented here is intended to aid in the design of realistic models of magma chamber and caldera dynamics.
Kinematic analysis of 7 DOF anthropomorphic arms
NASA Technical Reports Server (NTRS)
Kreutz-Delgado, K.; Long, M.; Seraji, H.
1990-01-01
A kinematic analysis of anthropomorphic seven-degree-of-freedom serial link spatial manipulators with revolute joints is presented. To uniquely determine joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable which corresponds to the angle between the arm plane and a reference plane. The forward kinematic mappings from joint-space to end-effector coordinates and arm angle and the augmented Jacobian matrix which gives end-effector and arm angle rates as functions of joint rates are given. Conditions under which the augmented Jacobian becomes singular are given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.
Kinematic analysis of 7-DOF manipulators
NASA Technical Reports Server (NTRS)
Kreutz-Delgado, Kenneth; Long, Mark; Seraji, Homayoun
1992-01-01
This article presents a kinematic analysis of seven-degree-of-freedom serial link spatial manipulators with revolute joints. To uniquely determine the joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable that defines the angle between the arm plane and a reference plane. The forward kinematic mappings from joint space to end-effector coordinates and arm angle and the augmented Jacobian matrix that gives end-effector and arm angle rates as functions of joint rates are presented. Conditions under which the augmented Jacobian becomes singular are also given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.
Differential Kinematics Of Contemporary Industrial Robots
NASA Astrophysics Data System (ADS)
Szkodny, T.
2014-08-01
The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented
NASA Astrophysics Data System (ADS)
Kortyna, C. D.; DeCelles, P. G.; Carrapa, B.
2012-12-01
The Eastern Cordillera and Santa Barbara systems of northwest Argentina exhibit a transition in structural style between thick- and thin-skinned features. Traditionally, Andean foreland structural geometries are correlated with the orientation of the subducting Nazca Plate. However, deformation in northwest Argentina is controlled by inversion of inherited Cretaceous rift structures of the Salta rift. South of Salta, in the ranges surrounding the Calchaquí and Lerma Valleys (between ~25°-26°S and ~65°-66°W), the foreland thrust belt is characterized by steep west-verging, north-south trending reverse faults juxtaposing Precambrian-Cambrian basement rocks on Mesozoic-Cenozoic syn-to-post-rift and foreland basin deposits. Geologic mapping, structural data and stratigraphic relationships confirm that these reverse faults are primarily reactivated extensional faults of the Cretaceous Salta rift, a complex of extensional basins beneath the modern foreland basin. The rift geometry provides a major control on fold and fault geometries in the area. New detailed (1:24,000 scale) geologic mapping in the Amblayo, Tonco, and Calchaquí Valleys documents a transition in structural style in the Andean thrust belt that correlates with palinspastic geometries of the Salta rift basin. The southern region correlates with the Salta rift flanks whereas the northern region correlates with the rift interior. Reverse faulting in the southern region is characterized by multiple high angle splays (~40°-70°) with variable amounts of stratigraphic separation that, in places, shortcut high angle normal faults of the Salta rift. In the northern region, reverse faulting is less steep (~25°-50°) and is characterized by a singular fault plane that juxtaposes overturned fault propagation folds in the hanging wall and footwall. Overturned limbs are shallowly dipping at ~20°-30°. Fault planes are approximated by thick, m's-scale orange fault gouge and breccia. This study also describes a new synorogenic unit that constrains timing of rift inversion. Described in north Tonco Valley, this unit consists of localized poorly sorted granular-boulder conglomerates and breccias with a poorly sorted mud-to-coarse sand matrix. The breccia outcrops unconformably on underlying Miocene Angastaco Formation and is in faulted contact with overriding Salta Group. Clasts consist primarily of stromatolitic, oolitic, and micritic limestones with subordinate meta-sandstones and mudstones. The larger, angular clasts are almost uniformly limestone and interpreted to be sourced from the Yacoraite Formation that outcrops in the overlying hanging wall. This unit was deposited as synorogenic muddy debris flows to mud slurries derived locally from the Yacoraite Formation as it was exhumed during fault-propagation folding in the hanging wall of the main reverse fault that juxtaposes the Amblayo and Tonco Valleys. The unit was then overridden by the hanging wall strata as the main fault reached the surface. The youngest detrital U-Pb zircon age population combined with low-T-thermochronology will help constrain timing of deformation along this fault and in the region.
Piatanesi, A.; Cirella, A.; Spudich, P.; Cocco, M.
2007-01-01
We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green's functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Diao, Faqi; Wang, Rongjiang; Aochi, Hideo; Walter, Thomas R.; Zhang, Yong; Zheng, Yong; Xiong, Xiong
2016-02-01
During the 20th century, a series of devastating earthquakes occurred along the North Anatolian Fault. These generally propagated westwards, such that the main fault segment beneath the Marmara Sea appears as a seismic gap. For the nearby megacity Istanbul, rapid seismic hazard assessment is currently of great importance. A key issue is how a strong earthquake in the Marmara Sea can be characterized reliably and rapidly using the seismic network currently operating in this region. In order to investigate this issue, several scenario earthquakes on the main Marmara fault are simulated through dynamic modelling based on a 3-D structure model. The synthetic datasets are then used to reconstruct the source processes of the causal events with a recently developed iterative deconvolution and stacking method based on simplified 1-D Earth structure models. The results indicate that, by using certain a priori information about the fault geometry and focal mechanism, the tempo-spatial slip patterns of the input scenarios can be well resolved. If reasonable uncertainties are considered for the a priori information, the key source parameters, such as moment magnitude, fault size and slip centroid, can still be estimated reliably, while the detailed tempo-spatial rupture pattern may reveal significant variations. To reduce the effect induced by employing the inaccurate event location and focal mechanism, a new approach for absolute source imaging is proposed and tested. We also investigate the performance of the new source imaging tool for near real-time source inversion under the current network configuration in the Marmara Sea region. The results obtained are meaningful particularly for developing the rapid earthquake response system for the megacity Istanbul.
Doornenbal, P.; Reiter, P.; Grawe, H.; Wollersheim, H. J.; Gerl, J.; Gorska, M.; Kojouharov, I.; Prokopowicz, W.; Schaffner, H.; Bednarczyk, P.; Caceres, L.; Cederkaell, J.; Ekstroem, A.; Jhingan, A.; Kumar, R.; Singh, R. P.
2008-09-15
The 2{sub 1}{sup +} states of {sup 114,116}Sn were excited in two consecutive experiments by means of Coulomb excitation in inverse kinematics on a {sup 58}Ni target. A precise determination of the reduced transition probability B(E2; 0{sub g.s.}{sup +}{yields}2{sub 1}{sup +}) of {sup 114}Sn relative to the well-known 2{sub 1}{sup +} excitation strength in {sup 116}Sn was achieved by comparing the relative projectile to target 2{sub 1}{sup +}{yields}0{sub g.s.}{sup +} decay intensities. The obtained B(E2{up_arrow}) value of 0.232(8) e{sup 2}b{sup 2} for {sup 114}Sn confirms the tendency of large B(E2{up_arrow}) values for the light tin isotopes below the midshell {sup 116}Sn that has been observed recently in various radioactive ion beam experiments. The result establishes most clearly the discrepancy between the current B(E2{up_arrow}) value predictions from large-scale shell-model calculations and the experimental deviation, which commences already for the stable {sup 114}Sn isotope.
NASA Astrophysics Data System (ADS)
Henry, Eric M.
The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. The multi-detector is capable of detecting individual products of the collision essential for the reconstruction of the collision dynamics. This is the first time CHIMERA has been used at low-energy, which offered a unique challenge for the calibration and interpretation of experimental data. Initial interrogation of the calibrated data revealed a class of selected events characterized by two coincident heavy fragments (atomic number Z>3) that together account for the majority of the total mass of the colliding system. These events are consistent with the complete fusion and subsequent binary split (fission) of a composite nucleus. The observed fission fragments are characterized by a broad A, Z distribution and are centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. Additional analysis of the kinematic relationship between the fission fragments was performed. Of note, is that the center-of-mass angular distribution (dsigma/dtheta) of the fission fragments exhibits an unexpected anisotropy inconsistent with a compound-nucleus reaction. This anisotropy is indicative of a dynamic fusion/fission-like process. The observed angular distribution features a forward-backward anisotropy most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions. The observations associated with this subset of events are similar to those reported for dynamic fragmentation of projectile-like fragments, but have not before been observed for a fusion/fission-like process. Comparisons to dynamic and statistical reaction model predictions are inconsistent with known phenomena, but suggest a peculiar dynamics-driven scenario. A plausible explanation of the experimental results is the existence of a phenomenon similar to a "fusion window", or a range of impact parameters in which complete fusion cannot be achieved. In this scenario, the system must absorb all the relative motion and convert it to vibrational energy or heat. As the energy increases the system may not be able to accommodate this conversion of energy without breaking apart.
NASA Astrophysics Data System (ADS)
Coutand, Isabelle; Whipp, David M.; Grujic, Djordje; Bernet, Matthias; Fellin, Maria Giuditta; Bookhagen, Bodo; Landry, Kyle R.; Ghalley, S. K.; Duncan, Chris
2014-02-01
Both climatic and tectonic processes affect bedrock erosion and exhumation in convergent orogens, but determining their respective influence is difficult. A requisite first step is to quantify long-term (~106 year) erosion rates within an orogen. In the Himalaya, past studies suggest long-term erosion rates varied in space and time along the range front, resulting in numerous tectonic models to explain the observed erosion rate distribution. Here, we invert a large data set of new and existing thermochronological ages to determine both long-term exhumation rates and the kinematics of Neogene tectonic activity in the eastern Himalaya in Bhutan. New data include 31 apatite and five zircon (U-Th)/He ages, and 49 apatite and 16 zircon fission-track ages along two north-south oriented transects across the orogen in western and eastern Bhutan. Data inversion was performed using a modified version of the 3-D thermokinematic model Pecube, with parameter ranges defined by available geochronologic, metamorphic, structural, and geophysical data. Among several important observations, our three main conclusions are as follows: (1) Thermochronologic ages do not spatially correlate with surface traces of major fault zones but appear to reflect the geometry of the underlying Main Himalayan Thrust; (2) our data are compatible with a strong tectonic influence, involving a variably dipping Main Himalayan Thrust geometry and steady state topography; and (3) erosion rates have remained constant in western Bhutan over the last ~10 Ma, while a significant decrease occurred at ~6 Ma in eastern Bhutan, which we partially attribute to convergence partitioning into uplift of the Shillong Plateau.
Roberts, R.G.; Repperger, D.W.
1999-01-01
This article presents some results on the closed-form, singular-value decomposition of the orientational Jacobian for three- and four-degree-of-freedom wristlike mechanisms. These results are used to study the kinematics of a centrifuge simulator, and to determine the centrifuge`s limitations in achieving maximum angular velocities. Also, the issue of fault tolerance for a redundant wrist is addressed.
Force-free Jacobian equilibria for Vlasov-Maxwell plasmas
Abraham-Shrauner, B.
2013-10-15
New analytic force-free Vlasov-Maxwell equilibria for thin current sheets are presented. The magnetic flux densities are expressed in terms of Jacobian elliptic functions of one Cartesian spatial coordinate. The magnetic flux densities reduce to previously reported hyperbolic functions in one limit and sinusoidal functions in another limit of the modulus k. A much wider class of nonlinear force-free Vlasov-Maxwell equilibria open expanded possibilities for modeling of solar system, astrophysical and laboratory plasmas. Modified Maxwellian distribution functions are determined explicitly in terms of Jacobian elliptic functions. Conditions for double peaked distribution functions that could be unstable are developed.
Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions
ERIC Educational Resources Information Center
Garcia-Hoz, A. Martinez; Chacon, R.
2011-01-01
We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…
Multi-GPU Jacobian accelerated computing for soft-field tomography.
Borsic, A; Attardo, E A; Halter, R J
2012-10-01
Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times on a single NVIDIA S1070 GPU, and of 50 times on four GPUs, bringing the Jacobian computing time for a fine 3D mesh from 12 min to 14 s. We regard this as an important step toward gaining interactive reconstruction times in 3D imaging, particularly when coupled in the future with acceleration of the forward problem. While we demonstrate results for EIT, these results apply to any soft-field imaging modality where the Jacobian matrix is computed with the adjoint method. PMID:23010857
Yang, C L; Wei, H Y; Adler, A; Soleimani, M
2013-06-01
Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results. PMID:23719094
Generic robotic kinematic generator for virtual environment interfaces
NASA Astrophysics Data System (ADS)
Flueckiger, Lorenzo; Piguet, Laurent; Baur, Charles
1996-12-01
The expansion of robotic systems' performance, as well as the need for such machines to work in complex environments (hazardous, small, distant, etc.), involves the need for user interfaces which permit efficient teleoperation. Virtual Reality based interfaces provide the user with a new method for robot task planning and control: he or she can define tasks in a very intuitive way by interacting with a 3D computer generated representation of the world, which is continuously updated thanks to multiple sensors fusion and analysis. The Swiss Federal Institute of Technology has successfully tested different kinds of teleoperations. In the early 90s, a transatlantic teleoperation of a conventional robot manipulator with a vision feedback system to update the virtual world was achieved. This approach was then extended to perform teleoperation of several mobile robots (Khepera, Koala) as well as to control microrobots used for microsystems' assembly in the micrometer range. One of the problems encountered with such an approach is the necessity to program a specific kinematic algorithm for each kind of manipulator. To provide a more general solution, we started a project aiming at the design of a 'kinematic generator' (CINEGEN) for the simulation of generic serial and parallel mechanical chains. With CINEGEN, each manipulator is defined with an ascii file description and its attached graphics files; inserting a new manipulator simply requires a new description file, and none of the existing tools require modification. To have a real time behavior, we have chosen a numerical method based on the pseudo-Jacobian method to generate the inverse kinematics of the robot. The results obtained with an object-oriented implementation on a graphic workstation are presented in this paper.
Universal functional equation for period doubling in constant-Jacobian maps
NASA Astrophysics Data System (ADS)
Quispel, G. R. W.
1986-11-01
The period-doubling behavior of one-parameter families of maps of constant jacobian is related to a fixed-point equation of the form g B e2 = A B e ” g B c ” g B e ” A B eand det Dg B c, g B c: R 2 → R 2. (For B e = 0 the Feigenbaum-Cvitanovic equation is recovered.) CUP> is “conjugateo̊ the transformation A B e0: (x,y) → (α B e x, β B ey). Expanding the fixed-point equation above in inverse powers of α B e, a low-order polynomial approximate fixed-point solution g B e is found together with an approximation to the crossover scaling functions α B eand β B e.
Inversion strategies for visco-acoustic waveform inversion
NASA Astrophysics Data System (ADS)
Kamei, R.; Pratt, R. G.
2013-08-01
Visco-acoustic waveform inversion can potentially yield quantitative images of the distribution of both velocity and the attenuation parameters from seismic data. Intrinsic P-wave attenuation has been of particular interest, but has also proven challenging. Frequency-domain inversion allows attenuation and velocity relations to be easily incorporated, and allows a natural multiscale approach. The Laplace-Fourier approach extends this to allow the natural damping of waveforms to enhance early arrivals. Nevertheless, simultaneous inversion of velocity and attenuation leads to significant `cross-talk' between the resulting images, reflecting a lack of parameter resolution and indicating the need for pre-conditioning and regularization of the inverse problem. We analyse the cross-talk issue by partitioning the inversion parameters into two classes; the velocity parameter class, and the attenuation parameter class. Both parameters are defined at a reference frequency, and a dispersion relation is assumed that describes these parameters at any other frequency. We formulate the model gradients at a forward modelling frequency, and convert them to the reference frequency by employing the Jacobian of the coordinate change represented by the dispersion relation. We show that at a given modelling frequency, the Fréchet derivatives corresponding to these two parameter classes differ only by a 90° phase shift, meaning that the magnitudes of resulting model updates will be unscaled, and will not reflect the expected magnitudes in realistic (Q-1 ≪ 1) media. Due to the lack of scaling, cross-talk will be enhanced by poor subsurface illumination, by errors in kinematics, and by data noise. To solve these issues, we introduce an attenuation scaling term (the inverse of a penalty term) that is used to pre-condition the gradient by controlling the magnitudes of the updates to the attenuation parameters. Initial results from a suite of synthetic cross-hole tests using a three-layer randomly heterogenous model with both intrinsic and extrinsic (scattering) attenuation demonstrate that cross-talk is a significant problem in attenuation inversion. Using the same model, we further show that cross-talk can be suppressed by varying the attenuation scaling term in our pre-conditioning operator. This strategy is effective for simultaneous inversion of velocity and attenuation, and for sequential inversion (a two-stage approach in which only the velocity models are recovered in the first stage). Further regularization using a smoothing term applied to the attenuation parameters is also effective in reducing cross-talk, which is often highly oscillatory. The sequential inversion approach restricts the search space for attenuation parameters, and appears to be important in retrieving a reliable attenuation model when strong time-damping is applied. In a final test with our synthetic model, we successfully carry out visco-acoustic inversions of noise-contaminated data.
On the calculation of Jacobian matrices by the Markowitz rule
Griewank, A. ); Reese, S. . Dept. of Mathematical Sciences)
1991-01-01
The evaluation of derivative vectors can be performed with optimal computational complexity by the forward or reverse mode of automatic differentiation. This approach may be applied to evaluate first and higher derivatives of any vector function that is defined as the composition of easily differentiated elementary functions, typically in the form of a computer program. The more general task of efficiently evaluating Jacobians or other derivative matrices leads to a combinational optimization problem, which is conjectured to be NP-hard. Here, we examine this vertex elimination problem and solve it approximately, using a greedy heuristic. Numerical experiments show the resulting Markowitz scheme for Jacobian evaluation to be more efficient than column by column or row by row evaluation using the forward or the reverse mode, respectively.
On the calculation of Jacobian matrices by the Markowitz rule
Griewank, A.; Reese, S.
1991-12-31
The evaluation of derivative vectors can be performed with optimal computational complexity by the forward or reverse mode of automatic differentiation. This approach may be applied to evaluate first and higher derivatives of any vector function that is defined as the composition of easily differentiated elementary functions, typically in the form of a computer program. The more general task of efficiently evaluating Jacobians or other derivative matrices leads to a combinational optimization problem, which is conjectured to be NP-hard. Here, we examine this vertex elimination problem and solve it approximately, using a greedy heuristic. Numerical experiments show the resulting Markowitz scheme for Jacobian evaluation to be more efficient than column by column or row by row evaluation using the forward or the reverse mode, respectively.
Kinematic synthesis and analysis of a novel class of six-DOF parallel minimanipulators
NASA Astrophysics Data System (ADS)
Tahmasebi, Farhad
A new class of six degree of freedom (six-DOF) parallel minimanipulators is introduced. The minimanipulators are designed to provide high resolution and high stiffness in fine-manipulation operations. Two-DOF planar mechanisms (e.g., five-bar linkages, pantographs) and inextensible limbs are used to improve positional resolution and stiffness of the minimanipulators. The two-DOF mechanisms serve as drivers for the minimanipulators. The minimanipulators require only three inextensible limbs and, unlike most of the six-limbed parallel manipulators, their direct kinematics can be reduced to solving a polynomial in a single variable. All of the minimanipulator actuators are base-mounted. As a result, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. Inverse kinematics of the minimanipulators has been reduced to solving three decoupled quadratic equations, each of which contains only one unknown. Kinematic inversion is used to reduce the direct kinematics of the minimanipulator to an eighth-degree polynomial in the square of a single variable. Hence, the maximum number of assembly configurations for the minimanipulator is sixteen. It is proved that the sixteen solutions are eight pairs of reflected configurations with respect to the plane passing through the lower ends of the three limbs. The Jacobian and stiffness matrices of two types of minimanipulators are derived. It is shown that, at a central configuration, the stiffness matrix of the first type minimanipulator (driven by bidirectional linear stepper motors) can be decoupled, if proper design parameters are chosen. It is also shown that the stiffness of the minimanipulators is higher than that of the Stewart platform. Guidelines for obtaining large stiffness values and for designing the drivers of the second type minimanipulator (simplified five-bar linkages) are established. An algorithm is developed to determine the workspace of the minimanipulators. Given any orientation for the output link, three dimensional representation of the workspace is obtained. Guidelines for avoiding discontinuities inside of the workspace are established.
Kinematic analysis of the ARID manipulator
NASA Technical Reports Server (NTRS)
Doty, Keith L
1992-01-01
The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed.
Computational recipes for electromagnetic inverse problems
NASA Astrophysics Data System (ADS)
Egbert, Gary D.; Kelbert, Anna
2012-04-01
The Jacobian of the non-linear mapping from model parameters to observations is a key component in all gradient-based inversion methods, including variants on Gauss-Newton and non-linear conjugate gradients. Here, we develop a general mathematical framework for Jacobian computations arising in electromagnetic (EM) geophysical inverse problems. Our analysis, which is based on the discrete formulation of the forward problem, divides computations into components (data functionals, forward and adjoint solvers, model parameter mappings), and clarifies dependencies among these elements within realistic numerical inversion codes. To be concrete, we focus much of the specific discussion on 2-D and 3-D magnetotelluric (MT) inverse problems, but our analysis is applicable to a wide range of active and passive source EM methods. The general theory developed here provides the basis for development of a modular system of computer codes for inversion of EM geophysical data, which we summarize at the end of the paper.
Semistable modifications of families of curves and compactified Jacobians
NASA Astrophysics Data System (ADS)
Esteves, Eduardo; Pacini, Marco
2016-04-01
Given a family of nodal curves, a semistable modification of it is another family made up of curves obtained by inserting chains of rational curves of any given length at certain nodes of certain curves of the original family. We give comparison theorems between torsion-free, rank-1 sheaves in the former family and invertible sheaves in the latter. We apply them to show that there are functorial isomorphisms between the compactifications of relative Jacobians of families of nodal curves constructed through Caporaso's approach and those constructed through Pandharipande's approach.
NASA Astrophysics Data System (ADS)
Guo, Luanjing; Huang, Hai; Gaston, Derek R.; Permann, Cody J.; Andrs, David; Redden, George D.; Lu, Chuan; Fox, Don T.; Fujita, Yoshiko
2013-03-01
Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.
Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita
2013-03-01
Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.
Margerin, V; Lotay, G; Woods, P J; Aliotta, M; Christian, G; Davids, B; Davinson, T; Doherty, D T; Fallis, J; Howell, D; Kirsebom, O S; Mountford, D J; Rojas, A; Ruiz, C; Tostevin, J A
2015-08-01
In Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction. In particular, the results indicate that the resonance at E(r)=127 keV in (27)Si determines the entire (26g)Al(p,γ)(27)Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars. PMID:26296114
Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston
2012-06-01
Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.
Bonnet, Vincent; Mazz, Claudia; Fraisse, Philippe; Cappozzo, Aurelio
2013-07-01
This study aimed at the real-time estimation of the lower-limb joint and torso kinematics during a squat exercise, performed in the sagittal plane, using a single inertial measurement unit placed on the lower back. The human body was modeled with a 3-DOF planar chain. The planar IMU orientation and vertical displacement were estimated using one angular velocity and two acceleration components and a weighted Fourier linear combiner. The ankle, knee, and hip joint angles were thereafter obtained through a novel inverse kinematic module based on the use of a Jacobian pseudoinverse matrix and null-space decoupling. The aforementioned algorithms were validated on a humanoid robot for which the mechanical model used and the measured joint angles virtually exhibited no inaccuracies. Joint angles were estimated with a maximal error of 1.5. The performance of the proposed analytical and experimental methodology was also assessed by conducting an experiment on human volunteers and by comparing the relevant results with those obtained through the more conventional photogrammetric approach. The joint angles provided by the two methods displayed differences equal to 31. These results, associated with the real-time capability of the method, open the door to future field applications in both rehabilitation and sport. PMID:23392337
Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods
Brown, J.; Brune, P.
2013-07-01
Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)
Solving Nonlinear Solid Mechanics Problems with the Jacobian-Free Newton Krylov Method
J. D. Hales; S. R. Novascone; R. L. Williamson; D. R. Gaston; M. R. Tonks
2012-06-01
The solution of the equations governing solid mechanics is often obtained via Newton's method. This approach can be problematic if the determination, storage, or solution cost associated with the Jacobian is high. These challenges are magnified for multiphysics applications with many coupled variables. Jacobian-free Newton-Krylov (JFNK) methods avoid many of the difficulties associated with the Jacobian by using a finite difference approximation. BISON is a parallel, object-oriented, nonlinear solid mechanics and multiphysics application that leverages JFNK methods. We overview JFNK, outline the capabilities of BISON, and demonstrate the effectiveness of JFNK for solid mechanics and solid mechanics coupled to other PDEs using a series of demonstration problems.
NASA Astrophysics Data System (ADS)
Hoffmann, V.-E.; Dunkl, I.; von Eynatten, H.; Jähne, F.; Voigt, T.; Kley, J.
2009-04-01
During the Late Cretaceous to Early Tertiary some parts of the Central European Basin System (CEBS) were uplifted along NW-SE to WNW-ESE striking compressive fault systems. As a result Pre-Zechstein (Permian) basement is exposed at the southern border of the CEBS from Central Germany to the sudetes still further east (e.g. Harz Mountains, Thuringian Forest). Thrust-related basins like the Subhercynian Cretaceous Basin (SCB) in the foreland of the Harz Mountains accumulated up to 2500m of siliciclastic and chemical sediments in only 10 million years (Late Turonian to Lower Campanian, Voigt et al., 2006). By means of low-temperature thermochronology it is possible to characterise these basin inversion processes with respect to timing, pattern and rates of cooling and exhumation. Differed authors have already applied Apatite Fission Track analysis (AFT) in certain areas of the southern margin of CEBS. Thomson and Zeh (2000) published AFT apparent ages of 69 to 81 Ma for the Ruhla Crystalline Complex in the Thuringian Forest. Similar AFT-ages (73-84 Ma) of granitoids from the Harz Mountains were reported by Thomson et al. (1997). The late Carboniferous felsic volcanic rocks near Halle yield a much broader range of AFT apparent ages (75-108 Ma; Jacobs and Breitkreuz, 2003). Comparable AFT-ages (84-90 Ma) had been also observed for gabbros from the north-eastern part of the Mid German Crystalline High (Ventura et al. 2003). The present study tries to bridge some of the major gaps in the regional distribution of thermochronological data by analysing samples from central and southern parts of the CEBS. Overall almost 50 AFT-ages from Saxony-Anhalt, Lower Saxony, Thuringia, Hesse and North Rhine-Westphalia were measured. Emphasis is placed on the regions from the Harz Mountains to the Rhenish Uplands and the Thuringian Forest and its foreland. Furthermore, apatite (U-Th)/He thermochronology is used to better constrain the time-temperature history models. Apart from some mixed age information two different age groups can be recognized. A major group that is similar to the one reported above points to a short but intense pulse of exhumation and inversion in Coniacian to Campanian time. A younger, less significant age cluster yields information on a second phase of cooling and exhumation in the Paleocene-Eocene. The length distribution of AFT data leads to the assumption of rapid, partially multi-phase, exhumation events. In addition, the data of this study provides indications for thick Jurassic burial that likely reflect phases of Mesozoic extensional tectonics in at least parts of the CEBS. Jacobs, J., Breitkreuz, C. (2003): Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. International Journal of Earth Sciences (Geologische Rundschau), 92, 165-172. Thomson, S., Brix, M., Carter, A. (1997): Late Cretaceous denudation of the Harz Massif assessed by apatite fission track analysis. In: G. Büchel and H. Lützner (Editors), Regionale Geologie von Mitteleuropa, 149. Hauptversammlung Deutsche Geologische Gesellschaft, Jena. Schriftenreihe der Deutschen Geologischen Gesellschaft, 3, 115. Thomson, S.N., Zeh, A. (2000): Fission-track thermochronology of the Ruhla Crystalline Complex:. New constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics, 324, 17-35. Ventura, B., Lisker, F., Kopp, J. (2003): Apatite fission track data from the dill-core Züllsdorf 1/63: implications for the reconstruction of the post Variscan exhumation of the Mid German Crystalline High. Zeitschrift für Geologische Wissenschaften, 31, 251-261. Voigt, T., Wiese, F., von Eynatten, H., Franzke, H.-J. & Gaupp, R. (2006): Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157/2, 203-244.
NASA Astrophysics Data System (ADS)
Spurr, Robert; Christi, Matt
2014-07-01
The linearized radiative transfer models VLIDORT and LIDORT will deliver profile weighting functions (Jacobians) with respect to layer optical properties. We derive transformation rules for the conversion of layer Jacobian output to weighting functions defined for level (layer boundary) quantities such as volume mixing ratio, temperature and pressure. In a related development, we discuss the derivation of bulk-property atmospheric Jacobians with respect to quantities such as the temperature shift, the surface pressure and scaling parameters for constituent profiles. We also present some rules for calculating Jacobians for parameters characterizing aerosol loading regimes. An appendix contains linearization (with respect to temperature and pressure) of the trace species cross-sections derived from the HITRAN line spectroscopy data base.
Kinematics and control of redundant robotic arm based on dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro
2015-04-01
Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.
A study of kinematic models for forward calibration of manipulators
NASA Technical Reports Server (NTRS)
Everett, Louis J.; Suryohadiprojo, Adwin H.
1988-01-01
The objective of robot calibration is to identify all parameters in a robot model so that the model represents the true robot. Each model has its own set of parameters. The authors prove that regardless of the kinematic model chosen, there are a maximum number of parameters that must be determined, implying that model accuracy cannot be improved by adding parameters. In addition, the authors demonstrate how to model any manipulator so that a minimum size Jacobian is used, thus reducing the computation required for calibration.
Kinematic functions for the 7 DOF robotics research arm
NASA Technical Reports Server (NTRS)
Kreutz, K.; Long, M.; Seraji, Homayoun
1989-01-01
The Robotics Research Model K-1207 manipulator is a redundant 7R serial link arm with offsets at all joints. To uniquely determine joint angles for a given end-effector configuration, the redundancy is parameterized by a scalar variable which corresponds to the angle between the manipulator elbow plane and the vertical plane. The forward kinematic mappings from joint-space to end-effector configuration and elbow angle, and the augmented Jacobian matrix which gives end-effector and elbow angle rates as a function of joint rates, are also derived.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.
Flux Jacobian matrices and generaled Roe average for an equilibrium real gas
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1988-01-01
Inviscid flux Jacobian matrices and their properties used in numerical solutions of conservation laws are extended to general, equilibrium gas laws. Exact and approximate generalizations of the Roe average are presented. Results are given for one-dimensional flow, and then extended to three-dimensional flow with time-varying grids.
A Unified Microwave Radiative Transfer Model with Jacobian for General Stratified Media
NASA Astrophysics Data System (ADS)
Tian, Miao
A unified microwave radiative transfer (UMRT) model is developed for rapid, stable and accurate level-centric calculation of the thermal radiation emitted from any geophysical medium comprised of planar layers of either densely or tenuously distributed, moderately sized spherical scatterers. The formulation includes rapid calculation of the tangent linear relationship (i.e., Jacobian) between the observed brightness temperature and any relevant radiative and geophysical layer parameters, such as the scattering and absorption coefficients, temperature, temperature lapse rate, and medium layer thickness. UMRT employs a rapid multistream scattering-based discrete ordinate eigenanalysis solution with a layer-adding algorithm stabilized by incorporating symmetrization of the discretized differential radiative transfer equations and analytical diagonalization and factorization of the resulting symmetric and positive definite matrices. It is based on the discrete ordinate tangent linear radiative transfer model of Voronovich et al. (2004), but extended to include both Mie and dense media scattering theories and employ refractive layers. Other nontrivial extensions are: 1) exact modeling of linearized temperature profiles and resulting radiation streams across medium layers, 2) compensation for refracted radiation streams using Snell's law, the Fresnel reflectivity and transmissivity coefficients, and a cubic spline interpolation matrix, and 3) seamless calculation of associated Jacobians for both sparse and dense medium parameters. Details of the UMRT Jacobian formulation are presented. The entire formulation has been programmed in Matlab and validated through both energy conservation and numerical Jacobian intercomparisons. Comparisons of the upwelling brightness temperatures over dry snow and ice from simulations and field measurements are presented and discussed.
Flux Jacobian matrices and generaled Roe average for an equilibrium real gas
Vinokur, M.
1988-12-01
Inviscid flux Jacobian matrices and their properties used in numerical solutions of conservation laws are extended to general, equilibrium gas laws. Exact and approximate generalizations of the Roe average are presented. Results are given for one-dimensional flow, and then extended to three-dimensional flow with time-varying grids.
Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps
NASA Astrophysics Data System (ADS)
Wu, Guo-Cheng; Baleanu, Dumitru
2015-05-01
The Jacobian matrix algorithm is often used to calculate the Lyapunov exponents of the chaotic systems. This study extends the algorithm to discrete fractional cases. The tangent maps with memory effect are presented. The Lyapunov exponents of one and two dimensional fractional logistic maps are calculated. The positive ones are used to distinguish the chaotic areas of the maps.
Fault tolerant kinematic control of hyper-redundant manipulators
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.
1994-01-01
Hyper-redundant spatial manipulators possess fault-tolerant features because of their redundant structure. The kinematic control of these manipulators is investigated with special emphasis on fault-tolerant control. The manipulator tasks are viewed in the end-effector space while actuator commands are in joint-space, requiring an inverse kinematic algorithm to generate joint-angle commands from the end-effector ones. The rate-inverse kinematic control algorithm presented in this paper utilizes the pseudoinverse to accommodate for joint motor failures. An optimal scale factor for the robust inverse is derived.
On the kinematic analysis of robotic mechanisms
Nielsen, J.; Roth, B.
1999-12-01
The kinematic analyses, of manipulators and other robotic devices composed of mechanical links, usually depend on the solution of sets of nonlinear equations. There are a variety of both numerical and algebraic techniques available to solve such systems of equations and to give bounds on the number of solutions. These solution methods have also led to an understanding of how special choices of the various structural parameters of a mechanism influence the number of solutions inherent to the kinematic geometry of a given structure. In this paper, results from studying the kinematic geometry of such systems are reviewed, and the three most useful solution techniques are summarized. The solution techniques are polynomial continuation, Groebner bases, and elimination. The authors then discuss the results that have been obtained with these techniques in the solution of two basic problems, namely, the inverse kinematics for serial-chain manipulators, and the direct kinematics of in-parallel platform devices.
