Science.gov

Sample records for jam da uhhab

  1. Network analyzer for nonstatic jamming

    NASA Astrophysics Data System (ADS)

    Cheng, Unjeng

    1989-06-01

    The survivability of a packet radio network (PRNET) under jamming attack is an important issue. The goal of this research is to develop the analytical methods for understanding as well as predicting the behavior of PRNETs under various jamming conditions. Jamming can be stationary or nonstationary. For the stationary jamming, the jamming strategy is fixed, but it can be described stochastically. For instance, we may say that a node is jammed with probability 0.5 in each slot. Therefore, although the jamming strategy is fixed, the actual jamming pattern changes from slot to slot. A subclass of the stationary jamming is the static jamming, where the jamming pattern is fixed. For the nonstationary jamming, the jamming strategy changes from time to time. A subclass of the nonstationary jamming is the nonstatic jamming, where a fixed jamming pattern is applied in each block of time, but the jamming pattern changes from block to block. We analyzed the behavior of PRNETs under static jamming attack in our previous report. In this report, we introduce a method of analyzing the PRNET behavior under the nonstatic jamming attack. The analytical results for the static jamming attack scenario were presented in our previous report for both the transmitter-based code and the receiver-based code networks. The numerical results were given only for the receiver-based code case. Simulations were performed to verify the accuracy of the analytical approach.

  2. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  3. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  4. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  5. JAM-A is present in Mammalian Spermatozoa where it is Essential for Normal Motility

    PubMed Central

    Shao, Minghai; Ghosh, Ananya; Cooke, Vesselina G.; Naik, Ulhas P.; Martin-DeLeon, Patricia A.

    2008-01-01

    Junctional Adhesion Molecules (JAMs) that are expressed in endothelial and epithelial cells and function in tight junction assembly, also perform important roles in testis where the closely-related JAM-A, JAM-B, and JAM-C are found. Disruption of murine Jam-B and Jam-C has varying effects on sperm development and function, however deletion of Jam-A has not yet been studied. Here we show for the first time that in addition to expression in the Sertoli-Sertoli tight junctions in the seminiferous tubules, the ∼32 kDa murine JAM-A is present in elongated spermatids and in the plasma membrane of the head and flagellum of sperm. Deletion of Jam-A, using the gene trap technology, results in flagellar defects at the ultrastructural level. In Jam-A-deficient mice, which have reduced litter size, both progressive and hyperactived motility are significantly affected (P<0.0001) before and, more severely, after capacitation. The findings show that JAM-A is involved in sperm tail formation and is essential for normal motility, which may occur via its signal transduction and protein phosphorylation properties. Detection of JAM-A in human sperm protein indicates that its role may be conserved in sperm motility and that JAM-A may be a candidate gene for the analysis of idiopathic sperm motility defects resulting in male subfertility in the human population. PMID:18022613

  6. Fragile granular jamming

    SciTech Connect

    Rivera, Michael K; Ecke, Robert E; Bandi, Mahesh M; Kzakala, Florent

    2009-01-01

    We demonstrate experimentally that the route to a jammed state for a set of bi-dispersed frictional disks, subjected to uni-axial compression from a random initial unjammed state, consists of a consolidation state, a fragile jammed state, and finally a rigid jammed state. In the consolidation regime, the pressure on the sides increases very slowly with the packing fraction {phi} and there are no detectable stress chains. In the fragile jammed state, stress chains are visible, the pressure increases exponentially with {phi}, and the fraction of moving disks drops exponentially. Eventually, a final regime where particle displacements are below our resolution and the pressure varies approximately linearly with {phi} is reached. We argue that this scenario is generic for ather mal frictional compressed particles.

  7. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  8. Myelin Avoids the JAM.

    PubMed

    Follis, Rose M; Carter, Bruce D

    2016-08-17

    In this issue of Neuron, Redmond et al. (2016) identify junction adhesion molecule 2 (JAM2) as an inhibitor of somatodendritic myelination in spinal cord neurons, thereby elucidating how myelin forms on axons but avoids dendrites and cell bodies. PMID:27537479

  9. The Classroom Traffic Jam

    ERIC Educational Resources Information Center

    Edwards, Arthur W.

    1977-01-01

    The importance of energy conservation is developed in this simulation. Children draw an automobile and then are asked to drive it through the classroom roadways. When a traffic jam results, students offer ways to eliminate it. The importance of mass transportation and car pools is stressed by the teacher. (MA)

  10. Jamming in hierarchical networks

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Boettcher, Stefan

    2015-11-01

    We study the Biroli-Mezard model for lattice glasses on a number of hierarchical networks. These networks combine certain lattice-like features with a recursive structure that makes them suitable for exact renormalization group studies and provide an alternative to the mean-field approach. In our numerical simulations here, we first explore their equilibrium properties with the Wang-Landau algorithm. Then, we investigate their dynamical behavior using a grand-canonical annealing algorithm. We find that the dynamics readily falls out of equilibrium and jams in many of our networks with certain constraints on the neighborhood occupation imposed by the Biroli-Mezard model, even in cases where exact results indicate that no ideal glass transition exists. But while we find that time-scales for the jams diverge, our simulations cannot ascertain such a divergence for a packing fraction distinctly above random close packing. In cases where we allow hopping in our dynamical simulations, the jams on these networks generally disappear.

  11. Jam-resistant speech encoding

    NASA Astrophysics Data System (ADS)

    Poole, M. A.; Rifkin, R.

    1983-06-01

    This report describes techniques that provide increased jam resistance for digitized speech. Methods for increasing the jam resistance of pulse code modulated data are analyzed and evaluated in listener tests. Special emphasis is placed on new voice encoding approaches that take advantage of a spread spectrum system with a variable (or multiple)-data-rate/variable (or multiple)-AJ capability. Methods for matching a source to a channel in a jamming environment are investigated. Several techniques that provide about a 4 dB increase in jam resistance have been identified.

  12. Nonconvex optimization and jamming

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav

    Recent work on the jamming transition of particles with short-range interactions has drawn connections with models based on minimization problems with linear inequality constraints and a concave objective. These properties reduce the continuous optimization problem to a discrete search among the corners of the feasible polytope. I will discuss results from simulations of models with and without quenched disorder, exhibiting critical power laws, scaling collapse, and protocol dependence. These models are also well-suited for study using tools of algebraic topology, which I will discuss briefly. Supported by an Omidyar Fellowship at the Santa Fe Institute.

  13. Shear jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2013-11-01

    For frictionless particles with purely repulsive interactions, there is a critical packing fraction ϕJ below which no jammed states exist. Recent experiments have shown that applying shear to a stress-free initial state can generate states which are either fragile or shear jammed depending on the way the force-network is percolated (Bi et al. Nature 2011). The nature of the jamming transition however is obscured because the existence of friction between the system and the third dimension. A new apparatus at SJTU has been designed to completely eliminate this friction by letting the particles float on the surface of a shallow water layer, which allows a study of the more detailed nature of the shear-jammed states and the transition from an unjammed state to a shear-jammed state. In this study, we also use high-precision force sensors to monitor the dynamical changes near the jamming transition. We further combine numerical simulations with the experiments to diagnose the nature of this jamming transition and its possible dependence on certain particle properties. The work at SJTU is in collaboration with Ling Zhang and Jie Zheng. The numerical simulations are in collaboration with Maobin Hu at Univ. of Sci. & Tech. of China.

  14. Jamming vs Caging in Three Dimensional Jamming Percolation

    NASA Astrophysics Data System (ADS)

    Shokef, Yair; Segall, Nimrod; Teomy, Eial

    We study a three-dimensional kinetically-constrained lattice-gas model, in which the ability of a particle to move depends on the occupation of neighboring sites in an orientational manner. The kinetic rules are constructed such that chains of permanently-frozen particles reach an infinite length at the critical density of directed percolation. Thus at this critical density the system undergoes a jamming transition, above which there is a finite fraction of jammed particles. We demonstrate that the three-dimensional mesh-like structure of the one-dimensional jammed chains enables the free particles to propagate through the holes in this mesh. This diffusive motion is terminated at a second critical density above which all particles are caged. The largest and second largest clusters of dynamically-connected sites exhibit singularities at both densities. Thus our model assists in separating between the two distinct phenomena of jamming and caging.

  15. Biophysics: Life in a jam

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Gore, Jeff

    2016-08-01

    Jammed states in growing yeast populations share intriguing similarities with amorphous solids, despite being generated through self-replication. The impact this behaviour has on cell division highlights one way that physical forces regulate biological function.

  16. The simplest model of jamming

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Parisi, Giorgio

    2016-04-01

    We study a well known neural network model—the perceptron—as a simple statistical physics model of jamming of hard objects. We exhibit two regimes: (1) a convex optimization regime where jamming is hypostatic and non-critical; (2) a non-convex optimization regime where jamming is isostatic and critical. We characterize the critical jamming phase through exponents describing the distribution laws of forces and gaps. Surprisingly we find that these exponents coincide with the corresponding ones recently computed in high dimensional hard spheres. In addition, modifying the perceptron to a random linear programming problem, we show that isostaticity is not a sufficient condition for singular force and gap distributions. For that, fragmentation of the space of solutions (replica symmetry breaking) appears to be a crucial ingredient. We hypothesize universality for a large class of non-convex constrained satisfaction problems with continuous variables.

  17. Protocol dependence of the jamming transition

    NASA Astrophysics Data System (ADS)

    Bertrand, Thibault; Behringer, Robert P.; Chakraborty, Bulbul; O'Hern, Corey S.; Shattuck, Mark D.

    2016-01-01

    We propose a theoretical framework for predicting the protocol dependence of the jamming transition for frictionless spherical particles that interact via repulsive contact forces. We study isostatic jammed disk packings obtained via two protocols: isotropic compression and simple shear. We show that for frictionless systems, all jammed packings can be obtained via either protocol. However, the probability to obtain a particular jammed packing depends on the packing-generation protocol. We predict the average shear strain required to jam initially unjammed isotropically compressed packings from the density of jammed packings, shape of their basins of attraction, and path traversed in configuration space. We compare our predictions to simulations of shear strain-induced jamming and find quantitative agreement. We also show that the packing fraction range, over which shear strain-induced jamming occurs, tends to zero in the large system limit for frictionless packings with overdamped dynamics.

  18. Traffic jam at adjustable tollgates controlled by line length

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2016-01-01

    We present the stochastic model for the jam formation at the tollgates of which the number is adjusted by synchronizing with the jam's length. We study the jam formation and its fluctuation in front of the adjustable tollgates on a highway. Controlling the number of tollgates has an important effect on the jam formation. The jams are classified into three kinds: (a) localized jam, (b) synchronized jam, and (c) growing jam. The jamming transitions from the localized jam, through the synchronized jam, to the growing jam occur with increasing inflow probability. At an intermediate inflow, the jam fluctuates largely by synchronizing with the number of tollgates. When the inflow probability is higher than the sum of outflow probabilities at tollgates, the jam continues to grow and diverge with time. The dependence of the fluctuating jam on the inflow probability is clarified.

  19. Hidden geometry of traffic jamming.

    PubMed

    Andjelković, Miroslav; Gupte, Neelima; Tadić, Bosiljka

    2015-05-01

    We introduce an approach based on algebraic topological methods that allow an accurate characterization of jamming in dynamical systems with queues. As a prototype system, we analyze the traffic of information packets with navigation and queuing at nodes on a network substrate in distinct dynamical regimes. A temporal sequence of traffic density fluctuations is mapped onto a mathematical graph in which each vertex denotes one dynamical state of the system. The coupling complexity between these states is revealed by classifying agglomerates of high-dimensional cliques that are intermingled at different topological levels and quantified by a set of geometrical and entropy measures. The free-flow, jamming, and congested traffic regimes result in graphs of different structure, while the largest geometrical complexity and minimum entropy mark the edge of the jamming region. PMID:26066222

  20. Magnetorheological Shear Flow Near Jamming

    NASA Astrophysics Data System (ADS)

    Vågberg, Daniel; Tighe, Brian

    2015-03-01

    Flow in magnetorheological (MR) fluids and systems near jamming both display hallmarks of complex fluid rheology, including yield stresses and shear thinning viscosities. They are also tunable, which means that both phenomena can be used as a switching mechanism in ``smart'' fluids, i.e. fluids where properties can be tuned rapidly and reversibly by changing external parameters. We use numerical simulations to investigate the rheological properties of MR fluids close to the jamming transition as a function of the applied field and volume fraction. We are especially interested in the crossover region where both phenomena are needed to describe the observed dynamics. Funded by the Dutch Organization for Scientific Research (NWO).

  1. Ice jam flooding: a location prediction model

    NASA Astrophysics Data System (ADS)

    Collins, H. A.

    2009-12-01

    Flooding created by ice jamming is a climatically dependent natural hazard frequently affecting cold regions with disastrous results. Basic known physical characteristics which combine in the landscape to create an ice jam flood are modeled on the Cattaraugus Creek Watershed, located in Western New York State. Terrain analysis of topographic features, and the built environment features is conducted using Geographic Information Systems in order to predict the location of ice jam flooding events. The purpose of this modeling is to establish a broadly applicable Watershed scale model for predicting the probable locations of ice jam flooding.location of historic ice jam flooding events

  2. Shear jamming in granular materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2013-03-01

    For frictionless particles with purely repulsive interactions, there is a critical packing fraction ϕJ below which no jammed states exist. Frictional granular particles in the regime of ϕ <ϕJ act differently under shear: early experiments by Zhang & Behringer at Duke University show jammed states can be created by the application of shear stress. Compared to the states above ϕJ, the shear-jammed states (SJS) are mechanically more fragile, but they can resist shear. Formation of these states requires the anisotropic contact network as a backbone and these new states must be incorporated into a more general jamming picture (Bi et al Nature 2011). If time permits, I will present some new results from recent experiments at SJTU aimed towards understanding the more detailed nature of SJS and the transition from unjammed states to SJS. This work is in collaboration with Bob Behringer at Duke University, Dapeng Bi (now at Syracuse) and Bulbul Chakraborty at Brandeis University. The work at SJTU is in collaboration with Ling Zhang and several undergrads in the physics department.

  3. Microscopic features of moving traffic jams

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hiller, Andreas; Rehborn, Hubert

    2006-04-01

    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with “moving blanks” within the jam. Moving blanks within a wide moving jam resemble electron holes in the valence band of semiconductors: As the moving blanks that propagate upstream appear due to downstream vehicle motion within the jam, so appearance of electron holes moving with the electric field results from electron motion against the electric field in the valence band of semiconductors. Empirical features of moving blanks are found. Based on microscopic models in the context of the Kerner’s three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Microscopic nonlinear effects of moving jam emergence, propagation, and dissolution as well as a diverse variety of hysteresis effects in freeway traffic associated with phase transitions and congested traffic propagation are numerically investigated. Microscopic structure of moving jam fronts is numerically studied and compared with empirical results.

  4. Array radars solve communication jams

    NASA Astrophysics Data System (ADS)

    Lewis, H. D.