NASA Astrophysics Data System (ADS)
Fujii, Fumio; Yamakawa, Yuki; Noguchi, Hirohisa
2010-07-01
In the previous publications of the authors, an eigenanalysis-free computational procedure has been proposed to extract the bifurcation buckling mode(s) from the LDL T -decomposed symmetric stiffness matrix in the vicinity of a stability point. Any eigensolver, for instance, inverse iteration or subspace method, is not necessary. The procedure has been verified in numerical examples and well works in multiple and clustered bifurcation problems too. This present paper will extend the eigenanalysis-free procedure to the LDU-decomposed non-symmetric Jacobian matrix, from which both left and right critical eigenvectors relevant to the stability point may be extracted in a similar way. The idea is mathematical and totally independent of the physical problem to be solved, so that it is applicable to any non-symmetric square matrix in stability problems including plasticity with non-associated flow rules, contact and fluid-structure interaction. The linear-algebraic background of non-symmetric eigenvalue problems is firstly described. The present paper will then mention the role play of the left and right critical eigenvectors in stability analysis and the eigenanalysis-free LDU-procedure is proposed. Numerical examples of elastoplastic bifurcation are illustrated for verification and discussion. In APPENDICES, a bench model visualizes the mechanical meaning of the left and right critical singular vectors of a rectangular matrix.
A Constrained Multibody System Dynamics Avoiding Kinematic Singularities
NASA Astrophysics Data System (ADS)
Huang, Chih-Fang; Yan, Chang-Dau; Jeng, Shyr-Long; Cheing, Wei-Hua
In the analysis of constrained multibody systems, the constraint reaction forces are normally expressed in terms of the constraint equations and a vector of Lagrange multipliers. Because it fails to incorporate conservation of momentum, the Lagrange multiplier method is deficient when the constraint Jacobian matrix is singular. This paper presents an improved dynamic formulation for the constrained multibody system. In our formulation, the kinematic constraints are still formulated in terms of the joint constraint reaction forces and moments; however, the formulations are based on a second-order Taylor expansion so as to incorporate the rigid body velocities. Conservation of momentum is included explicitly in this method; hence the problems caused by kinematic singularities can be avoided. In addition, the dynamic formulation is general and applicable to most dynamic analyses. Finally the 3-leg Stewart platform is used for the example of analysis.
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-06-01
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs. PMID:25969947
Multiscale modeling of polycrystalline materials with Jacobian-free multiscale method (JFMM)
NASA Astrophysics Data System (ADS)
Rahul; De, Suvranu
2015-04-01
The non-linear constitutive response of polycrystalline aggregate of single crystal grains is obtained using a micro-macro transition scheme, which is realized within a Jacobian-free multiscale method (JFMM). The Jacobian-free approach circumvents computation of the tangent matrix at the macroscale using a Newton-Krylov process. This has a major advantage in terms of storage requirements and computational cost over existing approaches based on homogenized material coefficients, which may require considerable effort to form the exact Jacobian at every Newton step. The rate-independent constitutive response of polycrystalline copper and rate-dependent stress-strain response of -RDX (cyclotrimethylene trinitramine) polycrystal is verified against the computational homogenization based two-level finite element multiscale method. Numerical examples demonstrate that while the rate of convergence of Newton iterations for the JFMM and method is comparable, the computational cost of JFMM is nearly constant as opposed to exponential increase for the latter with increasing number of degrees of freedom at the macroscale. The storage requirement for the JFMM increases linearly with increasing , whereas, it increases as approximately for the method.
Principal Component Geostatistical Approach for large-dimensional inverse problems
Kitanidis, P K; Lee, J
2014-01-01
The quasi-linear geostatistical approach is for weakly nonlinear underdetermined inverse problems, such as Hydraulic Tomography and Electrical Resistivity Tomography. It provides best estimates as well as measures for uncertainty quantification. However, for its textbook implementation, the approach involves iterations, to reach an optimum, and requires the determination of the Jacobian matrix, i.e., the derivative of the observation function with respect to the unknown. Although there are elegant methods for the determination of the Jacobian, the cost is high when the number of unknowns, m, and the number of observations, n, is high. It is also wasteful to compute the Jacobian for points away from the optimum. Irrespective of the issue of computing derivatives, the computational cost of implementing the method is generally of the order of m2n, though there are methods to reduce the computational cost. In this work, we present an implementation that utilizes a matrix free in terms of the Jacobian matrix Gauss-Newton method and improves the scalability of the geostatistical inverse problem. For each iteration, it is required to perform K runs of the forward problem, where K is not just much smaller than m but can be smaller that n. The computational and storage cost of implementation of the inverse procedure scales roughly linearly with m instead of m2 as in the textbook approach. For problems of very large m, this implementation constitutes a dramatic reduction in computational cost compared to the textbook approach. Results illustrate the validity of the approach and provide insight in the conditions under which this method perform best. PMID:25558113
Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver
NASA Astrophysics Data System (ADS)
Grayver, A. V.; Streich, R.; Ritter, O.
2013-06-01
For 3-D inversion of controlled-source electromagnetic (CSEM) data, increasing availability of high-performance computers enables us to apply inversion techniques that are theoretically favourable, yet have previously been considered to be computationally too demanding. We present a newly developed parallel distributed 3-D inversion algorithm for interpreting CSEM data in the frequency domain. Our scheme is based on a direct forward solver and uses Gauss-Newton minimization with explicit formation of the Jacobian. This combination is advantageous, because Gauss-Newton minimization converges rapidly, limiting the number of expensive forward modelling cycles. Explicit calculation of the Jacobian allows us to (i) precondition the Gauss-Newton system, which further accelerates convergence, (ii) determine suitable regularization parameters by comparing matrix norms of data- and model-dependent terms in the objective function and (iii) thoroughly analyse data sensitivities and interdependencies. We show that explicit Jacobian formation in combination with direct solvers is likely to require less memory than combinations of direct solvers and implicit Jacobian usage for many moderate-scale CSEM surveys. We demonstrate the excellent convergence properties of the new inversion scheme for several synthetic models. We compare model updates determined by solving either a system of normal equations or, alternatively, a linear least-squares system. We assess the behaviour of three different stabilizing functionals in the framework of our inversion scheme, and demonstrate that implicit regularization resulting from incomplete iterative solution of the model update equations helps stabilize the inversion. We show inversions of models with up to two million unknowns in the forward solution, which clearly demonstrates applicability of our approach to real-world problems.
Exact Jacobians in an implicit Newton method for two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Büsing, H.; Clauser, C.
2012-04-01
Geological storage of CO2 is one option for mitigating the effects of CO2 emissions on global warming. Since extensive on-site monitoring of the CO2 plume propagation is expensive, numerical simulations are an attractive alternative for gaining deeper insight in the dynamics of this system. We consider a model for two-phase flow in porous media for representing the injection stage of a CO2 sequestration scenario, when the plume propagation is dominated by advection. The porous medium filled by the two phases CO2 and brine is modelled as an initial-boundary-value problem consisting of two nonlinear, coupled partial differential equations, which are complemented by appropriate boundary and initial conditions. We present a new numerical approach to solve this fully coupled system using exact Jacobians. The method is based on the finite element, finite volume, box method [Huber & Helmig(2000)] for the space discretization and, since stability of the method is one of the main concerns, the fully implicit Euler method for the time discretization. A simple first order upwind method takes into account advective contributions. The resulting system of nonlinear algebraic equations is linearized by Newton's method. The required Jacobians can be obtained elegantly by automatic differentiation (AD) [Griewank & Walther(2008), Rall(1981)], a source code transformation giving exact derivatives of the discretized equations with respect to primary variables. The resulting system of linear equations is then solved by an iterative method (BiCGStab) with ILU0 preconditioning in every Newton step. We compare the forward AD differentiation mode to the standard finite difference method in terms of precision and performance. It turns out that AD performs favourable in both aspects. We also illustrate the advantages of exact Jacobians for two-phase flow in a sequestration scenario investigating the evolution of pressure and saturation.
Acceleration of k-Eigenvalue / Criticality Calculations using the Jacobian-Free Newton-Krylov Method
Dana Knoll; HyeongKae Park; Chris Newman
2011-02-01
We present a new approach for the $k$--eigenvalue problem using a combination of classical power iteration and the Jacobian--free Newton--Krylov method (JFNK). The method poses the $k$--eigenvalue problem as a fully coupled nonlinear system, which is solved by JFNK with an effective block preconditioning consisting of the power iteration and algebraic multigrid. We demonstrate effectiveness and algorithmic scalability of the method on a 1-D, one group problem and two 2-D two group problems and provide comparison to other efforts using silmilar algorithmic approaches.
Marchesseau, Stphanie; Heimann, Tobias; Chatelin, Simon; Willinger, Rmy; Delingette, Herv
2010-01-01
Simulating soft tissues in real time is a significant challenge since a compromise between biomechanical accuracy and computational efficiency must be found. In this paper, we propose a new discretization method, the Multiplicative Jacobian Energy Decomposition (MJED) which is an alternative to the classical Galerkin FEM (Finite Element Method) formulation. This method for discretizing non-linear hyperelastic materials on linear tetrahedral meshes leads to faster stiffness matrix assembly for a large variety of isotropic and anisotropic materials. We show that our new approach, implemented within an implicit time integration scheme, can lead to fast and realistic liver deformations including hyperelasticity, porosity and viscosity. PMID:20879236
Fisher information for inverse problems and trace class operators
NASA Astrophysics Data System (ADS)
Nordebo, S.; Gustafsson, M.; Khrennikov, A.; Nilsson, B.; Toft, J.
2012-12-01
This paper provides a mathematical framework for Fisher information analysis for inverse problems based on Gaussian noise on infinite-dimensional Hilbert space. The covariance operator for the Gaussian noise is assumed to be trace class, and the Jacobian of the forward operator Hilbert-Schmidt. We show that the appropriate space for defining the Fisher information is given by the Cameron-Martin space. This is mainly because the range space of the covariance operator always is strictly smaller than the Hilbert space. For the Fisher information to be well-defined, it is furthermore required that the range space of the Jacobian is contained in the Cameron-Martin space. In order for this condition to hold and for the Fisher information to be trace class, a sufficient condition is formulated based on the singular values of the Jacobian as well as of the eigenvalues of the covariance operator, together with some regularity assumptions regarding their relative rate of convergence. An explicit example is given regarding an electromagnetic inverse source problem with "external" spherically isotropic noise, as well as "internal" additive uncorrelated noise.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
NASA Astrophysics Data System (ADS)
Pethiyagoda, Ravindra; McCue, Scott W.; Moroney, Timothy J.; Back, Julian M.
2014-07-01
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Recovery Discontinuous Galerkin Jacobian-Free Newton-Krylov Method for All-Speed Flows
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau; Dana Knoll
2008-07-01
A novel numerical algorithm (rDG-JFNK) for all-speed fluid flows with heat conduction and viscosity is introduced. The rDG-JFNK combines the Discontinuous Galerkin spatial discretization with the implicit Runge-Kutta time integration under the Jacobian-free Newton-Krylov framework. We solve fully-compressible Navier-Stokes equations without operator-splitting of hyperbolic, diffusion and reaction terms, which enables fully-coupled high-order temporal discretization. The stability constraint is removed due to the L-stable Explicit, Singly Diagonal Implicit Runge-Kutta (ESDIRK) scheme. The governing equations are solved in the conservative form, which allows one to accurately compute shock dynamics, as well as low-speed flows. For spatial discretization, we develop a “recovery” family of DG, exhibiting nearly-spectral accuracy. To precondition the Krylov-based linear solver (GMRES), we developed an “Operator-Split”-(OS) Physics Based Preconditioner (PBP), in which we transform/simplify the fully-coupled system to a sequence of segregated scalar problems, each can be solved efficiently with Multigrid method. Each scalar problem is designed to target/cluster eigenvalues of the Jacobian matrix associated with a specific physics.
NASA Astrophysics Data System (ADS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-05-01
Used for regression fitting, neural network (NN) models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis has been on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the NN model. The complex relationships linking the inputs to the outputs inside the network are the essence of the model and assessing their physical meaning makes all the difference between a "black box" model with small output errors and a physically meaningful model that will provide insight on the problem and will have better generalization properties. Such dependency structures can, for example, be described by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model. Estimating these Jacobians is essential for many other applications as well. We use a new method of uncertainty estimate developed in the work of [2004] to investigate the robustness of the quantities that characterize the NN structure. A regularization strategy based on principal component analysis is proposed to suppress the multicolinearities that are a major concern when analyzing the internal structure of such a model. The theory is applied to the remote sensing application already presented in the work of [2004] and [2004].
Joseph, Ilon
2014-05-27
Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple spa sity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.
3D-marine tCSEM inversion using model reduction in the Rational Krylov subspace
NASA Astrophysics Data System (ADS)
Sommer, M.; Jegen, M. D.
2014-12-01
Computationally, the most expensive part of a 3D time domain CSEM inversion is the computation of the Jacobian matrix in every Gauss-Newton step. An other problem is its size for large data sets. We use a model reduction method (Zaslavsky et al, 2013), that compresses the Jacobian by projecting it with a Rational Krylov Subspace (RKS). It also reduces the runtime drastically, compared to the most common adjoint approach and was implemented on GPU.It depends on an analytic derivation of the implicit Anzatz function, which solves Maxwell's diffusion equation in the Eigenspace giving a Jacobian dependent on the Eigenpairs and its derivatives of the forward problem. The Eigenpairs are approximated by Ritz-pairs in the Rational Krylov subspace. Determination of the derivived Ritz-pairs is the most time consuming and was fully GPU-optimized. Furthermore, the amount of inversion cells is reduced by using Octree meshes. The gridding allows for the incorporation of complicated survey geometries, as they are encountered in marine CSEM datasets.As a first result, the Jacobian computation is, even on a Desktop, faster than the most common adjoint approach on a super computer for realistic data sets. We will present careful benchmarking and accuracy tests of the new method and show how it can be applied to a real marine scenario.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P.; Small, Daniel E.
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
Application of the least-squares inversion method: Fourier series versus waveform inversion
NASA Astrophysics Data System (ADS)
Min, Dong-Joo; Shin, Jungkyun; Shin, Changsoo
2015-11-01
We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the gradient, full-Newton, and Gauss-Newton methods similar to waveform inversion.
Magnetotelluric Inversion in a 2D Anisotropic Environment
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Jones, A. G.
2012-04-01
In recent years several authors have proposed algorithms to perform magnetotelluric (MT) inversion in a 3D environment. The development of high performance computer (hpc) machines allows the solution of these inverse problems in a reasonable time, nevertheless the solution of a 3D problem remains at the present extremely challenging. Moreover it is proofed that any magnitude of anisotropy possibly present in the subsurface conductivity can be modeled by a sufficient dense discretization of a 3D isotropic domain, keeping the recognition of intrinsically anisotropic bulks virtually impossible for a 3D code. These arguments convinced us to develop a 2D inverse code able in assessing anisotropy and running in an affordable time, testing several scenario for the same dataset in the same time in which a 3D inversion code produces its first model. In this work we report results from synthetic tests we performed. MT inverse problem is challenging because of several reasons. It is both highly non-linear, ill-conditioned and suffers of a severe non-uniqueness of the solution, therefore we developed an inversion algorithm based on the classic Levenberg-Marquardt (LM) strategy, minimizing the objective function (Σ-G-(m)-d)2 φ(m )= σ +λaLa +λsLs in which m is the model, G the forward operator, d the data vector, L* the regularization matrix and λ* the trade-off parameter for respectively anisotropy and structure. Usually LM method is used for medium size problems, mainly because it requires the explicit computation and storage of the Jacobian matrix J and the explicit knowledge of the product JTJ. To compute the Jacobian it has proofed that the electrical reciprocity theorem is a valuable tool, allowing to compute the full Jacobian with the evaluation of one forward problem per station in spite of one forward problem per parameter as usually done with the finite-difference method. Moreover the computation of the forward response can be easily performed in parallel, due the mutual independency of the different spectral components, storing the Jacobian in a distribute machine memory and solving at the same time the problem of the huge memory requirements used to store the product JTJ and speeding up the whole process. We performed tests on the simple synthetic model released with the code from Pek and Santos [2004]: an 84-100 cells grid, grouped in 3 up to 20 blocks sharing the same conductivities. Results proof the capacity of the algorithm in recovering the subsurface structure with good precision, reaching an RMS of the magnitude 10-5 for the 20 block case without the use of regularization. More tests will be presented and results highlighted.
A dexterity measure for the kinematic control of a multifinger, multifreedom robot hand
McAree, P.R.; Samuel, A.E.; Hunt, K.H. ); Gibson, C.G. )
1991-10-01
This work examines the properties of the manifold generated as the configuration space of the linkage used for each finger of the Salisbury hand. The authors begin with an exhaustive catalog of design types for the finger based on an analysis of its branch loci. They then study the conditions under which the forward kinematic map becomes singular. These singularities define a submanifold that partitions the linkage's configuration space into a number of open sheets, each of which maps diffeomorphically onto a corresponding open region in the finger's reachable work space. Next they consider the determinant function of the finger's Jacobian matrix. The stationary points of this function reveal those configurations where the Jacobian determinant is a maximum. The Jacobian determinant can be thought of as an oriented volume in the tangent space to the finger's work space, and the orientation of this volume reveals the most favorable direction(s) for effecting tip motion or, reciprocally, for applying tip forces. From this they establish a simple criterion that can be used to find the optimal grasp configuration(s) for a given finite displacement of the workpiece.
Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators
Tashmasebi, F.; Tsai, Lung-Wen
1992-08-01
The Jacobian and stiffness matrices of two types of novel, six-DOF parallel minimanipulators are derived. A minimanipulator consists of three inextensible limbs, each of which is driven by a two-DOF driver. Bilinear stepper motors are used as drivers in the first type minimanipulator, whereas five-bar linkages are used as drivers in the second type minimanipulator. All of the minimanipulator actuators are base-mounted. Inextensible limbs (and five-bar linkage drivers in the second type minimanipulator) improve positional resolution and stiffness of the minimanipulators in certain directions. It is shown that, at the central configuration, the stiffness matrix of the first type minimanipulator can be diagonalized (decoupled). It is also shown that the first type minimanipulator can be designed to possess direct or torsional isotropic stiffness properties. Moreover, guidelines for designing the drivers of the second type minimanipulator are established. 20 refs.
Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators
Tashmasebi, F. . Goddard Space Flight Center); Tsai, Lung-Wen . Dept. of Mechanical Engineering)
1992-01-01
The Jacobian and stiffness matrices of two types of novel, six-DOF parallel minimanipulators are derived. A minimanipulator consists of three inextensible limbs, each of which is driven by a two-DOF driver. Bilinear stepper motors are used as drivers in the first type minimanipulator, whereas five-bar linkages are used as drivers in the second type minimanipulator. All of the minimanipulator actuators are base-mounted. Inextensible limbs (and five-bar linkage drivers in the second type minimanipulator) improve positional resolution and stiffness of the minimanipulators in certain directions. It is shown that, at the central configuration, the stiffness matrix of the first type minimanipulator can be diagonalized (decoupled). It is also shown that the first type minimanipulator can be designed to possess direct or torsional isotropic stiffness properties. Moreover, guidelines for designing the drivers of the second type minimanipulator are established. 20 refs.
Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels
NASA Technical Reports Server (NTRS)
Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)
2000-01-01
The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.
Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels
NASA Technical Reports Server (NTRS)
Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Hollingshead, M.; Goodman, H. Michael (Technical Monitor)
2000-01-01
The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging, In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models, Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.
NASA Astrophysics Data System (ADS)
Sabaapour, Mohammad Reza; Zohoor, Hassan
Swashplate mechanism is the steering control mechanism used in most helicopters. It is a complex multi-loop closed kinematic chain which controls the angles of attack of the main rotor blades. In most new model helicopters, this mechanism is also equipped with the bell-hiller stabilizer bar (flybar), to improve the stability. This paper aimed at the kinematic analysis of one of the latest architectures of the swashplate mechanism, used for hingeless rotor with the flybar. Hence, the position analysis of each module and whole mechanism, based on parallel manipulators concept with more details involved than other works, was presented here. The kinematic model was further developed to obtain Jacobian matrices, velocity and acceleration analysis in detail. Finally, a particular example was conducted and compared with an ADAMS rigid body dynamic model, to verify the analytical model. In many simulated cases, the results matched.
... lesions in the skin folds. People with severe inverse psoriasis may occasionally require UVB (ultraviolet B) light therapy or biologic medications to control the condition. Menu Donate Register Search Home Psoriasis ...
Kinematic synthesis of bevel-gear-type robotic wrist mechanisms
NASA Astrophysics Data System (ADS)
Lin, Chen-Chou
Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of workplace are derived. The workspace boundary equations can be derived via both geometric consideration and Jacobian analysis. The workspace is divided by inner and outer boundaries into regions of accessibility of zero, two, and four. The design criteria of full workspace and a maximum four-root region are established.
Visual servoing of robot manipulators -- Part 1: Projective kinematics
Ruf, A.; Horaud, R.
1999-11-01
Visual servoing of robot manipulators is a key technique where the appearance of an object in the image plane is used to control the velocity of the end-effector such that the desired position is reached in the scene. The vast majority of visual servoing methods proposed so far uses calibrated robots in conjunction with calibrated cameras. It has been shown that the behavior of visual control loops does not degrade too much in the presence of calibration errors. Nevertheless, camera and robot calibration are complex and time-consuming processes requiring special-purpose mechanical devices, such as theodolites and calibration jigs. In this paper, the authors, suggest formulating a visual servoing control loop in nonmetric space, which in this case amounts to the projective space in which a triangulation of the scene using an uncalibrated stereo rig is expressed. The major consequence of controlling the robot in nonmetric space rather than in Euclidean space is that both the robot's direct kinematic map and the robot's Jacobian matrix must be defined in this space as well. Finally, they provide a practical method to estimate the projective kinematic model and they describe some preliminary simulated experiments that use this nonmetric model to perform stereo-based servoing. Nevertheless, in-depth analysis of projective control will be the topic of a forthcoming paper.
Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number
FREITAG,LORI A.; KNUPP,PATRICK
1999-09-27
We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.
A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems
Glen Hansen
2011-07-01
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.
An optimal resolved rate law for kinematically redundant manipulators
NASA Technical Reports Server (NTRS)
Bourgeois, B. J.
1987-01-01
The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.
Kinematic analysis of platform-type robotic manipulators
NASA Astrophysics Data System (ADS)
Shi, Xiaolun
New methods are developed for the kinematic analysis of serial and platform-type parallel robotic manipulators, including forward and inverse kinematic solutions, singularity identifications and workspace evaluation. Differences between serial and platform-type parallel manipulators, which can provide substantially improved end-point rigidity compared with the conventional serial robotic arms, are addressed. The problem of determining the screw parameters of rigid body motion from initial and final position data is discussed, as a basis to search for a general and efficient procedure to solve the complex forward kinematics problem of platform-type manipulators. Several Screw-Theory based approaches for solving the inverse instantaneous problem of 6 DOF serial manipulators are studied and compared in terms of their computational efficiency, accuracy, sensitivity to data error and capability of dealing with singularities. A modified Vector Decomposition method is then proposed for solving the IIK problem and for singularity analysis of serial kinematic chains, the method is especially effective when applied to the wrist partitioned serial manipulators, which are essential components to any platform-type parallel manipulators. By using the data of three point positions, velocities, and accelerations of the end effector a general method is developed for solving the forward kinematics problem, including position, velocity and acceleration kinematics, of platform-type manipulators. The solution procedure can be applied to a wide variety of platform-type manipulators such as the 6 DOF Steward Platform manipulator and other models. It is found that while the solution for the forward position kinematics of a platform-type manipulator can be obtained by solving a non-linear system of equations, the closed-form solutions for forward rate and acceleration kinematics can be found by solving a system of linear equations. Based on the proposed kinematic formulations, an algorithm for detecting the boundaries of reachable workspace of platform-type manipulators is introduced, using a new concept of the Geometric Envelope. As the algorithm is based on the relatively simple inverse kinematic solution of platform-type manipulators, it is, in general, more efficient and easier to implement than any other existing methods for this purpose. Singular configurations of platform-type manipulators are discussed and a general analytical condition for configuration singularity is derived, based on the forward rate kinematics of platform-type manipulators. It is believed that this is one of the most general analytical expressions so far for singular configurations of a platform-type parallel manipulator.
Three tooth kinematic coupling
Hale, Layton C.
2000-01-01
A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.
Three tooth kinematic coupling
Hale, L.C.
2000-05-23
A three tooth kinematic coupling is disclosed based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.
NASA Astrophysics Data System (ADS)
Godoy, William F.; Liu, Xu
2012-06-01
The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing-emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram-Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.
Kinematic control of robot with degenerate wrist
NASA Technical Reports Server (NTRS)
Barker, L. K.; Moore, M. C.
1984-01-01
Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.
ERIC Educational Resources Information Center
Nelson, Jane Bray; Nelson, Jim
2009-01-01
Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…
ERIC Educational Resources Information Center
Coleman, J. J.
1982-01-01
Describes mathematics of the nonliner relationships between a constant-speed, capstan-driven magnetic tape transport mechanism and a constant-angular-velocity take-up reel. The relationship, derived from the sum of a partial, serves in recognition of a finite tape. Thickness can serve as an example of rotational kinematics. (Author/SK)
Andersen, David R.; Bershady, Matthew A. E-mail: mab@astro.wisc.edu
2013-05-01
Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.
NASA Astrophysics Data System (ADS)
Avouac, J.
2011-12-01
Good kinematic constraints on the development of orogens is a prerequisite to investigate their dynamics, the influence of the various factors at play and the possible feedback mechanisms among them, and to test mechanical models. A wealth of techniques is now available which can be used to describe the time evolution of orogens in terms of their structure, deformation and exhumation history. These include geodesy, morphotectonic, thermobarometry, and thermochronology. Structural geology and geophysical methods that image the subsurface also provide key information. In this presentation I will give an overview of how these various techniques can be used and the specific constraints they each bring focusing on the particular example of the Himalaya of Nepal. I'll show that to first order most data available from the Nepal Himalaya over the Miocene to present period can be reconciled with a simple model. Only modest lateral variations of the model parameters are needed to explain most observations. The system went through a major transition between 17Ma to 10Ma, when the present kinematics was established. There is no evidence for any significant temporal variations over the last 10Ma. This talk will focus more on discussing methods and identifying the loose points rather than analyzing the implications of this kinematic description. One issue is that some kinematic parameters are better constrained at short time scales (yr to kyr) while other are established at longer time scale (>Myr). Also most quantities are established at particular locations while they might actually vary in space. It follows that this model, as any such mode, is a composite synthesis of data spanning different locations and time periods. Investigation of potential change in space and time is therefore difficult. Possible avenues to improve our ability to resolve better variations in time and space of the kinematics of orogenic wedge will be discussed.
Formulation and efficient computation of inverse dynamics of space robots
NASA Astrophysics Data System (ADS)
Mukherjee, Ranjan; Nakamura, Yoshihiko
1992-06-01
The solution to the inverse dynamics problem of a space robotic system, in the presence of external generalized forces is presented. While solving for the inverse dynamics, the computations for the inverse kinematics are considered simultaneously, and both computations are developed on the basis of momentum constraints. An efficient computational scheme for the inverse dynamics problem is then established. An intrinsic feature of space robotic systems that can be utilized to reduce the computational time by parallel recursion is also discussed. The importance of the role of momentum constraints in the solution of inverse dynamics is addressed.
HyeongKae Park; Robert R. Nourgaliev; Richard C. Martineau; Dana A. Knoll
2008-09-01
We present high-order accurate spatiotemporal discretization of all-speed flow solvers using Jacobian-free Newton Krylov framework. One of the key developments in this work is the physics-based preconditioner for the all-speed flow, which makes use of traditional semi-implicit schemes. The physics-based preconditioner is developed in the primitive variable form, which allows a straightforward separation of physical phenomena. Numerical examples demonstrate that the developed preconditioner effectively reduces the number of the Krylov iterations, and the efficiency is independent of the Mach number and mesh sizes under a fixed CFL condition.
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez
2015-11-01
Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.
Inverse Dynamics for Action Recognition.
Mansur, Al; Makihara, Yasushi; Yagi, Yasushi
2013-08-01
Pose-based approaches for human action recognition are attractive owing to their accurate use of human motion information. Traditionally, such approaches used kinematic features for classification. However, in addition to having high dimensions and a small interclass variation, kinematic features do not consider the interaction of the environment on human motion. In this paper, we propose a method for action recognition using dynamic features, derived by applying inverse dynamics to a physics-based representation of the human body. The physics-based model is articulated and actuated with muscles and consists of joints with variable stiffness. Dynamic features under consideration include the torques from the knee and hip joints of both legs and, implicitly, gravity, ground reaction forces, and the pose of the remaining body parts. These features are more discriminative than kinematic features, resulting in a low-dimensional representation for human actions, which preserves much of the information of the original high-dimensional pose. This low-dimensional feature achieves good classification performance even with a relatively small training data set in a simple classification framework such as a hidden Markov model. The effectiveness of the proposed method is demonstrated through experiments on the Carnegie Mellon University motion capture data set and Osaka University Kinect action data set with various actions. PMID:26502432
Inverse Problem of Capillary Filling
NASA Astrophysics Data System (ADS)
Elizalde, Emanuel; Urteaga, Raúl; Koropecki, Roberto R.; Berli, Claudio L. A.
2014-04-01
The inverse problem of capillary filling, as defined in this work, consists in determining the capillary radius profile from experimental data of the meniscus position l as a function of time t. This problem is central in diverse applications, such as the characterization of nanopore arrays or the design of passive transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to solve this problem, which is based on measuring the imbibition kinematics in both tube directions. Capillary filling experiments to validate the calculation were made in a wide range of length scales: glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of around 30 nm were used. The proposed method was successful in identifying the radius profile in both systems. Fundamental aspects also emerge in this study, notably the fact that the l(t)∝t1/2 kinematics (Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
Dallos, Peter
2003-09-01
The internal workings of the organ of Corti and their relation to basilar membrane motion are examined with the aid of a simple kinematic model. It is shown that, due to the lever system embodied in the organ of Corti, there is a significant transformer gain between basilar membrane and cilia displacements. While this transformation is nonlinear, linear response prevails in the narrow physiologically relevant operating range of the ciliary transducer. The model also simulates cilia deflection when the mechanical stimulus is the length change of outer hair cells. PMID:14690059
General approach for evaluation parameter uncertainty based on inverse model sensitivities
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.
2004-12-01
In the most general case, inverse model sensitivities represent partial derivatives of inverse estimates of model parameters in respect to various other parameters related to underlying conceptual, numerical and inverse models. In this definition, we distinguish two separate sets of model parameters: the former set represents parameters estimated in the inverse process; the latter set represents parameters that are excluded from the inverse process; however these parameters impact the inverse estimates and we have some knowledge about their uncertainty. The latter set of parameters can include calibration targets, computational grid resolution, accuracy of the numerical solver, priors, boundary condition terms, etc. The uncertainties in these parameters can be efficiently propagated to the uncertainty of inverse estimates using the inverse model sensitivities approach (Vesselinov, 2004). In this case a covariance matrix of estimation errors is computed based on Jacobian matrix consisting of inverse model sensitivities and a covariance matrix of errors of the unestimated model parameters. The proposed methodology can be applied for problems related to model development, optimization of data collection strategies, design of monitoring networks, etc. Its implementation is computationally intensive but can be performed efficiently through parallelization. Results based on synthetic and real case inverse problems are presented and discussed.
Speaker independent acoustic-to-articulatory inversion
NASA Astrophysics Data System (ADS)
Ji, An
Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.
Kinematics of Strong Discontinuities
NASA Technical Reports Server (NTRS)
Peterson, K.; Nguyen, G.; Sulsky, D.
2006-01-01
Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.
NASA Astrophysics Data System (ADS)
Nuber, André; Manukyan, Edgar; Maurer, Hansruedi
2014-05-01
Conventional methods of interpreting seismic data rely on filtering and processing limited portions of the recorded wavefield. Typically, either reflections, refractions or surface waves are considered in isolation. Particularly in near-surface engineering and environmental investigations (depths less than, say 100 m), these wave types often overlap in time and are difficult to separate. Full waveform inversion is a technique that seeks to exploit and interpret the full information content of the seismic records without the need for separating events first; it yields models of the subsurface at sub-wavelength resolution. We use a finite element modelling code to solve the 2D elastic isotropic wave equation in the frequency domain. This code is part of a Gauss-Newton inversion scheme which we employ to invert for the P- and S-wave velocities as well as for density in the subsurface. For shallow surface data the use of an elastic forward solver is essential because surface waves often dominate the seismograms. This leads to high sensitivities (partial derivatives contained in the Jacobian matrix of the Gauss-Newton inversion scheme) and thus large model updates close to the surface. Reflections from deeper structures may also include useful information, but the large sensitivities of the surface waves often preclude this information from being fully exploited. We have developed two methods that balance the sensitivity distributions and thus may help resolve the deeper structures. The first method includes equilibrating the columns of the Jacobian matrix prior to every inversion step by multiplying them with individual scaling factors. This is expected to also balance the model updates throughout the entire subsurface model. It can be shown that this procedure is mathematically equivalent to balancing the regularization weights of the individual model parameters. A proper choice of the scaling factors required to balance the Jacobian matrix is critical. We decided to normalise the columns of the Jacobian based on their absolute column sum, but defining an upper threshold for the scaling factors. This avoids particularly small and therefore insignificant sensitivities being over-boosted, which would produce unstable results. The second method proposed includes adjusting the inversion cell size with depth. Multiple cells of the forward modelling grid are merged to form larger inversion cells (typical ratios between forward and inversion cells are in the order of 1:100). The irregular inversion grid is adapted to the expected resolution power of full waveform inversion. Besides stabilizing the inversion, this approach also reduces the number of model parameters to be recovered. Consequently, the computational costs and the memory consumption are reduced significantly. This is particularly critical when Gauss-Newton type inversion schemes are employed. Extensive tests with synthetic data demonstrated that both methods stabilise the inversion and improve the inversion results. The two methods have some redundancy, which can be seen when both are applied simultaneously, that is, when scaling of the Jacobian matrix is applied to an irregular inversion grid. The calculated scaling factors are quite balanced and span a much smaller range than in the case of a regular inversion grid.
NASA Astrophysics Data System (ADS)
Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan
2014-11-01
We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.
Kinematics and design of a class of parallel manipulators
NASA Astrophysics Data System (ADS)
Hertz, Roger Barry
1998-12-01
This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.