    1982-04-01

    The possibilities of incorporating mobile radar units as slave stations in communications relay applications during times of disrupted communications is examined. The limitations on uses of search, tracking, and multifunction radars are examined, noting that employment of the mobile system entails some tracking by the master phased-arrays to keep the mobile units in focus. The tracking patterns and dwell times are outlined, and the possibility of 700-1000 dwell times of 1220 microsec duration/sec is mentioned as opening the opportunity for high quality data transmissions. Signal-to-noise ratios are formulated for jamming situations, with offsetting tactical features for the jamming including the directivity and gain of the master antenna, the master station's power aperture product, on-axis to off-axis gain ratio, and antenna positioning ability. A slave station must be equipped with a transponder for communications, which are best achieved with pseudo-random coded waveforms.

  5. Penrose Tilings as Jammed Solids

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Lubensky, T. C.

    2014-10-01

    Penrose tilings form lattices, exhibiting fivefold symmetry and isotropic elasticity, with inhomogeneous coordination much like that of the force networks in jammed systems. Under periodic boundary conditions, their average coordination is exactly four. We study the elastic and vibrational properties of rational approximants to these lattices as a function of unit-cell size NS and find that they have of order √NS zero modes and states of self-stress and yet all their elastic moduli vanish. In their generic form, obtained by randomizing site positions, their elastic and vibrational properties are similar to those of particulate systems at jamming with a nonzero bulk modulus, vanishing shear modulus, and a flat density of states.

  6. Statistical Mechanics of Jammed Matter

    NASA Astrophysics Data System (ADS)

    Behringer, Bob

    2009-03-01

    Jammed systems consist of large numbers of macroscopic particles. As such, they are inherently statistical in nature. However, in general, key assumptions of ordinary statistical mechanics need not apply. For instance, energy does not flow in a meaningful way from a thermal bath to such systems. And energy need not be conserved. However, experiments and simulations have shown that there are well defined distributions for such important properties as forces, contact numbers, etc. And new theoretical constructions have been proposed, starting with Edwards et al. The present symposium highlights recent developments for the statistics of jammed matter. This talk reviews the overall field, and highlights recent work in granular systems[1]. Brian Tighe[2] will describe new results from a force ensemble approach proposed recently by Snoeijer et al. Silke Henkes will describe a different force-based ensemble approach that yields a generalized partition function[3]. Eric Corwin will describe state-of-the-art experiments on dense emulsions[4]. And Matthias Schr"oter will present novel experiments on fluidized suspensions that address the issue of jamming and glassy behavior[5]. So, do we have a complete description of jammed matter? Not yet, but these talks, as well as other exciting developments in the field, show that there has been enormous progress, towards that end. [4pt] [1] T. S. Majmudar et al., Nature 435, 1079 (2005); Phys. Rev. Lett. 98 058001 (2007). [0pt] [2] B. P. Tighe, A. R. T. van Eerd, and T. J. H. Vlugt , Phys. Rev. Lett. 100, 238001 (2008). [0pt] [3] S. Henkes, C. O'Hern and B. Chakrabory, Phys. Rev. Lett. 99, 038002 (2007). [0pt] [4] J. Bruji'c et al., Phys. Rev. Lett. 98, 248001 (2007). [0pt] [5] M. Schr"ooter, D. I. Goldman, and H. L. Swinney, Phys. Rev. E 71, 030301(R) (2005).

  7. Jamming of Cylindrical Grains in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Spier, Gregory; Barr, Nicholas; Steel, Fiona

    2012-02-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. These cylindrical grains resemble antacid tablets, poker chips, or coins since their height is less than their diameter. Grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Within this channel, grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by the grain dimensions and channel size. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories.

  8. Tabletop Traffic Jams: Modeling Traffic Jams using Self Propelled Particles

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Kudrolli, Arshad

    2015-03-01

    We model behavior of traffic using Self Propelled Particles (SPPs). Granular rods with asymmetric mass distribution confined to move in a circular channel on a vibrated substrate and interact with each other through inelastic collision serve as our model vehicle. Motion of a single vehicle is observed to be composed of 2 parts, a linear velocity in the direction of lighter end of particle and a non-Gaussian random velocity. We find that the collective mean speed of the SPPs is constant over a wide range of line densities before decreasing rapidly as the maximum packing is approached indicating the spontaneous formation of Phantom jams. This decrease in speed is observed to be far greater than any small differences in the mean drift speed of individual SPPs , and occurs as the collision frequency between SPPs increase exponentially with line density. However the random velocity component of SPPs remain super-diffusive over entire range of line densities. While the collective motion at low densities is characterized by caravan following behind the slowest particle leading to clustering, at higher densities we see formation of jamming waves travelling in direction opposite to that of motion of particles.

  9. Hidden symmetries in jammed systems

    NASA Astrophysics Data System (ADS)

    Morse, Peter K.; Corwin, Eric I.

    2016-07-01

    There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.

  10. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  11. FH/MFSK performance in multitone jamming

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1985-01-01

    The performance of frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals in partial-band noise was analyzed in the open literature. The previous research is extended to the usually more effective class of multitone jamming. Some objectives researched are: (1) To categorize several different multitone jamming strategies; (2) To analyze the performance of FH/MSFK signaling, both uncoded with diversity, assuming a noncoherent energy detection metric with linear combining and perfect jamming state side information, in the presence of worst case interference for each of these multitone categories; and (3) To compare the effectiveness of the various multitone jamming techniques, and contrast the results with the partial band noise jamming case.

  12. Similarities between protein folding and granular jamming

    PubMed Central

    Jose, Prasanth P; Andricioaei, Ioan

    2012-01-01

    Grains and glasses, widely different materials, arrest their motions upon decreasing temperature and external load, respectively, in common ways, leading to a universal jamming phase diagram conjecture. However, unified theories are lacking, mainly because of the disparate nature of the particle interactions. Here we demonstrate that folded proteins exhibit signatures common to both glassiness and jamming by using temperature- and force-unfolding molecular dynamics simulations. Upon folding, proteins develop a peak in the interatomic force distributions that falls on a universal curve with experimentally measured forces on jammed grains and droplets. Dynamical signatures are found as a dramatic slowdown of stress relaxation upon folding. Together with granular similarities, folding is tied not just to the jamming transition, but a more nuanced picture of anisotropy, preparation protocol and internal interactions emerges. Results have implications for designing stable polymers and can open avenues to link protein folding to jamming theory. PMID:23093180

  13. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  14. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to use particles made of gelatin to reduce the friction coefficient to the order of 0.01. We acknowledge support from NSF Grant DMR1206351, NASA Grant NNX15AD38G and the William M. Keck Foundation.

  15. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    2015-11-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6. Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to characterize response from different friction systems under shear with information at local scale. We acknowledge support from NSF-DMR1206351, NASA NNX15AD38G and W.M. Keck Foundation.

  16. Electromagnetic anti-jam telemetry tool

    DOEpatents

    Ganesan, Harini; Mayzenberg, Nataliya

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  17. Topological boundary modes in jammed matter.

    PubMed

    Sussman, Daniel M; Stenull, Olaf; Lubensky, T C

    2016-07-13

    Granular matter at the jamming transition is poised on the brink of mechanical stability, and hence it is possible that these random systems have topologically protected surface phonons. Studying two model systems for jammed matter, we find states that exhibit distinct mechanical topological classes, protected surface modes, and ubiquitous Weyl points. The detailed statistics of the boundary modes shed surprising light on the properties of the jamming critical point and help inform a common theoretical description of the detailed features of the transition. PMID:27345616

  18. Granular jamming transitions for a robotic mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Allen; Aste, Tomaso; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2013-06-01

    The jamming transitions for granules growing field of interest in robotics for use in variable stiffness mechanisms. However, the traditional use of air pressure to control the jamming transition requires heavy vacuums, reducing the mobility of the robot. Thus, we propose the use of water as a hydraulic fluid to control the transition between free and clustered granules. This paper presents comparative studies that show that a hydraulic granular jammed finger joint can both achieve the same stiffness level and maintain the same hysteresis level of a pneumatic system, with only a small volume of fluid.

  19. Study on evaluation of photoelectric jamming effectiveness on ranging lidar

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Yang, Haiqiang; Gao, Bo

    2015-11-01

    Lidar (Light Detection and Range) is a brand-new field and research hotspot. Ranging lidar is studied in this paper. Specifically, its basic working principle and photoelectric jamming mechanism are introduced. Then, the ranging error jamming success rate rule is developed for laser distance deception jamming. And the effectiveness evaluation of laser blinding jamming is based on the influence level on ranging accuracy and ranging function. The results have some reference value to evaluation of jamming test effectiveness.

  20. Ice Jams the Ob River

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Russia's Ob River flows from south to north, and each summer, it thaws in the same direction. The result is that an ice jam sits downstream from thawed portions of the river, which is laden with heavy runoff from melted snow. On June 29, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on NASA's Terra satellite captured this image of the almost completely thawed Ob River. The scene is typical for early summer. South of the ice jam, the Gulf of Ob is swollen with pent-up run-off, and upstream from that, the river is widened as well. Unable to carve through frozen land, the river has little choice but to overflow its banks. For a comparison of early summer and autumn conditions, see Flooding on the Ob River in the Earth Observatory's Natural Hazards section. Besides the annual overflow, this image captures other circumstances of early summer. Sea ice is retreating from the Kara Sea. A lingering line of snow cover snakes its way along the Ob River, to the west. And while the land is lush and green in the south, it appears barren and brown in the north. Near the mouth of the river and the Kara Sea, the land is cold-adapted tundra, with diminutive plants and a short growing season. Just as the ice plugging the river had yet to thaw in the Far North's short summer, the tundra had not yet to greened up either. In this image it still appears lifeless beige. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

  1. Scaling theory of the jamming transition

    NASA Astrophysics Data System (ADS)

    Liu, Andrea; Goodrich, Carl; Sethna, James; Nagel, Sidney

    The concept of jamming was first introduced at the University of Chicago by Sid Nagel and Tom Witten. By now we know that there is a zero-temperature critical jamming transition that marks the onset of rigidity in packings of soft repulsive spheres. In contrast to the perfect fcc crystal state, which is the maximally stable state for such systems, the jammed state is only marginally stable mechanically, and thus represents an opposite extreme to the perfect crystal. This marginal stability gives rise to power law scalings and diverging length scales at the transition. Here I will discuss recent developments that put the jamming transition in the same place that the Ising transition was when Leo Kadanoff introduced the ideas of coarse-graining and rescaling into critical phenomena. Supported by DOE-DE-FG02-05ER46199.

  2. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  3. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  4. Jamming in Disordered and Ordered States: From RLP to FCC

    NASA Astrophysics Data System (ADS)

    Silbert, Leonardo

    2011-03-01

    The concept of jamming was originally introduced in the context of zero-temperature, frictionless sphere packings through which the jamming transition was identified with the more familiar idea of random close packing. More recently, the jamming behaviour for particles with friction has led to a practical definition of the less well-defined random loose packed limit. However, there are a number of subtleties associated with jamming that extend these concepts further. Here we implement a range of protocols to generate jammed packings both with and without friction, and find that the jamming transition actually consists of a finite region in packing fraction depending on the protocol used to create the jammed state. Furthermore, we examine how it is possible to tune the structural properties of jammed packings from the disordered regime through to the ordered face centred cubic lattice, and the subsequent changes in the jamming properties as the structure is manipulated. Supported by NSF CBET-0828359.

  5. Cultur(ally) Jammed: Culture Jams as a Form of Culturally Responsive Teaching

    ERIC Educational Resources Information Center

    Martinez, Ulyssa

    2012-01-01

    Does the person become the name or does the name become the person? This question was asked by a participant of my culture jam entitled, "What's my name?" In this culture jam, I asked people to discern the name of a person based solely on their appearance and a list of possible names below their picture. This article aims to show how culture jams…

  6. Fluctuations in flows near jamming.

    PubMed

    Woldhuis, Erik; Chikkadi, Vijayakumar; van Deen, Merlijn S; Schall, Peter; van Hecke, Martin

    2015-09-21

    Bubbles, droplets or particles in flowing complex media such as foams, emulsions or suspensions follow highly complex paths, with the relative motion of the constituents setting the energy dissipation rate. What is their dynamics, and how is this connected to the global rheology? To address these questions, we probe the statistics and spatio-temporal organization of the local particle motion and energy dissipation in a model for sheared disordered materials. We find that the fluctuations in the local dissipation vary from nearly Gaussian and homogeneous at low densities and fast flows, to strongly intermittent for large densities and slow flows. The higher order moments of the relative particle velocities reveal strong evidence for a qualitative difference between two distinct regimes which are nevertheless connected by a smooth crossover. In the critical regime, the higher order moments are related by novel multiscaling relations. In the plastic regime the relations between these moments take on a different form, with higher moments diverging rapidly when the flow rate vanishes. As these velocity differences govern the energy dissipation, we can distinguish two qualitatively different types of flow: an intermediate density, critical regime related to jamming, and a large density, plastic regime. PMID:26244633

  7. Sediment Movement Near a Tropical Wood Jam

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wohl, E.

    2008-12-01

    One mechanism by which wood interacts with sediment transport is the trapping of sediment behind jams. In tropical streams, higher discharge per unit of contributing area and higher microbial diversity relative to temperate zones are likely to cause in-stream wood to be more transient. This may reduce the residence time of jams, also reducing wood-induced sediment storage. To begin to evaluate this possibility, tracer clasts, scour chains, and wood pieces were surveyed four times from June 2007 to June 2008 at a wood jam in a stream in Costa Rica. At the study site the moderate gradient (3.2%) stream drains 1.6 km2 of preserved old-growth tropical wet forest of La Selva Biological Station. The mean grain size of the bed material is 205 mm, ranging from coarse sand to boulders, with discontinuous bedrock outcrops on both banks. Distance traveled by the tracer clasts was positively correlated with both maximum and average daily rainfall during the time between surveys. Between the first two surveys, a new accumulation of wood in the jam blocked the thalweg and redirected the majority of flow around the side of the jam. A 15-cm-thick wedge of sediment was deposited behind the blockage, and gravel bars adjacent to and immediately downstream of the jam were scoured by as much as 30 cm. The majority of the gravel sized tracer clasts placed upstream of the jam were not recovered and were presumably incorporated into the sediment wedge. Tracer clasts placed in the portion of the channel affected by the redirected flow were transported downstream as much as 47 m. Clasts larger than D55 (220 mm) were not transported in the course of the study. The jam and key pieces persisted for the entire study period, and the number of pieces in the jam stayed nearly constant. However, the structure was modified and only 46% of the original pieces were retained for the full year. The clast transport distance was positively correlated with wood turnover rate for the three inter

  8. City traffic jam relief by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Toledo, B. A.; Muñoz, V.; Rogan, J.; Zarama, R.; Kiwi, M.; Valdivia, J. A.

    2014-06-01

    We simulate traffic in a city by means of the evolution of a row of interacting cars, using a cellular automaton model, in a sequence of traffic lights synchronized by a "green wave". When our initial condition is a small density jammed state, its evolution shows the expected scaling laws close to the synchronization resonance, with a uniform car density along the street. However, for an initial large density jammed state, we observe density variations along the streets, which results in the breakdown of the scaling laws. This spatial disorder corresponds to a different attractor of the system. As we include velocity perturbations in the dynamics of the cars, all these attractors converge to a statistically equivalent system for all initial jammed densities. However, this emergent state shows a stochastic resonance-like behavior in which the average traffic velocity increases with respect to that of the system without noise, for several initial jammed densities. This result may help in the understanding of dynamics of traffic jams in cities.