Karimova, D.K.; Pavlovskaya, E.D.
1984-01-01
Proper motions determined by the authors are utilized to study the kinematics of 79 O-type stars at distance r< or =2.5 kpc. The sample is divided into two groups, having space-velocity dispersions tau/sub I/roughly-equal10 km/sec, sigma/sub II/roughly-equal35 km/sec. Solutions for the velocity-field parameters for group I yield a galactic angular rotation speed ..omega../sub 0/ = 24.9 km sec/sup -1/ kpc/sup -1/ at the sun (for R/sub 0/ = 10.0 kpc) and an Oort constant A = 12.2 km sec/sup -1/ kpc/sup -1/. Most of the O stars exhibit a small z-velocity directed away from the galactic plane. The velocity-ellipsoid parameters and box-orbit elements are calculated.
Kinematically Detected Halo Streams
NASA Astrophysics Data System (ADS)
Smith, Martin C.
Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.
Simple kinematic gait measurements.
Bajd, T; Kralj, A
1980-04-01
Simple kinematic gait measurement equipment was developed providing fast and inexpensive clinical gait analysis. Such a simple system can be used as a stand-alone clinical gait analyser, or as an accessory for measurements whose results are not sufficiently weighted statistically, such as TV, Selspot, force plate. Time, distance and velocity parameters are included in the clinical gait analysis. Time parameters (step and stride time, swing and stance phase) are measured via easily attachable foot-switches. Analog and digital versions were developed to analyse distance (stride and step length) and velocity (instantaneous velocity of centre of gravity) parameters. With the analog device the velocity is measured by tachometer and distance by potentiometer, while using digital methods, both parameters can be obtained from an optical transducer. PMID:7374117
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.
NASA Astrophysics Data System (ADS)
Büsing, Henrik
2013-04-01
Two-phase flow in porous media occurs in various settings, such as the sequestration of CO2 in the subsurface, radioactive waste management, the flow of oil or gas in hydrocarbon reservoirs, or groundwater remediation. To model the sequestration of CO2, we consider a fully coupled formulation of the system of nonlinear, partial differential equations. For the solution of this system, we employ the Box method after Huber & Helmig (2000) for the space discretization and the fully implicit Euler method for the time discretization. After linearization with Newton's method, it remains to solve a linear system in every Newton step. We compare different iterative methods (BiCGStab, GMRES, AGMG, c.f., [Notay (2012)]) combined with different preconditioners (ILU0, ASM, Jacobi, and AMG as preconditioner) for the solution of these systems. The required Jacobians can be obtained elegantly with automatic differentiation (AD) [Griewank & Walther (2008)], a source code transformation providing exact derivatives. We compare the performance of the different iterative methods with their respective preconditioners for these linear systems. Furthermore, we analyze linear systems obtained by approximating the Jacobian with finite differences in terms of Newton steps per time step, steps of the iterative solvers and the overall solution time. Finally, we study the influence of heterogeneities in permeability and porosity on the performance of the iterative solvers and their robustness in this respect. References [Griewank & Walther(2008)] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [Huber & Helmig(2000)] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [Notay(2012)] Notay, Y., 2012. Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM Journal on Scientific Computing, 34, A2288-A2316.
NASA Technical Reports Server (NTRS)
Bryfogle, Mark D.; Nguyen, Charles C.; Antrazi, Sami S.; Chiou, Peter C.
1993-01-01
Design of a parallel force-reflecting hand controller that implements a friction- and inertia canceling control loop about the entire mechanism based on wrench sensing in the mechanism handgrip is discussed. Kinematics of the controller under consideration is analyzed and results are presented using a closed-form solution for the inverse kinematics and Newton-Raphson's method for the forward kinematics. Results indicate that the force control scheme based on a handgrip force sensor provides smaller steady-state errors than the scheme without a handigrip sensor.
Joint inversion of acoustic and resistivity data for the estimation of gas hydrate concentration
Lee, Myung W.
2002-01-01
Downhole log measurements, such as acoustic or electrical resistivity logs, are frequently used to estimate in situ gas hydrate concentrations in the pore space of sedimentary rocks. Usually the gas hydrate concentration is estimated separately based on each log measurement. However, measurements are related to each other through the gas hydrate concentration, so the gas hydrate concentrations can be estimated by jointly inverting available logs. Because the magnitude of slowness of acoustic and resistivity values differs by more than an order of magnitude, a least-squares method, weighted by the inverse of the observed values, is attempted. Estimating the resistivity of connate water and gas hydrate concentration simultaneously is problematic, because the resistivity of connate water is independent of acoustics. In order to overcome this problem, a coupling constant is introduced in the Jacobian matrix. In the use of different logs to estimate gas hydrate concentration, a joint inversion of different measurements is preferred to the averaging of each inversion result.
Robust Inversion and Data Compression in Control Allocation
NASA Technical Reports Server (NTRS)
Hodel, A. Scottedward
2000-01-01
We present an off-line computational method for control allocation design. The control allocation function delta = F(z)tau = delta (sub 0) (z) mapping commanded body-frame torques to actuator commands is implicitly specified by trim condition delta (sub 0) (z) and by a robust pseudo-inverse problem double vertical line I - G(z) F(z) double vertical line less than epsilon (z) where G(z) is a system Jacobian evaluated at operating point z, z circumflex is an estimate of z, and epsilon (z) less than 1 is a specified error tolerance. The allocation function F(z) = sigma (sub i) psi (z) F (sub i) is computed using a heuristic technique for selecting wavelet basis functions psi and a constrained least-squares criterion for selecting the allocation matrices F (sub i). The method is applied to entry trajectory control allocation for a reusable launch vehicle (X-33).
NASA Astrophysics Data System (ADS)
Dykstra, Dewey
2002-05-01
The development of two new units for the Powerful Ideas in Physical Science (PIPS) Project of the American Association of Physics Teachers, funded by the National Science Foundation has motivated another look at the learning and teaching of kinematics and force. These and some of the other units of the PIPS Project are unique in that they advocate and model a particular student understanding driven approach to instruction as opposed to the more common content driven approach. Several novel ways to view the results of using these new motion and force materials are introduced and made possible by a diagnostic capable of indicating the degree of presence of multiple views (the Force and Motion Conceptual Evaluation by Thornton and Sokoloff). The performance of individuals on pre and post diagnostic measures ranges widely from almost no change to more than 6 standard deviations. Factors are identified which appear to differentiate the student performances. The identification of these factors motivated additional rounds of modifications to the materials, departing even further from a content driven orientation toward an even more student understanding driven approach. The resulting instruction appears to induce routinely even under adverse teaching and learning conditions 2.5 standard deviations change in the class average on the pre to the post instruction diagnostic scores.
NASA Astrophysics Data System (ADS)
Lin, C.-H.; Gallagher, P. T.
The goal of this study is to investigate the driving mechanisms of CMEs and to infer the magnetic field properties at the onset of the instability. We use EIT 195 Å images and LASCO white-light coronagraph data of a CME event that occurred on 17 December 2006. It was a long-duration event, and was associated with an occulted C2.1 class flare. To determine the driving mechanism, we quantitatively and qualitatively compared the observationally obtained kinematic evolution with that predicted by three CME models: the breakout model (BO, see Antiochos et al. 1999; Lynch et al. 2008; DeVore and Antiochos 2008), the catastrophe model (CM, see Priest and Forbes 2000), and the toroidal instability model (TI, see Chen 1989; Kliem and Török 2006). Our results indicate that this CME is best represented by the CM model. We infer that, at the onset of the instability, the Alfvén speed is approximately 120 km s-1 and the height of the flux rope is roughly 100-200Mm. These parameter values are related to the magnetic environment and the loop geometry and can be used to infer the magnetic condition at the onset of the eruption.We intend to submit the full analysis to A&A.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Development of fully Bayesian multiple-time-window source inversion
NASA Astrophysics Data System (ADS)
Kubo, Hisahiko; Asano, Kimiyuki; Iwata, Tomotaka; Aoi, Shin
2016-03-01
In the estimation of spatiotemporal slip models, kinematic source inversions using Akaike's Bayesian Information Criterion (ABIC) and the multiple-time-window method have often been used. However, there are cases in which conventional ABIC-based source inversions do not work well in the determination of hyperparameters when a non-negative slip constraint is used. In order to overcome this problem, a new source inversion method was developed in this study. The new method introduces a fully Bayesian method into the kinematic multiple-time-window source inversion. The multiple-time-window method is one common way of parametrizing a source time function and is highly flexible in terms of the shape of the source time function. The probability distributions of model parameters and hyperparameters can be directly obtained by using the Markov chain Monte Carlo method. These probability distributions are useful for simply evaluating the uniqueness and reliability of the derived model, which is another advantage of a fully Bayesian method. This newly developed source inversion method was applied to the 2011 Ibaraki-oki, Japan, earthquake (Mw 7.9) to demonstrate its usefulness. It was demonstrated that the problem with using the conventional ABIC-based source inversion method for hyperparameter determination appeared in the spatiotemporal source inversion of this event and that the newly developed source inversion could overcome this problem.
Kinematic precision of gear trains
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.
1982-01-01
Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.
Aero-optimum hovering kinematics.
Nabawy, Mostafa R A; Crowther, William J
2015-08-01
Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884
Kinematics, controls, and path planning results for a redundant manipulator
NASA Technical Reports Server (NTRS)
Gretz, Bruce; Tilley, Scott W.
1989-01-01
The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.
Error analysis and optimization of a 3-degree of freedom translational Parallel Kinematic Machine
NASA Astrophysics Data System (ADS)
Shankar Ganesh, S.; Koteswara Rao, A. B.
2014-06-01
In this paper, error modeling and analysis of a typical 3-degree of freedom translational Parallel Kinematic Machine is presented. This mechanism provides translational motion along the Cartesian X-, Y- and Z-axes. It consists of three limbs each having an arm and forearm with prismatic-revolute-revolute-revolute joints. The moving or tool platform maintains same orientation in the entire workspace due to its joint arrangement. From inverse kinematics, the joint angles for a given position of tool platform necessary for the error modeling and analysis are obtained. Error modeling is done based on the differentiation of the inverse kinematic equations. Variation of pose errors along X, Y and Z directions for a set of dimensions of the parallel kinematic machine is presented. A non-dimensional performance index, namely, global error transformation index is used to study the influence of dimensions and its corresponding global maximum pose error is reported. An attempt is made to find the optimal dimensions of the Parallel Kinematic Machine using Genetic Algorithms in MATLAB. The methodology presented and the results obtained are useful for predicting the performance capability of the Parallel Kinematic Machine under study.
Improved Implementation of Seismic Waveform Inversion Using Gauss-Newton Method in Elastic Media
NASA Astrophysics Data System (ADS)
Sheen, D.; Baag, C.
2005-12-01
The purpose of this study is to make a seismic waveform inversion based on the Gauss-Newton method practicable. Seismic waveform inversion had been introduced in the 1980s but due to computational limitation, a noble approximation of the inversion based on the Gradient method has been usually used. In spite of amazing improvements in computing power, it is still a computationally demanding task to carry out seismic waveform inversion in its integrity. The major obstacle to solve a seismic waveform inversion is explicit calculation of the Jacobian and the approximate Hessian matrices. To overcome this, the reciprocity principle and the convolution theorem are employed. The inversion, however, still holds out huge amounts of memory and computation. The limitation can be surmounted by (1) multi-grid approaches in the spatial and in the time domain, (2) a reduction of the time window length, (3) a numerical scaling between the grid spatial size and the physical dimension of a virtual source, and (4) a parallelization of the computation via Message Passing Interface for massively parallel computers. From numerical experiments, it is shown that the Gauss-Newton method has significantly higher resolving power and convergence rate over the gradient method, and this study contributes greatly to making Gauss-Newton seismic waveform inversion efficient and demonstrates potential application to real seismic data.
A global approach for using kinematic redundancy to minimize base reactions of manipulators
NASA Technical Reports Server (NTRS)
Chung, C. L.; Desa, S.
1989-01-01
An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment.
Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory
NASA Astrophysics Data System (ADS)
Sun, Yuantao; Wang, Sanmin; Mills, James K.; Zhi, Changjian
2014-07-01
Because the deployable structures are complex multi-loop structures and methods of derivation which lead to simpler kinematic and dynamic equations of motion are the subject of research effort, the kinematics and dynamics of deployable structures with scissor-like-elements are presented based on screw theory and the principle of virtual work respectively. According to the geometric characteristic of the deployable structure examined, the basic structural unit is the common scissor-like-element(SLE). First, a spatial deployable structure, comprised of three SLEs, is defined, and the constraint topology graph is obtained. The equations of motion are then derived based on screw theory and the geometric nature of scissor elements. Second, to develop the dynamics of the whole deployable structure, the local coordinates of the SLEs and the Jacobian matrices of the center of mass of the deployable structure are derived. Then, the equivalent forces are assembled and added in the equations of motion based on the principle of virtual work. Finally, dynamic behavior and unfolded process of the deployable structure are simulated. Its figures of velocity, acceleration and input torque are obtained based on the simulate results. Screw theory not only provides an efficient solution formulation and theory guidance for complex multi-closed loop deployable structures, but also extends the method to solve dynamics of deployable structures. As an efficient mathematical tool, the simper equations of motion are derived based on screw theory.
Deformation field validation and inversion applied to adaptive radiation therapy
NASA Astrophysics Data System (ADS)
Vercauteren, Tom; De Gersem, Werner; Olteanu, Luiza A. M.; Madani, Indira; Duprez, Fréderic; Berwouts, Dieter; Speleers, Bruno; De Neve, Wilfried
2013-08-01
Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (DFs). Four verification steps were performed to ensure a valid dose propagation: intra-cell folding detection finds zero or negative Jacobian determinants in the input DF; inter-cell folding detection is implemented on the resolution of the output DF; a region growing algorithm detects undefined values in the output DF; DF domains can be composed and displayed on the CT data. In 2011, one patient with nonmetastatic head and neck cancer selected from a three phase adaptive DPBN study was used to illustrate the algorithms implemented for adaptive chronological and anti-chronological dose accumulation. The patient received three 18F-FDG-PET/CTs prior to each treatment phase and one CT after finalizing treatment. Contour propagation and DF generation between two consecutive CTs was performed in Atlas-based autosegmentation (ABAS). Deformable image registration based dose accumulations were performed on CT1 and CT4. Dose propagation was done using combinations of DFs or their inversions. We have implemented a chronological and anti-chronological dose accumulation algorithm based on DF inversion. Algorithms were designed and implemented to detect cell folding.
Visualized kinematics code for two-body nuclear reactions
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.
A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model
NASA Astrophysics Data System (ADS)
Losch, Martin; Fuchs, Annika; Lemieux, Jean-François; Vanselow, Anna
2014-01-01
The most common representation of sea ice dynamics in climate models assumes that sea ice is a quasi-continuous non-normal fluid with a viscous-plastic rheology. This rheology leads to non-linear sea ice momentum equations that are notoriously difficult to solve. Recently a Jacobian-free Newton-Krylov (JFNK) solver was shown to solve the equations accurately at moderate costs. This solver is extended for massive parallel architectures and vector computers and implemented in a coupled sea ice-ocean general circulation model for climate studies. Numerical performance is discussed along with numerical difficulties in realistic applications with up to 1920 CPUs. The parallel JFNK-solver's scalability competes with traditional solvers although the collective communication overhead starts to show a little earlier. When accuracy of the solution is required (i.e. reduction of the residual norm of the momentum equations of more that one or two orders of magnitude) the JFNK-solver is unrivalled in efficiency. The new implementation opens up the opportunity to explore physical mechanisms in the context of large scale sea ice models and climate models and to clearly differentiate these physical effects from numerical artifacts.
Kinematics of a New High Precision Three Degree-of-Freedom Parallel Manipulator
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad
2005-01-01
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most sixteen assembly configurations for the manipulator. In addition, it is shown that the sixteen solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
Functional kinematics of the wrist.
Rainbow, M J; Wolff, A L; Crisco, J J; Wolfe, S W
2016-01-01
The purpose of this article is to review past and present concepts concerning functional kinematics of the healthy and injured wrist. To provide a context for students of the wrist, we describe the progression of techniques for measuring carpal kinematics over the past century and discuss how this has influenced today's understanding of functional kinematics. Next, we provide an overview of recent developments and highlight the clinical relevance of these findings. We use these findings and recent evidence that supports the importance of coupled motion in early rehabilitation of radiocarpal injuries to develop the argument that coupled motion during functional activities is a clinically relevant outcome; therefore, clinicians should develop a framework for its dynamic assessment. This should enable a tailored and individualized approach to the treatment of carpal injuries. PMID:26568538
NASA Astrophysics Data System (ADS)
Asgharzadeh, Hafez; Borazjani, Iman
2014-11-01
Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Kinematic sensitivity of robot manipulators
NASA Technical Reports Server (NTRS)
Vuskovic, Marko I.
1989-01-01
Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.
NASA Astrophysics Data System (ADS)
Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.
2010-06-01
In this work we present scanning Fabry-Perot Hα observations of the isolated interacting galaxy pair NGC 5278/9 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.
NASA Astrophysics Data System (ADS)
Padhi, Amit
Seismic prestack waveform inversion is an ill posed, nonlinear inverse problem with nonunique solutions. Additionally the problem suffers from the existence of multiple local optima in the topography of the data misfit measure and high computational cost. These problems get aggravated as the number of model parameters to be estimated per layer or grid point increase. The number of parameters per layer or grid point depends on the assumptions necessary for modeling the seismic data. Hence it is necessary to investigate the physical processes affecting the observed data significantly in specific situations and then develop appropriate inversion methodologies. In this dissertation I apply a local inversion scheme based on nonlinear least squares (NLS) approach to invert one dimensional synthetic and one and two dimensional field seismic prestack waveform data in an area with sparse direct measurements to estimate sound speed in the oceanic water column. This is because seismic propagation is acoustic and isotropic in water and density does not change significantly. The two dimensional results are further compared to that obtained using a completely global approach. I also develop an adjoint state method based Jacobian computation for the NLS scheme to be applied to the problem of acoustic seismic inversion. Next, I investigate and propose an efficient method to monitor CO2 sequestrated reservoirs by combining multiphase flow simulation results with seismic modeling. Finding that such a monitoring scheme would require multicomponent seismic waveform data inversion under elastic anisotropic assumptions, I cast the inverse problem as a multiobjective optimization problem and solve it using a nondominated sorting genetic algorithm. Synthetic and real data tests show that while local inversion schemes work reasonably well for acoustic inversion, elastic anisotropic inversion requires a global approach utilizing multicomponent data. Hence monitoring CO2 sequestrated reservoirs efficiently using proxy stack of anisotropic layers requires the second approach. I also show that the NLS approach can be made efficient using the adjoint state method if the number of model parameters to be estimated is large enough. In the other case, computing the Jacobian using the traditional method and parallelization is preferable and can be implemented easily.
KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS
Salerno, R. J.
1994-06-01
Decontamination and Dismantling (D&D) activities within the U.S. Department of Energy (DOE) require a long reach manipulator with a large load capacity. Variable Geometry Trusses (VGTs) are a unique class of mechanical structures which allow the advantages of truss structures for large scale applications to be applied to large robotic manipulators. Individual VGT units may be assembled to create a modular, long-reach, truss-type manipulator. Each module of such a manipulator system is either a static truss section or one of several possible VGT geometries. While many potential applications exist for this technology, the present work is largely motivated by the need for generic robotic systems for remote manipulation. A manipulator system based on VGT modules provides several advantages. The reconfigurable nature of the manipulator system allows it to be adapted on site to unforeseen conditions. The kinematic redundancy of the manipulator enables it to work effectively even in a highly obstructed workspace. The parallel structure of the truss modules enables the manipulator to be withdrawn in the event of a structural failure. Finally, the open framework of the modules provides a clear, protected passageway for control and power cabling, waste conveyance, or other services required at the end effector. As is implied in a truss structure, all primary members of a VGT are ideally loaded in pure tension or compression. This results in an extremely stiff and strong manipulator system with minimal overall weight. Careful design of the joints of a VGT is very important to the overall stiffness and accuracy of the structure, as several links (as many as six) are joined together at each joint. The greatest disadvantage to this approach to manipulator design has traditionally been that the kinematics of VGT structures are complex and poorly understood. This report specifically addresses the kinematics of several possible geometries for the individual VGT units. Equations and solution techniques are developed for solving the "forward" or "direct" and "inverse" kinematic problems for these geometries. The" forward" kinematic problem is that of finding the position and orientation of the distal end of the VGT relative to the proximal end, given the specific displacements of the (linear) actuators. This problem is rarely solvable in closed form. However, powerful iterative algorithms capable of solution in real time on typical modern robot control hardware are presented. The "inverse" kinematic problem is that of finding the required actuator displacements given the position and orientation of the distal end of the VGT relative to the proximal end. For specific VGT geometries, closed-form solutions are presented. For the more general problem, iterative algorithms capable of solution in real time are again derived and presented.
Knupp, P.M.
1999-03-26
Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.
Occupant Kinematics in Laboratory Rollover Tests: PMHS Response.
Lessley, David J; Riley, Patrick; Zhang, Qi; Foltz, Patrick; Overby, Brian; Heltzel, Sara; Sochor, Mark; Crandall, Jeff; Kerrigan, Jason R
2014-11-01
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions. Whole-body kinematics were measured using a 3D motion capture system that quantified occupant displacement relative to the vehicle buck for the X-axis (longitudinal), Y-axis (lateral), and Z-axis (vertical) directions. Additionally the spine was divided into five segments to describe intrasegmental kinematics of the spine, including segment rotations as well as spinal extension and compression. The reported data represent the most complete set of kinematic response targets for a restrained occupant in a variety of dynamic rollover conditions, and are immediately useful for efforts to evaluate and improve existing ATDs and computational models for use in the rollover crash environment. PMID:26192958
Kinematic performance analysis of a parallel-chain hexapod machine
Jing Song; Jong-I Mou; Calvin King
1998-05-18
Inverse and forward kinematic models were derived to analyze the performance of a parallel-chain hexapod machine. Analytical models were constructed for both ideal and real structures. Performance assessment and enhancement algorithms were developed to determine the strut lengths for both ideal and real structures. The strut lengths determined from both cases can be used to analyze the effect of structural imperfections on machine performance. In an open-architecture control environment, strut length errors can be fed back to the controller to compensate for the displacement errors and thus improve the machine's accuracy in production.
Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.
2007-06-15
Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log-Jacobian value and the air flow rate correlated well (R{sup 2}=0.858 on average for the entire lung). The correlation for the fifth individual was not as good (R{sup 2}=0.377 on average for the entire lung) and can be explained by the small variation in tidal volume for this individual. The correlation of the average log-Jacobian value and the air flow rate for images near the diaphragm correlated well in all five individuals (R{sup 2}=0.943 on average). These preliminary results indicate a strong correlation between the expansion/compression of the lung measured by image registration and the air flow rate measured by spirometry. Predicting the location, motion, and compression/expansion of the tumor and normal tissue using image registration and spirometry could have many important benefits for radiotherapy treatment. These benefits include reducing radiation dose to normal tissue, maximizing dose to the tumor, improving patient care, reducing treatment cost, and increasing patient throughput.
Kinematic Parameters of Signed Verbs
ERIC Educational Resources Information Center
Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina
2013-01-01
Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production…
Kinematic Parameters of Signed Verbs
ERIC Educational Resources Information Center
Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina
2013-01-01
Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production
Barberis, Emanuela; /Northeastern U.
2006-05-01
A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.
Kinematic support using elastic elements
NASA Technical Reports Server (NTRS)
Geirsson, Arni; Debra, Daniel B.
1988-01-01
The design of kinematic supports using elastic elements is reviewed. The two standard methods (cone, Vee and flat and three Vees) are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the bench relative to the base when the base strains due to temperature variations and shifting loads. Space applications are also considered.
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
Kinematics and dynamics of robotic systems with multiple closed loops
NASA Astrophysics Data System (ADS)
Zhang, Chang-De
The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation. inverse dynamic modeling of a quadruped with pantograph legs is derived. The inverse dynamics of this quadruped walking in different wave gaits is then studied.
Kinematics and trajectory generation for MIRADAS arms
NASA Astrophysics Data System (ADS)
Sabater, J.; Gómez, J. M.; Torra, J.; López, M.; Raines, S. N.; Eikenberry, S. S.
2015-05-01
The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS) is a NIR multi-object spectrograph for the Gran Telescopio Canarias (GTC). The instrument has a multiplexing system (MXS) that enables the simultaneous observation of twenty objects located within its field of view. These user selected targets are acquired by twenty deployable robotic probe arms with pickoff mirror optics operating at cryogenic temperatures. The MIRADAS probe arm is a close-loop mechanism designed with optics simplicity in mind, presenting good stability when it is operated upside down. Calculating optimum collision-free trajectories requires a good knowledge of the MIRADAS arm behavior based on its geometry and its mechanical constraints. This study introduces a geometric model for the two degree-of-freedom (DoF) mechanism, including solutions for the forward and inverse kinematics problem. The concepts of zone-of-avoidance (ZoA), workspace and envelope of MIRADAS arm are presented and studied. Finally, the paper proposes two different patrolling approaches that can be exploited when planning trajectories.
Bédard, Catherine; Belin, Pascal
2004-07-01
Voice is the carrier of speech but is also an "auditory face" rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a "voice inversion effect," by analogy to the classical "face inversion effect," which could support the hypothesis of a voice-specific module. Experiment 1 consisted of a gender identification task on two syllables pronounced by 90 speakers (boys, girls, men, and women). Experiment 2 consisted of a speaker discrimination task on pairs of syllables (8 men and 8 women). Experiment 3 consisted of an instrument discrimination task on pairs of melodies (8 string and 8 wind instruments). In all three experiments, stimuli were presented in 4 conditions: (1) no inversion; (2) temporal inversion (e.g., backwards speech); (3) frequency inversion centered around 4000 Hz; and (4) around 2500 Hz. Results indicated a significant decrease in performance caused by sound inversion, with a much stronger effect for frequency than for temporal inversion. Interestingly, although frequency inversion markedly affected timbre for both voices and instruments, subjects' performance was still above chance. However, performance at instrument discrimination was much higher than for voices, preventing comparison of inversion effects for voices vs. non-vocal stimuli. Additional experiments will be necessary to conclude on the existence of a possible "voice inversion effect." PMID:15177788
Influence of kinematic analysis methods on detecting ankle and subtalar joint instability.
Choisne, Julie; Ringleb, Stacie I; Samaan, Michael A; Bawab, Sebastian Y; Naik, Dayanand; Anderson, Claude D
2012-01-01
Patients with subtalar joint instability may be misdiagnosed with ankle instability, which may lead to chronic instability at the subtalar joint. Therefore, it is important to understand the difference in kinematics after ligament sectioning and differentiate the changes in kinematics between ankle and subtalar instability. Three methods may be used to determine the joint kinematics; the Euler angles, the Joint Coordinate System (JCS) and the helical axis (HA). The purpose of this study was to investigate the influence of using either method to detect subtalar and ankle joints instability. 3D kinematics at the ankle and subtalar joint were analyzed on 8 cadaveric specimens while the foot was intact and after sequentially sectioning the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), the cervical ligament and the interosseous talocalcaneal ligament (ITCL). Comparison in kinematics calculated from sensor and anatomical landmarks was conducted as well as the influence of Euler angles and JCS rotation sequence (between ISB recommendation and previous research) on the subtalar joint. All data showed a significant increase in inversion when the ITCL was sectioned. There were differences in the data calculated using sensors coordinate systems vs. anatomic coordinate systems. Anatomic coordinate systems were recommended for these calculations. The Euler angle and JCS gave similar results. Differences in Euler angles and JCS sequence lead to the same conclusion in detecting instability at the ankle and subtalar joint. As expected, the HA detected instability in plantarflexion at the ankle joint and in inversion at the subtalar joint. PMID:22056198
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This report presents results from the research grant entitled Active Control of Robot Manipulators, funded by the Goddard Space Flight Center, under Grant NAG5-780, for the period July 1, 1988 to January 1, 1989. An analysis is presented of a 6 degree-of-freedom robot end-effector built to study telerobotic assembly of NASA hardware in space. Since the end-effector is required to perform high precision motion in a limited workspace, closed-kinematic mechanisms are chosen for its design. A closed-form solution is obtained for the inverse kinematic problem and an iterative procedure employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study of the end-effector workspace results in a general procedure for the workspace determination based on link constraints. Computer simulation results are presented.
Exploring MaNGA's kinematic maps
NASA Astrophysics Data System (ADS)
Weijmans, Anne-Marie; MaNGA Team
2016-01-01
Different galaxy formation processes leave different imprints on the gas and stellar kinematic patterns for a galaxy. With MaNGA, we now have after one year of observations an unprecedented sample of 1400 nearby galaxies for which we can study gas and stellar kinematics in much detail, based on integral-field spectroscopy. We are measuring kinematic quantities such as LambdaR (angular momentum) and their (possible) correlations with other galaxy properties such as mass, morphology and environment. By quantifying the kinematic (sub)structures in velocity and dispersion maps, we will construct a kinematic galaxy classification that can be linked to their formation processes.
On the numerical kinematic analysis of general parallel robotic manipulators
Lichun Tommy Wang; Chih Cheng Chen . Dept. of Mechanical Engineering)
1993-06-01
The paper presents a systematic approach for the numerical kinematic analysis of general parallel robotic manipulators. This approach consists of two parts. The first part deals with the structural analysis. Based on graph theory and the Depth First Search algorithm, a method for identifying and orientating the independent kinematic loops of the robot is developed. This method not only facilitates the assignment of the local coordinate systems attached to the robot, but also arranges them in the correct order to allow efficient recursive coordinate transformation. The second part of this approach deals with the displacement analysis. A set of recursion formulae is first developed for computing the forward coordinate transformations, and these formulae are then adopted in a two-phase computational algorithm to obtain the numerical solutions to the direct and the inverse kinematics problems. The two-phase algorithm developed in this paper is not only insensitive to the initial approximation of the solution vector, but also gives a rapid convergence rate. Furthermore, it is also useful for finding multiple solutions for the robot as well as for continuous trajectory planning, as shown by the numerical examples presented in this paper.
Influence of biological kinematics on abstract concept processing.
Badets, Arnaud; Bidet-Ildei, Christel; Pesenti, Mauro
2015-01-01
During a random number generation task, human beings tend to produce more small numbers than large numbers. However, this small number bias is modulated when motor behaviour, such as a turn of the head, is performed during the random number generation task. This result fits with the finding that number representation is linked to laterally oriented actions, with small- and large-magnitude numbers generally linked to movement towards the left or the right side of space, respectively. To test whether this number-space association is specific to human motor behaviours or extends to any type of laterally oriented movements, we assessed whether the presentation of biological or nonbiological leftward or rightward movement affected a subsequent random number generation task. Biological and nonbiological movements were obtained by varying the kinematic parameters of the movements. Biological kinematics represented the tangential velocity actually observed in a human pointing movement; nonbiological kinematics represented equivalent movements but with an inverse tangential velocity along the path. The results show that only the observation of biological movements induces a space-number bias whereas observing nonbiological movements does not. This finding is the first evidence of a link between a biological marker and the semantic representation of a concept as abstract as number. PMID:25219421
Analysis of a closed-kinematic chain robot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1988-01-01
Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.
Kinematic and stability motion limits for a hexapod walking machine
NASA Astrophysics Data System (ADS)
Dunton, Elizabeth M.
1995-03-01
The major problem addressed by this research is to investigate and implement the basic concepts necessary to lay the groundwork for efficient forms of motion planning, motion control, and gait algorithms with respect to hexapod walking machines. Specifically, the approach taken was to develop and implement the concepts of a stability margin and a joint space motion margin on an object-oriented representation of the Aquarobot. The model was generated in Franz Common Lisp and simulated via Allegro Common Windows. A method by which distance computations can be calculated and applied to the center of mass and triangular support pattern of a walking machine to determine the stability margin is introduced. Inverse kinematics and joint limits are utilized to ascertain the joint space motion margin of the model. Response to impending instability and the effect when a joint hits or approaches a joint kinematic limit on the motion of the hexapod walking machine by stopping the model is also addressed. The results are as follows: the concepts of the joint space motion margin and the stability margin can be successfully implemented on a kinematic model and graphical simulation of a hexapod walking machine. These concepts contribute to future work in the area of more efficient free gait algorithms, specifically asynchronous gait algorithms.
Paracentric inversions in man.
Madan, K; Seabright, M; Lindenbaum, R H; Bobrow, M
1984-01-01
We have reviewed 50 cases of paracentric inversions. Of these 34 were familial with 62 phenotypically normal carrier relatives. Twenty of the 50 were discovered fortuitously. There were two reports of children with easily recognised unbalanced karyotypes resulting from a paracentric inversion in one of the parents. The vast majority of paracentric inversions are harmless. The risk of abnormal children for paracentric inversion heterozygotes is low but increases with the finding of recurrent abortions or abnormal children or both in other carriers in the family. We emphasise the need for caution in interpreting the results of antenatal diagnosis because of the variety of unexpected unbalanced chromosome types that can result from a paracentric inversion, and the difficulty in recognising, with confidence, minute differences (for the detection of which very high resolution banding is required) between apparently similar parental and fetal inversions. PMID:6392555
Measurement of reed valve kinematics
NASA Astrophysics Data System (ADS)
Fenkl, Michael; Dvořák, Václav; Vít, Tomáš
2016-03-01
The measurement of key kinematic parameters of a reed valve movement is necessary for the further development of the reed valve system. These parameters are dependent on the geometry and material properties of the valve. As they directly affect the quantity of air flowing around the valve, a simple and easy to implement measurement of various valve configuration based on the air flow has been devised and is described in this paper, along with its technical parameters and drawbacks when evaluating reed valves used in reciprocating air compressors. Results are presented for a specimen of a compressor under examination. All kinematic parameters, and timing of the opening and closing of the valve, obtained from the measurement are presented and discussed.
Kinematic Fitting of Detached Vertices
Paul Mattione
2007-05-01
The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.
Contact kinematics of biomimetic scales
Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan
2014-12-08
Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.
Laboratory longitudinal diffusion tests: 2. Parameter estimation by inverse analysis.
Takeda, M; Zhang, M; Nakajima, H; Hiratsuka, T
2008-04-28
This study focuses on the verification of test interpretations for different state analyses of diffusion experiments. Part 1 of this study identified that steady, quasi-steady and equilibrium state analyses for the through- and in-diffusion tests with solution reservoirs are generally feasible where the tracer is not highly sorptive. In Part 2 we investigate parameter identifiability in transient-state analysis of reservoir concentration variation using a numerical approach. For increased generality, the analytical models, objective functions and Jacobian matrix necessary for inverse analysis of transient-state data are reformulated using unified dimensionless parameters. In these dimensionless forms, the number of unknown parameters is reduced and a single dimensionless parameter represents the sorption property. The dimensionless objective functions are evaluated for individual test methods and parameter identifiability is discussed in relation to the sorption property. The effects of multiple minima and measurement error on parameter identifiability are also investigated. The main findings are that inverse problems for inlet and outlet reservoir concentration analyses are generally unstable and well-posed, respectively. Where the tracer is sorptive, the inverse problem for the inlet reservoir concentration analysis may have multiple minima. When insufficient measurement data is collected, multiple solutions may result and this should be taken into consideration when inversely analyzing data including that of inlet reservoir concentration. Verification of test interpretation by cross-checking different state analyses is feasible where the tracer is not highly sorptive. In an actual experiment, test interpretation validity is demonstrated through consistency between theory and practice for different state analyses. PMID:18353488
MEERSCHAERT, MARK M.; STRAKA, PETER
2013-01-01
The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216
Of cilium and flagellum kinematics
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Promode R.; Hansen, Joshua C.
2009-11-01
The kinematics of propulsion of small animals such as paramecium and spermatozoa is considered. Larger scale models of the cilium and flagellum have been built and a four-motor apparatus has been constructed to reproduce their known periodic motions. The cilium model has transverse deformational ability in one plane only, while the flagellum model has such ability in two planes. When the flagellum model is given a push-pull in one diametral plane, instead of transverse deflection in one plane, it forms a coil. Berg & Anderson's postulation (Nature 245 1973) that a flagellum rotates, is recalled. The kinematics of cilia of paramecium, of the whipping motion of the spermatozoa flagella, and of the flapping motion (rolling and pitching) of the pectoral fins of much larger animals such penguins, have been reproduced in the same basic paramecium apparatus. The results suggest that each of the tiny individual paramecium propulsors have the intrinsic dormant kinematic and structural building blocks to optimize into higher Reynolds number propulsors. A synthetic hypothesis on how small might have become large is animated.
Kinematic Characterization of Left Ventricular Chamber Stiffness and Relaxation
NASA Astrophysics Data System (ADS)
Mossahebi, Sina
Heart failure is the most common cause of hospitalization today, and diastolic heart failure accounts for 40-50% of cases. Therefore, it is critical to identify diastolic dysfunction at a subclinical stage so that appropriate therapy can be administered before ventricular function is further, and perhaps irreversibly impaired. Basic concepts in physics such as kinematic modeling provide a unique method with which to characterize cardiovascular physiology, specifically diastolic function (DF). The advantage of an approach that is standard in physics, such as the kinematic modeling is its causal formulation that functions in contrast to correlative approaches traditionally utilized in the life sciences. Our research group has pioneered theoretical and experimental quantitative analysis of DF in humans, using both non-invasive (echocardiography, cardiac MRI) and invasive (simultaneous catheterization-echocardiography) methods. Our group developed and validated the Parametrized Diastolic Filling (PDF) formalism which is motivated by basic physiologic principles (LV is a mechanical suction pump at the mitral valve opening) that obey Newton's Laws. PDF formalism is a kinematic model of filling employing an equation of motion, the solution of which accurately predicts all E-wave contours in accordance with the rules of damped harmonic oscillatory motion. The equation's lumped parameters---ventricular stiffness, ventricular viscoelasticity/relaxation and ventricular load---are obtained by solving the 'inverse problem'. The parameters' physiologic significance and clinical utility have been repeatedly demonstrated in multiple clinical settings. In this work we apply our kinematic modeling approach to better understand how the heart works as it fills in order to advance the relationship between physiology and mathematical modeling. Through the use of this modeling, we thereby define and validate novel, causal indexes of diastolic function such as early rapid filling energy, diastatic stiffness, and relaxation and stiffness components of E-wave deceleration time.
NASA Astrophysics Data System (ADS)
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic inversions we examine the importance of including the topography in the inversion and we test different regularization schemes using weighted second norm of model gradient as well as inverting for a static distortion matrix following Miensopust/Avdeeva approach. We also apply our algorithm to invert MT data collected at Mt St Helens.
Dewpoint temperature inversions analyzed
NASA Technical Reports Server (NTRS)
Ashby, W. C.; Bogner, M. A.; Moses, H.
1969-01-01
Dewpoint temperature inversion, with regard to other simultaneous meteorological conditions, was examined to establish the influence of meteorological variables on the variation of dewpoint temperature with height. This report covers instrumentation and available data, all the climatological features of dewpoint inversions, and specific special cases.
NASA Astrophysics Data System (ADS)
Jackiewicz, Jason
2009-09-01
With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.
Jackiewicz, Jason
2009-09-16
With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion techniques are crucial for seismic studies. We present some aspects of an efficient Fourier Optimally Localized Averaging (OLA) inversion method with an example applied to time-distance helioseismology.
Teaching about Inverse Functions
ERIC Educational Resources Information Center
Esty, Warren
2005-01-01
In their sections on inverses most precalculus texts emphasize an algorithm for finding f [superscript -1] given f. However, inspection of precalculus and calculus texts shows that students will never again use the algorithm, which suggests the textbook emphasis may be misplaced. Inverses appear primarily when equations need to be solved, which
ERIC Educational Resources Information Center
Bedard, Catherine; Belin, Pascal
2004-01-01
Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…
Kinematic correction for roller skewing
NASA Technical Reports Server (NTRS)
Savage, M.; Loewenthal, S. H.
1980-01-01
A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to product changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the rollers while eight have rollers with compound transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature.
Kinematically complete chemical reaction dynamics
NASA Astrophysics Data System (ADS)
Trippel, S.; Stei, M.; Otto, R.; Hlavenka, P.; Mikosch, J.; Eichhorn, C.; Lourderaj, U.; Zhang, J. X.; Hase, W. L.; Weidemüller, M.; Wester, R.
2009-11-01
Kinematically complete studies of molecular reactions offer an unprecedented level of insight into the dynamics and the different mechanisms by which chemical reactions occur. We have developed a scheme to study ion-molecule reactions by velocity map imaging at very low collision energies. Results for the elementary nucleophilic substitution (SN2) reaction Cl- + CH3I → ClCH3 + I- are presented and compared to high-level direct dynamics trajectory calculations. Furthermore, an improved design of the crossed-beam imaging spectrometer with full three-dimensional measurement capabilities is discussed and characterization measurements using photoionization of NH3 and photodissociation of CH3I are presented.
Pseudo-Rigid-Body Model and Kinematic Analysis of MRI-Actuated Catheters
Greigarn, Tipakorn; Çavuşoğlu, M. Cenk
2015-01-01
This paper presents a kinematic study of a pseudorigid-body model (PRBM) of MRI-compatible, magnetically actuated, steerable catheters. It includes a derivation of a mathematical model of the PRBM of the catheter, singularity studies of the model, and a new manipulability measure. While the forward kinematics of the model presented here is applicable to PRBMs for other applications, actuation method is unique to the particular design. Hence, a careful study of singularities and manipulability of the model is required. The singularities are studied from the underlying equations of motion with intuitive interpretations. The proposed manipulability measure is a generalization of the inverse condition number manipulability measure of robotic manipulators. While the PRBM is an approximation of the flexible catheter, kinematic studies of the PRBM still provide some insight into feasibility and limitations of the catheter, which is beneficial to the design and motion planning of the catheter. PMID:26413380
Morpho-kinematic modeling of planetary nebulae
NASA Astrophysics Data System (ADS)
Chan, Tsz-Pan (Henry)
2009-11-01
The Planetary Nebulae (PNe) are the transition phase between asymptotic giant branch (AGB) star and white dwarfs for stars with masses between 1 and 8 M⊙. They were originally thought to be well-studied and can be explained with simple models. With the advance of imaging technology especially on Space Telescope (HST), the shapes of PNe have been found to be much more complex than we assumed to be. We aimed to investigate on the basic but mysterious intrinsic three-dimensional structures using the newly developed modeling software. Astronomers usually use the morphological classification on group and classify different properties of PNe. Over the past century many attempts have been made for this classification to seek for explaining and understanding the threedimensional structure that is responsible for the observed images. There have been two beliefs in explaining the variety of shapes of PNe and among them the most amazing one is that the morphologies can be accounted by different orientations of a single structure (Khromov & Kohoutek, 1968). Motivated by the study of Ring Nebula on its intrinsic structure, we investigated the possibility that different types of morphology in PNe can be explained by a single model. We used the newly developed modeling code SHAPE (Steffen et al., 2006), which cooperates the use of spatial information as well as its kinematics, and aimed to quantitatively investigate the basic structure inside PNe. We investigated two classical nebulae: NGC 2346 and NGC 2440. We proposed a simple but adequate model for these nebulae. Stimulated optical images and the p-v arrays were derived by the modeling code SHAPE to make comparison with the observed data to seek for the correctness of the model. Hubble velocity field and inverse square law density distribution were assumed throughout the modeling process. This model provides insights in seeking further adequate intrinsic structure of PNe.
Basic concepts of kinematic-wave models
Miller, J.E.
1984-01-01
The kinematic-wave model is one of a number of approximations of the dynamic-wave model. The dynamic-wave model describes one-dimensional shallow-water waves (unsteady, gradually varied, open-channel flow). The report provides a basic reference on the theory and application of kinematic-wave models and describes the limitations of the model in relation to the other approximations of the dynamic-wave model. In the kinematic-wave approximation, a number of the terms in the equation of motion are assumed to be insignificant. The equation of motion is replaced by an equation describing uniform flow. Thus, the kinematic-wave model is described by the continuity equation and a uniform flow equation such as the well-known Chezy or Manning formulas. Kinematic-wave models are applicable to overland flow where lateral inflow is continuously added and is a large part of the total flow. For channel-routing applications, the kinematic-wave model always predicts a steeper wave with less dispersion and attenuation than actually occurs. The effect of the accumulation of errors in the kinematic-wave model shows that the approximations made in the development of the kinematic-wave equations are not generally justified for most channel-routing applications. Modified flow-routing models can be used which help to stop the accumulation of error that occurs when the kinematic-wave model is applied. (USGS)
Development of a sensor coordinated kinematic model for neural network controller training
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1990-01-01
A robotic benchmark problem useful for evaluating alternative neural network controllers is presented. Specifically, it derives two camera models and the kinematic equations of a multiple degree of freedom manipulator whose end effector is under observation. The mapping developed include forward and inverse translations from binocular images to 3-D target position and the inverse kinematics of mapping point positions into manipulator commands in joint space. Implementation is detailed for a three degree of freedom manipulator with one revolute joint at the base and two prismatic joints on the arms. The example is restricted to operate within a unit cube with arm links of 0.6 and 0.4 units respectively. The development is presented in the context of more complex simulations and a logical path for extension of the benchmark to higher degree of freedom manipulators is presented.
Ballistic representation for kinematic access
NASA Astrophysics Data System (ADS)
Alfano, Salvatore
2011-01-01
This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.
Kinematic design NC optical generator
NASA Astrophysics Data System (ADS)
Kuhn, William P.
1989-08-01
The purpose of this research was to design a low cost, versatile, 3-axis numerical control aspheric generator using all rotary motions. In addition, the generator was to have the capability of grinding glass, metals and ceramics and the ability to generate off axis or non-rotationally symmetric aspherics. The research carried out during this study was a review of various methods of implementing 3 axis motion using all rotary bearings. Traditional orthogonal axis methods of achieving this motion were found lacking in accuracy and very costly. The study then turned to a generator based on kinematic design with a minimum number of constraints to the rotary motions. The results of this research showed that the kinematic design met or exceeded all the proposed goals for this study. The design has a minimum number of components and depends for its accuracy only on the lengths of the two actuators controlling the grinding wheel position. The rotary motion joints are all spherical ball joints except for one that is a flexure pivot. The proposed generator uses commercially available components and has few custom parts to keep the cost down. Special software allows the easy fabrication of non-rotationally symmetric optics and a large grinding wheel radius minimizes mid spatial frequency surface errors and roughness.
NASA Astrophysics Data System (ADS)
Lu, Qipeng; Li, Yongjun; Peng, Zhongqi
2012-05-01
Six-bar parallel mechanism is now widely applied in synchrotron radiation beamline, while the six-dimensional adjustment is difficult and inefficient for lack of theoretical direction. This paper introduces a special six-bar parallel mechanism. By means of coordinate transformations, the inverse kinematics of six-bar parallel mechanism is studied, and the precise equations for six bars' lengths are obtained. Based on the inverse kinematics, forward kinematics of six-bar parallel mechanism is obtained with trust region method working for nonlinear optimization. The corresponding MATLAB program is also designed. The results show that trust region method is an effective way to solve forward kinematics, and the program is stable, reliable and rapid. This method has small errors with linear precision of 10-12 mm and rotational precision of 10-15 deg. Using differential snail adjustment, monochromator chamber's attitude can reach a linear resolution of 5 μm and a rotational resolution of 3″, which entirely satisfies the practical requirements.
NASA Technical Reports Server (NTRS)
Gough, D.
1984-01-01
Helioseismological inversion, as with the inversion of any other data, is divided into three phases. The first is the solution of the so-called forward problem: namely, the calculation of the eigenfrequencies of a theoretical equilibrium state. The second is an attempt to understand the results, either empirically by determining how those frequencies vary as chosen parameters defining the equilibrium model are varied, or analytically from asymptotic expansions in limiting cases of high order or degree. The third phase is to pose and solve an inverse problem, which seeks to find a plausible equilibrium model of the Sun whose eigenfrequencies are consistent with observation. The three phases are briefly discussed in this review, and the third, which is not yet widely used in helioseismology, is illustrated with some selected inversions of artificial solar data.
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
The inverse electroencephalography pipeline
NASA Astrophysics Data System (ADS)
Weinstein, David Michael
The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Li, Wen-Ben; Zeng, Zhao-Fa; Li, Jing; Chen, Xiong; Wang, Kun; Xia, Zhao
2016-03-01
Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Stoica, Alin; Pisla, Doina; Andras, Szilaghyi; Gherman, Bogdan; Gyurka, Bela-Zoltan; Plitea, Nicolae
2013-03-01
In the last ten years, due to development in robotic assisted surgery, the minimally invasive surgery has greatly changed. Until now, the vast majority of robots used in surgery, have serial structures. Due to the orientation parallel module, the structure is able to reduce the pressure exerted on the entrance point in the patient's abdominal wall. The parallel robot can also handle both a laparoscope as well an active instrument for different surgical procedures. The advantage of this parallel structure is that the geometric model has been obtained through an analytical approach. The kinematic modelling of a new parallel architecture, the inverse and direct geometric model and the inverse and direct kinematic models for velocities and accelerations are being determined. The paper will demonstrate that with this parallel structure, one can obtain the necessary workspace required for a minimally invasive operation. The robot workspace was generated using the inverse geometric model. An indepth study of different types of singularity is performed, allowing the development of safe control algorithms of the experimental model. Some kinematic simulation results and the experimental model of the robot are presented in the paper.
NASA Astrophysics Data System (ADS)
Lee, J.; Kitanidis, P. K.
2014-07-01
The stochastic geostatistical inversion approach is widely used in subsurface inverse problems to estimate unknown parameter fields and corresponding uncertainty from noisy observations. However, the approach requires a large number of forward model runs to determine the Jacobian or sensitivity matrix, thus the computational and storage costs become prohibitive when the number of unknowns, m, and the number of observations, n increase. To overcome this challenge in large-scale geostatistical inversion, the Principal Component Geostatistical Approach (PCGA) has recently been developed as a "matrix-free" geostatistical inversion strategy that avoids the direct evaluation of the Jacobian matrix through the principal components (low-rank approximation) of the prior covariance and the drift matrix with a finite difference approximation. As a result, the proposed method requires about K runs of the forward problem in each iteration independently of m and n, where K is the number of principal components and can be much less than m and n for large-scale inverse problems. Furthermore, the PCGA is easily adaptable to different forward simulation models and various data types for which the adjoint-state method may not be implemented suitably. In this paper, we apply the PCGA to representative subsurface inverse problems to illustrate its efficiency and scalability. The low-rank approximation of the large-dimensional dense prior covariance matrix is computed through a randomized eigen decomposition. A hydraulic tomography problem in which the number of observations is typically large is investigated first to validate the accuracy of the PCGA compared with the conventional geostatistical approach. Then the method is applied to a large-scale hydraulic tomography with 3 million unknowns and it is shown that underlying subsurface structures are characterized successfully through an inversion that involves an affordable number of forward simulation runs. Lastly, we present a joint inversion of head and tracer test data using MODFLOW and MT3DMS as coupled black-box forward simulation solvers. These applications demonstrate the advantages of the PCGA, i.e., the scalability to high-dimensional inverse problems and the ability to utilize multiple forward models as black boxes.
Control Algorithms For Kinematically Redundant Manipulators
NASA Technical Reports Server (NTRS)
Wegner, David R.
1995-01-01
Report presents improved algorithms for controlling kinematically redundant robotic manipulators, producing unique configuration for each end-effector location. Furthermore, they generally produce configurations in which no interference between robot boom and payload or base structures. Report presents comparison between various other robot-kinematic algorithms.
Kinematic Event Patterns in Speech: Special Problems.
ERIC Educational Resources Information Center
Westbury, John R.; Severson, Elizabeth J.; Lindstrom, Mary J.
2000-01-01
Results from a new analysis of synchronous acoustic and fleshpoint-kinematic data, recorded from 53 normal young-adult speakers of American English, are reported. The kinematic data represent speech-related actions of the tongue blade and dorsum, both lips, and the mandible, during the test words, "special" and "problem," and were drawn from an…
Testing Student Interpretation of Kinematics Graphs.
ERIC Educational Resources Information Center
Beichner, Robert J.
1994-01-01
Describes the development and analysis of the Test of Understanding Graphs in Kinematics (TUG-K) and reports the results of a study aimed at uncovering student problems with interpreting kinematics graphs. Proposes a model for creating multiple choice tests which can be used as diagnostic tools. Contains 34 references. (DDR)
Kinematics of the free throw in basketball
NASA Astrophysics Data System (ADS)
Tan, A.; Miller, G.
1981-06-01
The kinematics of the two basic styles of free throw in basketball are discussed. It is shown that from a purely kinematic and trajectory point of view, the overhand push shot is preferable to the underhand loop shot. The advantages of the underhand shot lie in the actual execution of the shot.
LMC Cluster Abundances and Kinematics
NASA Astrophysics Data System (ADS)
Geisler, Doug; Grocholski, Aaron; Sarajedini, Ata; Cole, Andrew; Smith, Verne
We present results from a project aimed at better understanding the kinematics and metallicities of populous clusters in the LMC. We have utilized FORS2 on the VLT to obtain infrared spectra for more than 200 stars in 28 LMC clusters spanning a large range of ages (~ 1-13 Gyr) and metallicities (-0.3 > [Fe/H] > -2.0). The absorption lines of the calcium II triplet were then used to calculate radial velocities and [Fe/H]. We determine mean cluster velocities to typically 1.6 km s-1 and mean metallicities to 0.04 dex (random error). Similar to what was found by previous authors, this cluster sample has motions consistent with that of a single rotating disk system, with no indication of halo kinematics. However, in contrast to previous work, we find that the higher metallicity clusters in our sample show a very tight [Fe/H] distribution with no tail toward solar metallicities. The cluster distribution is similar to what has been found for red giant stars in the bar, which indicates that the bar and the intermediate age clusters have similar star formation histories. This is in good agreement with recent theoretical models that suggest the bar and intermediate age clusters formed as a result of a close encounter with the SMC. Our findings also confirm previous results which show that the LMC lacks the metallicity gradient typically seen in non-barred spiral galaxies, suggesting that the bar is driving the mixing of stellar populations in the LMC.
Automated kinematic generator for surgical robotic systems.
Jung, David L; Dixon, Warren E; Pin, François G
2004-01-01
Unlike traditional assembly line robotic systems that have a fixed kinematic structure associated with a single tool for a structured task, next-generation robotic surgical assist systems will be required to use an array of end-effector tools. Once a robot is connected with a tool, the kinematic equations of motion are altered. Given the need to accommodate evolving surgical challenges and to alleviate the restrictions imposed by the confined minimally invasive environment, new surgical tools may resemble small flexible snakes rather than rigid, cable driven instruments. Connecting to these developing articulated tools will significantly alter the overall kinematic structure of a robotic system. In this paper we present a technique for real-time automated generation and evaluation of manipulator kinematic equations that exhibits the combined advantages of existing methods-speed and flexibility to kinematic change--without their disadvantages. PMID:15544260
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Pant-tilt Platform Design Based on Parallel Kinematics
NASA Astrophysics Data System (ADS)
Majarena, A. C.; Santolaria, J.; Aguilar, J. J.; Pastor, J.; Cajal, Cajal
2009-11-01
A new long distance measurement system design, based on parallel kinematics, is presented in this paper. This system has two degrees of freedom for positioning and orientating two high precision cameras. In this document is presented the system design. Several configurations have been analyzed and the components needed such as actuators, linear captators (to measure the displacement), spherical ball-and-socket joints and universal joints, have been selected. The developed model allows us to obtain the kinematic joint variables, depending on geometric parameters, by means of the resolution of opened chains for each leg. The direct model allows us to obtain the platform position and orientation for a determined displacement values. Once the matrix transformation (which describes the coordinates of the platform reference system respect to the base reference system) is obtained, the actuators elongation can be found out through the inverse model with numeric or geometric methods. The design optimization, by means of the analysis of anchorage points and the study of singularities (analysis of the limited platform positions, depending on maximum strut lengths and maximum angle that joints can turn), allows us to optimize the workspace of the platform.
The Effect of End Constraints on Protein Loop Kinematics
Hayward, Steven; Kitao, Akio
2010-01-01
Abstract Despite the prevalent involvement of loops in function little is known about how the constraining of end groups influences their kinematics. Using a linear inverse-kinematics approach and assuming fixed bond lengths, bond angles, and peptide bond torsions, as well as ignoring molecular interactions to assess the effect of the end-constraint only, it is shown that the constraint creates a closed surface in torsion angle space. For pentapeptides, the constraint gives rise to inaccessible regions in a Ramachandran plot. This complex and tightly curved surface produces interesting effects that may play a functional role. For example, a small change in one torsion angle can radically change the behavior of the whole loop. The constraint also produces long-range correlations, and structures exist where the correlation coefficient is 1.0 or −1.0 between rotations about bonds separated by >30 Å. Another application allows some torsion angles to be targeted to specified values while others are constrained. When this application was used on key torsions in lactate dehydrogenase, it was found that the functional loop first folds forward and then moves sideways. For horse liver alcohol dehydrogenase, it was confirmed that the functional loop's Pro-Pro motif creates a rigid arm in an NAD-activated switch for domain closure. PMID:20441762
Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.
2010-10-20
In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.
NASA Astrophysics Data System (ADS)
Viallet, M.; Goffrey, T.; Baraffe, I.; Folini, D.; Geroux, C.; Popov, M. V.; Pratt, J.; Walder, R.
2016-02-01
This work is a continuation of our efforts to develop an efficient implicit solver for multidimensional hydrodynamics for the purpose of studying important physical processes in stellar interiors, such as turbulent convection and overshooting. We present an implicit solver that results from the combination of a Jacobian-free Newton-Krylov method and a preconditioning technique tailored to the inviscid, compressible equations of stellar hydrodynamics. We assess the accuracy and performance of the solver for both 2D and 3D problems for Mach numbers down to 10-6. Although our applications concern flows in stellar interiors, the method can be applied to general advection and/or diffusion-dominated flows. The method presented in this paper opens up new avenues in 3D modeling of realistic stellar interiors allowing the study of important problems in stellar structure and evolution.
Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.
2011-01-01
Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Hart, K.A.
1994-01-01
During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.
NASA Astrophysics Data System (ADS)
Clare, R. B.; Levinger, J. S.
1981-02-01
We use the formalism of hyperspherical harmonics to calculate several moments for the triton photoeffect, for a Volkov spin-independent potential. First, we improve the accuracy of Maleki's calculations of the moments σ2 and σ3 by including more terms in the hyperspherical expansion. We also calculate moments σ0 and σ1 for a Serber mixture. We find reasonable agreement between our moments found by sum rules and those found from the cross sections calculated by Fang et al. and Levinger-Fitzgibbon. We then develop a technique of inversion of a finite number of moments by making the assumption that the cross section can be written as a sum of several Laguerre polynomials multiplied by a decreasing exponential. We test our inversion technique successfully on several model potentials. We then modify it and apply it to the five moments (σ-1 to σ3) for a force without exchange, and find fair agreement with Fang's values of the cross section. Finally, we apply the inversion technique to our three moments (σ-1,σ0,and σ1) for a Serber mixture, and find reasonable agreement with Gorbunov's measurements of the 3He photoeffect. NUCLEAR REACTIONS Triton photoeffects, hyperspherical harmonics, moments of photoeffect, inversion of moments.
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
The kinematics of evolved planetary nebulae
NASA Astrophysics Data System (ADS)
Pereyra, E. Margarita; Richer, Michael G.; López, Jose-Alberto
2012-08-01
We have selected a group of 85 evolved planetary nebulae to study their kinematic characteristic based on spatially resolved, long-slit echelle spectroscopy. The data have been drawn from the San Pedro Mártir Kinematic Catalogue of PNe. The aim is to characterize in detail the global kinematics of PNe at advanced stages of evolution with the largest sample of homogenous data used to date for this purpose. The results reveal groups that share kinematic and photo-ionization characteristics of the nebular shell at the different late stages under study. The expansion velocities are typically larger than seen in earlier evolutionary stages, with the largest velocities occurring in objects with very weak or absent [N II]λλ6548, 6584 emission line. These results shall serve to be compared to predictions of hydrodynamical models.
Inversion of arbitrary segmented loop source TEM data over a layered earth
NASA Astrophysics Data System (ADS)
Li, Hai; Xue, Guo-qiang; Zhao, pan; Zhou, Nan-nan; Zhong, Hua-sen
2016-05-01
The loop source TEM method has been widely used in the detection of a mined out area in China. In the cases that the laying of traditional rectangle or square transmitting loop is limited due to the presence of obstacle on the path of the loop, the changing of the shape of the transmitting loop to bypass the obstacle is a labor saving solution. A numeric integration scheme is proposed to calculate the response and Jacobian of the segmented loop source from that of an electric dipole source. The comparison of forward response between the segmented loop and square loop shows the effect of loop geometry on the decay curves. In order to interpret the data from an irregular source loop, this paper presents an inversion scheme that incorporate the effect of loop geometry. The proposed inversion scheme is validated on the synthetic data, and then applied to the field data. The result reveals that the developed inversion scheme is capable of interpreting the segmented loop source TEM field data.
Enhancement of near-surface elastic full waveform inversion results in regions of low sensitivities
NASA Astrophysics Data System (ADS)
Nuber, Andr; Manukyan, Edgar; Maurer, Hansruedi
2015-11-01
Elastic full waveform inversion of high-resolution seismic data is a potentially very powerful option for imaging the shallow subsurface. Unfortunately, the success of traditional full waveform inversion applied to such problems is limited by a very uneven sensitivity distribution, which can be attributed to the uneven amplitudes of body and surface waves. As a result, very shallow structures are well resolved by fitting the large amplitude surface waves, but the imaging quality decreases rapidly with depth. To account for uneven sensitivity distributions, we present a novel scaling approach that enhances weak sensitivities in regions of interest. To this end, the column sums of the Jacobian matrix - each of them corresponding to one model parameter - are equalized prior to updating the model. The performance of this methodology is demonstrated by inverting two synthetic, but realistic, data sets. Both the P- and S-wave velocity images were improved significantly by applying the new scaling technique. Our results are particularly relevant for shallow elastic full waveform inversion problems, but we also see benefits of our technique for other surface-based geophysical methods, such as geoelectrics or electromagnetics.
Can a pseudo-dynamic source inversion approach improve earthquake source imaging?
NASA Astrophysics Data System (ADS)
Zhang, Youbing; Song, Seok Goo; Dalguer, Luis; Clinton, John
2014-05-01
Imaging a high resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more, higher quality, near field stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. in review). Song et al. (2009) and Song and Dalguer (2013) found interesting correlation structures between kinematic source parameters (e.g. slip, peak slip velocity and rupture velocity) obtained both from kinematic inversion and dynamic modeling. These correlation structures that effectively regularize the model space may improve source imaging more than by simply improving the observational data. In this 'pseudo-dynamic' source inversion, source images are constrained by both physical constraints derived from rupture dynamics as well all the observational data, without compromising the computational efficiency of kinematic inversion. We investigate the efficiency of the pseudo-dynamic source inversion using synthetic dynamic rupture models. Our target model is a buried vertical strike-slip event (Mw 7.3) in a homogeneous half space. In the inversion, we model low frequency (below 1Hz) waveforms using a genetic algorithm in a Bayesian framework (Moneli et al. 2008). A dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was applied as a single-window slip velocity function. We have first implemented the autocorrelation of slip in the prior distribution in the Bayesian inversion - preliminary results show that estimated kinematic source models closely match the target dynamic model. The prior information describing the auto-correlation of source parameters (e.g. slip) improves the imaging of spatial distribution of source parameters. By implementing both auto- and cross-correlation of kinematic source parameters, we can regularize the model space in a more physics-based manner and improve the source imaging more significantly compared to using traditional smoothing constraints. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.
Xie, G.; Li, J.
1997-05-01
A new 3D electromagnetic modeling and nonlinear inversion algorithm is presented based on global integral and local differential equations decomposition (GILD). The GILD parallel nonlinear inversion algorithm consists of five parts: (1) the domain is decomposed into subdomain SI and subdomain SII; (2) a new global magnetic integral equation in SI and the local magnetic differential equations IN SII will be used together to obtain the magnetic field in the modeling step; (3) the new global magnetic integral Jacobian equation in SI and the local magnetic differential Jacobian equations in SII will be used together to update the electric conductivity and permittivity from the magnetic field data in the inversion step; (4) the subdomain SII can naturally and uniformly be decomposed into 2{sup n} smaller sub-cubic-domains; the sparse matrix in each sub-cubic-domain can be eliminated separately, in parallel; (5) a new parallel multiple hierarchy substructure algorithm will be used to solve the smaller full matrices in SI, in parallel. The applications of the new 3D parallel GILD EM modeling and nonlinear inversion algorithm and software are: (1) to create high resolution controlled-source electric conductivity and permittivity imaging for interpreting electromagnetic field data acquired from cross hole, surface to borehole, surface to surface, single hole, and multiple holes; (2) to create the magnetotelluric high resolution imaging from the surface impedance and field data. The new GILD parallel nonlinear inversion will be a 3D/2.5D powerful imaging tool for the oil geophysical exploration and environmental remediation and monitoring.
Regge kinematics in soft collinear effective theory
Donoghue, John F.; Wyler, Daniel
2010-06-01
We discuss the kinematics of the particles that make up a Reggeon in field theory, using the terminology of the soft collinear effective theory (SCET). Reggeization sums a series of strongly ordered collinear emissions resulting in an overall Reggeon exchange that falls in the Glauber or Coulomb kinematic region. This is an extremely multiscale problem and appears to fall outside of the usual organizing scheme of SCET.
AVO inversion based on inverse operator estimation in trust region
NASA Astrophysics Data System (ADS)
Yin, Xing-Yao; Deng, Wei; Zong, Zhao-Yun
2016-04-01
Amplitude variation with offset (AVO) inversion is widely utilized in exploration geophysics, especially for reservoir prediction and fluid identification. Inverse operator estimation in the trust region algorithm is applied for solving AVO inversion problems in which optimization and inversion directly are integrated. The L1 norm constraint is considered on the basis of reasonable initial model in order to improve effciency and stability during the AVO inversion process. In this study, high-order Zoeppritz approximation is utilized to establish the inversion objective function in which variation of {{v}\\text{p}}/{{v}\\text{s}} with time is taken into consideration. A model test indicates that the algorithm has a relatively higher stability and accuracy than the damp least-squares algorithm. Seismic data inversion is feasible and inversion values of three parameters ({{v}\\text{p}},{{v}\\text{s}},ρ ) maintain good consistency with logging curves.
High-Resolution Inverse-Based Determination of Seismic-Velocity Structure in Basins
NASA Astrophysics Data System (ADS)
Akcelik, V.; Bielak, J.; Epanomeritakis, I.; Ghattas, O.
2004-12-01
Starting with the pioneering work of Aki, Christoffersson, and Husebye in 1976, there has been an increasing interest in developing inversion techniques for determining the three-dimensional crustal velocity structure in seismic regions. In this paper we describe a methodology that capitalizes on recent advances in optimization methods to adapt, extend, and refine powerful nonlinear Newton-Krylov adjoint-based inverse wave propagation algorithms to two- and three-dimensional velocity structure and kinematic source inversion problems. We present results of high resolution models for two-dimensional sedimentary valleys undergoing antiplane motion, and three dimensional acoustic approximations of models of the San Fernando Valley using parallel scalable inversion algorithms that overcome many of the difficulties particular to inverse heterogeneous wave propagation problems.
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Ledesma, Ragnar
1993-01-01
A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.
Reducing Nonuniqueness in Finite Source Inversion Using Rotational Ground Motions
NASA Astrophysics Data System (ADS)
Bernauer, M.; Fichtner, A.; Igel, H.
2014-12-01
We assess the potential of rotational ground motion recordings to reduce nonuniqueness in kinematic source inversions, with emphasis on the required measurement accuracy of currently developed rotation sensors. Our analysis is based on synthetic Bayesian finite source inversions that avoid linearizations and provide a comprehensive quantification of uncertainties and trade-offs. Using the fault and receiver geometry of the Tottori 2000 earthquake as a testbed, we perform inversions for two scenarios: In scenario I, we use translational velocity recordings only. In scenario II, we randomly replace half of the velocity recordings by rotation recordings, thus keeping the total amount of data constant. To quantify the noise-dependent impact of rotation recordings, we perform a sequence of inversions with varying noise levels of rotations relative to translations. Our results indicate that the incorporation of rotational ground motion recordings can significantly reduce nonuniqueness in finite source inversions, provided that measurement uncertainties are similar to or below the uncertainties of translational velocity recordings. When this condition is met, rupture velocity and rise time benefit most from rotation data. The trade-offs between both parameters are then strongly reduced, and the information gain nearly doubles. This suggests that rotational ground motion recordings may improve secondary inferences that rely on accurate information about rise time and rupture velocity. These include frictional properties of the fault, radiation directivity and ground motion in general.