  9. Jamming threshold of dry fine powders.

    PubMed

    Valverde, J M; Quintanilla, M A S; Castellanos, A

    2004-06-25

    We report a novel experimental study on the jamming transition of dry fine powders with controlled attractive energy and particle size. Like in attractive colloids dry fine particles experience diffusion-limited clustering in the fluidlike regime. At the jamming threshold fractal clusters crowd in a metastable state at volume fractions depending on attractive energy and close to the volume fraction of hard nonattractive spheres at jamming. Near the phase transition the stress-(volume fraction) relationship can be fitted to a critical-like functional form for a small range of applied stresses sigma approximately (phi-phi(J))(beta) as measured on foams, emulsions, and colloidal systems and predicted by numerical simulations on hard spheres. PMID:15245067

  10. Pressure-driven suspension flow near jamming.

    PubMed

    Oh, Sangwon; Song, Yi-qiao; Garagash, Dmitry I; Lecampion, Brice; Desroches, Jean

    2015-02-27

    We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ_{0}) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ_{0}>0.5), we found a different behavior compared to the known cases of lower ϕ_{0}. Our experimental results demonstrate compaction within the jammed region (characterized by a zero macroscopic shear rate) from the jamming limit ϕ_{m}≈0.58 at its outer boundary to the random close packing limit ϕ_{rcp}≈0.64 at the center. Additionally, we show that ϕ and velocity profiles can be fairly well captured by a frictional rheology accounting for both further compaction of jammed regions as well as normal stress differences. PMID:25768782

  11. Laser jamming technique research based on combined fiber laser

    NASA Astrophysics Data System (ADS)

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2009-06-01

    A compact and light laser jamming source is needed to increase the flexibility of laser jamming technique. A novel laser jamming source based on combined fiber lasers is proposed. Preliminary experimental results show that power levels in excess of 10 kW could be achieved. An example of laser jamming used for an air-to-air missile is given. It shows that the tracking system could complete tracking in only 4 s and came into a steady state with its new tracking target being the laser jamming source.

  12. Dynamic jamming of iceberg-choked fjords

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Amundson, Jason M.; Cassotto, Ryan; Fahnestock, Mark; Darnell, Kristopher N.; Truffer, Martin; Zhang, Wendy W.

    2015-02-01

    We investigate the dynamics of ice mélange by analyzing rapid motion recorded by a time-lapse camera and terrestrial radar during several calving events that occurred at Jakobshavn Isbræ, Greenland. During calving events (1) the kinetic energy of the ice mélange is 2 orders of magnitude smaller than the total energy released during the events, (2) a jamming front propagates through the ice mélange at a rate that is an order of magnitude faster than the motion of individual icebergs, (3) the ice mélange undergoes initial compaction followed by slow relaxation and extension, and (4) motion of the ice mélange gradually decays before coming to an abrupt halt. These observations indicate that the ice mélange experiences widespread jamming during calving events and is always close to being in a jammed state during periods of terminus quiescence. We therefore suspect that local jamming influences longer timescale ice mélange dynamics and stress transmission.

  13. Disentangling the role of structure and friction in shear jamming

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-06-01

    Amorphous sphere packings have been intensely investigated to understand mechanical and flow behaviour of dense granular matter and to explore universal aspects of the jamming transition, from fluid to structurally arrested states. Considerable recent research has focused on anisotropic packings of frictional grains generated by shear deformation leading to shear jamming, occurring below the jamming density for isotropic packings of frictionless grains. Here, with the aim of disentangling the role of shear-deformation-induced structures and friction in generating shear jamming, we computationally study sheared assemblies of frictionless spheres, over a wide range of densities. We demonstrate that shear deformation alone leads to the emergence of geometric features characteristic of jammed packings, with the increase of shear strain. We also show that such emergent geometry, together with friction, leads to mechanically stable, shear-jammed, packings above a threshold density that lies well below the isotropic jamming point.

  14. Traffic jams, granular flow, and soliton selection

    SciTech Connect

    Kurtze, D.A.; Hong, D.C.

    1995-07-01

    The flow of traffic on a long section of road without entrances or exits can be modeled by continuum equations similar to those describing fluid flow. In a certain range of traffic density, steady flow becomes unstable against the growth of a cluster, or ``phantom`` traffic jam, which moves at a slower speed than the otherwise homogeneous flow. We show that near the onset of this instability, traffic flow is described by a perturbed Korteweg--de Vries (KdV) equation. The traffic jam can be identified with a soliton solution of the KdV equation. The perturbation terms select a unique member of the continuous family of KdV solitons. These results may also apply to the dynamics of granular relaxation.

  15. How do tiger moths jam bat sonar?

    PubMed

    Corcoran, Aaron J; Barber, Jesse R; Hristov, Nickolay I; Conner, William E

    2011-07-15

    The tiger moth Bertholdia trigona is the only animal in nature known to defend itself by jamming the sonar of its predators - bats. In this study we analyzed the three-dimensional flight paths and echolocation behavior of big brown bats (Eptesicus fuscus) attacking B. trigona in a flight room over seven consecutive nights to determine the acoustic mechanism of the sonar-jamming defense. Three mechanisms have been proposed: (1) the phantom echo hypothesis, which states that bats misinterpret moth clicks as echoes; (2) the ranging interference hypothesis, which states that moth clicks degrade the bats' precision in determining target distance; and (3) the masking hypothesis, which states that moth clicks mask the moth echoes entirely, making the moth temporarily invisible. On nights one and two of the experiment, the bats appeared startled by the clicks; however, on nights three through seven, the bats frequently missed their prey by a distance predicted by the ranging interference hypothesis (∼15-20 cm). Three-dimensional simulations show that bats did not avoid phantom targets, and the bats' ability to track clicking prey contradicts the predictions of the masking hypothesis. The moth clicks also forced the bats to reverse their stereotyped pattern of echolocation emissions during attack, even while bats continued pursuit of the moths. This likely further hinders the bats' ability to track prey. These results have implications for the evolution of sonar jamming in tiger moths, and we suggest evolutionary pathways by which sonar jamming may have evolved from other tiger moth defense mechanisms. PMID:21697434

  16. Designing Jammed Materials from the Particle Up

    NASA Astrophysics Data System (ADS)

    Miskin, Marc

    2015-03-01

    Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new challenges have emerged from tailoring packings of particles jammed into a rigid state. For these materials, particle shape is a key parameter by which the response of a packing can be tuned. Yet designing via shape faces two unique complications: first there is no general theory that calculates the response of an aggregate given a particle shape, and second, there is no straightforward way to explore the space of all particle geometries. This talk summarizes recent results that address these challenges to design jammed materials from the particle up. It shows how simulations, experiments, and state-of-the-art optimization engines come together to form a complete system that identifies extreme materials. As examples, it will show how this system can create particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. Finally, it will discuss the how these results relate to the general task of materials design and the exciting possibilities associated with optimizing, tuning and rationally constructing new breeds of jammed materials.

  17. Casimir forces in systems near jamming

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Liétor-Santos, Juan-José

    Casimir forces arise when long-ranged fluctuations are geometrically confined between two surfaces. In most cases these fluctuations are quantum or thermal in nature, such as those near a classical critical point, yet this is not a requirement. The T = 0 jamming transition in frictionless, granular systems shares many properties with classical critical points, such as a diverging correlation length, although it has recently been identified as a unique example of a random first-order transition (RFOT). Here we show the existence of Casimir forces between two pinned particles immersed in systems near the frictionless jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir force. The Casimir force dominates when the pinned particles are much larger than the ambient jammed particles. In this case, we find that particles with the largest forces have the least number of contacts, and that these particles are clustered between the pinned particles, giving rise to a repulsive force which is independent of system preparation and inter-particle potential. We acknowledge support from NSF DMR-1455086.

  18. Spreading of Traffic Jam in a Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1993-04-01

    A cellular automaton (CA) model is presented to simulate the traffic jam induced by a traffic accident. The spreading of jamming cars induced by a car crash is investigated by computer simulation. An analogy is proposed between the crystal growth and the traffic-jam spreading. The scaling behavior of the traffic-jam spreading is studied. It is shown that the number N of jamming cars scales as N≈t2.34± 0.03 for p above the dynamical jamming transition pc{=}0.35 and N≈t1.07 below pc where t is the time and p is the density of cars. The time constant ts, which is the time required for all cars to stop, scales as ts≈p-1.07± 0.03 for p

  19. Critical slowing down and hyperuniformity on approach to jamming

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Zhang, Ge; Hopkins, Adam B.; Torquato, Salvatore

    2016-07-01

    Hyperuniformity characterizes a state of matter that is poised at a critical point at which density or volume-fraction fluctuations are anomalously suppressed at infinite wavelengths. Recently, much attention has been given to the link between strict jamming (mechanical rigidity) and (effective or exact) hyperuniformity in frictionless hard-particle packings. However, in doing so, one must necessarily study very large packings in order to access the long-ranged behavior and to ensure that the packings are truly jammed. We modify the rigorous linear programming method of Donev et al. [J. Comput. Phys. 197, 139 (2004), 10.1016/j.jcp.2003.11.022] in order to test for jamming in putatively collectively and strictly jammed packings of hard disks in two dimensions. We show that this rigorous jamming test is superior to standard ways to ascertain jamming, including the so-called "pressure-leak" test. We find that various standard packing protocols struggle to reliably create packings that are jammed for even modest system sizes of N ≈103 bidisperse disks in two dimensions; importantly, these packings have a high reduced pressure that persists over extended amounts of time, meaning that they appear to be jammed by conventional tests, though rigorous jamming tests reveal that they are not. We present evidence that suggests that deviations from hyperuniformity in putative maximally random jammed (MRJ) packings can in part be explained by a shortcoming of the numerical protocols to generate exactly jammed configurations as a result of a type of "critical slowing down" as the packing's collective rearrangements in configuration space become locally confined by high-dimensional "bottlenecks" from which escape is a rare event. Additionally, various protocols are able to produce packings exhibiting hyperuniformity to different extents, but this is because certain protocols are better able to approach exactly jammed configurations. Nonetheless, while one should not generally

  20. Critical slowing down and hyperuniformity on approach to jamming.

    PubMed

    Atkinson, Steven; Zhang, Ge; Hopkins, Adam B; Torquato, Salvatore

    2016-07-01

    Hyperuniformity characterizes a state of matter that is poised at a critical point at which density or volume-fraction fluctuations are anomalously suppressed at infinite wavelengths. Recently, much attention has been given to the link between strict jamming (mechanical rigidity) and (effective or exact) hyperuniformity in frictionless hard-particle packings. However, in doing so, one must necessarily study very large packings in order to access the long-ranged behavior and to ensure that the packings are truly jammed. We modify the rigorous linear programming method of Donev et al. [J. Comput. Phys. 197, 139 (2004)JCTPAH0021-999110.1016/j.jcp.2003.11.022] in order to test for jamming in putatively collectively and strictly jammed packings of hard disks in two dimensions. We show that this rigorous jamming test is superior to standard ways to ascertain jamming, including the so-called "pressure-leak" test. We find that various standard packing protocols struggle to reliably create packings that are jammed for even modest system sizes of N≈10^{3} bidisperse disks in two dimensions; importantly, these packings have a high reduced pressure that persists over extended amounts of time, meaning that they appear to be jammed by conventional tests, though rigorous jamming tests reveal that they are not. We present evidence that suggests that deviations from hyperuniformity in putative maximally random jammed (MRJ) packings can in part be explained by a shortcoming of the numerical protocols to generate exactly jammed configurations as a result of a type of "critical slowing down" as the packing's collective rearrangements in configuration space become locally confined by high-dimensional "bottlenecks" from which escape is a rare event. Additionally, various protocols are able to produce packings exhibiting hyperuniformity to different extents, but this is because certain protocols are better able to approach exactly jammed configurations. Nonetheless, while one should

  1. And I hope you like jamming too

    PubMed Central

    Tambe, Dhananjay T.; Fredberg, Jeffrey J.

    2016-01-01

    Sorting of distinctly different cell types into specific tissue compartments has long been thought to be a problem in minimization of total free energy in immiscible fluids, wherein cell-cell adhesion, cell stiffness, and cell contraction combine to define an effective macroscopic tissue surface tension. Pawlizak et al. [11] now show not only that adhesion forces at interfaces unexpectedly fail to correlate with the density of adhesion molecules, but also that certain cancer cell lines unexpectedly fail to behave as a fluid, with cells becoming kinetically trapped in what might be a jammed, solid-like non-equilibrium state

  2. Pebble Jammed in Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    After the rock abrasion tool on NASA's Mars Exploration Rover Opportunity stopped working on sol 199 (Aug. 15, 2004), rover operators used the panoramic camera to take this image the next day for help in diagnosing the problem. The tool was closer than the camera could focus on sharply, but the image does show a dark spot just left of center, which engineers have determined is likely to be a pebble jammed between the cutting-blade rotor and the wire-brush rotor. If that diagnosis is confirmed by further analysis, the tool will likely be commanded to turn the rotors in reverse to release the pebble.

  3. Intracellular mediators of JAM-A–dependent epithelial barrier function

    PubMed Central

    Monteiro, Ana C.; Parkos, Charles A.

    2012-01-01

    JAM-A is a critical signaling component of the apical junctional complex, a structure composed of several transmembrane and scaffold molecules that controls the passage of nutrients and solutes across epithelial surfaces. Observations from JAM-A–deficient epithelial cells and JAM-A knockout animals indicate that JAM-A is an important regulator of epithelial paracellular permeability, however the mechanism(s) linking JAM-A to barrier function are not understood. This review highlights recent findings relevant to JAM-A–mediated regulation of epithelial permeability, focusing on the role of upstream and downstream signaling candidates. We draw on what is known about proteins reported to associate with JAM-A in other pathways and on known modulators of barrier function to propose candidate effectors that may mediate JAM-A regulation of epithelial paracellular permeability. Further investigation of pathways highlighted in this review may provide ideas for novel therapeutics that target debilitating conditions associated with barrier dysfunction, such as inflammatory bowel disease. PMID:22671597

  4. Molecular crowding creates traffic jams of kinesin motors on microtubules

    PubMed Central

    Leduc, Cécile; Padberg-Gehle, Kathrin; Varga, Vladimír; Helbing, Dirk; Diez, Stefan; Howard, Jonathon

    2012-01-01

    Despite the crowdedness of the interior of cells, microtubule-based motor proteins are able to deliver cargoes rapidly and reliably throughout the cytoplasm. We hypothesize that motor proteins may be adapted to operate in crowded environments by having molecular properties that prevent them from forming traffic jams. To test this hypothesis, we reconstituted high-density traffic of purified kinesin-8 motor protein, a highly processive motor with long end-residency time, along microtubules in a total internal-reflection fluorescence microscopy assay. We found that traffic jams, characterized by an abrupt increase in the density of motors with an associated abrupt decrease in motor speed, form even in the absence of other obstructing proteins. To determine the molecular properties that lead to jamming, we altered the concentration of motors, their processivity, and their rate of dissociation from microtubule ends. Traffic jams occurred when the motor density exceeded a critical value (density-induced jams) or when motor dissociation from the microtubule ends was so slow that it resulted in a pileup (bottleneck-induced jams). Through comparison of our experimental results with theoretical models and stochastic simulations, we characterized in detail under which conditions density- and bottleneck-induced traffic jams form or do not form. Our results indicate that transport kinesins, such as kinesin-1, may be evolutionarily adapted to avoid the formation of traffic jams by moving only with moderate processivity and dissociating rapidly from microtubule ends. PMID:22431622

  5. Intelligent cognitive radio jamming - a game-theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.

    2014-12-01

    Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

  6. Evolution of Traffic Jam in Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Ishibashi, Yoshihiro

    1993-11-01

    Traffic flow is simulated in a three-state cellular automaton model. In a two-dimensional cell without a crashed car, the ensemble average of the velocity of the cars is enhanced by the self-organization in the low-density phase of cars. In the high-density phase above p{=}0.5 of car density, the velocity is decreased and the system then degenerates into a global jamming phase in which all cars are stopped. A crashed car provides the seed of a jamming cluster, which grows into a global traffic jam even in the low-density phase. The growth of the jamming cluster is studied, and the time dependence of the number of jamming cars and the scaling law for the cell sizes are discussed.

  7. Jamming in finite systems: stability, anisotropy, fluctuations, and scaling.

    PubMed

    Goodrich, Carl P; Dagois-Bohy, Simon; Tighe, Brian P; van Hecke, Martin; Liu, Andrea J; Nagel, Sidney R

    2014-08-01

    Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response. PMID:25215719

  8. Direct observation of dynamic shear jamming in dense suspensions.

    PubMed

    Peters, Ivo R; Majumdar, Sayantan; Jaeger, Heinrich M

    2016-04-14

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process. PMID:27042934

  9. Direct observation of dynamic shear jamming in dense suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  10. Rheology of Soft Suspensions near Jamming

    NASA Astrophysics Data System (ADS)

    Nordstrom, Kerstin; Verneuil, Emilie; Arratia, Paulo; Gollub, Jerry; Durian, Douglas

    2009-03-01

    The rheology of a suspension of soft colloidal particles is investigated using a pressure-driven flow in a deep 25 μm wide microchannel. The system is composed of N-isopropylacrylamide (NIPA) colloidal microgel particles, suspended in aqueous solution. NIPA is temperature-sensitive in that the hydrodynamic radius decreases as temperature increases [1]. Therefore, colloidal suspensions of different packing fraction can be obtained simply by varying the temperature using a temperature-controlled stage. We determine the velocity profile and the local shear rate of the suspension using particle image velocimetry (PIV). We have developed methods to accurately infer the suspension shear viscosity and shear stress as a function of shear rate. The dynamical range of shear rates probed is approximately 5 orders of magnitude, ranging from 10-4 to 10^1 s-1. Results show that as the packing fraction is increased towards the jamming point, the velocity profiles are markedly non-Newtonian. Further, above the jamming point, the stress versus shear rate curves show yield stress behavior. [1] Alsayed, A.M.;Islam, M.F.;Zhang, J.;Collings, P.J.;Yodh, A.J., Science 2005.

  11. Cell Jamming in the Airway Epithelium.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J

    2016-03-01

    Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma. PMID:27027955

  12. Love triangles, quantum fluctuations and spin jam

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun

    When magnetic moments are interacting with each other in a situation resembling that of complex love triangles, called frustration, a large set of states that are energetically equivalent emerge. This leads to exotic spin states such as spin liquid and spin ice. Recently, we presented evidence for the existence of a topological glassy state, that we call spin jam, induced by quantum fluctuations. The case in point is SrCr9pGa12-9pO19 (SCGO(p)), a highly frustrated magnet, in which the magnetic Cr ions form a quasi-two-dimensional triangular system of bi-pyramids. This system has been an archetype in search for exotic spin states. Understanding the nature of the state has been a great intellectual challenge. Our new experimental data and theoretical spin jam model provide for the first time a coherent understanding of the phenomenon. Furthermore, the findings strongly support the possible existence of purely topological glassy states. Reference:

  13. Equilibrating temperaturelike variables in jammed granular subsystems.

    PubMed

    Puckett, James G; Daniels, Karen E

    2013-02-01

    Although jammed granular systems are athermal, several thermodynamiclike descriptions have been proposed which make quantitative predictions about the distribution of volume and stress within a system and provide a corresponding temperaturelike variable. We perform experiments with an apparatus designed to generate a large number of independent, jammed, two-dimensional configurations. Each configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New configurations are generated by cyclically dilating, mixing, and then recompacting the system through a series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller subsystem of particles with a different interparticle friction coefficient than the bath. The use of photoelastic particles permits us to find all particle positions as well as the vector forces at each interparticle contact. By comparing the temperaturelike quantities in both systems, we find compactivity (conjugate to the volume) does not equilibrate between the systems, while the angoricity (conjugate to the stress) does. Both independent components of the angoricity are linearly dependent on the hydrostatic pressure, in agreement with predictions of the stress ensemble. PMID:23414047

  14. Jamming and crystallization in athermal polymer packings

    NASA Astrophysics Data System (ADS)

    Karayiannis, Nikos Ch.; Foteinopoulou, Katerina; Laso, Manuel

    2013-11-01

    Dense packings of chains of hard spheres possess characteristic features that do not have a counterpart in corresponding packings of monomeric spheres especially near the maximally random jammed (MRJ) state. From the modelling perspective the additional requirement that spheres keep their connectivity while maximizing the occupied volume fraction imposes severe constraints on generation algorithms of dense chain configurations. The extremely sluggish dynamics imposed by the uncrossability of chains precludes the use of deterministic or stochastic dynamics to generate all but dilute polymer packings. As a viable alternative, especially tailored chain-connectivity-altering Monte Carlo (MC) algorithms have been developed that bypass this kinetic hindrance and have actually been able to produce packings of hard-sphere chains in a volume fraction range spanning from infinite dilution up to the MRJ state. Such very dense athermal polymer packings share a number of structural features with packings of monomeric hard spheres, but also display unique characteristics due to the constraints imposed by connectivity. We give an overview of the most relevant results of our recent modeling work on packings of freely-jointed chains of tangent hard spheres about the MRJ state, local structure, chain dimensions and their scaling with density, topological constraints in the form of entanglements and knots, contact network at jamming, and entropically driven crystallization.

  15. The first jamming crossover: geometric and mechanical features.

    PubMed

    Pica Ciamarra, Massimo; Sollich, Peter

    2013-03-28

    The jamming transition characterizes athermal systems of particles interacting via finite range repulsive potentials, and occurs on increasing the density when particles cannot avoid making contacts with those of their first coordination shell. We have recently shown [M. Pica Ciamarra and P. Sollich, e-print arXiv:1209.3334] that the same systems are also characterized by a series of jamming crossovers. These occur at higher volume fractions as particles are forced to make contact with those of subsequent coordination shells. At finite temperature, the crossovers give rise to dynamic and thermodynamic density anomalies, including a diffusivity anomaly and a negative thermal expansion coefficient. Density anomalies may therefore be related to structural changes occurring at the jamming crossovers. Here we elucidate these structural changes, investigating the evolution of the structure and of the mechanical properties of a jammed system as its volume fraction varies from the jamming transition to and beyond the first jamming crossover. We show that the first jamming crossover occurs at a well defined volume fraction, and that it induces a rearrangement of the force network causing a softening of the system. It also causes qualitative changes in the normal mode density of states and the spatial properties of the normal mode vectors. PMID:23556780

  16. The first jamming crossover: Geometric and mechanical features

    NASA Astrophysics Data System (ADS)

    Ciamarra, Massimo Pica; Sollich, Peter

    2013-03-01

    The jamming transition characterizes athermal systems of particles interacting via finite range repulsive potentials, and occurs on increasing the density when particles cannot avoid making contacts with those of their first coordination shell. We have recently shown [M. Pica Ciamarra and P. Sollich, e-print arXiv:1209.3334] that the same systems are also characterized by a series of jamming crossovers. These occur at higher volume fractions as particles are forced to make contact with those of subsequent coordination shells. At finite temperature, the crossovers give rise to dynamic and thermodynamic density anomalies, including a diffusivity anomaly and a negative thermal expansion coefficient. Density anomalies may therefore be related to structural changes occurring at the jamming crossovers. Here we elucidate these structural changes, investigating the evolution of the structure and of the mechanical properties of a jammed system as its volume fraction varies from the jamming transition to and beyond the first jamming crossover. We show that the first jamming crossover occurs at a well defined volume fraction, and that it induces a rearrangement of the force network causing a softening of the system. It also causes qualitative changes in the normal mode density of states and the spatial properties of the normal mode vectors.

  17. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  18. Jamming and diode effects for vortices in Nanostructured Superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, C J

    2009-01-01

    We examine jamming and ratchet effects for vortex matter in superconductors with asymmetric funnel geometries. We show that the vortex-vortex interactions can induce a clogging or jamming effect where it becomes increasingly difficult for the vortices to move through the system. We also find that commensurability effects can arise when certain vortex configurations form highly symmetrical structures in the funnel plaquettes. Due to the asymmetry, the critical currents are different for driving in different directions, leading to a diode effect. We also discuss other possible geometries that could be used to explore jamming in vortex matter.

  19. Stress Relaxation for Granular Materials near Jamming under Cyclic Compression

    NASA Astrophysics Data System (ADS)

    Farhadi, Somayeh; Zhu, Alex Z.; Behringer, Robert P.

    2015-10-01

    We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕm above which P persists over many cycles; below ϕm, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.

  20. Jamming anomaly in PT-symmetric systems

    NASA Astrophysics Data System (ADS)

    Barashenkov, I. V.; Zezyulin, D. A.; Konotop, V. V.

    2016-07-01

    The Schrödinger equation with a { P }{ T }-symmetric potential is used to model an optical structure consisting of an element with gain coupled to an element with loss. At low gain–loss amplitudes γ, raising the amplitude results in the energy flux from the active to the leaky element being boosted. We study the anomalous behaviour occurring for larger γ, where the increase of the amplitude produces a drop of the flux across the gain–loss interface. We show that this jamming anomaly is either a precursor of the exceptional point, where two real eigenvalues coalesce and acquire imaginary parts, or precedes the eigenvalue's immersion in the continuous spectrum.

  1. Creep and aging in jammed granular materials

    NASA Astrophysics Data System (ADS)

    Srivastava, Ishan; Fisher, Timothy

    Granular materials flow (or unjam) when stressed above the Coulomb yield stress, but a slow creep is observed when the applied stresses are low. In this work, using a recently introduced enthalpy-based variable-cell simulation method, we will present results on the creep and slow aging dynamics in granular systems comprised of soft particles of varying shape that are hydrostatically jammed and subjected to an external stress. We observe a two-stage creep with an initial fast exponential evolution followed by a slow logarithmic evolution over long time scales. We correlate the slow creeping dynamics with micromechanical evolution at the grain scale, such as increasing dynamical heterogeneity and force-chain rearrangements. Results will also be presented on the effect of grain shape (faceted vs. spherical) on the creep and aging dynamics. Finally, a continuum granular fluidity model is developed to rationalize these observations.

  2. Traffic jam dynamics in stochastic cellular automata

    SciTech Connect

    Nagel, K. |; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale microsimulations of network traffic.

  3. Novel anti-jamming technique for OCDMA network through FWM in SOA based wavelength converter

    NASA Astrophysics Data System (ADS)

    Jyoti, Vishav; Kaler, R. S.

    2013-06-01

    In this paper, we propose a novel anti-jamming technique for optical code division multiple access (OCDMA) network through four wave mixing (FWM) in semiconductor optical amplifier (SOA) based wavelength converter. OCDMA signal can be easily jammed with high power jamming signal. It is shown that wavelength conversion through four wave mixing in SOA has improved capability of jamming resistance. It is observed that jammer has no effect on OCDMA network even at high jamming powers by using the proposed technique.

  4. Elasticity of frictionless particles near jamming.

    PubMed

    Karimi, Kamran; Maloney, Craig E

    2015-08-01

    We study the linear elastic response of harmonic disk packings near jamming via three types of probes: (i) point forcing, (ii) constrained homogeneous deformation of subregions of large systems, and (iii) unconstrained deformation of the full system subject to periodic boundary conditions. For the point forcing, our results indicate that the transverse component of the response is governed by a lengthscale ξT, which scales with the confining pressure, p, as ξT∼p-0.25, while the longitudinal component is governed by ξL, which scales as ξL∼p-0.4. The former scaling is precisely the transverse lengthscale, which has been invoked to explain the structure of normal modes near the density of states anomaly in sphere packings, while the latter is much closer to the rigidity length, l*∼p-0.5, which has been invoked to describe the jamming scenario. For the case of constrained homogeneous deformation, we find that μ(R), the value of the shear modulus measured in boxes of size R, gives a value much higher than the continuum result for small boxes and recedes to its continuum limit only for boxes bigger than a characteristic length, which scales like p-0.5, precisely the same way as l*. Finally, for the case of unconstrained homogeneous deformation, we find displacement fields with power spectra, which are consistent with independent, uncorrelated Eshelby transformations. The transverse sector is amazingly invariant with respect to p and very similar to what is seen in Lennard-Jones glasses. The longitudinal piece, however, is sensitive to p. It develops a plateau at long wavelength, the start of which occurs at a length that grows in the p→0 limit. Strikingly, the same behavior is observed both for applied shear and dilation. PMID:26382395

  5. Elasticity of frictionless particles near jamming

    NASA Astrophysics Data System (ADS)

    Karimi, Kamran; Maloney, Craig E.

    2015-08-01

    We study the linear elastic response of harmonic disk packings near jamming via three types of probes: (i) point forcing, (ii) constrained homogeneous deformation of subregions of large systems, and (iii) unconstrained deformation of the full system subject to periodic boundary conditions. For the point forcing, our results indicate that the transverse component of the response is governed by a lengthscale ξT, which scales with the confining pressure, p , as ξT˜p-0.25 , while the longitudinal component is governed by ξL, which scales as ξL˜p-0.4 . The former scaling is precisely the transverse lengthscale, which has been invoked to explain the structure of normal modes near the density of states anomaly in sphere packings, while the latter is much closer to the rigidity length, l*˜p-0.5 , which has been invoked to describe the jamming scenario. For the case of constrained homogeneous deformation, we find that μ (R ) , the value of the shear modulus measured in boxes of size R , gives a value much higher than the continuum result for small boxes and recedes to its continuum limit only for boxes bigger than a characteristic length, which scales like p-0.5, precisely the same way as l*. Finally, for the case of unconstrained homogeneous deformation, we find displacement fields with power spectra, which are consistent with independent, uncorrelated Eshelby transformations. The transverse sector is amazingly invariant with respect to p and very similar to what is seen in Lennard-Jones glasses. The longitudinal piece, however, is sensitive to p . It develops a plateau at long wavelength, the start of which occurs at a length that grows in the p →0 limit. Strikingly, the same behavior is observed both for applied shear and dilation.

  6. Preface: Special Issue on Structure in Glassy and Jammed Systems

    NASA Astrophysics Data System (ADS)

    Royall, C. Patrick; Speck, Thomas

    2016-05-01

    This special issue presents new developments in our understanding of the role of structure in dynamical arrest and jamming. Articles highlight local geometric motifs and other forms of amorphous order, in experiment, computer simulation and theory.