Inverse problems in diffraction
NASA Technical Reports Server (NTRS)
Mikheev, Andrew G.; Shamaev, Aleksey S.
1991-01-01
A two-dimensional problem of diffraction of a plane electromagnetic wave on a smooth 2 pi-periodic surface is considered. A numerical algorithm solving this problem is developed. An inverse problem of determination of the shape of 2 pi-periodic surface using the performance data of reverse scattering is considered. The inverse problem was solved by means of minimization of the residual functional with the help of the gradient descent method. The initial data were calculated with the help of the numerical method. On each step of the iterative method of minimization, the residual functional was calculated approximately with the help of the small slope method. The examples of the shape determination are considered.
Intersections, ideals, and inversion
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Statistical Methods for Estimation of Direct and Differential Kinematics of the Vocal Tract
Lammert, Adam; Goldstein, Louis; Narayanan, Shrikanth; Iskarous, Khalil
2012-01-01
We present and evaluate two statistical methods for estimating kinematic relationships of the speech production system: Artificial Neural Networks and Locally-Weighted Regression. The work is motivated by the need to characterize this motor system, with particular focus on estimating differential aspects of kinematics. Kinematic analysis will facilitate progress in a variety of areas, including the nature of speech production goals, articulatory redundancy and, relatedly, acoustic-to-articulatory inversion. Statistical methods must be used to estimate these relationships from data since they are infeasible to express in closed form. Statistical models are optimized and evaluated – using a heldout data validation procedure – on two sets of synthetic speech data. The theoretical and practical advantages of both methods are also discussed. It is shown that both direct and differential kinematics can be estimated with high accuracy, even for complex, nonlinear relationships. Locally-Weighted Regression displays the best overall performance, which may be due to practical advantages in its training procedure. Moreover, accurate estimation can be achieved using only a modest amount of training data, as judged by convergence of performance. The algorithms are also applied to real-time MRI data, and the results are generally consistent with those obtained from synthetic data. PMID:24052685
Inverse avalanches on Abelian sandpiles
Chau, H.F. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 )
1994-11-01
A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles, called the inverse particle addition operator, is presented. In addition, the method is shown to be optimal in the sense that it requires the minimum amount of computation among methods of the same kind. The method is also conceptually succinct because avalanche and inverse avalanche are placed in the same footing.
Earthquake source inversion with dense networks
NASA Astrophysics Data System (ADS)
Somala, S.; Ampuero, J. P.; Lapusta, N.
2012-12-01
Inversions of earthquake source slip from the recorded ground motions typically impose a number of restrictions on the source parameterization, which are needed to stabilize the inverse problem with sparse data. Such restrictions may include smoothing, causality considerations, predetermined shapes of the local source-time function, and constant rupture speed. The goal of our work is to understand whether the inversion results could be substantially improved by the availability of much denser sensor networks than currently available. The best regional networks have sensor spacing in the tens of kilometers range, much larger than the wavelengths relevant to key aspects of earthquake physics. Novel approaches to providing orders-of-magnitude denser sensing include low-cost sensors (Community Seismic Network) and space-based optical imaging (Geostationary Optical Seismometer). However, in both cases, the density of sensors comes at the expense of accuracy. Inversions that involve large number of sensors are intractable with the current source inversion codes. Hence we are developing a new approach that can handle thousands of sensors. It employs iterative conjugate gradient optimization based on an adjoint method and involves iterative time-reversed 3D wave propagation simulations using the spectral element method (SPECFEM3D). To test the developed method, and to investigate the effect of sensor density and quality on the inversion results, we have been considering kinematic and dynamic synthetic sources of several types: one or more Haskell pulses with various widths and spacings; scenarios with local rupture propagation in the opposite direction (as observed during the 2010 El Mayor-Cucapah earthquake); dynamic crack-like rupture, both subshear and supershear; and rupture that mimics supershear propagation by jumping along the fault. In each case, we produce the data by a forward SPECFEM3D calculation, choose the desired density of stations, filter the data to 1 Hz (since the bulk properties are not known at higher frequencies), add noise of the desired level, and then apply our inversion approach. The results indicate that dense networks (e.g., 1-km spacing) produce sharper images of the considered sources than sparse networks (e.g., 10-20 km spacing), with better amplitude recovery and better resolution with depth. This is true even when noiseless sparse networks are compared with noisy dense networks, provided that the standard deviations of noise do not exceed ~1% of the maximum earthquake source amplitude (e.g., 1 cm/s noise for 1 m/s Haskell source). Substantial qualitative improvements arise when features of relatively narrow spatial extent are included in the source, in which case the dense networks can reproduce the features whereas the sparse networks cannot. We will report on our current efforts to mathematically quantify the differences between the inversions of sparse and dense data and to incorporate the effect of errors in the bulk velocity model.
Interplanetary stream magnetism - Kinematic effects
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Barouch, E.
1976-01-01
The particle density and the magnetic-field intensity and direction are calculated for volume elements of the solar wind as a function of the initial magnetic-field direction and the initial speed gradient. It is assumed that the velocity is constant and radial. These assumptions are approximately valid between about 0.1 and 1.0 AU for many streams. Time profiles of the particle density, field intensity, and velocity are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of the magnetic field depend sensitively on the initial field direction. By averaging over a typical stream, it is found that the average radial field intensity is inversely proportional to the square of the heliocentric distance, whereas the average intensity in the direction of the planets' motion does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 AU is such that the base of the field line corotates with the sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows.
Kinematic numerators and a double-copy formula for N=4 super-Yang-Mills residues
NASA Astrophysics Data System (ADS)
Litsey, Sean; Stankowicz, James
2014-07-01
Recent work by Cachazo et al.arXiv:1309.0885 shows that connected prescription residues obey the global identities of N=4 super-Yang-Mills amplitudes. In particular, they obey the Bern-Carrasco-Johansson (BCJ) amplitude identities. Here we offer a new way of interpreting this result via objects that we call residue numerators. These objects behave like the kinematic numerators introduced by BCJ except that they are associated with individual residues. In particular, these new objects satisfy a double-copy formula relating them to the residues appearing in recently discovered analogs of the connected prescription integrals for N=8 supergravity. Along the way, we show that the BCJ amplitude identities are equivalent to the consistency condition that allows kinematic numerators to be expressed as amplitudes using a generalized inverse.
Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping
2015-12-01
The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation. PMID:27079086
NASA Technical Reports Server (NTRS)
Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.
1989-01-01
An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.
Uncertainty Quantification in Finite-Fault Earthquake Source Inversions: The SIV project
NASA Astrophysics Data System (ADS)
Mai, P. M.; Gallovic, F.
2013-12-01
Finite-fault source inversions estimate kinematic rupture parameters of earthquakes using a variety of available data sets and inversion approaches. Rupture models are obtained by solving an inherently ill-posed inverse problem, subject to numerous a priori assumptions and noisy observations. Despite these limitations, near real-time source inversions are becoming increasingly popular, while we still face the dilemma that uncertainties in such finite-fault source inversions are poorly understood. Yet, the accurate estimation of earthquake rupture properties, including proper uncertainty quantification, is critically important for earthquake seismology and seismic hazard analysis, as they help to adequately characterize earthquake complexity across all scales. The Source Inversion Validation (SIV) project (http://equake-rc.info/sivdb) is a multi-institutional collaboration that attempts to quantify the intra-event variability in rupture models (see the SRCMOD database, http://equake-rc.info/srcmod), and that aims to develop robust uncertainty metrics for earthquake source inversions. The SIV collaboration features an open online platform to examine the current state-of-the-art in earthquake source inversion, but also to test novel source inversion approaches, based on a sequence of benchmark exercises with variable degree of complexity. In this presentation, we summarize initial SIV results related to previous benchmark exercises, discuss the latest findings for a test case of a complex rupture embedded in a 3D heterogeneous Earth model, and propose metrics to quantify rupture-model variability, quality of data fitting, and model robustness.
Reinbolt, Jeffrey A.; Haftka, Raphael T.; Chmielewski, Terese L.; Fregly, Benjamin J.
2013-01-01
Variations in joint parameter values (axis positions and orientations in body segments) and inertial parameter values (segment masses, mass centers, and moments of inertia) as well as kinematic noise alter the results of inverse dynamics analyses of gait. Three-dimensional linkage models with joint constraints have been proposed as one way to minimize the effects of noisy kinematic data. Such models can also be used to perform gait optimizations to predict post-treatment function given pre-treatment gait data. This study evaluates whether accurate patient-specific joint and inertial parameter values are needed in three-dimensional linkage models to produce accurate inverse dynamics results for gait. The study was performed in two stages. First, we used optimization analyses to evaluate whether patient-specific joint and inertial parameter values can be calibrated accurately from noisy kinematic data, and second, we used Monte Carlo analyses to evaluate how errors in joint and inertial parameter values affect inverse dynamics calculations. Both stages were performed using a dynamic, 27 degree-of-freedom, full-body linkage model and synthetic (i.e., computer generated) gait data corresponding to a nominal experimental gait motion. In general, joint but not inertial parameter values could be found accurately from noisy kinematic data. Root-mean-square (RMS) errors were 3° and 4 mm for joint parameter values and 1 kg, 22 mm, and 74,500 kg*mm2 for inertial parameter values. Furthermore, errors in joint but not inertial parameter values had a significant effect on calculated lower-extremity inverse dynamics joint torques. The worst RMS torque error averaged 4% bodyweight*height (BW*H) due to joint parameter variations but less than 0.25% BW*H due to inertial parameter variations. These results suggest that inverse dynamics analyses of gait utilizing linkage models with joint constraints should calibrate the model’s joint parameter values to obtain accurate joint torques. PMID:17518274
Salinger, Andy; Evans, Katherine J; Lemieux, Jean-Francois; Holland, David; Payne, Tony; Price, Stephen; Knoll, Dana
2011-01-01
We have implemented the Jacobian-free Newton-Krylov (JFNK) method for solving the rst-order ice sheet momentum equation in order to improve the numerical performance of the Community Ice Sheet Model (CISM), the land ice component of the Community Earth System Model (CESM). Our JFNK implementation is based on signicant re-use of existing code. For example, our physics-based preconditioner uses the original Picard linear solver in CISM. For several test cases spanning a range of geometries and boundary conditions, our JFNK implementation is 1.84-3.62 times more efficient than the standard Picard solver in CISM. Importantly, this computational gain of JFNK over the Picard solver increases when rening the grid. Global convergence of the JFNK solver has been signicantly improved by rescaling the equation for the basal boundary condition and through the use of an inexact Newton method. While a diverse set of test cases show that our JFNK implementation is usually robust, for some problems it may fail to converge with increasing resolution (as does the Picard solver). Globalization through parameter continuation did not remedy this problem and future work to improve robustness will explore a combination of Picard and JFNK and the use of homotopy methods.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2015-09-01
The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.
NASA Astrophysics Data System (ADS)
Briane, M.; Casado Díaz, J.
2016-04-01
In this paper a new div-curl result is established in an open set Ω of RN, N ≥ 2, for the product σn ṡηn of two sequences of vector-valued functions σn, ηn such that σn is bounded in Lp(Ω) N, ηn is bounded in Lq(Ω) N, with 1 / p + 1 / q = 1 + 1 / (N - 1), and such that divσn, curlηn are compact in suitable spaces. The new assumption is that the product converges weakly in W - 1 , 1 (Ω). The approach is also new in the topic, and is based on a compactness result for bounded sequences in W 1 , q (Ω) through a suitable selection of annuli on which the gradients are not too high, in the spirit of [26,32] and using the imbedding of W 1 , q into Lp‧ for the unit sphere of RN. The div-curl result is applied to the homogenization of equi-coercive systems whose coefficients are equi-bounded in Lρ (Ω) for some ρ >N-1/2 if N > 2, or in L1 (Ω) if N = 2. It also allows us to prove a weak continuity result for the Jacobian for bounded sequences in W 1 , N - 1 (Ω) satisfying an alternative assumption to the L∞-strong estimate of [8]. Two examples show the sharpness of the results.
SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS
NASA Technical Reports Server (NTRS)
Bach, R.
1994-01-01
The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential advantages of using state estimation. Complete instructions are given for preparing a coding list for problem solution by SMACK. The use of SMACK as part of an overall flight-test methodology is illustrated, as well as its application for analysis of a windshear accident. The details required for installing the program are presented, including sample output listings to facilitate testing. SMACK is written in FORTRAN 77 for DEC VAX series computers running VMS. Two versions of the source code are provided, a single precision version, which can be ported to Cray series computers, and a VAX double precision version. SMACK can call routines from the commercial package IMSL, or replacement routines which are provided can be used. SMACK solution variables to be plotted are written to an ASCII plot file. A sample plotting program, which is designed to be used with the DISSPLA graphics package, is included; however this program can easily be modified for use with other xy plotting packages. The double precision version requires 10Mb of RAM for execution under VMS. SMACK is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution) or on a TK50 tape cartridge. This program was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. DISSPLA is a trademark of Computer Associates, Inc. IMSL is a registered trademark of IMSL, Inc.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Dark energy as a kinematic effect
NASA Astrophysics Data System (ADS)
Jennen, H.; Pereira, J. G.
2016-03-01
We present a generalization of teleparallel gravity that is consistent with local spacetime kinematics regulated by the de Sitter group SO(1 , 4) . The mathematical structure of teleparallel gravity is shown to be given by a nonlinear Riemann-Cartan geometry without curvature, which inspires us to build the generalization on top of a de Sitter-Cartan geometry with a cosmological function. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in the theory here presented, the cosmological function gives rise to a kinematic contribution in the deviation equation for the world lines of adjacent free-falling particles. While having its own dynamics, dark energy manifests itself in the local kinematics of spacetime.
Kinematics and Control of Robot Manipulators
NASA Astrophysics Data System (ADS)
Paden, Bradley Evan
This dissertation focuses on the kinematics and control of robot manipulators. The contribution to kinematics is a fundamental theorem on the design of manipulators with six revolute joints. The theorem states, roughly speaking, that manipulators which have six revolute joints and are modeled after the human arm are optimal and essentially unique. In developing the mathematical framework to prove this theorem, we define precisely the notions of length of a manipulator, well-connected-workspace, and work-volume. We contribute to control a set of analysis techniques for the design of variable structure (sliding mode) controllers for manipulators. The organization of the dissertation is the following. After introductory remarks in chapter one, the group of proper rigid motions, G, is introduced in chapter two. The tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be represented by an element in the Lie algebra of G (commonly called a twist). Further, rigid motions which are exponentials of twists are used to describe four commonly occurring subproblems in robot kinematics. In chapter three, the exponentials of twists are used to write the forward kinematic map of robot manipulators and the subproblems of chapter two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four focuses on manipulator singularities. Twist coordinates are used to find critical points of the forward kinematic map. The contribution to kinematics is contained in chapter five where a mathematical framework for studying the relationship between the design of 6R manipulators and their performance is developed. Chapter seven contains the contribution to control. The work of A. F. Filippov on differential equations with discontinuous right-hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a calculus for analyzing nonsmooth gradient systems. The techniques developed are applied to design a simple variable structure controller for the nonlinear dynamics of robot manipulators.
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.
Kinetic and kinematic differences between deadlifts and goodmornings
2013-01-01
Background In order to improve training performance, as well as avoid overloading during prevention and rehabilitation exercises in patients, the aim of this study was to understand the biomechanical differences in the knee, hip and the back between the exercises “Goodmornings” (GMs) and “Deadlifts” (DLs). Methods The kinetics and kinematics of 13 subjects, performing GMs and DLs with an additional 25% (GMs), 25% and 50% (DLs) body weight (BW) on the barbell were analysed. Using the kinetic and kinematic data captured using a 3D motion analysis and force plates, an inverse approach with a quasi-static solution was used to calculate the sagittal moments and angles in the knee, hip and the trunk. The maximum moments and joint angles were statistically tested using ANOVA with a Bonferroni adjustment. Results The observed maximal flexion angle of the knee was 5.3 ± 6.7° for GMs and 107.8 ± 22.4° and 103.4 ± 22.6° for DLs with 25% and 50% BW respectively. Of the hip, the maximal flexion angle was 25% smaller during GMs compared to DLs. No difference in kinematics of the trunk between the two exercises was observed. For DLs, the resulting sagittal moment in the knee was an external flexion moment, whereas during GMs an external extension moment was present. Importantly, no larger sagittal knee joint moments were observed when using a heavier weight on the barbell during DLs, but higher sagittal moments were found at the hip and L4/L5. Compared to GMs, DLs produced a lower sagittal moment at the hip using 25% BW while generating the same sagittal moment at L4/L5. Conclusions The two exercises exhibited different motion patterns for the lower extremities but not for the trunk. To strengthen the hip while including a large range of motion, DLs using 50% BW should be chosen. Due to their ability to avoid knee flexion or a knee flexion moment, GMs should be preferentially chosen over DLs as ACL rupture prevention exercises. Here, in order to shift the hamstring to quadriceps ratio towards the hamstrings, GMs should be favoured ahead of DLs using 50% BW before DLs using 25% BW. PMID:24314057
Geometry and Kinematics of the High Zagros Belt (Iran)
NASA Astrophysics Data System (ADS)
Tavakoli, S.; Frizon de lamotte, D.; Ringenbach, J.-C.; Ballard, J.-F.
2012-04-01
The High Zagros Belt (HZB) is the most internal part of the wider Zagros Fold-Thrust Belt (ZFTB). It is an elevated domain (up to 4400 m) bounded to the south by the High Zagros Fault (HZF), which we define as the southernmost principal thrust-fault carrying out Lower Paleozoic strata over Mesozoic or Cenozoic rocks. To the north the HZB is bounded either by the Main Zagros Thrust (MZT), which corresponds to the fundamental limit (Neo-Tethys suture) with the internal Sanandaj-Sirjan Zone (pertaining to the Eurasian Plate) or by the front of the discontinuous "Crush Zone" (CZ) in which are exposed rocks coming from the distal margin of the former Neo-Tethys Ocean. Following our definition the HZB, exists in two disconnected prominent and elevated domains: the Central and Eastern High Zagros (CHZB& EHZB) respectively. The CHZB is a funnel shape region with a length of about 450 Km and variable width between 40 to 80 Km broadening from the NW to the SE. We will present a new tectonic map of this region and four new balanced cross-sections with associated kinematic models. From a geometric point of view, we show the existence of an important intermediate décollement level located within Ordovician-Silurian shale. This décollement, together with the well-known Hormuz basal décollement, allows the development of duplexes confined at depth in the core of the anticlines. For the kinematics, we confirm a two-steps model with a first thin-skinned phase leading to the development of large detachment folds developed over the Hormuz salt layer. At this stage the different intermediate décollement levels were activated. The second phase is thick-skinned and corresponds to the inversion of deep-seated basement faults and occurrence oflarge out-of-sequence thrusts,responsible for the exhumation of Lower Paleozoic rocks. The Eastern High Zagros Belt is a more restricted area composed by three giant anticlines, namely the Gakhum, Faraghan and Kue-e-Khush anticlines. Here also, we will present a new tectonic map and balanced-sections crossing the three anticlines. From a geometric point of view, the most striking structure is a major back-thrust floored by Ordovician shale in the Faraghan anticline. We will show that this back-thrust developed during an early thin-skinned phase of deformation and is subsequently cut out by basement faults. Finally, we will present an integrated kinematic model for the whole HZB.
Controlling chaotic robots with kinematical redundancy
NASA Astrophysics Data System (ADS)
Li, Li; Liu, Zhaohui; Zhang, Dengcai; Zhang, H.
2006-03-01
Robots with kinematical redundancy under the pseudoinverse control exhibit undesirable chaotic joint motion, which leads to erratic behaviors. In this study, we used the delayed feedback method to control chaotic motions of a planar 3R rigid and a planar 3R flexible redundant robot under the pseudoinverse control when the end-effector traces a closed-path repeatedly in the work space. It was demonstrated that chaotic motions of robots with kinematical redundancy can be turned into regular motion when the delayed feedback method was applied with some appropriate parameters. This study provides a new insight helpful to solve the repeatability problem of redundant manipulators.
Kinematic Distances of Galactic Planetary Nebulae
NASA Astrophysics Data System (ADS)
Yang, A. Y.; Tian, W. W.; Zhu, H.; Leahy, D. A.; Wu, D.
2016-03-01
We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.
Hexapod kinematics for secondary mirror aberration control .
NASA Astrophysics Data System (ADS)
Schipani, P.
This work deals with active correction of the aberrations in a telescope by moving the secondary mirror. A special attention is dedicated to the case of a secondary mirror whose motions are controlled by a 6-6 Stewart Platform (generally called by astronomers simply "hexapod", even if this term is more general). The kinematics of the device is studied. The non trivial forward kinematics problem is solved by an iterative algorithm fitting the necessities of an active optics system and fast enough to be used in a closed loop feedback control.
Transfer reactions in inverse kinematics: An experimental approach for fission investigations
NASA Astrophysics Data System (ADS)
Rodríguez-Tajes, C.; Farget, F.; Derkx, X.; Caamaño, M.; Delaune, O.; Schmidt, K.-H.; Clément, E.; Dijon, A.; Heinz, A.; Roger, T.; Audouin, L.; Benlliure, J.; Casarejos, E.; Cortina, D.; Doré, D.; Fernández-Domínguez, B.; Jacquot, B.; Jurado, B.; Navin, A.; Paradela, C.; Ramos, D.; Romain, P.; Salsac, M. D.; Schmitt, C.
2014-02-01
Inelastic and multinucleon transfer reactions between a 238U beam, accelerated at 6.14 MeV/u, and a 12C target were used for the production of neutron-rich, fissioning systems from U to Cm. A Si telescope, devoted to the detection of the targetlike nuclei, provided a characterization of the fissioning systems in atomic and mass numbers, as well as in excitation energy. Cross sections and angular and excitation-energy distributions were measured for the inelastic and transfer channels. Possible excitations of the targetlike nuclei were experimentally investigated for the first time, by means of γ-ray measurements. The decays from the first excited states of 12C, 11B, and 10Be were observed with probabilities of 0.12-0.14, while no evidence for the population of higher-lying states was found. Moreover, the fission probabilities of 238U, 239Np and 240,241,242Pu and 244Cm were determined as a function of the excitation energy.
NASA Astrophysics Data System (ADS)
Deverchere, J.; Yelles, K.; Bracene, R.; Mercier de Lepinay, B. F.; Cattaneo, A.; Medaouri, M.; Gaullier, V.; Babonneau, N.; Ratzov, G.; Boudiaf, A.; Graindorge, D.; Kherroubi, A.; Strzerzynski, P. H.; Authemayou, C.; Djellit, H.; Heddar, A.; Maradja'03; Maradja-Samra'05 Scientific Teams
2011-12-01
The reasons to study the Algerian margin (Western Mediterranean) are at least threefold: (1) the seismic hazard offshore is obviously present but unconstrained, (2) the way the opening of the Algerian basin occurred is highly debated, and (3) this margin represents one of the rare examples on Earth of an ongoing subduction inception. We present an overview of recent findings on the tectonic evolution of this margin, where most of the plate convergence between Africa and Europe is taken up today, mostly from cruises MARADJA and MARADJA2/SAMRA led by joint Algerian and French teams. Large, overlapping active thrust faults and folds apparently dominate the seismotectonic pattern from the Atlas domain on land to the foot of the margin offshore, with a clear segmentation. Strain is distributed across the whole area, with a significant part of the relative plate convergence taken up offshore. Fault activity offshore is tenuous and most often indirect (Plio-Quaternary growth strata, folds, uplifted basins, scars and slope breaks). Along the eastern margin, faults form stepwise, en-échelon systems on the slope and in the deep basin. Some thrusts identified turn to fault-propagation folds at the sub-surface. Thrusts interact with the sediment flux, Messinian salt and seafloor currents, forming complex structures at deep-sea fans and scarps or scars on the main slope breaks. The 2003 Mw 6.9 Boumerdes rupture is correlated segmented cumulative scarps on the slope and at the foot of the margin. Using various VHR seismic reflection and coring analyses, we show that the record of turbidite deposition since ca. 10.000 yrs can be identified and correlated over long distances within or across large segments of the margin affected by the 1954, 1980 and 2003 events. The consequences in term of earthquake size and recovery of their recurrences (identification of paleo-events) are explored and discussed. Although we cannot associate the triggering of large turbidity currents to a given fault, we find that the Algerian margin gathers favourable conditions to reconstruct times series of turbidites associated to significant earthquakes. Finally, we show that the structures inherited from the Algerian basin opening and from the Alpine belt building (AlKaPeCa blocks migration and collision) determine for a large part the size, style and location of this strain pattern. The overall geometry indicates the predominance of back thrusts, implying underthrusting of the young oceanic crust, although large dextral strike-slip structures may guide deformation at some places on land. The recent (probably less than 3 Ma) reactivation of the Algerian margin is strongly influenced by the subduction of the Tethyan Maghrebian ocean, implying not only an important roll-back of the slab, but also strong thermal, magmatic and isostatic effects of the slab evolution at depth.
Inverse-kinematics one-neutron pickup with fast rare-isotope beams
Gade, A.; Baugher, T.; Brown, B. A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Stroberg, S. R.; Tostevin, J. A.; Bazin, D.; Campbell, C. M.; Grinyer, G. F.; Weisshaar, D.; Winkler, R.; Meierbachtol, K.; Walsh, K. A.
2011-05-15
Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast {sup 22}Mg secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and {gamma}-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the {sup 12}C({sup 22}Mg,{sup 23}Mg+{gamma})X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound {sup 11}C target residues. The corresponding reaction on the {sup 9}Be target seems to largely leave the {sup 8}Be residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-l (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
Inverse-kinematics proton scattering from 46Ar with a liquid hydrogen target and GRETINA
NASA Astrophysics Data System (ADS)
Glowacki, Matt; Ursinus College Nuclear Structure Group Team
2013-10-01
The Ursinus College nuclear structure group performed an experiment at the National Superconducting Cyclotron Laboratory at Michigan State University in May. We sent a super-cocktail beam of exotic nuclei through a liquid hydrogen target that was cooled to 16 K. We measured these gamma rays in coincidence with outgoing beam nuclei. Then, we compared the gamma-ray spectra with simulations to determine gamma-ray intensities, which are related to the cross sections of populating collective excited states of the nucleus in these collisions. These will help us better understand nuclear shell structure. My work is focused on 46Ar, a test case for which a similar measurement for cross sections have already been made. Preliminary results will be presented.
Transfer reaction studies in inverse kinematics with the magnetic spectrometer PRISMA
NASA Astrophysics Data System (ADS)
Corradi, L.
2015-01-01
The large solid angle magnetic spectrometers, in combination with large gamma arrays, allowed to perform reaction mechanism and nuclear structure studies in different regions of the nuclear chart, especially in the neutron-rich direction. By studying transfer of multiple pairs valuable information on nucleon-nucleon correlations can be derived, especially from measurements performed below the Coulomb barrier. There is growing interest in the study of the properties of the heavy binary partner, in the Pb and in the actinides regions, crucial also for astrophysics.
Inverse-kinematics one-neutron pickup with fast rare-isotope beams
NASA Astrophysics Data System (ADS)
Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Campbell, C. M.; Glasmacher, T.; Grinyer, G. F.; McDaniel, S.; Meierbachtol, K.; Ratkiewicz, A.; Stroberg, S. R.; Walsh, K. A.; Weisshaar, D.; Winkler, R.
2011-05-01
Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast Mg22 secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and γ-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the 12C(22Mg,23Mg+γ)X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound C11 target residues. The corresponding reaction on the Be9 target seems to largely leave the Be8 residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-ℓ (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session. PMID:26368131
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session. PMID:26368131
Calibration of parallel kinematic devices using sequential determination of kinematic parameters
JOKIEL JR.,BERNHARD; BIEG,LOTHAR F.; ZIEGERT,JOHN C.
2000-04-06
In PKM Machines, the Cartesian position and orientation of the tool point carried on the platform is obtained from a kinematic model of the particular machine. Accurate positioning of these machines relies on the accurate knowledge of the parameters of the kinematic model unique to the particular machine. The parameters in the kinematic model include the spatial locations of the joint centers on the machine base and moving platform, the initial strut lengths, and the strut displacements. The strut displacements are readily obtained from sensors on the machine. However, the remaining kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. The size and complexity of these machines generally makes it difficult and somewhat undesirable to determine the remaining kinematic parameters by direct inspection such as in a coordinate measuring machine. In order for PKMs to be useful for precision positioning applications, techniques must be developed to quickly calibrate the machine by determining the kinematic parameters without disassembly of the machine. A number of authors have reported techniques for calibration of PKMs (Soons, Masory, Zhuang et. al., Ropponen). In two other papers, the authors have reported on work recently completed by the University of Florida and Sandia National Laboratories on calibration of PKMs, which describes a new technique to sequentially determine the kinematic parameters of an assembled parallel kinematic device. The technique described is intended to be used with a spatial coordinate measuring device such as a portable articulated CMM measuring arm (Romer, Faro, etc.), a Laser Ball Bar (LBB), or a laser tracker (SMX< API, etc.). The material to be presented is as follows: (1) methods to identify the kinematic parameters of 6--6 variant Stewart platform manipulators including joint center locations relative to the workable and spindle nose, and initial strut lengths, (2) and example of the application of the method, and (3) results from the application of the technique.
Hierarchical Bayesian Inversion for the Centroid Moment Tensor
NASA Astrophysics Data System (ADS)
Mustac, M.; Tkalcic, H.
2014-12-01
Kinematic point source inversions using data from complex tectonic settings (e.g. geothermal or volcanic areas and mines) often result in large non-double-couple components. Examining events with mechanisms more complex than shear motion on a planar fault requires a sophisticated inversion method. We have developed a technique within the probabilistic Bayesian framework that combines previous knowledge about the mechanism with the information from the data and results in a posterior probability distribution for the model parameters. It is capable of yielding parameter uncertainties, which cannot be analytically calculated for a non-linear inversion that includes the source location. The code uses time-series of displacements of regional earthquakes and explosions with moderate magnitudes to compute the centroid location and the seismic moment tensor. The noise is also treated as an unknown in the inversion, in order to determine the level of data fit. As a result, the model complexity (i.e. the contribution of isotropic and compensated linear vector dipole components) is determined by the data themself. Furthermore, the noise weights the contribution of each waveform and the noise covariance matrix accounts for both observational and theoretical errors. The code has been extensively tested in synthetic experiments with a variety of focal mechanisms and different types of noise added to synthetic waveforms. It showed fast convergence of the centroid location, accompanied with thorough sampling of the moment tensor parameters leading to narrow posterior distributions. Subsequently, it is being applied to waveforms from earthquakes that occurred in various tectonic environments.
Kinematic time migration and demigration of reflections in pre-stack seismic data
NASA Astrophysics Data System (ADS)
Iversen, Einar; Tygel, Martin; Ursin, Bjørn; de Hoop, Maarten V.
2012-06-01
In kinematic time migration one maps the time, slope and curvature characteristics of seismic reflection events, referred to as reflection-time parameters, from the recording domain of the seismic data to the time-migration domain. The inverse process is kinematic time demigration. We generalize kinematic time migration and demigration in several respects: the reflection-time parameters may belong to arbitrary source-receiver offsets; local heterogeneity of the time-migration velocity model is accounted for; the mapping operations do not depend specifically on the type of diffraction-time function and the parametrization of the velocity model. Time-migration and time-demigration spreading matrices are obtained as byproducts of the mapping operations. These matrices yield a paraxial expression for the connection between midpoint and image-point gather locations of mapped reflection events. Also, we obtain the time-migration counterpart of the so-called second duality theorem in Kirchhoff depth migration. Diffractions and reflections are assumed to be without conversion, and sources and receivers are located along the same measurement surface. Our framework enables the identification of a full set of first- and second-order reflection-time parameters from time-migrated seismic data followed by a kinematic demigration to the recording domain. The idea of this route is to 'undo' eventual errors introduced by time migration and result in reliable estimation of recording-domain invariants, that is, parameters insensitive to the time-migration velocity model. The developed concepts associated with time migration are of interest in reflection seismic and global earth applications. Two numerical examples demonstrate the potential of kinematic time migration and demigration techniques in seismic time imaging and velocity-model building.
A kinematic model of Kármán gaiting in rainbow trout.
Akanyeti, Otar; Liao, James C
2013-12-15
A mechanistic understanding of how fishes swim in unsteady flows is challenging despite its prevalence in nature. Previous kinematic studies of fish Kármán gaiting in a vortex street behind a cylinder only report time-averaged measurements, precluding our ability to formally describe motions on a cycle-by-cycle basis. Here we present the first analytical model that describes the swimming kinematics of Kármán gaiting trout with 70-90% accuracy. We found that body bending kinematics can be modelled with a travelling wave equation, which has also been shown to accurately model free-stream swimming kinematics. However, free-stream swimming and Kármán gaiting are separated in the parameter space; the amplitude, wavelength and frequency values of the traveling wave equation are substantially different for each behavior. During Kármán gaiting, the wave is initiated at the body center, which is 0.2L (where L is total body length) further down the body compared with the initiation point in free-stream swimming. The wave travels with a constant speed, which is higher than the nominal flow speed just as in free-stream swimming. In addition to undulation, we observed that Kármán gaiting fish also exhibit substantial lateral translations and body rotations, which can constitute up to 75% of the behavior. These motions are periodic and their frequencies also match the vortex shedding frequency. There is an inverse correlation between head angle and body angle: when the body rotates in one direction, the head of the fish turns into the opposite direction. Our kinematic model mathematically describes how fish swim in vortical flows in real time and provides a platform to better understand the effects of flow variations as well as the contribution of muscle activity during corrective motions. PMID:24115054
A kinematic model of Kármán gaiting in rainbow trout
Akanyeti, Otar; Liao, James C.