  7. Pinning Susceptibility: The Effect of Dilute, Quenched Disorder on Jamming

    NASA Astrophysics Data System (ADS)

    Graves, Amy L.; Nashed, Samer; Padgett, Elliot; Goodrich, Carl P.; Liu, Andrea J.; Sethna, James P.

    2016-06-01

    We study the effect of dilute pinning on the jamming transition. Pinning reduces the average contact number needed to jam unpinned particles and shifts the jamming threshold to lower densities, leading to a pinning susceptibility, χp . Our main results are that this susceptibility obeys scaling form and diverges in the thermodynamic limit as χp∝|ϕ -ϕc∞|-γp where ϕc∞ is the jamming threshold in the absence of pins. Finite-size scaling arguments yield these values with associated statistical (systematic) errors γp=1.018 ±0.026 (0.291 ) in d =2 and γp=1.534 ±0.120 (0.822 ) in d =3 . Logarithmic corrections raise the exponent in d =2 to close to the d =3 value, although the systematic errors are very large.

  8. Stability of Granular Packings Jammed under Gravity: Avalanches and Unjamming

    NASA Astrophysics Data System (ADS)

    Merrigan, Carl; Birwa, Sumit; Tewari, Shubha; Chakraborty, Bulbul

    Granular avalanches indicate the sudden destabilization of a jammed state due to a perturbation. We propose that the perturbation needed depends on the entire force network of the jammed configuration. Some networks are stable, while others are fragile, leading to the unpredictability of avalanches. To test this claim, we simulated an ensemble of jammed states in a hopper using LAMMPS. These simulations were motivated by experiments with vibrated hoppers where the unjamming times followed power-law distributions. We compare the force networks for these simulated states with respect to their overall stability. The states are classified by how long they remain stable when subject to continuous vibrations. We characterize the force networks through both their real space geometry and representations in the associated force-tile space, extending this tool to jammed states with body forces. Supported by NSF Grant DMR1409093 and DGE1068620.

  9. When do jammed sphere packings have a valid linear regime?

    NASA Astrophysics Data System (ADS)

    Goodrich, Carl; Liu, Andrea; Nagel, Sidney

    2014-03-01

    The physics of jamming can be studied in its purest form in packings of soft spheres at zero temperature. One of the successes of this approach is that bulk material properties, such as the elastic moduli or density of normal modes, can be predicted solely from the distance of the system to the jamming transition. Such properties are both defined and measured in the linear-response regime. It is thus tacitly assumed that the harmonic approximation to the local energy landscape can capture the meaningful physics, and it is therefore essential to delineate when this assumption is valid. We will examine the regime of validity of the harmonic approximation in jammed sphere packings as a function of system size and density. We will also discuss the crossover from linear response of the zero-temperature jammed solid to thermal behavior at nonzero temperatures.

  10. Experimental studies of contact networks in jammed colloidal systems

    NASA Astrophysics Data System (ADS)

    Kyeyune-Nyombi, Eru; Gilchrist, Lane; Makse, Hernán

    Recent theoretical advances in the statistical mechanics of jamming have provided a new outlook for thermodynamically characterizing packings of granular matter. Packing density, spatial ordering metrics, and the number of inter-particle contacts are a few fundamental parameters used in various theoretical models. However, experimental measurements of inter-particle forces have been illusive. Here, fluorescent molecular probes are used to identify inter-particle contacts in high resolution confocal images of jammed colloidal systems.

  11. Jam-absorption driving with a car-following model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yohei; Nishi, Ryosuke; Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-09-01

    Jam-absorption driving (JAD) refers to the action performed by a single car to dynamically change its headway to remove a traffic jam. Because of its irregular motion, a car performing JAD perturbs other cars following it, and these perturbations may grow to become the so-called secondary traffic jams. A basic theory for JAD (Nishi et al. 2013) does not consider accelerations of cars or the stability of traffic flow. In this paper, by introducing car-following behaviors, we implement these elements in JAD. Numerous previous studies on the instability of traffic flow showed that even in a region whose density is below a critical density, perturbation may grow if its initial magnitude is large. According to these previous studies, we expect that the perturbations caused by JAD, if they are sufficiently small, do not grow to become secondary traffic jams. Using a microscopic car-following model, we numerically confirmed that the stability of a flow obeying the model depends on the magnitude of JAD perturbations. On the basis of this knowledge, numerical results indicate that parameter regions exist where JAD allows traffic jams to be removed without causing secondary traffic jams. Moreover, JAD is robust against a parameter of acceleration in the model, as well as the choice of car-following models.

  12. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D < 2) and resemble aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  13. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  14. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic

    2015-07-01

    Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.

  15. Countering GPS jamming and EW threat

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos M.; Rastegar, J.; McLain, Clifford E.; Alanson, T.; McMullan, Charles; Nguyen, H.-L.

    2007-09-01

    Efforts at the U.S. Army Research, Development and Engineering Center (ARDEC) at Picatinny, New Jersey are focused on developing methods to counter GPS jamming and electronic warfare (EW) threat by eliminating GPS dependency entirely. In addition, the need for munitions cost reduction requires alternatives to expensive high-grade inertia components. Efforts at ARDEC include investigations of novel methods for onboard measurement of munitions full position and angular orientation independent of GPS signals or high-grade inertia components. Currently, two types of direct angular measurement sensors are being investigated. A first sensor, Radio Frequency Polarized Sensor (RFPS), uses an electromagnetic field as a reference. A second sensor is based on magnetometers, using the Earth magnetic field for orientation measurement. Magnetometers, however, can only provide two independent orientation measurements. The RFPS may also be used to make full object position and angular orientation measurement relative to a reference coordinate system, which may be moving or stationary. The potential applications of novel RFPS sensors is in providing highly effective inexpensive replacement for GPS, which could be used in a "Layered Navigation" scheme employing alternate referencing methods and reduce the current dependency on GPS as a primary reference for guided gun-fired munitions. Other potential applications of RFPSs is in UAVs, UGVs, and robotic platforms.

  16. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  17. Development of kink jams in traffic flow

    NASA Astrophysics Data System (ADS)

    Kurtze, Douglas

    Near the threshold of absolute stability of uniform, steady traffic flow, car-following models can often be reduced to a modified Korteweg-deVries (mKdV) equation plus small corrections. The mKdV equation has a continuous family of hyperbolic-kink solutions describing boundaries between regions of different traffic densities, i.e. the edges of traffic jams. A solvability calculation picks out the one member of this family which is consistent with the correction terms; this is usually labelled the ``selected'' kink. This identification is problematic, however, since it must be the downstream boundary condition that determines which kink solution is realized. We display a two-parameter family of mKdV solutions which has the kink solutions as one limit and uniform flow as another, and show how the correction terms can lead to kinks developing from initially near-uniform traffic. We then clarify the meaning of the usual solvability calcuation and of the ``selected'' kink.

  18. Study of jamming of the frequency modulation infrared seekers

    NASA Astrophysics Data System (ADS)

    Qian, Fang; Guo, Jin; Shao, Jun-feng; Wang, Ting-feng

    2013-09-01

    The threat of the IR guidance missile is a direct consequence of extensive proliferation of the airborne IR countermeasure. The aim of a countermeasure system is to inject false information into a sensor system to create confusion. Many optical seekers have a single detector that is used to sense the position of its victim in its field of view. A seeker has a spinning reticle in the focal plane of the optical system that collects energy from the thermal scene and focuses it on to the detector. In this paper, the principle of the conical-scan FM reticle is analyzed. Then the effect that different amplitude or frequency modulated mid-infrared laser pulse acts on the reticle system is simulated. When the ratio of jamming energy to target radiation (repression) gradually increases, the azimuth error and the misalignment angle error become larger. The results show that simply increasing the intensity of the jamming light achieves little, but it increases the received signal strength of the FM reticle system ,so that the target will be more easily exposed. A slow variation of amplitude will warp the azimuth information received by the seeker, but the target can't be completely out of the missile tracking. If the repression and the jamming frequency change at the same time, the jamming effects can be more obvious. When the jamming signal's angular frequency is twice as large as the carrier frequency of the reticle system, the seeker will can't receive an accurate signal and the jamming can be achieved. The jamming mechanism of the conical-scan FM IR seeker is described and it is helpful to the airborne IR countermeasure system.

  19. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves.

    PubMed

    Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desirée; Brain, Susan D; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V; Chavakis, Triantafyllos; Imhof, Beat A; Feltri, M Laura; Nourshargh, Sussan

    2012-03-01

    Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses. PMID:22090315

  20. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface. PMID:25594980

  1. Stochastic Model of Traffic Jam and Traffic Signal Control

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Sun; Cui, Cheng-You; Lee, Tae-Hong; Lee, Hee-Hyol

    Traffic signal control is an effective method to solve the traffic jam. and forecasting traffic density has been known as an important part of the Intelligent Transportation System (ITS). The several methods of the traffic signal control are known such as random walk method, Neuron Network method, Bayesian Network method, and so on. In this paper, we propose a new method of a traffic signal control using a predicted distribution of traffic jam based on a Dynamic Bayesian Network model. First, a forecasting model to predict a probabilistic distribution of the traffic jam during each period of traffic lights is built. As the forecasting model, the Dynamic Bayesian Network is used to predict the probabilistic distribution of a density of the traffic jam. According to measurement of two crossing points for each cycle, the inflow and outflow of each direction and the number of standing vehicles at former cycle are obtained. The number of standing vehicle at k-th cycle will be calculated synchronously. Next, the probabilistic distribution of the density of standing vehicle in each cycle will be predicted using the Dynamic Bayesian Network constructed for the traffic jam. And then a control rule to adjust the split and the cycle to increase the probability between a lower limit and ceiling of the standing vehicles is deduced. As the results of the simulation using the actual traffic data of Kitakyushu city, the effectiveness of the method is shown.

  2. Jamming and chaotic dynamics in different granular systems

    NASA Astrophysics Data System (ADS)

    Maghsoodi, Homayoon; Luijten, Erik

    Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.

  3. Shape Effects on Jamming of Granular Materials

    NASA Astrophysics Data System (ADS)

    Farhadi, Somayeh

    In this work, we have focused on the jamming properties of systems composed of semi-2D elliptical shaped particles. In order to study these systems, we have performed three types of experiments: Couette shear, biaxial isotropic compression, and biaxial pure shear. In each experimental scheme, we take data for both systems of ellipses an bi-disperse disks, in order to probe the effect of broken spherical symmetry at the particle scale, on the global behavior. We use two synchronized cameras to capture the flow of particles and the local stress at the same time. In Couette experiments, we study the rheological properties, as well as the stress fluctuations for very large strains (up to 20 revolutions of the inner wheel). The system is sheared for densities below the isotropic jamming point (point J). From these studies we learn that over a small range of packing fractions, (0.85 ≤ φ ≤ 0.86), systems of ellipses demonstrate exceptionally slow dynamical evolution when they are sheared. For fixed density, and starting from an essentially unstressed state, the application of shear strain leads to first a growth of average particle displacements in the system through a Reynolds dilatancy effect, and then for very large strains, a steady decrease in particle displacements. In an intermediate range of shear strains, the system exists in effectively meta-stable states for a very long time before relaxing to an unjammed state, in which the flow of particles stops completely, and the stress fluctuations drop to zero. The strain scale for this relaxation depends on the global packing fraction. We characterize this slow dynamics by measuring the evolution of mean velocity, density, and orientational order throughout the experiments. In a similar set of experiments performed on disks, slow relaxation was observed as well. However, the increasing average displacement build-up before relaxation, which was observed in ellipses, did not occur for disks. This suggests that the

  4. Solution of the Traffic Jam Problem through Fuzzy Applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Shery

    2010-11-01

    The major hurdle of a city planning council is to handle the traffic jam problem. The number of vehicles on roads increases day by day. Also the number of vehicles is directly proportional to the width of the road (including that of parallel roads). But it is not always possible to make roads or to increase width of the road corresponding to the increase in the number of vehicles. Also we cannot tell a person not to buy a vehicle. So trying to minimise the traffic jam is the only possible way to overcome this hurdle. Here we try to develop a method to avoid traffic jam through a mathematical approach (through fuzzy applications). This method helps to find a suitable route from an origin to a destination with lesser time than other routes.

  5. Flow and jamming of granular suspensions in foams.

    PubMed

    Haffner, B; Khidas, Y; Pitois, O

    2014-05-14

    The drainage of particulate foams is studied under conditions where the particles are not trapped individually by constrictions of the interstitial pore space. The drainage velocity decreases continuously as the particle volume fraction φ(p) increases. The suspensions jam--and therefore drainage stops--for values φ*(p) which reveal a strong effect of the particle size. In accounting for the particular geometry of the foam, we show that φ*(p) accounts for unusual confinement effects when the particles pack into the foam network. We model quantitatively the overall behavior of the suspension--from flow to jamming--by taking into account explicitly the divergence of its effective viscosity at φ*(p). Beyond the scope of drainage, the reported jamming transition is expected to have a deep significance for all aspects related to particulate foams, from aging to mechanical properties. PMID:24633178

  6. Wireless Jamming Localization by Exploiting Nodes' Hearing Ranges

    NASA Astrophysics Data System (ADS)

    Liu, Zhenhua; Liu, Hongbo; Xu, Wenyuan; Chen, Yingying

    Jamming attacks are especially harmful when ensuring the dependability of wireless communication. Finding the position of a jammer will enable the network to actively exploit a wide range of defense strategies. Thus, in this paper, we focus on developing mechanisms to localize a jammer. We first conduct jamming effect analysis to examine how a hearing range, e.g., the area from which a node can successfully receive and decode the packet, alters with the jammer's location and transmission power. Then, we show that the affected hearing range can be estimated purely by examining the network topology changes caused by jamming attacks. As such, we solve the jammer location estimation by constructing a least-squares problem, which exploits the changes of the hearing ranges. Compared with our previous iterative-search-based virtual force algorithm, our proposed hearing-range-based algorithm exhibits lower computational cost (i.e., one-step instead of iterative searches) and higher localization accuracy.

  7. The effect of jamming/deception on decision making

    NASA Astrophysics Data System (ADS)

    Felkey, M. A.; Monk, D. L.; Stec, L. J.

    1984-10-01

    The present experiment examined the capability of developing a simulation methodology for assessing the effects of Command, Control, and Communications CounterMeasures (C3CM) on a human operator. Primarily, the effects on human information jamming and deception were applied against a key decision maker in a simulated, air defense, C3 system were assessed. The man-in-the-loop simulation provides real human operator data and a methodology to assess human operator performance. The subjects' performance exhibited trends from which certain strategies were assessed. Results indicated that operator uncertainty and loss of confidence in ambiguous situations did not exist. Specifically, the subjects relied on the most timely information channel. Performance was worse when that channel was jammed. Also, the condition that degraded performance the most was when the most timely channel was jammed and the most precise channel contained deceptive information.

  8. Clogging and Jamming Transitions in Granular Matter Flowing Through Obstacles

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia Olson; Reichhardt, Charles

    2015-03-01

    We consider a two-dimensional system of bidisperse disks driven through a landscape of fixed obstacles. In the limit of a single obstacle, the disks cease moving when the disk density is increased to the jamming density. The threshold density value decreases as the number of obstacles increases, but we also observe a change in the nature of the frozen state. At low obstacle density we find a homogeneous jammed state, but for higher obstacle density we instead find a heterogeneous clogged state containing void areas and possessing a memory of the driving direction. The transition to the clogged state is strongly stochastic and we observe large fluctuations in clogging time both for clogging in the original driving direction and for transverse clogging when the drive is suddenly rotated by 90 degrees. We find evidence for a diverging clogging transition time at a critical disk density well below the jamming density in a clean system.

  9. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration.

    PubMed

    Woodfin, Abigail; Reichel, Christoph Andreas; Khandoga, Andrej; Corada, Monica; Voisin, Mathieu-Benoit; Scheiermann, Christoph; Haskard, Dorian O; Dejana, Elisabetta; Krombach, Fritz; Nourshargh, Sussan

    2007-09-15

    Junctional adhesion molecule-A (JAM-A) is a transmembrane protein expressed at tight junctions of endothelial and epithelial cells and on the surface of platelets and leukocytes. The role of JAM-A in leukocyte transmigration in vivo was directly investigated by intravital microscopy using both a JAM-A-neutralizing monoclonal antibody (mAb) (BV-11) and JAM-A-deficient (knockout [KO]) mice. Leukocyte transmigration (but not adhesion) through mouse cremasteric venules as stimulated by interleukin 1beta (IL-1beta) or ischemia/reperfusion (I/R) injury was significantly reduced in wild-type mice treated with BV-11 and in JAM-A KO animals. In contrast, JAM-A blockade/genetic deletion had no effect on responses elicited by leukotriene B(4) (LTB(4)) or platelet-activating factor (PAF). Furthermore, using a leukocyte transfer method and mice deficient in endothelial-cell JAM-A, evidence was obtained for the involvement of endothelial-cell JAM-A in leukocyte transmigration mediated by IL-1beta. Investigation of the functional relationship between JAM-A and PECAM-1 (CD31) determined that dual blockade/deletion of these proteins does not lead to an inhibitory effect greater than that seen with blockade/deletion of either molecule alone. The latter appeared to be due to the fact that JAM-A and PECAM-1 can act sequentially to mediate leukocyte migration through venular walls in vivo. PMID:17505016

  10. Standoff jamming in the 21st century - The EC multiplier

    NASA Astrophysics Data System (ADS)

    McBride, Lance; Black, Al

    1987-02-01

    Consideration is given to a jamming aircraft screening friendly aircraft in the presence of threat radars such as missile-associated radars and radars employed in guiding interceptor aircraft. In these ranks are early warning (EW), acquisition, target tracking, and ground and air controlled intercept radars. A 21st century standoff jamming (SOJ) system block diagram is given. Transmitters, electronic support measures, and EW command and control are discussed as well as reliability, maintainability, and cost. It is concluded that several megawatts of EW ERP (effective radiated power) will be required to enable each SOJ platform to effectively counter multiple radars from the protection afforded by long standoff range.

  11. An EW technology research of jamming IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-qin; Rong, Hua; Liang, Jing-ping; Chen, Qi; Chen, Min-rong

    2009-07-01

    The IR-Imaging-Guided Weapons have been playing an important role in the modern warfare by means of select attacking the vital parts of targets with the features of highly secret attacking, high precision, and excellent anti-jamming capability ,therefore, they are viewed to be one of the promising precisely guided weapons ,receiving great concern through out the world. This paper discusses the characteristics of IR-Imaging guidance systems at the highlight of making a study of correlated technologies of jamming IR-Imaging-Guided Weapons on the basis of elaborating the operational principles of IR-Imaging-guided Weapons.

  12. Contact nonlinearities and linear response in jammed particulate packings.

    PubMed

    Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R

    2014-08-01

    Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit. PMID:25215727

  13. Rigid Cluster Decomposition Reveals Criticality in Frictional Jamming

    NASA Astrophysics Data System (ADS)

    Henkes, Silke; Quint, David A.; Fily, Yaouen; Schwarz, J. M.

    2016-01-01

    We study the nature of the frictional jamming transition within the framework of rigidity percolation theory. Slowly sheared frictional packings are decomposed into rigid clusters and floppy regions with a generalization of the pebble game including frictional contacts. Our method suggests a second-order transition controlled by the emergence of a system-spanning rigid cluster accompanied by a critical cluster size distribution. Rigid clusters also correlate with common measures of rigidity. We contrast this result with frictionless jamming, where the rigid cluster size distribution is noncritical.

  14. A study of optimal abstract jamming strategies vs. noncoherent MFSK

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.

    1983-01-01

    The present investigation is concerned with the performance of uncoded MFSK modulation in the presence of arbitrary additive jamming, taking into account the objective to devise robust antijamming strategies. An abstract model is considered, giving attention to the signal strength as a nonnegative real number X, the employment of X as a random variable, its distribution function G(x), the transmitter's strategy G, the jamming noise as an M-dimensional random vector Z, and the error probability. A summary of previous work on the considered problem is provided, and the results of the current study are presented.

  15. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  16. Shear modulus and dilatancy softening in granular packings above jamming.

    PubMed

    Coulais, C; Seguin, A; Dauchot, O

    2014-11-01

    We investigate experimentally the mechanical response to shear of a monolayer of bidisperse frictional grains across the jamming transition. We inflate an intruder inside the packing and use photoelasticity and tracking techniques to measure the induced shear strain and stresses at the grain scale. We quantify experimentally the constitutive relations for strain amplitudes as low as 10(-3) and for a range of packing fractions within 2% variation around the jamming transition. At the transition strong nonlinear effects set in: both the shear modulus and the dilatancy shear soften at small strain until a critical strain is reached where effective linearity is recovered. The scaling of the critical strain and the associated critical stresses on the distance to jamming are extracted. We check that the constitutive laws, together with mechanical equilibrium, correctly predict to the observed stress and strain profiles. These profiles exhibit a spatial crossover between an effective linear regime close to the inflater and the truly nonlinear regime away from it. The crossover length diverges at the jamming transition. PMID:25415925

  17. A theoretical framework for jamming in confluent biological tissues

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  18. Physical-scale models of engineered log jams in rivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  19. Reliability of a jammed binary transmission over a Nakagami channel

    NASA Astrophysics Data System (ADS)

    Zenon, Syroka

    2014-05-01

    This study presents a mathematic and numerical analysis of the probability of error in a binary transmission over a fading radio channel described by Nakagami-m distribution and its special cases. The transmission is jammed by a signal occupying the entire (or comparable) band before detection.

  20. Wall slip across the jamming transition of soft thermoresponsive particles

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Lapeyre, Véronique; Ravaine, Valérie; Manneville, Sébastien

    2015-12-01

    Flows of suspensions are often affected by wall slip, that is, the fluid velocity vf in the vicinity of a boundary differs from the wall velocity vw due to the presence of a lubrication layer. While the slip velocity vs=|vf-vw| robustly scales linearly with the stress σ at the wall in dilute suspensions, there is no consensus regarding denser suspensions that are sheared in the bulk, for which slip velocities have been reported to scale as a vs∝σp with exponents p inconsistently ranging between 0 and 2. Here we focus on a suspension of soft thermoresponsive particles and show that vs actually scales as a power law of the viscous stress σ -σc , where σc denotes the yield stress of the bulk material. By tuning the temperature across the jamming transition, we further demonstrate that this scaling holds true over a large range of packing fractions ϕ on both sides of the jamming point and that the exponent p increases continuously with ϕ , from p =1 in the case of dilute suspensions to p =2 for jammed assemblies. These results allow us to successfully revisit inconsistent data from the literature and pave the way for a continuous description of wall slip above and below jamming.

  1. JAMS - a software platform for modular hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  2. Responses of experimental river corridors to engineered log jams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...

  3. Jamming transition and inherent structures of hard spheres and disks.

    PubMed

    Ozawa, Misaki; Kuroiwa, Takeshi; Ikeda, Atsushi; Miyazaki, Kunimasa

    2012-11-16

    Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition. PMID:23215507

  4. FIJI: Fighting Implicit Jamming in 802.11 WLANs

    NASA Astrophysics Data System (ADS)

    Broustis, Ioannis; Pelechrinis, Konstantinos; Syrivelis, Dimitris; Krishnamurthy, Srikanth V.; Tassiulas, Leandros

    The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a low-power jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on a large-scale indoor testbed, under different traffic scenarios, network densities and jammer locations. Our measurements suggest that FIJI detects such jammers in real-time and alleviates their impact by allocating the available bandwidth in a fair and efficient way.

  5. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Silbert, Leonardo E.; Sperl, Matthias

    2016-02-01

    Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids—composed of isotropic static sphere packings—near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses.

  6. Armoring a droplet: Soft jamming of a dense granular interface

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Rescaglio, Antonella; Melo, Francisco

    2014-09-01

    Droplets and bubbles protected by armors of particles have found vast applications in encapsulation, stabilization of emulsions and foams, or flotation processes. The liquid phase stores capillary energy, while concurrently the solid contacts of the granular network induce friction and energy dissipation, leading to hybrid interfaces of combined properties. By means of nonintrusive tensiometric methods and structural measurements, we distinguish three surface phases of increasing rigidity during the evaporation of armored droplets. The emergence of surface rigidity is reminiscent of jamming of granular matter, but it occurs differently since it is marked by a step by step hardening under surface compression. These results show that the concept of the effective surface tension remains useful only below the first jamming transition. Beyond this point, the surface stresses become anisotropic.

  7. High-order jamming crossovers and density anomalies.

    PubMed

    Pica Ciamarra, Massimo; Sollich, Peter

    2013-10-28

    We demonstrate that particles interacting via core-softened potentials exhibit a series of successive density anomalies upon isothermal compression, leading to oscillations in the diffusivity and thermal expansion coefficient, with the latter reaching negative values. These finite-temperature density anomalies are then shown to correspond to zero-temperature high-order jamming crossovers. These occur when particles are forced to come into contact with neighbours in successive coordination shells upon increasing the density. The crossovers induce anomalous behavior of the bulk modulus, which oscillates with density. We rationalize the dependence of these crossovers on the softness of the interaction potential, and relate the jamming crossovers and the anomalous diffusivity via the properties of the vibrational spectrum. PMID:26029762

  8. On adaptive robustness approach to Anti-Jam signal processing

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Y. S.; Poberezhskiy, G. Y.

    An effective approach to exploiting statistical differences between desired and jamming signals named adaptive robustness is proposed and analyzed in this paper. It combines conventional Bayesian, adaptive, and robust approaches that are complementary to each other. This combining strengthens the advantages and mitigates the drawbacks of the conventional approaches. Adaptive robustness is equally applicable to both jammers and their victim systems. The capabilities required for realization of adaptive robustness in jammers and victim systems are determined. The employment of a specific nonlinear robust algorithm for anti-jam (AJ) processing is described and analyzed. Its effectiveness in practical situations has been proven analytically and confirmed by simulation. Since adaptive robustness can be used by both sides in electronic warfare, it is more advantageous for the fastest and most intelligent side. Many results obtained and discussed in this paper are also applicable to commercial applications such as communications in unregulated or poorly regulated frequency ranges and systems with cognitive capabilities.

  9. A general analysis of anti-jam communication systems

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Levitt, B. K.

    1981-01-01

    A general error bound is derived for a general anti-jam communication system which will serve as the basis for evaluating the performance of all such complex communication systems. The two most common spread spectrum techniques, coherent DS/BPSK and noncoherent FH/MFSK, are analyzed. Pulse jamming represents the worst type of jammer for DS/BPSK systems, and several receiver structures against such a jammer are examined. It is found that for low values of chip energy-to-noise ratios of O dB or less there is little difference between having or not having jammer state knowledge with a hard decision receiver. Soft decision receivers are shown to be useless against very narrow pulses without jammer state knowledge. Partial band jammers are close to the worst case jammer for FH/MFSK systems. The conclusions found for these systems are similar to those for the DS/BPSK systems.

  10. On variational arguments for vibrational modes near jamming

    NASA Astrophysics Data System (ADS)

    Yan, Le; DeGiuli, Eric; Wyart, Matthieu

    2016-04-01

    Amorphous solids tend to present an abundance of soft elastic modes, which diminish their transport properties, generate heterogeneities in their elastic response, and affect non-linear processes like thermal activation of plasticity. This is especially true in packings of particles near their jamming transition, for which effective medium theory and variational arguments can both predict the density of vibrational modes. However, recent numerics support that one hypothesis of the variational argument does not hold. We provide a novel variational argument which overcomes this problem, and correctly predicts the scaling properties of soft modes near the jamming transition. Soft modes are shown to be related to the response to a local strain in more connected networks, and to be characterized by a volume 1/δ z , where δ z is the excess coordination above the Maxwell threshold. These predictions are verified numerically.

  11. RJARS: RAND's version of the jamming aircraft and radar simulation

    NASA Astrophysics Data System (ADS)

    Sollfrey, William

    1991-06-01

    RJARS is an engagement level model that simulates air-to-ground and ground-to-air combat, primarily the latter, treating the combatants as individuals rather than aggregating. It has been designed to consider terrain masking, multipath and clutter, and flight dynamics in order to more carefully evaluate jamming effectiveness and mission attrition. The model is an extensive development of JARS (Jamming Aircraft and Radar Simulation). The current version of RJARS considers sorties in which aircraft carrying warning receivers, jammers, anti-radiation missiles, and air-launched cruise missiles fly against a defensive system with search, acquisition, and tracking radars, IR and optical systems, surface-to-air missiles, artillery, and a command, control, and communications system. All equipment parameters and scenarios can be varied.

  12. Jammed Clusters and Non-locality in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Kharel, Prashidha; Rognon, Pierre

    We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

  13. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition.

    PubMed

    Mizuno, Hideyuki; Silbert, Leonardo E; Sperl, Matthias

    2016-02-12

    Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids--composed of isotropic static sphere packings--near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses. PMID:26919018

  14. The jamming elasticity of emulsions stabilized by ionic surfactants.

    PubMed

    Scheffold, Frank; Wilking, James N; Haberko, Jakub; Cardinaux, Frédéric; Mason, Thomas G

    2014-07-28

    Oil-in-water emulsions composed of colloidal-scale droplets are often stabilized using ionic surfactants that provide a repulsive interaction between neighboring droplet interfaces, thereby inhibiting coalescence. If the droplet volume fraction is raised rapidly by applying an osmotic pressure, the droplets remain disordered, undergo an ergodic-nonergodic transition, and jam. If the applied osmotic pressure approaches the Laplace pressure of the droplets, then the jammed droplets also deform. Because solid friction and entanglements cannot play a role, as they might with solid particulate or microgel dispersions, the shear mechanical response of monodisperse emulsions can provide critical insight into the interplay of entropic, electrostatic, and interfacial forces. Here, we introduce a model that can be used to predict the plateau storage modulus and yield stress of a uniform charge-stabilized emulsion accurately if the droplet radius, interfacial tension, surface potential, Debye screening length, and droplet volume fraction are known. PMID:24913542

  15. Bispectrum modulation for jamming rejection on satellite communication channels

    NASA Astrophysics Data System (ADS)

    Barton, Richard J.