2013-01-01
SUMMARY A mechanistic understanding of how fishes swim in unsteady flows is challenging despite its prevalence in nature. Previous kinematic studies of fish Kármán gaiting in a vortex street behind a cylinder only report time-averaged measurements, precluding our ability to formally describe motions on a cycle-by-cycle basis. Here we present the first analytical model that describes the swimming kinematics of Kármán gaiting trout with 70–90% accuracy. We found that body bending kinematics can be modelled with a travelling wave equation, which has also been shown to accurately model free-stream swimming kinematics. However, free-stream swimming and Kármán gaiting are separated in the parameter space; the amplitude, wavelength and frequency values of the traveling wave equation are substantially different for each behavior. During Kármán gaiting, the wave is initiated at the body center, which is 0.2L (where L is total body length) further down the body compared with the initiation point in free-stream swimming. The wave travels with a constant speed, which is higher than the nominal flow speed just as in free-stream swimming. In addition to undulation, we observed that Kármán gaiting fish also exhibit substantial lateral translations and body rotations, which can constitute up to 75% of the behavior. These motions are periodic and their frequencies also match the vortex shedding frequency. There is an inverse correlation between head angle and body angle: when the body rotates in one direction, the head of the fish turns into the opposite direction. Our kinematic model mathematically describes how fish swim in vortical flows in real time and provides a platform to better understand the effects of flow variations as well as the contribution of muscle activity during corrective motions. PMID:24115054
NASA Astrophysics Data System (ADS)
Perry, C.; van der Beek, P.; Braun, J.; Robert, X.
2009-12-01
Detrital thermochronometer data collected within foreland basins record the topographic, fault kinematic and erosional evolution of the source area and are especially useful in constraining the temporal evolution of orogen-scale exhumation rates. We use a modified version of the transient 3-D thermo-kinematic model Pecube (e.g., Braun, 2003) to predict thermal structure, exhumation pathways and detrital age distributions for the low temperature zircon fission track (ZFT) and muscovite Ar/Ar (MAr) thermochronometers. Multiple faults with variable geometry and velocity are constructed within the model, and the effect of fault kinematics on the thermal field through which rock particles cool is tested. Measured ZFT and MAr grain-age distributions from Mio-Pliocene Siwalik foreland basin sediments in central Nepal are compared to those predicted by the numerical model to assess the effect of potential kinematic variations of the central Himalaya between 20 Ma and the present-day. Recent studies suggest a deceleration of the convergence rate of India and Asia between 20 and 10 Ma (e.g., Molnar & Stock, 2009), which may correspond to a distinct decrease in measured exhumation rates in central Nepal around 16 Ma (e.g., Bernet et al, 2006). Inversions are carried out to determine the distribution of fault velocities, convergence rates and thermal parameters that best fit the detrital datasets in an attempt to constrain the thermo-kinematic model for central Nepal Himalaya.
NASA Astrophysics Data System (ADS)
Suortti, Pekka
2016-04-01
A novel concept for a high resolution Compton spectrometer is introduced. 88 keV radiation from an Inverse Compton Compact Source is focused using crossed cylindrically bent Laue-type Si perfect crystals, and dispersed on the sample with a constant energy gradient. Dispersion is compensated exactly at a Ge crystal analyzer, so that the same wavelength shift is observed for all wavelengths of the incident beam. The ThomX source is used as a concrete example. Detailed dimensions and flux estimates at successive locations of the spectrometer are given, and the performance is compared with the dispersion compensating spectrometer at ID15 of the ESRF. The momentum resolution is better than 0.1 atomic units in both cases. The intensity of scattering with the compact source is an order of magnitude smaller, but still adequate for high resolution Compton profile measurements.
NASA Technical Reports Server (NTRS)
Ostro, Steven J.; Connelly, Robert
1987-01-01
One of the most fundamental physical properties of any asteroid is its shape. Lightcurves provide the only source of shape information for most asteroids. Unfortunately, the functional form of a lightcurve is determined by the viewing/illumination geometry and the asteroid's light scattering characteristics as well as its shape, and in general it is impossible to determine an asteroid's shape from lightcurves. A technique called convex-profile inversion (CPI) that obtains a convex profile, P, from any lightcurve is introduced. If certain ideal conditions are satisfied, then P is an estimator for the asteroid's mean cross section, C, a convex set defined as the average of all cross sections C(z) cut by planes a distance z above the asteroids's equatorial plane. C is therefore a 2-D average of the asteroid's 3-D shape.
Inverse magnetorheological fluids.
Rodríguez-Arco, L; López-López, M T; Zubarev, A Y; Gdula, K; Durán, J D G
2014-09-01
We report a new kind of field-responsive fluid consisting of suspensions of diamagnetic (DM) and ferromagnetic (FM) microparticles in ferrofluids. We designate them as inverse magnetorheological (IMR) fluids for analogy with inverse ferrofluids (IFFs). Observations on the particle self-assembly in IMR fluids upon magnetic field application showed that DM and FM microparticles were assembled into alternating chains oriented along the field direction. We explain such assembly on the basis of the dipolar interaction energy between particles. We also present results on the rheological properties of IMR fluids and, for comparison, those of IFFs and bidispersed magnetorheological (MR) fluids. Interestingly, we found that upon magnetic field application, the rheological properties of IMR fluids were enhanced with respect to bidispersed MR fluids with the same FM particle concentration, by an amount greater than the sum of the isolated contribution of DM particles. Furthermore, the field-induced yield stress was moderately increased when up to 30% of the total FM particle content was replaced with DM particles. Beyond this point, the dependence of the yield stress on the DM content was non-monotonic, as expected for FM concentrations decreasing to zero. We explain these synergistic results by two separate phenomena: the formation of exclusion areas for FM particles due to the perturbation of the magnetic field by DM particles and the dipole-dipole interaction between DM and FM particles, which enhances the field-induced structures. Based on the second phenomenon, we present a theoretical model for the yield stress that semi-quantitatively predicts the experimental results. PMID:25022363
Compton Effect with Non-Relativistic Kinematics
ERIC Educational Resources Information Center
Shivalingaswamy, T.; Kagali, B. A.
2011-01-01
In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In
The kinematic algebras from the scattering equations
NASA Astrophysics Data System (ADS)
Monteiro, Ricardo; O'Connell, Donal
2014-03-01
We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.
Kinematic Measurements from YouTube Videos
ERIC Educational Resources Information Center
Ruiz, Michael J.
2009-01-01
Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…
Compound nucleus studies withy reverse kinematics
Moretto, L.G.
1985-06-01
Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs.
Chemical tagging of stellar kinematic groups
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; Montes, D.; Gonzlez Hernndez, J. I.
2013-05-01
Stellar Kinematic Groups are kinematical coherent groups of stars which might share a common origin. These groups spread through the Galaxy over time due to tidal effects caused by galactic rotation and disc heating, however the chemical information survives. The aim of chemical tagging is to show that abundances of every chemical element must be homogeneus among candidate members. We have studied the case of the Hyades Supercluster and the Ursa Major Moving Group for kinematically selected FGK stars, based on high-resolution spectroscopic observations obtained at the 1.2 m Mercator Telescope with the HERMES Spectrograph. Stellar atmospheric parameters (T_{eff}, log{g}, ? and [Fe/H]) have been determined using an own-implemented automatic code (StePar) which makes use of the sensibility from iron EWs measured in the spectra. We have derived the chemical abundances of several elements and their [X/Fe] ratios. Thus, we finally perform a careful differential abundance analysis using a known member of each cluster as a reference star, with the aim to clarify the origin of these kinematical groups.
Computer Software & Programing Utilization in Kinematics.
ERIC Educational Resources Information Center
Zahraee, Mohammad A.; And Others
This paper discusses two software packages used in kinematics courses at Purdue University, Calumet (Indiana) and some algorithms written by students for cam design. The first software package, 4BAR, requires the user to define the particular four bar linkage in terms of lengths of the individual links and the angle and distance to the coupler…
Internal kinematics of H II galaxies
NASA Astrophysics Data System (ADS)
Carvalho, M. S.; Plana, H.
2014-10-01
H II galaxies are dwarf galaxies characterized by high stellar formation rate with spectrum dominated by strong emission lines, superimposed on a weak stellar continuum. The study of internal kinematics of these objects may be realized using the observed emission lines. Based on these lines we obtained monochromatic intensity, velocity dispersion and radial velocity maps. We have studied the internal kinematics of two H II galaxies: UM 461 and CTS 1020, observed with the Gemini South telescope using the GMOS instrument equipped with an IFU. We aim to investigate the origin of the line-broadening observed on emission lines from the use of kinematics diagnostic diagrams: I vs σ, I vs V, eV vs σ. The analysis of these diagrams was based on the Cometary Stirring Model that allows us to identify, for example, the presence of expanding shells and stellar winds. We found that radial velocity and velocity dispersion maps, for each galaxy, show a different kinematical pattern, although both are H II galaxies. CTS 1020 shows a velocity gradient consistent with a rotating disc with a velocity amplitude of ˜ 40 km s^{-1}. On the other hand UM 461 does not exhibit a typical pattern of a rotating system, despite of the observed velocity gradient in both emission nuclei.
ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS
Temmer, M.; Veronig, A. M.
2009-09-10
The issue whether Moreton waves are flare-ignited or coronal mass ejection (CME)-driven, or a combination of both, is still a matter of debate. We develop an analytical model describing the evolution of a large-amplitude coronal wave emitted by the expansion of a circular source surface in order to mimic the evolution of a Moreton wave. The model results are confronted with observations of a strong Moreton wave observed in association with the X3.8/3B flare/CME event from 2005 January 17. Using different input parameters for the expansion of the source region, either derived from the real CME observations (assuming that the upward moving CME drives the wave), or synthetically generated scenarios (expanding flare region, lateral expansion of the CME flanks), we calculate the kinematics of the associated Moreton wave signature. Those model input parameters are determined which fit the observed Moreton wave kinematics best. Using the measured kinematics of the upward moving CME as the model input, we are not able to reproduce the observed Moreton wave kinematics. The observations of the Moreton wave can be reproduced only by applying a strong and impulsive acceleration for the source region expansion acting in a piston mechanism scenario. Based on these results we propose that the expansion of the flaring region or the lateral expansion of the CME flanks is more likely the driver of the Moreton wave than the upward moving CME front.
Constrained tri-sphere kinematic positioning system
Viola, Robert J
2010-12-14
A scalable and adaptable, six-degree-of-freedom, kinematic positioning system is described. The system can position objects supported on top of, or suspended from, jacks comprising constrained joints. The system is compatible with extreme low temperature or high vacuum environments. When constant adjustment is not required a removable motor unit is available.
KINEMATICS OF STELLAR POPULATIONS IN POSTSTARBURST GALAXIES
Hiner, Kyle D.; Canalizo, Gabriela E-mail: khiner@astro-udec.cl
2015-01-20
Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.
Kinematics of Stellar Populations in Poststarburst Galaxies
NASA Astrophysics Data System (ADS)
Hiner, Kyle D.; Canalizo, Gabriela
2015-01-01
Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.
Kinematic Measurements from YouTube Videos
ERIC Educational Resources Information Center
Ruiz, Michael J.
2009-01-01
Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.
Friction-based design of kinematic couplings
Hale, L C
1998-07-30
Friction affects several aspects important to the design of kinematic couplings, but particularly the ability to reach its centered position is fundamental (In this paper, the term kinematic coupling refers to any connection device based on pairs of contacting surfaces that provide six constraints in an ideal sense). It becomes centered when all pairs of contacting surfaces are fully seated even though a small uncertainty may exist about the exact center where potential energy is minimum. For many applications, centering ability is a good indicator for optimizing the coupling design. Typically, the coupling design process has been largely heuristic based on a few guidelines [Slocum, 1992]. Several simple kinematic couplings (for example, a symmetric three-vee coupling) are compared for centering ability using closed-form equations. More general configurations lacking obvious symmetries are difficult to model in this way. A unique kinematic coupling for large interchangeable optics assemblies in the National Ignition Facility motivated the development of a computer program to optimize centering ability. However, space limits the description of the program to the basic algorithm. Currently the program is written in MathcadTM Plus 6 and is available upon request.
Action Experience Changes Attention to Kinematic Cues
Filippi, Courtney A.; Woodward, Amanda L.
2016-01-01
The current study used remote corneal reflection eye-tracking to examine the relationship between motor experience and action anticipation in 13-months-old infants. To measure online anticipation of actions infants watched videos where the actor’s hand provided kinematic information (in its orientation) about the type of object that the actor was going to reach for. The actor’s hand orientation either matched the orientation of a rod (congruent cue) or did not match the orientation of the rod (incongruent cue). To examine relations between motor experience and action anticipation, we used a 2 (reach first vs. observe first) × 2 (congruent kinematic cue vs. incongruent kinematic cue) between-subjects design. We show that 13-months-old infants in the observe first condition spontaneously generate rapid online visual predictions to congruent hand orientation cues and do not visually anticipate when presented incongruent cues. We further demonstrate that the speed that these infants generate predictions to congruent motor cues is correlated with their own ability to pre-shape their hands. Finally, we demonstrate that following reaching experience, infants generate rapid predictions to both congruent and incongruent hand shape cues—suggesting that short-term experience changes attention to kinematics. PMID:26913012
Compton Effect with Non-Relativistic Kinematics
ERIC Educational Resources Information Center
Shivalingaswamy, T.; Kagali, B. A.
2011-01-01
In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…
Stellar Archeology : Chemical Compositions and Kinematics
NASA Astrophysics Data System (ADS)
Stringer, Bayard; Carney, Bruce
2011-10-01
The λ-CDM model of cosmology predicts a hierarchical formation mechanism of galaxies, with smaller units accreting to construct larger ones. The detection of merger events in external galaxies is well known, and the detection and analysis of merger remnants in the Milky Way is a key component in piecing together the history of our home galaxy. Statistical analyses of stellar kinematics in the solar neighborhood reveal much kinematic structure in the Galactic disk, but it is not readily apparent whether this structure is extragalactic or dynamical in origin. The most prominent structures are quickly identified as well known moving groups of stars such as the Hercules, Sirius, and Hyades stellar streams. Additionally, a subset of kinematically selected stars observed at McDonald Observatory are members of a stellar stream putatively identified by Amina Helmi as part of a merger remnant. A semi-automated, high resolution spectral analysis is applied to 504 F and G dwarf stars, and the results are amenable to Kolmogorov-Smirnov membership hypothesis testing. In all four cases, the kinematic streams have chemistries roughly consistent with the Galactic disk trends, although the statistical analyses suggest some subtle differences.
Lower extremity kinematics of athletics curve sprinting.
Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang
2015-01-01
Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7, right: 2.6, straight: 6.6), hip adduction (left: 13.8, right: 5.5, straight: 8.8) and hip external rotation (left: 21.6, right: 12.9, straight: 16.7) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention. PMID:25495196
A new interpretation of kinematic stormflow generation
NASA Astrophysics Data System (ADS)
Williams, A. G.; Dowd, J. F.; Meyles, E. W.
2002-10-01
The paper reviews a number of possible fast and slow hydrological flow mechanisms to account for rapid runoff generation within a catchment. A new interpretation of the kinematic wave process is proposed which develops some of these concepts to explain rapid subsurface flow from a watershed. Evidence for the process is provided by the results from a laboratory soil core experiment and an investigation of the hydrology of a Dartmoor hillslope. A tension response was monitored in the soil core in which pressure waves were propagated downwards and expelled water from the base. The transmission of the wave down the core was considerably faster than the movement of a chloride tracer. The concept of this kinematic wave process and associated water flux was then extended to the Dartmoor watershed. Raindrops reaching the wet soil surface caused pressure waves to travel laterally downslope. During large rainstorms, the hillslope became hydrologically highly connected and the pressure waves forced existing water from seepage faces into the saturated area adjacent to the stream, contributing substantially to the stream discharge. A kinematic contributing area was defined, as determined by both rainfall-runoff ratios and geostatistical analyses of hillslope soil moisture contents, which extended over at least 65% of the catchment area. This kinematic wave theory is consistent with results of translatory flow and macropore flow models, and stable isotope field studies of old/new water.
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Kinematic and Spatial Substructure in NGC 2264
NASA Astrophysics Data System (ADS)
Tobin, John J.; Hartmann, Lee; Fűrész, Gabor; Hsu, Wen-Hsin; Mateo, Mario
2015-04-01
We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 m MMT and Magellan telescopes. We report radial velocities for 695 stars, of which approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from Fűrész et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular (13CO) gas. The detection of Lithium absorption and/or infrared excesses in this blueshifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Kinematic Optimization in Birds, Bats and Ornithopters
NASA Astrophysics Data System (ADS)
Reichert, Todd
Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters). To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition. In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics. The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.
The Maiden Voyage of a Kinematics Robot
NASA Astrophysics Data System (ADS)
Greenwolfe, Matthew L.
2015-04-01
In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
ERIC Educational Resources Information Center
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
ERIC Educational Resources Information Center
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak
Methodological analysis of finite helical axis behavior in cervical kinematics.
Cescon, Corrado; Cattrysse, Erik; Barbero, Marco
2014-10-01
Although a far more stable approach compared to the six degrees of freedom analysis, the finite helical axis (FHA) struggles with interpretational difficulties among health professionals. The analysis of the 3D-motion axis has been used in clinical studies, but mostly limited to qualitative analysis. The aim of this study is to introduce a novel approach for the quantification of the FHA behavior and to investigate the effect of noise and angle intervals on the estimation of FHA parameters. A simulation of body movement has been performed introducing Gaussian noise on position and orientation of a virtual sensor showing linear relation between the simulated noise and the error in the corresponding parameter. FHA axis behavior was determined by calculating the intersection points of the FHA with a number of planes perpendicular to the FHA using the Convex Hull (CH) technique. The angle between the FHA and each of the IHA was also computed and its distribution was also analyzed. Input noise has an inversely proportional relationship with the angle steps of FHA estimation. The proposed FHA quantification approach can be useful to provide new approaches to researchers and to improve insight for the clinician in order to better understand joint kinematics. PMID:24916306
Parallel computation of geometry control in adaptive truss structures
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, S.; Wada, B. K.
1992-01-01
The fast computation of geometry control in adaptive truss structures involves two distinct parts: the efficient integration of the inverse kinematic differential equations that govern the geometry control and the fast computation of the Jacobian, which appears on the right-hand-side of the inverse kinematic equations. This paper present an efficient parallel implementation of the Jacobian computation on an MIMD machine. Large speedup from the parallel implementation is obtained, which reduces the Jacobian computation to an O(M-squared/n) procedure on an n-processor machine, where M is the number of members in the adaptive truss. The parallel algorithm given here is a good candidate for on-line geometry control of adaptive structures using attached processors.
Inverting Source Time Functions to determine the fault kinematic characteristics
NASA Astrophysics Data System (ADS)
Toraldo Serra, E. M.; Orefice, A.; Emolo, A.; Zollo, A.
2012-04-01
In seismology, the analisys of source kinematic parameters (slip-rate and rupture velocity ecc.) is a fundamental way to study the time-history of the rupture process that occurs during a seismic event. To this end various method to reconstruct source kinematics models from the inversion of seismogram have been proposed during the time. In this work we present an alternative methodology to infer source models. We aim, indeed, at obtaining the slip and rupture velocity distribution on the fault plane inverting the apparent Source Time Functions (STFs). This kind of analysis, rather than a classical inversion based on a direct study of seismograms recorded at various stations, may have several advantages. A major advantage is related to the possibility to overcome in the forward modeling any problem related to the computation of the Green's function, as the choice of the correct and reliable propagation model. To retrieve reliable STF, we apply the stabilized deconvolution technique proposed by Vallée [2004]. Based on Empirical Green's Functions (EGF) approach, this technique integrates in the deconvolution process four physical constraints on the STFs, that are causality, positivity, limited duration, and equal area. In any case the EGF approach suffers from certain limitations related to the selection of valuable Empirical Green Function, especially for small events. The approach used to invert the STFs is based on the technique of Emolo and Zollo [2005] to invert strong-motion data. In particular, the slip and the rupture velocity values are specified only at a set of control-points on the fault plane and their distributions on the whole fault are then obtained by a bicubic interpolation. The final slip and rupture velocity values at the fault-grid nodes are then determined by searching for the maximum of a fitness function (based of comparison between real and synthetic STFs) by using the Genetic Algorithm. The number of control-points is progressively increased to move from a high- to low-wavelength description of kinematic parameters on the fault. The optimal model parameter set is chosen according to Akaike Information Criterion [1974]. We present results for some synthetic tests and an application to a seismic events occurred during the 2009 L'Aquila (Central Italy) seismic sequence. In particular, we analyzed a small aftershock occurred on 2009 April 9, at 04:43:09 (UTC) characterized by a seismic moment of 1.07e+15 Nm (Mw 4). We found: a slip distribution, with an average value of 0.8 cm, characterized by a main slip patch located NW of the hypocenter and a rupture velocity distribution (mean value of 2.3 km/s) with a strong acceleration in the same direction.
Modular theory of inverse systems
NASA Technical Reports Server (NTRS)
1979-01-01
The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.
Inverse problem in hydrogeology
NASA Astrophysics Data System (ADS)
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le cas dans d'autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l'aquifère. Il est montré que les méthodes d'évaluation des paramètres actuels ne diffèrent pas si ce n'est dans les détails des calculs informatiques. Il est montré qu'il existe une large panoplie de techniques d'inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d'informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l'incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée. Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de enten dimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables alusuario, acomodamiento de variabilidad a través de geoestadística, incorporación de información geológica y diferentes tipos de datos (temperatura, presencia y concentración de isótopos, edad, etc), explicación apropiada de incertidumbre, etc. A pesar de esto, aún con los códigos existentes, la calibración automática facilita enormemente la tarea de modelado. Por lo tanto, se sostiene que su uso debería de convertirse en práctica standard.
NASA Astrophysics Data System (ADS)
Kwon, Myoung Jae
Electromagnetic methods are effective complementary tools, when combined with seismic exploration, for the delineation of a hydrocarbon reservoir, because electromagnetic methods provide extra information about, for example, electric conductivity, which is an important property for the economic evaluation of reservoirs. In this study, we analyze unconventional approaches of electromagnetic inversion: hierarchical Bayesian inversion and inverse scattering series. We apply the hierarchical Bayesian inversion to the uncertainty analysis for the joint inversion and utilize rock-physics models to integrate these two disparate data sets. The study shows that the uncertainties in the seismic wave velocity and electric conductivity play a more significant role in the variation of posterior uncertainty than do the seismic and CSEM data noise. The numerical simulations also show that the uncertainty in porosity is most affected by the uncertainty in seismic wave velocity and that the uncertainty in water saturation is most influenced by the uncertainty in electric conductivity. The framework of the uncertainty analysis presented in this study can be utilized to effectively reduce the uncertainty of the porosity and water saturation derived from integration of seismic and CSEM data. We also study the feasibility of the inverse scattering series, which can effectively resolve the nonlinearity of an inverse problem, for the interpretation of electromagnetic data. The application of the inverse scattering series has been limited because the series converges when the reference model sufficiently close to the true model. This study quantifies convergence conditions of the inverse scattering series and suggests a different approach of the inverse series, the modified inverse scattering series, which guarantees the convergence of the series and facilitates the choice of a reference model.
Cluster algebras in scattering amplitudes with special 2D kinematics
NASA Astrophysics Data System (ADS)
Torres, Marcus A. C.
2014-02-01
We study the cluster algebra of the kinematic configuration space of an -particle scattering amplitude restricted to the special 2D kinematics. We found that the -point two-loop MHV remainder function in special 2D kinematics depends on a selection of the -coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at , the cluster algebra and the selection of the -coordinates in special 2D kinematics replicates the cluster algebra and the selection of -coordinates of the two-loop MHV amplitude in 4D kinematics.
PASTERNAK-JÚNIOR, Braulio; de SOUSA NETO, Manoel Damião; DIONÍSIO, Valdeci Carlos; PÉCORA, Jesus Djalma; SILVA, Ricardo Gariba
2012-01-01
Objective This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods The operators prepared one canal with RaCe rotary instruments and another with Flexo-files. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radialis, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques. PMID:22437679
3D kinematics using dual quaternions: theory and applications in neuroscience
Leclercq, Guillaume; Lefèvre, Philippe; Blohm, Gunnar
2013-01-01
In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions, but when scientists tackle problems in 3-dimensions (3D), they often face problems or new challenges. Results obtained for lower dimensions are not always extendable in 3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation problems, the 3D kinematics of external (stimuli) or internal (body parts) must often be considered: how to describe the 3D position and orientation of these objects and link them together? We describe how dual quaternions provide a convenient way to describe the 3D kinematics for position only (point transformation) or for combined position and orientation (through line transformation), easily modeling rotations, translations or screw motions or combinations of these. We also derive expressions for the velocities of points and lines as well as the transformation velocities. Then, we apply these tools to a motor planning task for manual tracking and to the modeling of forward and inverse kinematics of a seven-dof three-link arm to show the interest of dual quaternions as a tool to build models for these kinds of applications. PMID:23443667
[Kinematics and kinetics of sprint acceleration].
Plamondon, A; Roy, B
1984-03-01
The kinematic and dynamic characteristics of the sprint of ten (10) male athletes are presented. A Kistler force plate was used to record the following dynamic variables: force, impulse and their duration. A Photosonic, cinecamera was used to obtain the following parameters: stride length and frequency, duration of the different phases and trunk angular measures during certain phases of the running stride. This study has shown that the majority of the kinematic and kinetic factors measured are closely associated with the variation of velocity during the first 18 strides of a sprint. Moreover, two factors account for 80% of the variance in running velocity, the first one being related to the breaking phase and the second to the duration of the support phase. It was also found that the modification of sprint velocity was especially influenced by stride length and frequency. However sprint acceleration was mostly sensitive to the relative duration of the support phase. PMID:6705128
Kinematic misalignments in remnants of multiple mergers
NASA Technical Reports Server (NTRS)
Weil, Melinda L.; Hernquist, Lars
1994-01-01
Observations indicate that the rotation and minor axes in elliptical galaxies are usually well aligned. However, computer models of dissipationless mergers of pairs of disk galaxies have failed to establish such a correlation, implying that most ellipticals probably did not originate in this manner. Here we consider remnants produced from repeated merging in small groups of a half-dozen or so disk galaxies and find that the internal kinematics of such objects are more representative of actual elliptical galaxies. Although our coverage of parameter space is not complete, the remnants produced in our simulations invariably possess small kinematic misalignments. These results suggest that the majority of elliptical galaxies have had evolutionary histories more complex than those envisaged by simple merger hypotheses.
Philippine fault: A key for Philippine kinematics
NASA Astrophysics Data System (ADS)
Barrier, E.; Huchon, P.; Aurelio, M.
1991-01-01
On the basis of new geologic data and a kinematic analysis, we establish a simple kinematic model in which the motion between the Philippine Sea plate and Eurasia is distributed on two boundaries: the Philippine Trench and the Philippine fault. This model predicts a velocity of 2 to 2.5 cm/yr along the fault. Geologic data from the Visayas provide an age of 2 to 4 Ma for the fault, an age in good agreement with the date of the beginning of subduction in the Philippine Trench. The origin of the Philippine fault would thus be the flip of subduction from west to east after the locking of convergence to the west by the collision of the Philippine mobile belt with the Eurasian margin.
Galactic warp kinematics: model vs. observations
NASA Astrophysics Data System (ADS)
Abedi, H.; Figueras, F.; Aguilar, L.; Mateu, C.; Romero-Gómez, M.; López-Corredoira, M.; Garzón, F.
2015-05-01
We test the capability of several methods to identify and characterise the warping of the stellar disc of our Galaxy in the Gaia era. We have developed a first kinematic model for the galactic warp and derived the analytical expressions for the force field of a warped Miyamoto- Nagai potential. We have generated realistic mock catalogues of OB, A and red clump stars within the warped galactic disc, where a very complete model of Gaia observables and their expected errors are included. We use the family of Great Circle Cell Counts (GC3) methods and LonKin methods for detecting and characterising the galactic warp. As a complementary work, we look into one of the existing proper motion catalogue namely the UCAC4, and look for the kinematic signature of the warp. We demonstrate the necessity of correcting for a possible residual rotation of the Hipparcos celestial reference frame with respect to the extra galactic inertial one.
The kinematic advantage of electric cars
NASA Astrophysics Data System (ADS)
Meyn, Jan-Peter
2015-11-01
Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.
On the kinematic age of RZ Psc
NASA Astrophysics Data System (ADS)
Potravnov, I. S.; Grinin, V. P.
2013-11-01
RZ Psc belongs to the family of young UX Ori stars whose photometric activity is due to strong extinction variations in the circumstellar disks surrounding them. However, in contrast to all the remaining stars of this type, no evidence of youth has been detected for RZ Psc until recently. A rough estimate of the star's kinematic age was made for the first time in our previous paper (Grinin et al. 2010). It shows that RZ Psc is intermediate in its evolutionary status between young stars in Orion and stars with debris disks. In this paper, we provide a refined estimate of the kinematic age for the star confirming this conclusion. According to this estimate, the age of RZ Psc is approximately 25 ± 5 Myr at M * = 1 M ⊙.
Identification of top quarks using kinematic variables
Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Aota, S.; Apollinari, G.; Asakawa, T.; Ashmanskas, W.; Atac, M.; Auchincloss, P.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Badgett, W.; Bagdasarov, S.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boudreau, J.; Brandenburg, G.; Breccia, L.; Bromberg, C.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cauz, D.; Cen, Y.; Cervelli, F.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cronin-Hennessy, D.; Culbertson, R.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; Dell`Agnello, S.; Dell`Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Dittmann, J.R.; Donati, S.; Drucker, R.B.; Dunn, A.; Eddy, N.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Errede, D.; Errede, S.; Fan, Q.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garcia-Sciveres, M.; Garfinkel, A.F.; Gay, C.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Groer, L.; Grosso-Pilcher, C.; CDF Collabora..
1995-09-01
We have used a kinematic technique to distinguish top quark pair production from background in {ital p{bar p}} collisions at {radical}{ital s}=1.8 TeV, applied to 67 pb{sup {minus}1} of data. We define a sample of {ital W}+{ge}3 jet events in which the jets are produced at large angles relative to the incident beams. In this sample, we find an excess of events with large jet transverse energies relative to expectations from background. The excess is consistent with top quark production; a large fraction of events in this kinematic region contains {ital b} jets. We interpret these results as evidence that most of the selected events are from {ital t{bar t}} decay.
Kinematic measurements using an infrared sensor
NASA Astrophysics Data System (ADS)
Marinho, F.; Paulucci, L.
2016-03-01
The use of an infrared sensor as a new alternative to measure position as a function of time in kinematic experiments was investigated using a microcontroller as the data acquisition and control device. These are versatile sensors that offer advantages over typical ultrasound devices. The setup described in this paper enables students to develop their own experiments, promoting opportunities for learning physical concepts such as the different types of forces that can act on a body (gravitational, elastic, drag, etc) and the resulting types of movements with good sensitivity within the 4-30 cm range. As a proof of concept we also present the application of a prototype designed to record the kinematics of mass-spring systems.
A classification of finite quantum kinematics
NASA Astrophysics Data System (ADS)
Tolar, J.
2014-10-01
Quantum mechanics in Hilbert spaces of finite dimension N is reviewed from the number theoretic point of view. For composite numbers N possible quantum kinematics are classified on the basis of Mackey's Imprimitivity Theorem for finite Abelian groups. This yields also a classification of finite Weyl-Heisenberg groups and the corresponding finite quantum kinematics. Simple number theory gets involved through the fundamental theorem describing all finite discrete Abelian groups of order N as direct products of cyclic groups, whose orders are powers of not necessarily distinct primes contained in the prime decomposition of N. The representation theoretic approach is further compared with the algebraic approach, where the basic object is the corresponding operator algebra. The consideration of fine gradings of this associative algebra then brings a fresh look on the relation between the mathematical formalism and physical realizations of finite quantum systems.
NASA Astrophysics Data System (ADS)
Saini, Indu; Singh, Vijay Pal
2016-03-01
Isomorphism identification is a difficult problem in kinematic chains (KC). There are a number of methods proposed by many researchers to detect the isomorphism and inversion of kinematic chain but each has its own shortcomings. Purpose of this paper is to give an efficient and reliable method for detection of isomorphism and inversion among the KC which can be less time consuming among many other related techniques. An attempt has been made to provide satisfactory solution to detection of isomorphism by using Hamming method. The Hamming Number is computed by using the direct method of writing the Hamming matrix, which save time and effort. Link Hamming string which is defined as the string obtained by concatenating the link Hamming number and the frequency of individual Hamming numbers in that row is then formed. Finally, chain Hamming string defined as the string obtained by the concatenation of the chain Hamming number and the link Hamming strings in descending order is formed. This method is implemented on the nine links two degree of freedom.
Kinematics of Hooke universal joint robot wrists
NASA Technical Reports Server (NTRS)
Mckinney, William S., Jr.
1988-01-01
The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.
Kinematic structures in galactic disc simulations
NASA Astrophysics Data System (ADS)
Roca-Fàbrega, S.; Romero-Gómez, M.; Figueras, F.; Antoja, T.; Valenzuela, O.
2011-10-01
N-body and test particle simulations have been used to characterize the stellar streams in the galactic discs of Milky Way type galaxies. Tools such as the second and third order moments of the velocity ellipsoid and clustering methods -EM-WEKA and FoF- allow characterizing these kinematic structures and linking them to the stellar overdensities and to the resonant regions all through the disc.
Kinematic Analysis of Relativistic Hypernuclei Decays
Majlingova, Olga; Sopko, Vit
2006-04-26
Reliable model for three and four particle decays is still open problem in subnuclear physics. In several laboratories, such as JINR Dubna (Russia), KEK (Japan), COSY (Germany), INFN Frascati (Italy, Collaboration FINUDA), T.Jefferson National Laboratory, USA, experiments for study {lambda} hypernuclei are underway or upcoming. This contribution is devoted to kinematic analysis of weak decay of {lambda} hypernuclei produced on nuclei beams in Nuclotron experiments in Joint Institute for Nuclear research.
Analyzing Robotic Kinematics Via Computed Simulations
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.
1992-01-01
Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.
Graph Models of Automobile Gears - Kinematics
NASA Astrophysics Data System (ADS)
Drewniak, J.; Kopeć, J.; Zawiślak, S.
2014-08-01
In the present paper, kinematical analysis of an automotive gear is described. Versatile graph based methods have been utilized for this purpose. An application of mixed, contour and bond graphs gives the same results. It allows the detection of possible mistakes as well as a deeper insight into the designed artifact. The graphs can also be used for further analyses which will be published in a separate document
Inverse adaptive cluster sampling.
Christman, M C; Lan, F
2001-12-01
Consider a population in which the variable of interest tends to be at or near zero for many of the population units but a subgroup exhibits values distinctly different from zero. Such a population can be described as rare in the sense that the proportion of elements having nonzero values is very small. Obtaining an estimate of a population parameter such as the mean or total that is nonzero is difficult under classical fixed sample-size designs since there is a reasonable probability that a fixed sample size will yield all zeroes. We consider inverse sampling designs that use stopping rules based on the number of rare units observed in the sample. We look at two stopping rules in detail and derive unbiased estimators of the population total. The estimators do not rely on knowing what proportion of the population exhibit the rare trait but instead use an estimated value. Hence, the estimators are similar to those developed for poststratification sampling designs. We also incorporate adaptive cluster sampling into the sampling design to allow for the case where the rare elements tend to cluster within the population in some manner. The formulas for the variances of the estimators do not allow direct analytic comparison of the efficiency of the various designs and stopping rules, so we provide the results of a small simulation study to obtain some insight into the differences among the stopping rules and sampling approaches. The results indicate that a modified stopping rule that incorporates an adaptive sampling component and utilizes an initial random sample of fixed size is the best in the sense of having the smallest variance. PMID:11764249
Microwave inverse Cerenkov accelerator
Zhang, T.B.; Marshall, T.C.; LaPointe, M.A.; Hirshfield, J.L.
1997-03-01
A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM{sub 01} fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5{pi}mm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM{sub 01} mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line. {copyright} {ital 1997 American Institute of Physics.}
Kinematic adaptations to tripedal locomotion in dogs.
Goldner, B; Fuchs, A; Nolte, I; Schilling, N
2015-05-01
Limb amputation often represents the only treatment option for canine patients with certain diseases or injuries of the appendicular system. Previous studies have investigated adaptations to tripedal locomotion in dogs but there is a lack of understanding of biomechanical compensatory mechanisms. This study evaluated the kinematic differences between quadrupedal and tripedal locomotion in nine healthy dogs running on a treadmill. The loss of the right pelvic limb was simulated using an Ehmer sling. Kinematic gait analysis included spatio-temporal comparisons of limb, joint and segment angles of the remaining pelvic and both thoracic limbs. The following key parameters were compared between quadrupedal and tripedal conditions: angles at touch-down and lift-off, minimum and maximum joint angles, plus range of motion. Significant differences in angular excursion were identified in several joints of each limb during both stance and swing phases. The most pronounced differences concerned the remaining pelvic limb, followed by the contralateral thoracic limb and, to a lesser degree, the ipsilateral thoracic limb. The thoracic limbs were, in general, more retracted, consistent with pelvic limb unloading and previous observations of bodyweight re-distribution in amputees. Proximal limb segments showed more distinct changes than distal ones. Particularly, the persistently greater anteversion of the pelvis probably affects the axial system. Overall, tripedal locomotion requires concerted kinematic adjustments of both the appendicular and axial systems, and consequently preventive, therapeutic and rehabilitative care of canine amputees should involve the whole musculoskeletal apparatus. PMID:25862392
New Kinematical Constraints on Cosmic Acceleration
Rapetti, David; Allen, Steve W.; Amin, Mustafa A.; Blandford, Roger; /-KIPAC, Menlo Park
2007-05-25
We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.
Scapula Kinematics of Youth Baseball Players.
Oliver, Gretchen; Weimar, Wendi
2015-12-22
Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly. PMID:26839605
Scapula Kinematics of Youth Baseball Players
Oliver, Gretchen; Weimar, Wendi
2015-01-01
Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly. PMID:26839605
First APOGEE Results on Galactic Bulge Kinematics
NASA Astrophysics Data System (ADS)
Nidever, David L.; Allende Prieto, C.; Bizyaev, D.; Frinchaboy, P. M.; Garcia Perez, A. E.; Holtzman, J.; Majewski, S. R.; Schiavon, R.; Skrutskie, M. F.; Zasowski, G.
2012-01-01
The SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) will obtain high resolution (R 22,500) and high S/N ( 100 per pixel) H-band spectra of 100,000 giant stars in the Milky Way disk, bulge and halo to study the chemical and kinematical evolution of the Milky Way Galaxy. APOGEE will be able to probe deep into regions of our galaxy that were previously hidden by a thick veil of dust. I will present first APOGEE results on the Galactic bulge kinematics using commissioning data in 18 fields. Our reduction pipeline currently delivers radial velocites with accuracies of 0.2 km/s for the majority of our target stars. These RVs are used to derive accurate rotation curves and velocity dispersion profiles for our bulge fields, many of them in regions not previously probed. We compare our results to other surveys and to N-body models and confirm that the bulge is dominated by a bar to large longitudes. We also find the first evidence for kinematical substructure in our bulge fields.
Inversion of snow parameters by neural network with iterative inversion
NASA Technical Reports Server (NTRS)
Chen, Zhengxiao; Davis, Daniel; Tsang, Leung; Hwang, Jenq-Neng; Chang, A. T. C.
1992-01-01
The inversion of snow parameters from passive microwave remote sensing measurements is performed with a neural network trained with a dense media multiple scattering model. A constrained iterative inversion scheme is used. Inversion of four parameters is performed from five brightness temperatures. The four parameters are: mean grain size of ice particles in snow, snow density, snow temperature, and snow depth. The five brightness temperatures are that of 19-GHz vertical polarization, 19-GHz horizontal polarization, 22-GHz vertical polarization, 37-GHz vertical polarization, and 37-GHz horizontal polarization. Based on the neural network constrained iterative inversion algorithm, synthetic mapping of the terrain is performed. The retrieval of synthetic mapping has been achieved. The incorporation of ground truth information is considered.
Computational tool for comparison of kinematic mechanisms and commonly used kinematic models
Hollerbach, K.; Hollister, A.M.; Van Vorhis, R.L.
1997-03-01
Accurate, reliable, and reproducible methods to measure the movements of human joints have been elusive. Currently, three-dimensional recording methods are used to track the motion of one segment relative to another as the joint moves. Six parameters describe the moving segment`s location and orientation relative to the reference segment: three translations (x, y, and z) and three rotations (yaw, pitch and roll) in the reference frame. The raw data can be difficult to interpret. For this reason, several methods have been developed to measure the motion of human joints and to describe the resulting data. For example, instant helical axes or screw deviation axes (Kinzell et al., 1972), the Joint Coordinate System of Grood and Suntay (1983), and the Euler angle method have been used to describe the movements of bones relative to each other. None of these methods takes into account the physical kinematic mechanism producing the joint motion. More recently, Lupichuk (1995) has developed an algorithm to find, for an arbitrary revolute, the axis` position and orientation in three- dimensional space. Each of these methods has advantages and disadvantages in analyzing joint kinematics. The authors have developed software to provide a means of comparing these methods for arbitrary, single degree of freedom, kinematic mechanisms. Our objective is to demonstrate the software and to show how it can be used to compare the results from the different kinematic models as they are applied to specific kinematic mechanisms.
Goal Directed Model Inversion: A Study of Dynamic Behavior
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.
Kinematics of Haro 11: The miniature Antennae
NASA Astrophysics Data System (ADS)
Östlin, G.; Marquart, T.; Cumming, R. J.; Fathi, K.; Bergvall, N.; Adamo, A.; Amram, P.; Hayes, M.
2015-11-01
Luminous blue compact galaxies are among the most active galaxies in the local Universe in terms of their star formation rate per unit mass. They are rare at the current cosmic epoch, but were more abundant in the past and may be seen as the local analogues of higher red shift Lyman break galaxies. Studies of their kinematics is key to understanding what triggers their unusually active star formation. In this work, we investigate the kinematics of stars and ionised gas in Haro 11, one of the most luminous blue compact galaxies in the local Universe. Previous works have indicated that many of these galaxies may be triggered by galaxy mergers. We have employed Fabry-Perot interferometry, long-slit spectroscopy, and integral field unit (IFU) spectroscopy to explore the kinematics of Haro 11. We target the near-infrared calcium triplet, and use cross-correlation and penalised pixel fitting techniques to derive the stellar velocity field and velocity dispersion. We analyse ionised gas through emission lines from hydrogen, [O iii], and [S iii]. When spectral resolution and signal to noise allows, we investigate the line profile in detail and identify multiple velocity components when present. The spectra reveal a complex velocity field whose components, both stellar and gaseous, we attempt to disentangle. We find that to first order, the velocity field and velocity dispersions derived from stars and ionised gas agree. Hence the complexities reveal real dynamical disturbances providing further evidence for a merger in Haro 11. Through decomposition of emission lines, we find evidence for kinematically distinct components, for instance, a tidal arm. The ionised gas velocity field can be traced to large galactocentric radii, and shows significant velocity dispersion even far out in the halo. If interpreted as virial motions, this indicates that Haro 11 may have a mass of ~1011 M⊙. Haro 11 shows many resemblances with the famous Antennae galaxies both morphologically and kinematically, but it is much denser, which is the likely explanation for the higher star formation efficiency in Haro 11. Based on observations collected at the European Southern Observatory, Paranal, Chile, under observing programmes 71.B-0602, 074.B-0771(A), 074.B-0802A.
A generalized inversion method: Simultaneous source localization and environmental inversion
NASA Astrophysics Data System (ADS)
Neilsen, Tracianne B.; Knobles, David P.
2002-05-01
The problem of localizing and tracking a source in the shallow ocean is often complicated by uncertainty in the environmental parameters. Likewise, the estimates of environmental parameters in the shallow ocean obtained by inversion methods can be degraded by incorrect information about the source location. To overcome both these common obstacles-environmental mismatch in matched field processing and incorrect source location in geoacoustic inversions-a generalized inversion scheme is developed that includes both source and environmental parameters as unknowns in the inversion. The new technique called systematic decoupling using rotated coordinates (SDRC) expands the original idea of rotated coordinates [M. D. Collins and L. Fishman, J. Acoust. Soc. Am. 98, 1637-1644 (1995)] by using multiple sets of coherent broadband rotated coordinates, each corresponding to a different set of bounds, to systematically decouple the unknowns in a series of simulated annealing inversions. The results of applying the SDRC inversion method to data from the Area Characterization Test II experiment performed on the New Jersey continental shelf are presented. [Work supported by ONR.
He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank
2016-01-01
When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580
He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank
2016-01-01
When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580
Inversion layer MOS solar cells
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1986-01-01
Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.
Temperature Inversions Have Cold Bottoms.
ERIC Educational Resources Information Center
Bohren, Craig F.; Brown, Gail M.
1982-01-01
Uses discussion and illustrations of several demonstrations on air temperature differences and atmospheric stability to explain the phenomena of temperature inversions. Relates this to the smog in Los Angeles and discusses the implications. (DC)
Chang, Young-Hui; Auyang, Arick G.; Scholz, John P.; Nichols, T. Richard
2009-01-01
Summary Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. PMID:19837893
NASA Astrophysics Data System (ADS)
Cardenas, Rolando
The Border Ranges Fault System (BRFS) bounds the Cook Inlet and Susitna Basins, and is an important petroleum province within south-central Alaska. A primary goal of our research is to test several plausible models of structure along the BRFS using a novel three-dimensional inversion technique utilizing gravity data, constrained with other geophysical, borehole and surface geological information. This research involves the development of 3D inversion modeling software using C++ Builder from Embarcadero's XE2 Suite. The novel inversion approach directly models known geology with a priori uncertainties assigned to the geologic model to allow researchers to compare alternative interpretations. This technique was developed to evaluate three-dimensional structure in regions of complex and poorly known geology. Our software computes the density solution of a geologic structure by utilizing its location within the gravity field as well as the gridded surface files of known topography and subsurface units. The total gravitational effect of each body is calculated with a series of semi-infinite vertical line elements which improves the computational efficiency of computing forward models of structures with extremely complex geometry. The inversion algorithm considers a priori geophysical constraints and uncertainties due to gravity measurements, surface file inconsistencies, and forward calculations in the model solution. In addition, a Kalman-based filtering estimator is used to minimize our observation and processing noise. The estimator allows the a posteriori covariance matrix to avoid its dependence on the non-singularity of the Jacobian (model) matrix.
Trans-dimensional finite-fault inversion
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Benavente, Roberto; Cummins, Phil R.; Sambridge, Malcolm
2014-11-01
This paper develops a probabilistic Bayesian approach to the problem of inferring the spatiotemporal evolution of earthquake rupture on a fault surface from seismic data with rigorous uncertainty estimation. To date, uncertainties of rupture parameters are poorly understood, and the effect of choices such as fault discretization on uncertainties has not been studied. We show that model choice is fundamentally linked to uncertainty estimation and can have profound effects on results. The approach developed here is based on a trans-dimensional self-parametrization of the fault, avoids regularization constraints and provides rigorous uncertainty estimation that accounts for model-selection ambiguity associated with the fault discretization. In particular, the fault is parametrized using self-adapting irregular grids which intrinsically match the local resolving power of the data and provide parsimonious solutions requiring few parameters to capture complex rupture characteristics. Rupture causality is ensured by parametrizing rupture-onset time by a rupture-velocity field and obtaining first rupture times from the eikonal equation. The Bayesian sampling of the parameter space is implemented on a computer cluster with a highly efficient parallel tempering algorithm. The inversion is applied to simulated and observed W-phase waveforms from the 2010 Maule (Chile) earthquake. Simulation results show that our approach avoids both over- and underparametrization to ensure unbiased inversion results with uncertainty estimates that are consistent with data information. The simulation results also show the ability of W-phase data to resolve the spatial variability of slip magnitude and rake angles. In addition, sensitivity to spatially dependent rupture velocities exists for kinematic slip models. Application to the observed data indicates that residual errors are highly correlated and likely dominated by theory error, necessitating the iterative estimation of a non-stationary data covariance matrix. The moment magnitude for the Maule earthquake is estimated to be ˜8.9, with slip concentrated in two zones updip of and north and south of the hypocentre, respectively. While this aspect of the slip distribution is similar to previous studies, we show that the slip maximum in the southern zone is poorly resolved compared to the northern zone. Both slip maxima are higher than reported in previous studies, which we speculate may be due to the lack of bias caused by the regularization used in other studies.
Inverse Compton Scattering in Mildly Relativistic Plasma
NASA Technical Reports Server (NTRS)
Molnar, S. M.; Birkinshaw, M.
1998-01-01
We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.
Null-strut calculus. I. Kinematics
NASA Astrophysics Data System (ADS)
Kheyfets, Arkady; Lafave, Norman J.; Miller, Warner A.
1990-06-01
This paper describes the kinematics of null-strut calculus-a 3+1 Regge calculus approach to general relativity. We show how to model the geometry of spacetime with simplicial spacelike three-geometries (TET's) linked to ``earlier'' and ``later'' momentumlike lattice surfaces (TET*) entirely by light rays or ``null struts.'' These three-layered lattice spacetime geometries are defined and analyzed using combinatorial formulas for the structure of polytopes. The following paper in this series describes how these three-layered spacetime lattices are used to model spacetimes in full conformity with Einstein's theory of gravity.
Null-strut calculus. I. Kinematics
Kheyfets, A.; LaFave, N.J.; Miller, W.A. )
1990-06-15
This paper describes the kinematics of null-strut calculus---a 3+1 Regge calculus approach to general relativity. We show how to model the geometry of spacetime with simplicial spacelike three-geometries (TET's) linked to earlier'' and later'' momentumlike lattice surfaces (TET{sup *}) entirely by light rays or null struts.'' These three-layered lattice spacetime geometries are defined and analyzed using combinatorial formulas for the structure of polytopes. The following paper in this series describes how these three-layered spacetime lattices are used to model spacetimes in full conformity with Einstein's theory of gravity.
Automobile Collisions, Kinematics and Related Injury Patterns
Siegel, A. W.
1972-01-01
It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661
Kinematic Measurements from YouTube Videos
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.
2009-04-01
Video analysis of motion has been in use now for some time.1-3 However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers. This paper provides examples such as measuring the average speed of a winning horse at the Kentucky Derby, plotting speed versus time from watching the speedometer of a high-performance bike, and determining acceleration for circular motion of amusement park rides.
Kinematics of Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Cardullo, A.; Pizzella, A.; Corsini, E. M.; Bertola, F.
2008-10-01
We analyzed the kinematic of 12 low surface-brightness (LSB) galaxies to study the correlation between the disk circular velocity V_{c} and the central velocity dispersion of the spheroidal component σ_{0}. This relation has been claimed to be either the same power-law relation tep{buy} or a different linear one tep{piz} with respect to high surface-brightness (HSB) galaxies. We confirm here that LSB and HSB galaxies follow two different linear V_{c}-σ_{0} relations.
Cosmological Applications of the Gaussian Kinematic Formula
NASA Astrophysics Data System (ADS)
Fantaye, Yabebal T.; Marinucci, Domenico
2014-05-01
The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.
Quantum simulation of noncausal kinematic transformations.
Alvarez-Rodriguez, U; Casanova, J; Lamata, L; Solano, E
2013-08-30
We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system. PMID:24033011
Kinematics and Fluid Dynamics of Jellyfish Maneuvering
NASA Astrophysics Data System (ADS)
Miller, Laura; Hoover, Alex
2014-11-01
Jellyfish propel themselves through the water through periodic contractions of their elastic bells. Some jellyfish, such as the moon jellyfish Aurelia aurita and the upside down jellyfish Cassiopea xamachana, can perform turns via asymmetric contractions of the bell. The fluid dynamics of jellyfish forward propulsion and turning is explored here by analyzing the contraction kinematics of several species and using flow visualization to quantify the resulting flow fields. The asymmetric contraction and structure of the jellyfish generates asymmetries in the starting and stopping vortices. This creates a diagonal jet and a net torque acting on the jellyfish. Results are compared to immersed boundary simulations
Mapping Dark Matter Halos with Stellar Kinematics
NASA Astrophysics Data System (ADS)
Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.
2013-07-01
Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same radial extent, reinforcing the need for broad comparisons between the different methods and assumptions underlying the dynamical analysis of massive ellipticals.
Kinematic Rupture Process Of Karakocan-Elazig Earthquake, Eastern Turkey
NASA Astrophysics Data System (ADS)
Bekler, F. N.; Ozel, N. M.; Tanircan, G. B.
2012-04-01
An earthquake (Mw=5.9) hit Elazig in the eastern part of Turkey on March 8, 2010 at 02:32 (GMT). It is located midway between the provincial capital of Elazığ and Bingöl with coordinates reported as 38o48.42N and 40o5.99E by Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI). Source characterization and slip history were estimated the main and four moderate size earthquake almost at the same location. The earthquake occurred at one of the tectonically very active East Anatolian Fault zone starts at the Karlıova triple junction, where it meets the North Anatolian fault to the NE. Multi time-window linear waveform inversion technique (MTWIT) was applied to strong ground motion (SGM) data. Theoretical Green's functions between subfaults and stations were calculated by a Discrete Wave Number Method (DWNM) using 1-D velocity structure. Inversion technique used in this study yields a non unique solution. Therefore various rupture models have been tried until both observed and synthetic data were matched. Results show simple patterns in slip distributions. Maximum slip is 0.78 and seismic moment is 1.435E+25 dyne.cm from the kinematic rupture process of the strike slip faulting. In this study, we searched a stable 1-D crustal velocity model with low RMS misfit to construct the theoretical Green's function between each sub-fault and each station among the 4 different models. These are Preliminary Reference Earth Model (PREM; Dziewonski and Anderson, 1981), International Association of Seismology and the Physics of the Earth's Interior (IASP91) (Kennett and Engdahl, 1991), Kandilli Observatory and Earthquake Research Institute (KOERI) earthquake location model, explosion model (Gurbuz, 2004). We have collected previous studies Rebollar et al., (2001), Ichinose et al., (1997), Abdel-Fattah (2002), Somerville et al., (1999), Wells and Coppersmith (1994) on source information of moderate size earthquakes occurred worldwide and compared with our results. Results were compared with those of similar size earthquakes around the world and a new empirical relationship was proposed between seismic moment and rupture area. We expect our findings provide usefull information to resolving rupture mechanisms and triggering of the events in Eastern Anatoion Region. Key Words: Rupture Process, Elazig Earthquake, Eastern Turkey
Changes in knee kinematics following total knee arthroplasty.
Akbari Shandiz, Mohsen; Boulos, Paul; Saevarsson, Stefan Karl; Yoo, Sam; Miller, Stephen; Anglin, Carolyn
2016-04-01
Total knee arthroplasty (TKA) changes the knee joint in both intentional and unintentional, known and unknown, ways. Patellofemoral and tibiofemoral kinematics play an important role in postoperative pain, function, satisfaction and revision, yet are largely unknown. Preoperative kinematics, postoperative kinematics or changes in kinematics may help identify causes of poor clinical outcome. Patellofemoral kinematics are challenging to record since the patella is obscured by the metal femoral component in X-ray and moves under the skin. The purpose of this study was to determine the kinematic degrees of freedom having significant changes and to evaluate the variability in individual changes to allow future study of patients with poor clinical outcomes. We prospectively studied the 6 degrees of freedom patellofemoral and tibiofemoral weightbearing kinematics, tibiofemoral contact points and helical axes of rotation of nine subjects before and at least 1 year after total knee arthroplasty using clinically available computed tomography and radiographic imaging systems. Normal kinematics for healthy individuals were identified from the literature. Significant differences existed between pre-TKA and post-TKA kinematics, with the post-TKA kinematics being closer to normal. While on average the pre-total knee arthroplasty knees in this group displayed no pivoting (only translation), individually only five knees displayed this behaviour (of these, two showed lateral pivoting, one showed medial pivoting and one showed central pivoting). There was considerable variability postoperatively as well (five central, two lateral and two medial pivoting). Both preop and postop, flexion behaviour was more hinge-like medially and more rolling laterally. Helical axes were more consistent postop for this group. An inclusive understanding of the pre-TKA and post-TKA kinematics and changes in kinematics due to total knee arthroplasty could improve implant design, patient diagnosis and surgical technique. PMID:26936959
Discrete wavelet transform: a tool in smoothing kinematic data.
Ismail, A R; Asfour, S S
1999-03-01
Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters. PMID:10093032
[Application and development of kinematical alighment during total knee arthroplasty].
Zhang Guo-dong; Yang, Chen; Yang, Guang; Qi, Xin
2015-12-01
Kinematical alignment during total knee arthroplasty is an emerging process, and draws more and more attentions from scholars. Knee joint is close to normal joint after TKA through kinematical alighment, which has good clinical results and functional scores, and not increase failure probility. Thus, it may increase joint stress of patella-femur joint, lead to patellar maltracking and increase abrasion. The paper summarized defination and basical principle, operative method, clinical outcomes and deficiency of kinematical alignment during total knee arthroplasty, in order to choose a better way for kinematical alignment during total knee arthroplasty. PMID:26911130
APOGEE Kinematics. I. Overview of the Kinematics of the Galactic Bulge as Mapped By APOGEE
NASA Astrophysics Data System (ADS)
Ness, M.; Zasowski, G.; Johnson, J. A.; Athanassoula, E.; Majewski, S. R.; García Pérez, A. E.; Bird, J.; Nidever, D.; Schneider, Donald P.; Sobeck, J.; Frinchaboy, P.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey
2016-03-01
We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the midplane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes of 0° < l < 65°, and primarily across latitudes of | b| < 5° in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very center of the bulge, with the smallest gradients in both kinematic and chemical space inside the innermost region (| l,b| ) < (5°, 5°). The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge-on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of | b| < 2° appears to have a corresponding signature in [{Fe}/{{H}}] and [α /{Fe}]. Stars with [{Fe}/{{H}}] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,| b| ) < (15°, 12°) out to the disk for stars with [{Fe}/{{H}}] > -1.0, and the chemodynamics across (l, b) suggests that the stars in the inner Galaxy with [{Fe}/{{H}}] > -1.0 originate in the disk.
Flapping flight: effect of asymmetric kinematics
NASA Astrophysics Data System (ADS)
Pande, Nakul; Krithivasan, Siddharth; K. R., Sreenivas
2014-11-01
Flapping flight has received considerable attention in the past with its relevance in the design of micro-air vehicles. In this regard, asymmetric flapping of wings offers simple kinematics. Nevertheless, it leads to symmetry-breaking in the flow field and generation of sustained lift. It has been observed previously with flow visualization experiments and Discrete Vortex Method (DVM) simulations that if the down-stroke time period is lesser than the up-stroke time, there is a net downward momentum imparted to the fluid. This is seen as a switching the flow field from a four-jet (symmetric) to a two-jet (asymmetric) configuration when the stroke-time ratio is progressively varied. This symmetry breaking has been studied experimentally using Particle Image Velocimetry (PIV) across a range of Reynolds Numbers and asymmetry ratios. Results are also corroborated with results from 3-D numerical simulations. Study helps in shedding light on the effectiveness of asymmetric kinematics as a lift generation mechanism.
The kinematics of turbulent boundary layer structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Friction Stir Welding at MSFC: Kinematics
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
2001-01-01
In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.
A mechanical simulator of cardiac wall kinematics.
Cutrì, Elena; Bagnoli, Paola; Marcelli, Emanuela; Biondi, Federico; Cercenelli, Laura; Costantino, Maria Laura; Plicchi, Gianni; Fumero, Roberto
2010-01-01
Aim of this study is to develop a mechanical simulator (MS) reproducing cardiac wall kinematics [i.e., radial (R), longitudinal (L) and rotational (RT) motions] to test piezoelectric gyroscopic sensors (GS) that are able to measure cardiac torsion that has proved to be a sensitive index of cardiac performance. The MS consists of three brushless motors controlled by a dedicated software either separately or simultaneously reproducing the three main cardiac wall movements (R, L, RT) obtained by implementing different physiologic or pathologic velocity profiles derived from in vivo data. GS accuracy (max % error) was experimentally tested by connecting it to the MS driven in velocity in different working conditions [i.e., cardiac period (515-1030 ms), RT angle (4-16 degrees), GS axis inclination (0-90 degrees) with respect to the cardiac rotation axis]. The MS reproduced the tested velocity profiles well. The GS showed high accuracy in measuring both physiologic and pathologic RT velocity profiles, whereas they proved insensitive to R and L motions. GS axis inclination influenced measurements; however, it was possible to correct this taking the inclination angle cosine into account. The MS proved to be a useful tool to study cardiac wall kinematics and test GS reliability with a view to in vivo application. PMID:20404720
Nuclear Rings in Galaxies - A Kinematic Perspective
NASA Technical Reports Server (NTRS)
Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain
2011-01-01
We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.
Kinematics of unconstrained tactile texture exploration.
Callier, Thierri; Saal, Hannes P; Davis-Berg, Elizabeth C; Bensmaia, Sliman J
2015-04-01
A hallmark of tactile texture exploration is that it involves movement between skin and surface. When we scan a surface, small texture-specific vibrations are produced in the skin, and specialized cutaneous mechanoreceptors convert these vibrations into highly repeatable, precise, and informative temporal spiking patterns in tactile afferents. Both texture-elicited vibrations and afferent responses are highly dependent on exploratory kinematics, however; indeed, these dilate or contract systematically with decreases or increases in scanning speed, respectively. These profound changes in the peripheral response that accompany changes in scanning speed and other parameters of texture scanning raise the question as to whether exploratory behaviors change depending on what surface is explored or what information is sought about that surface. To address this question, we measure and analyze the kinematics as subjects explore textured surfaces to evaluate different types of texture information, namely the textures' roughness, hardness, and slipperiness. We find that the exploratory movements are dependent both on the perceptual task, as has been previously shown, but also on the texture that is scanned. We discuss the implications of our findings regarding the neural coding and perception of texture. PMID:25744883
General robot kinematics decomposition without intermediate markers.
Ulbrich, Stefan; de Angulo, Vicente Ruiz; Asfour, Tamim; Torras, Carme; Dillmann, Rüdiger
2012-04-01
The calibration of serial manipulators with high numbers of degrees of freedom by means of machine learning is a complex and time-consuming task. With the help of a simple strategy, this complexity can be drastically reduced and the speed of the learning procedure can be increased. When the robot is virtually divided into shorter kinematic chains, these subchains can be learned separately and hence much more efficiently than the complete kinematics. Such decompositions, however, require either the possibility to capture the poses of all end effectors of all subchains at the same time, or they are limited to robots that fulfill special constraints. In this paper, an alternative decomposition is presented that does not suffer from these limitations. An offline training algorithm is provided in which the composite subchains are learned sequentially with dedicated movements. A second training scheme is provided to train composite chains simultaneously and online. Both schemes can be used together with many machine learning algorithms. In the simulations, an algorithm using parameterized self-organizing maps modified for online learning and Gaussian mixture models (GMMs) were chosen to show the correctness of the approach. The experimental results show that, using a twofold decomposition, the number of samples required to reach a given precision is reduced to twice the square root of the original number. PMID:24805045
Kinematic GPS Profiles to monitor surface deformation
NASA Astrophysics Data System (ADS)
Charara, R.; Vigny, C.; Briole, P.
2008-12-01
GPS kinematic measurement consists in placing a GPS rover receiver that registers its position on a moving vehicule with a high frequency. The frequency of the data acquisition is chosen according to the number of points and the precision needed to characterize the rover trajectory. The position of the rover receiver can be determined with respect to another GPS reference station with a precision of a few centimeters. Consequently different kinematic profiles on trajectories can be realized in different contexts (volcano slopes, active faults,...). We first studied the correlation between different profiles on the same trajectory in the absense of any particular event. Then different individual profiles are interpolated and a single profiles is generated which we refer to as "tube". We also studied and analyzed the impact of different parameters such as the baseline length, the atmospheric errors and the number of individual profiles on the precision of the obtained tube. We present results of experimentations that were performed in Chili, Reunion Island and Greece and we show how the results can be influenced by the baselines lengths and topographies. In case of event (Earthquakes, volcanoes eruptions, landslides,...) this technique can be used to assess the amplitude of ground deformation. We estimate the thresholds (in term of amplitude and spatial extension) of detectable signals.
Kinematics and Aerodynamics of Backward Flying Dragonflies
NASA Astrophysics Data System (ADS)
Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo
2015-11-01
Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.
Kinematics of spinal motion during prolonged rowing.
Holt, P J E; Bull, A M J; Cashman, P M M; McGregor, A H
2003-11-01
Low back pain is a common problem in rowers of all levels. Few studies have looked at the relationship between rowing technique, the forces generated during the rowing stroke and the kinematics of spinal motion. Of particular concern with respect to spinal injury and damage are the effects of fatigue during long rowing sessions. A technique has been developed using an electromagnetic motion system and strain gauge instrumented load cell to measure spinal and pelvic motion and force generated at the handle during rowing on an exercise rowing ergometer. Using this technique 13 elite national and international oarsmen (mean age 22.43 +/- 1.5 y) from local top squad rowing teams were investigated. The test protocol consisted of a one hour rowing piece. During this session rowing stroke profiles were quantified in terms of lumbopelvic kinematics and stroke force profiles. These profiles were sampled at the start of the session and at quarterly intervals during the hour piece. From this data we were able to quantify the motion of the lumbar spine and pelvis during rowing and relate this to the stroke force profile. The stroke profiles over the one hour piece were then compared to examine the effects of prolonged rowing. This revealed marked increases in the amount of spinal motion during the hour piece. The relevance of this with regard to low back pain requires further investigation. PMID:14598197
THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY
Greiner, Thomas M.; Ball, Kevin A.
2015-01-01
This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343
Optimization and geophysical inverse problems
Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.
2000-10-01
A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness or distance from a prior model. Various other constraints may also be imposed upon the process. Inverse problems are not restricted to geophysics, but can be found in a wide variety of disciplines where inferences must be made on the basis of indirect measurements. For instance, most imaging problems, whether in the field of medicine or non-destructive evaluation, require the solution of an inverse problem. In this report, however, the examples used for illustration are taken exclusively from the field of geophysics. The generalization of these examples to other disciplines should be straightforward, as all are based on standard second-order partial differential equations of physics. In fact, sometimes the non-geophysical inverse problems are significantly easier to treat (as in medical imaging) because the limitations on data collection, and in particular on multiple views, are not so severe as they generally are in geophysics. This report begins with an introduction to geophysical inverse problems by briefly describing four canonical problems that are typical of those commonly encountered in geophysics. Next the connection with optimization methods is made by presenting a general formulation of geophysical inverse problems. This leads into the main subject of this report, a discussion of methods for solving such problems with an emphasis upon newer approaches that have not yet become prominent in geophysics. A separate section is devoted to a subject that is not encountered in all optimization problems but is particularly important in geophysics, the need for a careful appraisal of the results in terms of their resolution and uncertainty. The impact on geophysical inverse problems of continuously improving computational resources is then discussed. The main results are then brought together in a final summary and conclusions section.
Wang, Hongzhao; Huo, Ming; An, Xiangde; Li, Yong; Onoda, Ko; Li, Desheng; Huang, Qiuchen; Maruyama, Hitoshi
2016-01-01
[Purpose] This study was performed to investigate the changes in lower leg proximal end and forefoot kinematics, and reliability of measurement during different paces of barefoot racewalking on treadmill. [Subjects] Eleven junior racewalking men participated in this study. [Methods] To identify changes in lower leg proximal end and forefoot kinematics, during different paces of barefoot racewalking on a treadmill, a wireless motion recorder (MVP-RF8-BC) was used. Interclass correlation coefficients (ICC 1, 2) were used to estimate reliability. [Results] There were significant differences in the lower leg proximal end and forefoot maximum medial/lateral rotations at a pace of 9 km/h compared with those at a pace of 5 km/h pace. The intra-examiner reliability estimates ranged from 0.82 and 0.89 to 0.87 and 0.93 for lower leg proximal end inversion/eversion rotation and medial/lateral rotation, and from 0.92 and 0.84 to 0.93 and 0.91 for forefoot inversion/eversion rotation and medial/lateral rotation. [Conclusion] We conclude that the lower leg proximal end and forefoot kinematics of barefoot racewalking on a treadmill are influenced by different paces and that assessment of lower leg proximal end and forefoot kinematics by means of the wireless motion recorder (MVP-RF8-BC) is adequately reliable. This information may be useful for determining exercise prescriptions. PMID:27190445
Timothy C. Johnson; Roeof J. Versteeg; Andy Ward; Frederick D. Day-Lewis; Andre Revil
2010-09-01
Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics, both for characterizing the electrical properties of the subsurface, and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Current multichannel and multielectrode data collections systems are able to collect large amounts of data in relatively short periods of time. However, practitioners are often unable to fully utilize these large data sets and the information they contain due to the processing limitations of standard desktop computers. This limitation can be addressed by utilizing the storage and processing capabilities of high-performance parallel computing environments. We present a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polarization data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We demonstrate the corresponding parallel code for three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, WA; (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy; and (3) resistivity and IP monitoring of biostimulation at a superfund site in Brandywine, MD. Inverse analysis of each of these data sets would be limited (or impossible) in a standard serial computing environment which underscores the need for high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.