    1995-05-01

    The Global Grid communications environment is designed to provide a high-data-rate network that supports the full complement of DoD communications needs. Satellite links are an integral part of the Global Grid concept which extends the connectivity to individual mobile units and jointly operating forces at isolated locations. However, satellite channels are vulnerable to jamming, in particular when a high data rate is required. To overcome the jamming problem, the traditional approach is to design modulation techniques such that, on the average, the spectrum of the signal looks like the spectrum of a white noise process. This together with channel coding provides immunity against jamming. The main problem with this approach is that it requires a much larger spectrum than that of the data sequence; hence, the available spectrum on the link is used mostly for jamming protection and not for data communications. The traditional modulation techniques employed on satellite communication links are based on various properties of the second-order spectrum of the modulation wave form. In this study we have explored the utility and performance of a new family of modulation schemes that exploit the properties of the higher-order cumulant sequences and associated polyspectra of the waveform. In particular, we have investigated an approach in which the third-order polyspectrum, which is generally referred to as the bispectrum, is modulated. To determine the performance characteristics of this bispectral modulation scheme, we have considered two different detector structures, for which we have completed both theoretical and simulated performance analyses.

  16. Navigating the Race to the Top Traffic Jam

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    Early last week the U.S. Department of Education announced an unexpected 16 finalists for the first round of Race to the Top (RTT) funding--a veritable traffic jam in the Race to the Top. The finalists have requested a total of $6.5 billion in funds, but only $4.3 billion is up for grabs, and that needs to be spread over two rounds of competition.…

  17. T-structured fluid and jamming in driven Brownian rotators

    NASA Astrophysics Data System (ADS)

    Kirchhoff, R.; Löwen, H.

    2005-01-01

    The dynamics of two-dimensional suspensions of Brownian rods which are driven by an external torque are explored by computer simulation and instability theory. For increasing density the system self-organizes into a "T-structured fluid", where neighbouring rods preferentially orient perpendicular to each other until an overlap density is reached. Then a sharp jamming transition occurs towards a dynamically blocked state with parallel neighbouring rods.

  18. Sculpting Pickering Emulsion Droplets by Arrest and Jamming

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Wei, Zengyi; Caggioni, Marco; Spicer, Patrick; Atherton, Tim

    Pickering emulsion droplets can be arrested into non-spherical shapes--useful for applications such as active delivery--through a general mechanism of deformation followed by absorption of additional colloidal particles onto the interface, relaxation of the droplet caused by surface tension and arrest at some point due to crowding of the particles. We perform simulations of the arrest process to clarify the relative importance of diffusive rearrangement of particles and collective forcing due to surface evolution. Experiment and theory are compared, giving insight into the stability of the resulting capsules and the robustness of the production process for higher-throughput production in, for example, microfluidic systems. We adapt theoretical tools from the jamming literature to better understand the arrested configurations and long timescale evolution of the system: using linear programming and a penalty function approach, we identify unjamming motions in kinetically arrested states. We propose a paradigm of ``metric jamming'' to describe the limiting behavior of this class of system: a structure is metric-jammed if it is stable with respect to collective motion of the particles as well as evolution of the hypersurface on which the packing is embedded. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  19. Self-driven jamming in growing microbial populations

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  20. Dynamic jamming fronts in iceberg-choked fjords

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Amundson, Jason; Cassotto, Ryan; Fahnestock, Mark; Darnell, Kristopher; Truffer, Martin; Zhang, Wendy

    2015-03-01

    During summertime at the glacier terminus at Jakobshavn Isbræ, Greenland, calving events are followed by rapid motion in the ice mélange in front of the terminus. Understanding the dynamics of ice mélange is important because it acts as a resisting force to calving events. We analyze this motion using time-lapse photography and terrestrial radar images. Large calving events last for approximately 5 minutes, during which ~1014 J of potential energy is released. Motion in the ice mélange quickly spreads out over at least 16 km down the fjord, and relaxes in about 1 hour. The ice mélange can be viewed as a dense granular system, which is packed close to the jamming point. A jammed ice mélange resists expansion of the glacier terminus much more strongly and reduces iceberg calving, which may therefore play a significant role in glacier evolution. In our images, we observe dynamic jamming fronts, which propagate one order of magnitude faster than the instantaneous speed of the calving iceberg. From the ratio between the speed of the front and the calving iceberg we calculate a compaction that agrees with estimated compaction that we observe directly.

  1. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  2. Jamming Behavior of Domain Walls in an Antiferromagnetic Film

    NASA Astrophysics Data System (ADS)

    Sinha, Sunil

    2014-03-01

    Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.

  3. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  4. Dysregulation of JAM-A plays an important role in human tumor progression

    PubMed Central

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described. PMID:25400822

  5. Jamming, Self-Filtration and Cake Growth in Concentrated Particle Suspensions

    NASA Astrophysics Data System (ADS)

    Guo, Youjing; Li, Shoubo; Yang, Donglei; Mi, Yongli; Wang, Xiaorong

    2015-03-01

    We study the flows of concentrated particle suspensions driven through a circular orifice. Above a critical concentration, a jammed structure (i.e., quasi-solid sphere) often forms in the flow and at the entrance of the geometrical constriction. Once occurred this jammed structure grows fast as time t passes and produces a reduction in the solid concentration downstream. Our analysis shows that a combination of the particle jamming, the self-filtration, and the cake-formation with the flow passing through the pores of the jammed solid is responsible for the occurrence of such phenomena. Based on this mechanism, we establish a mathematical model to show how the jammed structure is propagated. Our results suggest that the size D of the jammed structure in this case is proportional to a 1/3 power of the time t. Experiments also support this conclusion.

  6. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming. PMID:19104536

  7. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  8. An information theoretic study of communication in the presence of jamming

    NASA Astrophysics Data System (ADS)

    McEliece, R. J.; Stark, W. E.

    An information theoretic analysis of communications in the presence of a hostile jammer is presented. Under certain restrictions coding and jamming strategies which are simultaneously optimal for both the coder and jammer are shown to exist. When the coder and jammer both have average power constraints the minimax strategies are shown to be Gaussian input, Gaussian jamming. By considering pulsed jamming strategies, Gaussian jamming is shown not to be a saddle point strategy when the input is restricted to be binary. However provided a modest amount of bandwidth expansion is tolerable, suitable coding can neutralize a pulsed jammer.

  9. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  10. Title: Flushed Away: Linking Carbon Storage and Log Jams in Colorado's Front Range

    NASA Astrophysics Data System (ADS)

    Beckman, N. D.; Wohl, E. E.

    2011-12-01

    Historical documents and recent field studies suggest that resource use within the Colorado Rockies during the past two centuries has reduced the wood loads and frequency of wood jams along most forested streams. Recent research has also shown that streams play a significant role in the sequestration and transport of organic carbon, and wood jams are a key component of storage and biological processing in mountain headwater streams. Log jams tend to slow the transport of carbon and encourage its uptake in the riverine environment and therefore may have effects which extend beyond streams and into the global carbon cycle. The paper aims to quantify the effects of past and present resource management on instream wood loads and logjam frequency along Colorado's Front Range. We hypothesize that more highly impacted reaches (as measured by recent fire, logging, and high flow regulation) will demonstrate lower wood loads, lower jam densities and lower overall volume of stored sediment. In addition, we hypothesize that soils stored behind log jams will have a higher OM and TC content. If these hypothesis hold true, then by implication areas with younger forests and higher impacts will have higher carbon flux and lower return of carbon and nutrients to the surrounding ecosystem. Wood loads and jam frequency are compared based on stream characteristics, forest age, and flow alteration. In addition, sediment samples from reaches with and without log jams are compared based on organic matter (OM) content and Total Carbon (TC) content. Samples taken from behind log jams are compared to samples taken from other backwater areas along a river reach. Preliminary results of the 2010/2011 field seasons indicate that sediment samples taken from log jams (regardless of forest age) have an overall average of 5% OM, as compared to an average of 1% OM in samples taken from non-jam areas. Samples taken from log jams on streams draining old growth forests (more than 250 years since last

  11. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  12. Mitigation of Control Channel Jamming via Combinatorial Key Distribution

    NASA Astrophysics Data System (ADS)

    Falahati, Abolfazl; Azarafrooz, Mahdi

    The problem of countering control channel jamming against internal adversaries in wireless ad hoc networks is addressed. Using combinatorial key distribution, a new method to secure the control channel access is introduced. This method, utilizes the established keys in the key establishment phase to hide the location of control channels without the need for a secure BS. This is in obtained by combination of a collision free one-way function and a combinatorial key establishment method. The proposed scheme can be considered as a special case of the ALOHA random access schemes which uses the common established keys as its seeds to generate the pattern of transmission.

  13. Jamming and pattern formation in models of segregation

    NASA Astrophysics Data System (ADS)

    Rogers, Tim; McKane, Alan J.

    2012-04-01

    We investigate the Schelling model of social segregation, formulated as an intrinsically nonequilibrium system, in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations governing the dynamical behavior of the model to be derived. Analysis of these equations reveals a jamming transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our approach.

  14. First JAM results on the determination of polarized parton distributions

    SciTech Connect

    Accardi, Alberto; Jimenez-Delgado, Pedro; Melnitchouk, Wally

    2014-01-01

    The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.

  15. Traffic jams and hysteresis in driven one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Hu, B.; Filippov, A.; Zeltser, A.

    1998-08-01

    The driven underdamped chain of anharmonically interacting atoms in the sinusoidal external potential is studied. It is shown that due to the interatomic interaction the system exhibits hysteresis for any nonzero rate of changing of the dc driving force. Before the transition to the running state the system passes through the traffic-jam inhomogeneous state. The system behavior is explained with the help of two simple models, the discrete lattice-gas model with two states of atoms, and the continuum mean-field model based on the Fokker-Planck equation.

  16. On-board recordings reveal no jamming avoidance in wild bats.

    PubMed

    Cvikel, Noam; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-01

    Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's 'point of view'. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics. PMID:25429017

  17. Jamming effectiveness analysis of IR smoke projectile based on sight optical observation

    NASA Astrophysics Data System (ADS)

    Wang, Longtao; Liu, Zhenxing; Wang, Falong

    2013-09-01

    This text makes use of the similar of the principle between IR imaging guided missile detection system and the general sight optics probe. In this text, the synopsis analysis on the jamming effectiveness of the IR smoke projectile resist the IR imaging guided missile is discussed. This research of the jamming technique to IR imaging guided missile have a very realistic meaning.

  18. 77 FR 71746 - Artificially Sweetened Fruit Jelly and Artificially Sweetened Fruit Preserves and Jams; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... fruit preserves and jams (artificially sweetened preserves and jams) (21 CFR 150.161) (24 FR 8896... for their use in food labeling (58 FR 2302; January 6, 1993). FDA also prescribed at the same time in... a traditional standardized food term (58 FR 2431; January 6, 1993). A nutrient content claim...

  19. Geometric order parameters derived from the Voronoi tessellation show signatures of the jamming transition.

    PubMed

    Morse, Peter K; Corwin, Eric I

    2016-01-28

    A jammed packing of frictionless spheres at zero temperature is perfectly specified by the network of contact forces from which mechanical properties can be derived. However, we can alternatively consider a packing as a geometric structure, characterized by a Voronoi tessellation which encodes the local environment around each particle. We find that this local environment characterizes systems both above and below jamming and changes markedly at the transition. A variety of order parameters derived from this tessellation carry signatures of the jamming transition, complete with scaling exponents. Furthermore, we define a real space geometric correlation function which also displays a signature of jamming. Taken together, these results demonstrate the validity and usefulness of a purely geometric approach to jamming. PMID:26611105

  20. Positioning of jamming aircraft using the integrated refractive effects prediction system

    NASA Astrophysics Data System (ADS)

    White, T. W.

    1982-10-01

    Tactical ECM planning has historically considered only horizontal positioning of self-protection and standoff jamming systems. Failure to consider vertical positioning of the jammer, and how the environment affects that positioning, can lead to substantially reduced jamming effectiveness. The effects of radar and jamming system antenna patterns and environmental considerations are discussed. The Integrated Refractive Effects Prediction System (IREPS) incorporates these effects, but not in a form that is convenient for ECM planning. However, as it is now configured, IREPS can be a useful tool. A step-by-step approach for using IREPS and the jamming equations to assist the ECM planner is given. Sample calculations for self-protection and standoff jamming under actual environmental conditions are provided.

  1. Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Schadschneider, Andreas

    1999-02-01

    We propose a cellular automata model for vehicular traffic in cities by combining (and appropriately modifying) ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NS) model of highway traffic. We demonstrate a phase transition from the ``free-flowing'' dynamical phase to the completely ``jammed'' phase at a vehicle density which depends on the time periods of the synchronized signals and the separation between them. The intrinsic stochasticity of the dynamics, which triggers the onset of jamming, is similar to that in the NS model, while the phenomenon of complete jamming through self-organization as well as the final jammed configurations are similar to those in the BML model. Using our model, we have made an investigation of the time dependence of the average speeds of the cars in the ``free-flowing'' phase as well as the dependence of flux and jamming on the time period of the signals.

  2. Angoricity and compactivity describe the jamming transition in soft particulate matter

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Song, Chaoming; Wang, Ping; Makse, Hernán A.

    2010-09-01

    The application of concepts from equilibrium statistical mechanics to out-of-equilibrium systems has a long history of describing diverse systems ranging from glasses to granular materials. For dissipative jammed systems —particulate grains or droplets— a key concept is to replace the energy ensemble describing conservative systems by the volume-stress ensemble. Here, we test the applicability of the volume-stress ensemble to describe the jamming transition by comparing the jammed configurations obtained by dynamics with those averaged over the ensemble as a probe of ergodicity. Agreement between both methods suggests the idea of "thermalization" at a given angoricity and compactivity. We elucidate the thermodynamic order of the jamming transition by showing the absence of critical fluctuations in static observables like pressure and volume. The approach allows to calculate observables such as the entropy, volume, pressure, coordination number and distribution of forces to characterize the scaling laws near the jamming transition from a statistical mechanics viewpoint.

  3. Study on electro-optical jamming effect on TV seekers by flight test

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Sun, Yifan; Wei, Yanling

    2014-07-01

    The effect and mechanism of smokescreen and stealth jamming on TV seekers are investigated by seeker captive flight jamming test. Based on a comprehensive analysis of large amounts of test results, we have discovered the laws of smokescreen and stealth jamming effect on the performance of TV seekers, such as tracking status, tracking error, measurement of line-of-sight angle and its angular rate. A rational explanation for the laws has also been presented based on the principle of stabilization of seeker optical axis. The results are not only useful for evaluating smokescreen and stealth jamming effect on TV guidance missiles, but also referential for the study of smokescreen and stealth mechanism and the anti-jamming design of imaging seekers.

  4. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  5. Spatiotemporal chaotic unjamming and jamming in granular avalanches.

    PubMed

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment - a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  6. Multifrequency OFDM SAR in Presence of Deception Jamming

    NASA Astrophysics Data System (ADS)

    Schuerger, Jonathan; Garmatyuk, Dmitriy

    2010-12-01

    Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF) estimator and digital-RF-memory- (DRFM-) based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM), and frequency-hopped (FH). Presented results include simulated peak side lobe (PSL) and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  7. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  8. Three-dimensional jamming and flows of soft glassy materials.