Combining asymptotic linearized inversion and full waveform inversion
NASA Astrophysics Data System (ADS)
Métivier, L.; Brossier, R.; Virieux, J.
2015-06-01
A method for combining the asymptotic operator designed by Beylkin (Born migration operator) for the solution of linearized inverse problems with full waveform inversion is presented. This operator is used to modify the standard L2 norm that measures the distance between synthetic and observed data. The modified misfit function measures the discrepancy of the synthetic and observed data after they have been migrated using the Beylkin operator. The gradient of this new misfit function is equal to the cross-correlation of the single scattering data with migrated/demigrated residuals. The modified misfit function possesses a Hessian operator that tends asymptotically towards the identity operator. The trade-offs between discrete parameters are thus reduced in this inversion scheme. Results on 2-D synthetic case studies demonstrate the fast convergence of this inversion method in a migration regime. From an accurate estimation of the initial velocity, three and five iterations only are required to generate high-resolution P-wave velocity estimation models on the Marmousi 2 and synthetic Valhall case studies.
Population inversion by chirped pulses
Lu Tianshi
2011-09-15
In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.
Multiphase inverse modeling: An Overview
Finsterle, S.
1998-03-01
Inverse modeling is a technique to derive model-related parameters from a variety of observations made on hydrogeologic systems, from small-scale laboratory experiments to field tests to long-term geothermal reservoir responses. If properly chosen, these observations contain information about the system behavior that is relevant to the performance of a geothermal field. Estimating model-related parameters and reducing their uncertainty is an important step in model development, because errors in the parameters constitute a major source of prediction errors. This paper contains an overview of inverse modeling applications using the ITOUGH2 code, demonstrating the possibilities and limitations of a formalized approach to the parameter estimation problem.
Darwin's "strange inversion of reasoning".
Dennett, Daniel
2009-06-16
Darwin's theory of evolution by natural selection unifies the world of physics with the world of meaning and purpose by proposing a deeply counterintuitive "inversion of reasoning" (according to a 19th century critic): "to make a perfect and beautiful machine, it is not requisite to know how to make it" [MacKenzie RB (1868) (Nisbet & Co., London)]. Turing proposed a similar inversion: to be a perfect and beautiful computing machine, it is not requisite to know what arithmetic is. Together, these ideas help to explain how we human intelligences came to be able to discern the reasons for all of the adaptations of life, including our own. PMID:19528651
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.
A School Experiment in Kinematics: Shooting from a Ballistic Cart
ERIC Educational Resources Information Center
Kranjc, T.; Razpet, N.
2011-01-01
Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…
Zero-Inertial Recession for a Kinematic Wave Model
Technology Transfer Automated Retrieval System (TEKTRAN)
Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...
A School Experiment in Kinematics: Shooting from a Ballistic Cart
ERIC Educational Resources Information Center
Kranjc, T.; Razpet, N.
2011-01-01
Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is
Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease
ERIC Educational Resources Information Center
Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai
2012-01-01
Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…
Lightcurves for Inversion Model Candidates
NASA Astrophysics Data System (ADS)
Klinglesmith, Daniel A., III; Hanowell, Jesse; Warren, Curtis Alan
2014-10-01
We present lightcurves for four inversion model candidate asteroids that will benefit from additional data at another phase angle bisector phase angle. We obtained synodic periods for each asteroid that were within ±0.002 h. Most have lightcurves that differed from previously published lightcurves in both amplitude and shape.
Action Understanding as Inverse Planning
ERIC Educational Resources Information Center
Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.
2009-01-01
Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…
Kinematic gait analysis in equine carpal lameness.
Back, W; Barneveld, A; van Weeren, P R; van den Bogert, A J
1993-01-01
Gait analysis plays a major role in the clinical evaluation of equine lameness. It is generally accepted that the clinician expresses the grade of lameness as a subjective score. In this study lameness was objectively assessed using a standardized transient lameness model, in which lameness was induced by intra-articular injection of bacterial endotoxin into the radiocarpal joint of ponies. Lameness was scored by an experienced clinician, and locomotion was recorded simultaneously using a CODA-3 apparatus. The obtained kinematic gait parameters correlated well with the clinical lameness score and also provided possibilities to objectively study the locomotor disturbances of the lame limb in more detail at the walk and trot. PMID:8470470
A kinematic model of southern California.
Weldon, R.; Humphreys, E.
1986-01-01
We propose a kinematic model for southern California based on late Quaternary slip rates and orientations of major faults in the region. Internally consistent motions are determined assuming that these faults bound rigid blocks. The velocities of the blocks are calculated along several paths that begin in the Mojave Desert and end off the California coast. A path that crosses the western Transverse Ranges accumulates the accepted relative North America-Pacific plate velocity, whereas paths to the north and south result in a significant missing component of motion. This implies the existence of a zone of active deformation in southern California that is interpreted to include the western Transverse Ranges and northwest trending, predominately strike-slip faults close to the coast both north and south of the Transverse Ranges. Strain on this system accounts for about a third of the total North America- Pacific plate motion. -from Authors
Global and regional kinematics from SLR stations
NASA Technical Reports Server (NTRS)
Dunn, Peter J.
1994-01-01
The stations of the Global Laser Tracking Network have significantly contributed to the measurement of plate kinematics. The expanding network of progressively improved instruments clearly demonstrates the systems' centimeter positioning accuracy. Several satellite laser ranging (SLR) analysis groups have adopted techniques to distill geodynamic information from the Lageos-1 satellite observations using orbital arc lengths from an hour to a decade. SLR observations now provide the scale for the International Terrestrial Reference System and help to define the Earth's polar motion in this system. Agreement between positions separately determined with SLR, VLBI and GPS systems has been established at the level of a few centimeters in position and a few millimeters per year in horizontal velocity.
Relativistic kinematics for motion faster than light
NASA Technical Reports Server (NTRS)
Jones, R. T.
1982-01-01
The use of conformal coordinates in relativistic kinematics is illustrated and a simple extension of the theory of motions faster than light is provided. An object traveling at a speed greater than light discloses its presence by appearing suddenly at a point, splitting into two apparent objects which then recede from each other at sublight velocities. According to the present theory motion at speeds faster than light would not benefit a space traveler, since the twin paradox becomes inverted at such speeds. In Einstein's theory travel at the velocity of light in an intertial system is equivalent to infinite velocity for the traveler. In the present theory the converse is also true; travel at infinite velocity is equivalent to the velocity of light for the traveler.
Adjustable link for kinematic mounting systems
Hale, L.C.
1997-07-01
An adjustable link for kinematic mounting systems is disclosed. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two. 3 figs.
Adjustable link for kinematic mounting systems
Hale, Layton C.
1997-01-01
An adjustable link for kinematic mounting systems. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two.
Kinematic Solar Dynamo with Spot Deposition
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Miesch, Mark S.
2016-05-01
We have recently developed a kinematic dynamo model by including the observed differential rotation and the meridional flow. This model includes the emergence of sunspots from the deep-seated toroidal field and their subsequent decay at the surface, i.e., the Babcock-Leighton process for the generation of poloidal field.We shall show that this model reproduces most of the basic features of the solar magnetic cycle including the polarity reversals, 11 years periodicity, equatorward migration of sunspots at low latitudes and the poleward migration of the radial field at the surface. This model also produces the observed cycle variations when the fluctuations in the active-region tilt are included. North-south asymmetries of cycles from this model will also be demonstrated.
Uncertainty quantification in kinematic wave models
Wang, Peng; Tartakovsky, Daniel M.
2012-10-01
We developed a probabilistic approach to quantify parametric uncertainty in first-order hyperbolic conservation laws (kinematic wave equations). The approach relies on the derivation of a deterministic equation for the cumulative density function (CDF) of the system state, in which probabilistic descriptions (probability density functions or PDFs) of the system parameters and/or initial and boundary conditions serve as inputs. In contrast to PDF equations, which are often used in other contexts, CDF equations allow for straightforward and unambiguous determination of boundary conditions with respect to sample variables.The accuracy and robustness of solutions of the CDF equation for one such system, the Saint-Venant equations of river flows, were investigated via comparison with Monte Carlo simulations.
Beating kinematics of magnetically actuated cilia
NASA Astrophysics Data System (ADS)
Downton, M. T.; Stark, H.
2009-02-01
We study the beating kinematics and pumping performance of a magnetically actuated artificial cilium attached to a surface using a bead spring model. Several different beating patterns for the external field are considered along with the possiblity of defects in the filament at isolated points. Hydrodynamic interactions between the beads are included by a modified Rotne-Prage tensor such that the no-slip boundary condition at the surface is satisfied. We find that the correct positioning of defects along the filament length can lead to significant increases in the pumping performance of a planar beating pattern. Even more efficient for pumping fluid are three-dimensional beating strokes which bring the filament close to the surface during the return part of the stroke.
Unraveling L_{n,k}: Grassmannian Kinematics
Kaplan, Jared; /SLAC
2010-02-15
It was recently proposed that the leading singularities of the S-Matrix of N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grassmannian manifold, with space-time locality encoded through residue theorems generalizing Cauchy's theorem to more than one variable. We provide a method to identify the residue corresponding to any leading singularity, and we carry this out explicitly for all leading singularities at tree level and one-loop. We also give several examples at higher loops, including all generic two-loop leading singularities and an interesting four-loop object. As an example we consider a 12-pt N{sup 4}MHV leading singularity at two loops that has a kinematic structure involving double square roots. Our analysis results in a simple picture for how the topological structure of loop graphs is reflected in various substructures within the Grassmannian.
Kinematics of chiropteran shoulder girdle in flight.
Panyutina, A A; Kuznetsov, A N; Korzun, L P
2013-03-01
New data on the mechanisms of movements of the shoulder girdle and humerus of bats are described; potential mobility is compared to the movements actually used in flight. The study was performed on the basis of morphological and functional analysis of anatomical specimens of 15 species, high speed and high definition filming of two species and X-ray survey of Rousettus aegyptiacus flight. Our observations indicate that any excursions of the shoulder girdle in bats have relatively small input in the wing amplitude. Shoulder girdle movements resemble kinematics of a crank mechanism: clavicle plays the role of crank, and scapula-the role of connecting rod. Previously described osseous "locking mechanisms" in shoulder joint of advanced bats do not affect the movements, actually used in flight. The wing beats in bats are performed predominantly by movements of humerus relative to shoulder girdle, although these movements occupy the caudal-most sector of available shoulder mobility. PMID:23381941
Atomic Hydrogen Gas Kinematics in NGC 3359
NASA Astrophysics Data System (ADS)
Boonyasait, V.; Gottesman, S. T.; Zurita, A.; Rozas, M.
2000-12-01
We present the kinematical analysis of HI and HII gases within the disk of NGC 3359. There is a strong trend of non-circular gas flow as seen in the velocity field maps of both media. Specifically, the regions near the bar are marked by very skewed isovelocity contour lines. Within the area, velocity differences between the neutral atomic and ionized hydrogen up to 30 km s-1 can be seen. The large deviation from circular flow makes NGC 3359 an ideal candidate for us to test a new method of determining co-rotation radii of galaxies based on conspicuous features located at L4,5 Lagrangian points of the bar potential. The method and initial results will be discussed in this presentation. This work is supported by the pre-doctoral fellowship from the Florida Space Grant Consortium.
Kinematic tests of exotic flat cosmological models
Charlton, J.C.; Turner, M.S.
1986-05-01
Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations.
Collision kinematics in the western external Alps
NASA Astrophysics Data System (ADS)
Bellahsen, N.; Mouthereau, F.; Boutoux, A.; Bellanger, M.; Lacombe, O.; Jolivet, L.; Rolland, Y.
2014-06-01
The kinematics of the collision in Western Alps are investigated through five balanced cross sections of the whole external domain from the Oisans to the Mont Blanc massif. These cross sections were built using published data for the Jura and subalpine fold-and-thrust belts and new structural and field analysis for the External Crystalline Massifs. Five units are defined: the sedimentary nappes from innermost parts of the external zone (e.g., ultra-Dauphinois/Helvetic), the crystalline units with their dysharmonically folded cover (e.g., Morcles nappe), sedimentary nappes over the frontal parts of the crystalline massifs (the Aravis-Granier unit), the subalpine belts (e.g., Vercors, Chartreuse, Bauges, and Bornes), and the Jura. Except for the ultra-Dauphinois nappes, the shortening, including the cover shortening, always corresponds to basement shortening. The total amount of shortening increases from south (28 km, 20%) to north (66 km, 27%). Moreover, the shortening is slightly older in the south than in the north; deepwater turbidites (flysch) and shallow marine to freshwater clastics (molasse) basins are more developed in the north; pressure and temperature conditions are higher in the north; the average uplift rates are about 3 times higher in the north and more localized in space. We propose that these differences are due to along-strike variations in the structure of the European continental margin inherited from Mesozoic times. We then build five palinspastic maps: one at Cretaceous times showing the inherited European Mesozoic margin structure and four from Priabonian to upper Miocene times showing the collision kinematics and the related rotation of Adria.
A Kinematic Study of Finswimming at Surface
Gautier, Jimmy; Baly, Laurent; Zanone, Pier-Giorgio; Watier, Bruno
2004-01-01
Finswimming is a sport of speed practiced on the surface or underwater, in which performance is based on whole-body oscillations. The present study investigated the undulatory motion performed by finswimmers at the surface. This study aiming to analyze the influence of the interaction of gender, practice level, and race distance on selected kinematic parameters. Six elite and six novices finswimmers equipped with joints markers (wrist, elbow, shoulder, hip, knee, and ankle) were recorded in the sagittal plane. The position of these anatomical marks was digitized at 50 Hz. An automated motion analysis software yielded velocity, vertical amplitude, frequency, and angular position. Results showed that stroke frequency decreased whereas the mean amplitude of all joints increased with increasing race distance (p < 0.01). Mean joint amplitude for the upper limbs (wrist, elbow and shoulder) was smaller for experts than for novices. Whereas that of the ankle was larger, so that the oscillation amplitude increased from shoulder to ankle. Elite male finswimmers were pitching more acutely than female. Moreover, elite male finswimmers showed a smaller knee bending than novices and than elite females (p < 0.01). This indicated that elite male finswimmers attempt to reduce drag forces thanks to a weak knee bending and a low upper limbs pitch. To sum up, gender, expertise, and race distance affect the performance and its kinematics in terms frontal drag. Expertise in finswimming requires taking advantage of the mechanical constraints pertaining to hydrodynamic constraints in order to optimize performance. Key Points Finswimmers are at one and the same time a propelling and a propelled body. This study investigates the undulatory motion performed by finswimmers at the surface. Elite male finswimmers were pitching more acutely than female swimmers and showed a smaller knee bending than both novices and elite female swimmers. Finswimmers tended to perform a dolphin-like motion, which is used underwater situation and optimizes hydrodynamics. PMID:24482584
Numerical analysis of kinematic soil—pile interaction
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Maugeri, Michele; Mylonakis, George
2008-07-01
In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000@. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.
Numerical analysis of kinematic soil-pile interaction
Castelli, Francesco; Maugeri, Michele; Mylonakis, George
2008-07-08
In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.
Applications of inverse pattern projection
NASA Astrophysics Data System (ADS)
Li, Wansong; Bothe, Thorsten; Kalms, Michael K.; von Kopylow, Christoph; Jueptner, Werner P. O.
2003-05-01
Fast and robust 3D quality control as well as fast deformation measurement is of particular importance for industrial inspection. Additionally a direct response about measured properties is desired. Therefore, robust optical techniques are needed which use as few images as possible for measurement and visualize results in an efficient way. One promising technique for this aim is the inverse pattern projection which has the following advantages: The technique codes the information of a preceding measurement into the projected inverse pattern. Thus, it is possible to do differential measurements using only one camera frame for each state. Additionally, the results are optimized straight fringes for sampling which are independent of the object curvature. The hardware needs are low as just a programmable projector and a standard camera are necessary. The basic idea of inverse pattern projection, necessary algorithms and found optimizations are demonstrated, roughly. Evaluation techniques were found to preserve a high quality phase measurement under imperfect conditions. The different application fields can be sorted out by the type of pattern used for inverse projection. We select two main topics for presentation. One is the incremental (one image per state) deformation measurement which is a promising technique for high speed deformation measurements. A video series of a wavering flag with projected inverse pattern was evaluated to show the complete deformation series. The other application is the optical feature marking (augmented reality) that allows to map any measured result directly onto the object under investigation. Any properties can be visualized directly on the object"s surface which makes inspections easier than with use of a separated indicating device. The general ability to straighten any kind of information on 3D surfaces is shown while preserving an exact mapping of camera image and object parts. In many cases this supersedes an additional monitor to view results and allows an operator to investigate results on the object, directly.
Inverse dynamics of a 3 degree of freedom spatial flexible manipulator
NASA Technical Reports Server (NTRS)
Bayo, Eduardo; Serna, M.
1989-01-01
A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.
Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.
Jung, Yihwan; Jung, Moonki; Lee, Kunwoo; Koo, Seungbum
2014-08-22
Kinetic analysis of walking requires joint kinematics and ground reaction force (GRF) measurement, which are typically obtained from a force plate. GRF is difficult to measure in certain cases such as slope walking, stair climbing, and track running. Nevertheless, estimating GRF continues to be of great interest for simulating human walking. The purpose of the study was to develop reaction force models placed on the sole of the foot to estimate full GRF when only joint kinematics are provided (Type-I), and to estimate ground contact shear forces when both joint kinematics and foot pressure are provided (Type-II and Type-II-val). The GRF estimation models were attached to a commercial full body skeletal model using the AnyBody Modeling System, which has an inverse dynamics-based optimization solver. The anterior-posterior shear force and medial-lateral shear force could be estimated with approximate accuracies of 6% BW and 2% BW in all three methods, respectively. Vertical force could be estimated in the Type-I model with an accuracy of 13.75% BW. The accuracy of the force estimation was the highest during the mid-single-stance period with an average RMS for errors of 3.10% BW, 1.48% BW, and 7.48% BW for anterior-posterior force, medial-lateral force, and vertical force, respectively. The proposed GRF estimation models could predict full and partial GRF with high accuracy. The design of the contact elements of the proposed model should make it applicable to various activities where installation of a force measurement system is difficult, including track running and treadmill walking. PMID:24917473
Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage
NASA Astrophysics Data System (ADS)
Li, Chun-Xia; Gu, Guo-Ying; Yang, Mei-Ju; Zhu, Li-Min
2013-12-01
This paper presents the design, analysis, and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage driven by piezoelectric stack actuators. The stage is designed with two kinematic chains. In each kinematic chain, the end-effector of the stage is connected to the base by two symmetrically distributed flexure modules, respectively. Each flexure module comprises a fixed-fixed beam and a parallelogram flexure serving as two orthogonal prismatic joints. With the purpose to achieve high resonance frequencies of the stage, a novel center-thickened beam which has large stiffness is proposed to act as the fixed-fixed beam. The center-thickened beam also contributes to reducing cross-coupling and restricting parasitic motion. To decouple the motion in two axes totally, a symmetric configuration is adopted for the parallelogram flexures. Based on the analytical models established in static and dynamic analysis, the dimensions of the stage are optimized in order to maximize the first resonance frequency. Then finite element analysis is utilized to validate the design and a prototype of the stage is fabricated for performance tests. According to the results of static and dynamic tests, the resonance frequencies of the developed stage are over 13.6 kHz and the workspace is 11.2 μm × 11.6 μm with the cross-coupling between two axes less than 0.52%. It is clearly demonstrated that the developed stage has high resonance frequencies, a relatively large travel range, and nearly decoupled performance between two axes. For high-speed tracking performance tests, an inversion-based feedforward controller is implemented for the stage to compensate for the positioning errors caused by mechanical vibration. The experimental results show that good tracking performance at high speed is achieved, which validates the effectiveness of the developed stage.
Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage
Li, Chun-Xia; Gu, Guo-Ying; Yang, Mei-Ju; Zhu, Li-Min
2013-12-15
This paper presents the design, analysis, and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage driven by piezoelectric stack actuators. The stage is designed with two kinematic chains. In each kinematic chain, the end-effector of the stage is connected to the base by two symmetrically distributed flexure modules, respectively. Each flexure module comprises a fixed-fixed beam and a parallelogram flexure serving as two orthogonal prismatic joints. With the purpose to achieve high resonance frequencies of the stage, a novel center-thickened beam which has large stiffness is proposed to act as the fixed-fixed beam. The center-thickened beam also contributes to reducing cross-coupling and restricting parasitic motion. To decouple the motion in two axes totally, a symmetric configuration is adopted for the parallelogram flexures. Based on the analytical models established in static and dynamic analysis, the dimensions of the stage are optimized in order to maximize the first resonance frequency. Then finite element analysis is utilized to validate the design and a prototype of the stage is fabricated for performance tests. According to the results of static and dynamic tests, the resonance frequencies of the developed stage are over 13.6 kHz and the workspace is 11.2 μm × 11.6 μm with the cross-coupling between two axes less than 0.52%. It is clearly demonstrated that the developed stage has high resonance frequencies, a relatively large travel range, and nearly decoupled performance between two axes. For high-speed tracking performance tests, an inversion-based feedforward controller is implemented for the stage to compensate for the positioning errors caused by mechanical vibration. The experimental results show that good tracking performance at high speed is achieved, which validates the effectiveness of the developed stage.
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Márquez, I.; Barrera-Ballesteros, J. K.; Masegosa, J.; Husemann, B.; Falcón-Barroso, J.; Lyubenova, M.; Sánchez, S. F.; Walcher, J.; Mast, D.; García-Benito, R.; Méndez-Abreu, J.; van de Ven, G.; Spekkens, K.; Holmes, L.; Monreal-Ibero, A.; del Olmo, A.; Ziegler, B.; Bland-Hawthorn, J.; Sánchez-Blázquez, P.; Iglesias-Páramo, J.; Aguerri, J. A. L.; Papaderos, P.; Gomes, J. M.; Marino, R. A.; González Delgado, R. M.; Cortijo-Ferrero, C.; López-Sánchez, A. R.; Bekeraitė, S.; Wisotzki, L.; Bomans, D.
2015-01-01
Context. Ionized gas kinematics provide important clues to the dynamical structure of galaxies and hold constraints to the processes driving their evolution. Aims: The motivation of this work is to provide an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of the CALIFA survey for including kinematical criteria in their selection of targets for specific studies. From the first 200 galaxies observed by CALIFA survey in its two configurations, we present the two-dimensional kinematic view of the 177 galaxies satisfaying a gas content/detection threshold. Methods: After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component for each spectrum in the CALIFA data cubes for different emission lines (namely, [O ii] λλ3726,3729, [O iii] λλ4959,5007, Hα+[N ii] λλ6548,6584, and [SII]λλ6716,6730). The main kinematic parameters measured on the plane of the sky were directly derived from the radial velocities with no assumptions on the internal prevailing motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [O iii] λλ4959,5007 emission line profiles. Results: At the velocity resolution of CALIFA, most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. Thirty-five percent of the objects present evidence of a displacement between the photometric and kinematic centers larger than the original spaxel radii. Only 17% of the objects in the sample exhibit kinematic lopsidedness when comparing receding and approaching sides of the velocity fields, but most of them are interacting galaxies exhibiting nuclear activity (AGN or LINER). Early-type (E+S0) galaxies in the sample present clear photometric-kinematic misaligments. There is evidence of asymmetries in the emission line profiles in 117 out of the 177 analyzed galaxies, suggesting the presence of kinematically distinct gaseous components located at different distances from the optical nucleus. The kinematic decoupling between the dominant and secondary component/s suggested by the observed asymmetries in the profiles can be characterized by a limited set of parameters. Conclusions: This work constitutes the first determination of the ionized gas kinematics of the galaxies observed in the CALIFA survey. The derived velocity fields, the reported kinematic distortions/peculiarities and the identification of the presence of several gaseous components in different regions of the objects might be used as additional criteria for selecting galaxies for specific studies. Based on observations collected at the Centro Astronmico Hispano Alemn (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Appendices are available in electronic form at http://www.aanda.org
Plummer, Hillary A; Oliver, Gretchen D
2014-01-01
The purpose of this study was to determine the relationship between gluteal muscle activation and pelvis and trunk kinematics when catchers throw to second base. Forty-two baseball and softball catchers (14.74 ± 4.07 years; 161.85 ± 15.24 cm; 63.38 ± 19.98 kg) participated in this study. Muscle activity of the bilateral gluteus maximus and medius as well as pelvis and trunk kinematics throughout the throwing motion were analyzed. It was discovered that at foot contact, there were 2 significant inverse relationships between stride leg gluteus maximus activity and pelvis axial rotation (r = -0.31, r2 = 0.10, p = 0.05), and between trunk axial rotation and pelvis lateral flexion (r = -0.34, r2= 0.12, p = 0.03). In addition, at foot contact, a significant positive relationship between the drive leg (throwing arm side) and trunk flexion (r = 0.33, r2 = 0.11, p = 0.04) was present. The results of this study provide evidence of gluteal activation both concentrically and eccentrically, in attempt to control the pelvis and trunk during the throwing motion of catchers. The gluteal muscles play a direct role in maintaining the stability of the pelvis, and catchers should incorporate strengthening of the entire lumbopelvic-hip complex into their training regimen. Incorporating concentric and eccentric gluteal exercises will help to improve musculoskeletal core stability, thereby assisting in upper extremity injury prevention. PMID:23591952
Wing kinematics in a hovering dronefly minimize power expenditure.
Wu, J H; Sun, M
2014-01-01
When an insect hovers or performs constant-speed flight, its wings flap at certain amplitude, frequency, angle of attack, etc., and the flight is balanced (vertical force equals to the weight, and horizontal force and pitch moment are zero). It is possible that when some other sets of values of wing kinematical parameters are used, the force and moment balance conditions can still be satisfied. Does the wing kinematics used by a constant-speed flying insect minimize the power expenditure? In this study, whether the wing kinematics used by a freely hovering dronefly minimizes its energy expenditure was investigated. First, the power consumption using the set of values of wing kinematical parameters that was actually employed by the insect was computed. Then, the kinematical parameters were changed while keeping the equilibrium flight conditions satisfied, and the power consumption was recalculated. It was found that wing kinematical parameters used by the freely hovering dronefly are very close to that minimize its energy consumption, and they can ensure the margin of controllability from hovering to maneuvers. That is, slight change of wing kinematical parameters did not cause significant change of the specific power (maintained a relatively small value). PMID:25347844
Microseismic Moment-Tensor Inversion
NASA Astrophysics Data System (ADS)
Forouhideh, Farshid
It is common practice in the oil and gas industry to use a single vertical well with limited number of geophones to monitor the microseismicity induced by hydraulic fracture treatment. In this thesis, I have employed a synthetic and stochastic modeling approach to investigate the effects of monitoring geometry and noise on inverting recorded P- and S-wave amplitudes for the moment tensor and source parameters responsible for generating the observed seismograms. The results of the synthetic modeling have shown that microseismic moment-tensor inversion using data from a single vertical monitoring well is ill-conditioned and incapable of resolving all six components of the moment tensor. Mitigating this problem requires introducing new constraints and a-priori assumptions on inversion.
Simplified, inverse, ejector design tool
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1993-01-01
A simple lumped parameter based inverse design tool has been developed which provides flow path geometry and entrainment estimates subject to operational, acoustic, and design constraints. These constraints are manifested through specification of primary mass flow rate or ejector thrust, fully-mixed exit velocity, and static pressure matching. Fundamentally, integral forms of the conservation equations coupled with the specified design constraints are combined to yield an easily invertible linear system in terms of the flow path cross-sectional areas. Entrainment is computed by back substitution. Initial comparison with experimental and analogous one-dimensional methods show good agreement. Thus, this simple inverse design code provides an analytically based, preliminary design tool with direct application to High Speed Civil Transport (HSCT) design studies.
Momentum resolution in inverse photoemission
Zumbülte, A.; Schmidt, A. B.; Donath, M.
2015-01-15
We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.
NASA Technical Reports Server (NTRS)
Hedland, D. A.; Degonia, P. K.
1974-01-01
The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.
Inverse statistics and information content
NASA Astrophysics Data System (ADS)
Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.
2010-12-01
Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.
Polynomial Compensation, Inversion, And Approximation
NASA Technical Reports Server (NTRS)
Baram, Yoram
1990-01-01
New criterion introduced for design of discrete-time compensator. Method devised for polynomial compensation, inversion, and approximation of discrete-time linear systems. Involves quadratic measure of difference between response of compensated system and desired response. Impulse response of compensated system improves as degree of polynomial increases. Compensator emphasizes matching of large initial response. Compensators used in variety of applications, including navigation systems for spacecraft, aircraft, ships, and automated manufacturing equipment.
Pyramidal inversion domain boundaries revisited
Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.
2011-10-03
The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.
Planetary Waves Kinematically Forced by Himalayan Orography.
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.; Chen, Shyh-Chin
1988-10-01
An analysis is made of the planetary-scale response of the atmosphere to the kinematic effects of orographic forcing by, in particular, the Tibetan Plateau-Himalayan Mountain complex. Theoretical scaling arguments are used to deduce a critical mountain height hc beyond which the component of flow around will dominate that over the orography. The hc is proportional to the meridional scale of the orography and depends on latitude, For north-south scales appropriate for the Himalayas hc 1.5 km which is much less than the actual height of 3706 m when resolved with tour zonal planetary waves, with the implication that the `around' component will dominate.A steady-state planetary wave model which has a full kinematic nonlinear lower boundary condition is used to simulate the response to the eastern orography whose height has been multiplied by factors ranging from 0.1 to 2.0. Although the mountain configuration was fixed, the locations of the simulated perturbation highs and lows change substantially in such a way that the total flow increasingly adjusts to go around the high orography as the mountain heights are increased. This effect limits the total vertical motion induced by the orography and thus the amplitudes of the forced planetary waves increase at a rate much less than expected from linear theory. Neglected nonlinear terms in the model are shown to be relatively small in all cases. For shallow mountains the maximum response occurs at the latitude of the mountain (35°N) but both the maximum response and the maximum zonal mean poleward heat flux by the simulated waves are shifted poleward to 55°N for orography >1500 m high, consistent with the observed location of the wintertime stationary waves in the Northern Hemisphere. Overall, results support the expectations from scaling considerations and show that linear theory may be reasonably applied for Himalayan orography up to 1 km high when resolved on planetary scales, but the `around' component dominates the `over' component when the orography exceeds 1.5 km, as is the case in actuality. The around component should also dominate for the Greenland plateau and Antarctica but the effects are more equivocal for the Rockies which are only 1 km high when resolved with planetary scales while hc 1.5 km.
The Indian monsoon speeds up plate kinematics.
NASA Astrophysics Data System (ADS)
Husson, L.
2008-12-01
The convergence of the Indian plate towards Eurasia is faster on the eastern side of the Himalayas by ~ 10 mm yr-1 than on the western side. The Carlsberg ridge records the motion of the Indian plate with respect to Africa, which moves very slowly with respect to Eurasia. Consistently, spreading rates are faster on the eastern side of the ridge. This situation has not remained for ever; available data indicate that the Carlsberg ridge spread at a uniform rate between 20 and 11 Ma, only afterwards did the spreading pattern become more complex. The onset of the Indian monsoon, at ~8 Ma, could be responsible for the rotational convergence of India towards Eurasia and spreading of the Carlsberg ridge, by the action of two joint mechanisms. The very active erosion lowered the bhutanese Himalayas with respect the nepalese Himalayas to a new morphologic equilibrium between tectonics and climate. First, volume balance suggests that the fast eastern erosion "consumes" more Indian crust than the slower western erosion and pumps the Indian lithosphere at mean horizontal velocity of 3 to 5 mm yr-1, i.e. only less than half the velocity increase along the Himalayan arc. The missing term is found in plate kinematics. The post-monsoon force balance requires a faster deformation and larger viscous stresses to compensate the deficit in gravitational potential energy (GPE) associated to the new eastern morphology. Far-field driving forces are less balanced by a lower mountain belt and plate kinematics subsequently accelerate. The Carlsberg-India-Himalyas system can therefore be regarded as a system in which extensional stresses from the ridge are unevenly resisted by the Himalayan load that varies through time and space. Not only does the monsoon affect the topography but it also boosts the convergence in the eastern Himalayas and spreading of the SE side of the Carlsberg ridge. Pairs of convergence rates and GPE can be extracted and ultimately allow one to estimate an effective viscosity for the lithosphere of ~1022 Pa s with no need to quantify the driving tectonic forces.
Kinematics of stellar populations with RAVE data
NASA Astrophysics Data System (ADS)
Karataş, Yüksel; Klement, Rainer J.
2012-01-01
We study the kinematics of the Galactic thin and thick disk populations using stars from the RAVE survey's second data release together with distance estimates from Breddels et al. (2010). The velocity distribution exhibits the expected moving groups present in the solar neighborhood. We separate thick and thin disk stars by applying the X (stellar-population) criterion of Schuster et al. (1993), which takes into account both kinematic and metallicity information. For 1906 thin disk and 110 thick disk stars classified in this way, we find a vertical velocity dispersion, mean rotational velocity and mean orbital eccentricity of ( σW, < VΦ>, < e>) thin = (18 ± 0.3 km s -1, 223 ± 0.4 km s -1, 0.07 ± 0.07) and ( σW, < VΦ>, < e>) thick = (35 ± 2 km s -1, 163 ± 3 km s -1, 0.31 ± 0.16), respectively. From the radial Jeans equation, we derive a thick disk scale length in the range 1.5-2.2 kpc, whose greatest uncertainty lies in the adopted form of the underlying potential. The shape of the orbital eccentricity distribution indicates that the thick disk stars in our sample most likely formed in situ with minor gas-rich mergers and/or radial migration being the most likely cause for their orbits. We further obtain mean metal abundances of <[M/H]> thin = +0.03 ± 0.17, and <[M/H]> thick = -0.51 ± 0.23, in good agreement with previous estimates. We estimate a radial metallicity gradient in the thin disk of -0.07 dex kpc -1, which is larger than predicted by chemical evolution models where the disk grows inside-out from infalling gas. It is, however, consistent with models where significant migration of stars shapes the chemical signature of the disk, implying that radial migration might play at least part of a role in the thick disk's formation.