    PubMed

    Ovarlez, G; Barral, Q; Coussot, P

    2010-02-01

    Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046

  9. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  10. Spatiotemporal chaotic unjamming and jamming in granular avalanches

    PubMed Central

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment – a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  11. Universal robotic gripper based on the jamming of granular material

    PubMed Central

    Brown, Eric; Rodenberg, Nicholas; Amend, John; Mozeika, Annan; Steltz, Erik; Zakin, Mitchell R.; Lipson, Hod; Jaeger, Heinrich M.

    2010-01-01

    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

  12. Spatial structure of states of self stress in jammed systems.

    PubMed

    Sussman, Daniel M; Goodrich, Carl P; Liu, Andrea J

    2016-05-01

    States of self stress, organizations of internal forces in many-body systems that are in equilibrium with an absence of external forces, can be thought of as the constitutive building blocks of the elastic response of a material. In overconstrained disordered packings they have a natural mathematical correspondence with the zero-energy vibrational modes in underconstrained systems. While substantial attention in the literature has been paid to diverging length scales associated with zero- and finite-energy vibrational modes in jammed systems, less is known about the spatial structure of the states of self stress. In this work we define a natural way in which a unique state of self stress can be associated with each bond in a disordered spring network derived from a jammed packing, and then investigate the spatial structure of these bond-localized states of self stress. This allows for an understanding of how the elastic properties of a system would change upon changing the strength or even existence of any bond in the system. PMID:26996807

  13. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk; Kim, Byoung-Ik; Kim, Young-Choon; Ahn, Sang-Ho

    2012-09-01

    In directed infrared countermeasures (DIRCM), the purpose of jamming toward missiles is making missiles miss the target (aircraft of our forces) in the field of view. Since the DIRCM system directly emits the pulsing flashes of infrared (IR) energy to missiles, it is more effective than present flare method emitting IR source to omni-direction. In this paper, we implemented a reticle seeker simulation tool using MATLAB-SIMULINK, in order to analyze jamming effect of spin-scan and con-scan reticle missile seeker used widely in the world, though it was developed early. Because the jammer signal has influence on the missile guidance system using its variable frequency, it is very important technique among military defense systems protecting our forces from missiles of enemy. Simulation results show that jamming effect is greatly influenced according to frequency, phase and intensity of jammer signal. Especially, jammer frequency has the largest influence on jamming effect. Through our reticle seeker simulation tool, we can confirm that jamming effect toward missiles is significantly increased when jammer frequency is similar to reticle frequency. Finally, we evaluated jamming effect according to jammer frequencies, by using correlation coefficient as an evaluation criterion of jamming performance in two reticle missile seekers.

  14. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  15. Effect of aronia berry honey syrup used for sweetening jams on their quality.

    PubMed

    Kmiecik, W; Lisiewska, Z; Jaworska, G

    2001-08-01

    The effects of sweetening agents on the quality of low sweetened jams were compared with respect to blackcurrant, raspberry, sour cherry, strawberry, and bilberry jams. The sweetening agents were sucrose, aronia berry honey syrup, and sucrose + honey syrup at a ratio of 1:1. The level of physicochemical indices, especially the content of vitamin C and anthocyanins determined directly after production and after 3- and 6-month storage, was used as the quality criterion for the evaluation of jams. Moreover, after 6-month storage the products were subjected to sensorial analysis. According to the accepted method of the investigation the produced jams were characterized by a 32-33% content of extract. During the production and 6-month storage the content of acids slightly and that of pectin considerably (from 26 to 46%) decreased, although the consistency of the jams was not affected thereby. In the case of vitamin C, its pronounced losses concerned raspberry (62-67% of the initial value), strawberry (57-61%), and sour cherry (57-58%), being distinctly smaller in blackcurrant (13-16%) and bilberry (15-35%) jams. With respect to anthocyanins a similar regularity was observed, the losses reaching 49-63% in strawberry jam, 40-56% in raspberry, 33-39% in sour cherry, 30-36% in blackcurrant, and 28-36% in bilberries. In almost all the products the losses of vitamin C and anthocyanins were higher when sweetening agent was aronia berry honey syrup. The organoleptic evaluation showed that the addition of aronia berry honey syrup to raspberry and strawberry jams slightly spoiled their colour but improved the aroma and taste. In the final score the significant differentiation in favour of the addition of aronia berry honey syrup concerned only blackcurrant, sour cherry, and bilberry jams. PMID:11534468

  16. Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond

    NASA Astrophysics Data System (ADS)

    Berthier, Ludovic; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki

    2016-06-01

    We implement and optimize a particle-swap Monte Carlo algorithm that allows us to thermalize a polydisperse system of hard spheres up to unprecedentedly large volume fractions, where previous algorithms and experiments fail to equilibrate. We show that no glass singularity intervenes before the jamming density, which we independently determine through two distinct nonequilibrium protocols. We demonstrate that equilibrium fluid and nonequilibrium jammed states can have the same density, showing that the jamming transition cannot be the end point of the fluid branch.

  17. Topology-selective jamming of fully-connected, code-division random-access networks

    NASA Technical Reports Server (NTRS)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  18. Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond.

    PubMed

    Berthier, Ludovic; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki

    2016-06-10

    We implement and optimize a particle-swap Monte Carlo algorithm that allows us to thermalize a polydisperse system of hard spheres up to unprecedentedly large volume fractions, where previous algorithms and experiments fail to equilibrate. We show that no glass singularity intervenes before the jamming density, which we independently determine through two distinct nonequilibrium protocols. We demonstrate that equilibrium fluid and nonequilibrium jammed states can have the same density, showing that the jamming transition cannot be the end point of the fluid branch. PMID:27341260

  19. Critical scaling in linear response of frictionless granular packings near jamming.

    PubMed

    Ellenbroek, Wouter G; Somfai, Ellák; van Hecke, Martin; van Saarloos, Wim

    2006-12-22

    We study the origin of the scaling behavior in frictionless granular media above the jamming transition by analyzing their linear response. The response to local forcing is non-self-averaging and fluctuates over a length scale that diverges at the jamming transition. The response to global forcing becomes increasingly nonaffine near the jamming transition. This is due to the proximity of floppy modes, the influence of which we characterize by the local linear response. We show that the local response also governs the anomalous scaling of elastic constants and contact number. PMID:17280395

  20. Self organization and shear-jamming in magnetic photoelastic particles

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Bares, Jonathan; Behringer, Bob

    Many experimental studies of simple particles in granular systems have been conducted, but the behavior of complex particles in such systems has not been addressed. There has been a growing interest in functionalized microparticles, and the study of these complex particles may reveal interesting analogues between micro- and macroparticles. We perform experiments to investigate magnetic particles in a 2D granular material close to the jamming transition. We incrementally compress and shear photoelastic particles containing magnets and image the interparticle forces in each compression using a photoelastic technique. To track the orientation of individual particles, we draw UV-visible bars on each particle and image each compression of the system under ultraviolet light. We repeat the experimental procedure using varying ratios of magnetic to nonmagnetic particles from 0% magnetic to 100% magnetic. By using custom software to resolve particle deformations, we extract particle contact and pressure.

  1. Soliton and kink jams in traffic flow with open boundaries.

    PubMed

    Muramatsu, M; Nagatani, T

    1999-07-01

    Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation. PMID:11969749

  2. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  3. Controlled assembly of jammed colloidal shells on fluid droplets.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability. PMID:15937488

  4. Elastic moduli and vibrational modes in jammed particulate packings

    NASA Astrophysics Data System (ADS)

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E.

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M , it is therefore necessary to take into account not only the affine modulus MA, but also the nonaffine modulus MN that arises from the nonaffine deformation. In the present work, we study the bulk (M =K ) and shear (M =G ) moduli in static jammed particulate packings over a range of packing fractions φ . The affine MA is determined essentially by the static structural arrangement of particles, whereas the nonaffine MN is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine MN through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φc, the vibrational density of states g (ω ) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω*. We illustrate that this unusual feature apparent in g (ω ) is reflected in the behavior of MN: As φ →φc , where ω*→0 , those modes for ω <ω* contribute less and less, while contributions from those for ω >ω* approach a constant value which results in MN to approach a critical value MN c, as MN-MN c˜ω* . At φc itself, the bulk modulus attains a finite value Kc=KA c-KN c>0 , such that KN c has a value that remains below KA c. In contrast, for the critical shear modulus Gc, GN c and GA c approach the same value so that the total value becomes exactly zero, Gc=GA c-GN c=0 . We explore what features of the configurational and vibrational properties cause such a distinction between K and G , allowing us to validate analytical expressions for their critical values.

  5. DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    PubMed Central

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316

  6. DMP: detouring using multiple paths against jamming attack for ubiquitous networking system.

    PubMed

    Kim, Mihui; Chae, Kijoon

    2010-01-01

    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute. PMID:22319316

  7. Real-time traffic jam detection and localization running on a smart camera

    NASA Astrophysics Data System (ADS)

    Lipetski, Yuriy; Loibner, Gernot; Ulm, Michael; Ponweiser, Wolfgang; Sidla, Oliver

    2014-03-01

    Reliable automatic detection of traffic jam occurrences is of big significance for traffic flow analysis related applications. We present our work aimed at the application of video based real-time traffic jam detection. Our method can handle both calibrated and un-calibrated scenarios, operating in world and in image coordinate systems respectively. The method is designed to be operated on a smart camera, but is also suitable for a standard personal computer. The combination of state-of-the-art algorithms for vehicle detections and velocity estimation allows robust long-term system operation in due to the high recall rate and very low false alarm rate. The proposed method not only detects traffic jam events in real-time, but also precisely localizes traffic jams by their start and end positions per road lane. We describe also our strategy in making computationally heavy algorithms real-time capable even on hardware with a limited computing power.

  8. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage. PMID:27283611

  9. Random walk theory of jamming in a cellular automaton model for traffic flow

    NASA Astrophysics Data System (ADS)

    Barlovic, Robert; Schadschneider, Andreas; Schreckenberg, Michael

    2001-05-01

    The jamming behavior of a single lane traffic model based on a cellular automaton approach is studied. Our investigations concentrate on the so-called VDR model which is a simple generalization of the well-known Nagel-Schreckenberg model. In the VDR model one finds a separation between a free flow phase and jammed vehicles. This phase separation allows to use random walk like arguments to predict the resolving probabilities and lifetimes of jam clusters or disturbances. These predictions are in good agreement with the results of computer simulations and even become exact for a special case of the model. Our findings allow a deeper insight into the dynamics of wide jams occuring in the model.

  10. Dissipation and velocity distribution at the shear-driven jamming transition

    NASA Astrophysics Data System (ADS)

    Olsson, Peter

    2016-04-01

    We investigate energy dissipation and the distribution of particle velocities at the jamming transition for overdamped shear-driven frictionless disks in two dimensions at zero temperature. We find that the dissipation is caused by the fastest particles and that the fraction of particles responsible for the dissipation decreases towards zero as jamming is approached. These particles belong to an algebraic tail of the velocity distribution that approaches ˜v-3 as jamming is approached. We further find that different measures of the velocity diverge differently, which means that concepts such as typical velocity may no longer be used, a finding that should have implications for analytical approaches to shear-driven jamming.

  11. The role of JAM-B in cancer and cancer metastasis (Review).

    PubMed

    Zhao, Huishan; Yu, Hefen; Martin, Tracey A; Teng, Xu; Jiang, Wen G

    2016-07-01

    The junctional adhesion molecule B (JAM-B) is a multifunctional transmembrane protein, which belongs to the immunoglobulin superfamily (IgSF). JAM-B is localized to cell-cell contacts and enriched at cell junctions in epithelial and endothelial cells, as well as on the surface of erythrocytes, leukocytes, and platelets. Recent research in this field has shown that JAM-B plays an important role in numerous cellular processes, such as tight junction assembly, spermatogenesis, regulation of paracellular permeability, leukocytic transmigration, angiogenesis, tumor metastasis and cell proliferation. This study provides a new research direction for the diagnosis and treatment of relevant diseases. In this review, we briefly focus on what is currently known about the structure, function, and mechanism of JAM-B, with particular emphasis on cancer. PMID:27121546

  12. Beyond linear elasticity: jammed solids at finite shear strain and rate.

    PubMed

    Boschan, Julia; Vågberg, Daniel; Somfai, Ellák; Tighe, Brian P

    2016-06-28

    The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and weak. Both of these approximations must break down when the material loses rigidity, such as in foams and emulsions at their (un)jamming point - suggesting that the window of linear elastic response near jamming is exceedingly narrow. Yet precisely when and how this breakdown occurs remains unclear. To answer these questions, we perform computer simulations of stress relaxation and shear start-up tests in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain amplitude, strain rate, distance to jamming, and system size, we identify characteristic strain and time scales that quantify how and when the window of linear elasticity closes, and relate these scales to changes in the microscopic contact network. PMID:27212139

  13. Feedback control scheme of traffic jams based on the coupled map car-following model

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Sun, Di-Hua; Zhao, Min; Li, Hua-Min

    2013-09-01

    Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.

  14. The role of JAM-B in cancer and cancer metastasis (Review)

    PubMed Central

    ZHAO, HUISHAN; YU, HEFEN; MARTIN, TRACEY A.; TENG, XU; JIANG, WEN G.

    2016-01-01

    The junctional adhesion molecule B (JAM-B) is a multifunctional transmembrane protein, which belongs to the immunoglobulin superfamily (IgSF). JAM-B is localized to cell-cell contacts and enriched at cell junctions in epithelial and endothelial cells, as well as on the surface of erythrocytes, leukocytes, and platelets. Recent research in this field has shown that JAM-B plays an important role in numerous cellular processes, such as tight junction assembly, spermatogenesis, regulation of paracellular permeability, leukocytic transmigration, angiogenesis, tumor metastasis and cell proliferation. This study provides a new research direction for the diagnosis and treatment of relevant diseases. In this review, we briefly focus on what is currently known about the structure, function, and mechanism of JAM-B, with particular emphasis on cancer. PMID:27121546

  15. On-board recordings reveal no jamming avoidance in wild bats

    PubMed Central

    Cvikel, Noam; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-01

    Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's ‘point of view’. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics. PMID:25429017

  16. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques

    PubMed Central

    Miljkovic-Licina, Marijana; Lee, Boris P.; Fischer, Nicolas; Fish, Richard J.; Kwak, Brenda; Fisher, Edward A.; Imhof, Beat A.

    2016-01-01

    Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies. PMID:27442505

  17. Cancer-Related Constituents of Strawberry Jam as Compared with Fresh Fruit

    PubMed Central

    Flores, Gema; Ruiz del Castillo, Maria Luisa

    2016-01-01

    The health awareness recently shown by consumers has led to a demand for health beneficial products. In particular, researchers are currently focusing their studies on the search for foods for cancer prevention activity. In the present work, we study comparatively the effect of two different processing methods on the contents of phenolic compounds (i.e., ellagic acid, myricetin, quercetin and kaempferol) with antioxidant and antitumor properties in strawberry jams. In turn, the results obtained were compared with those of unprocessed fruit. Additionally carcinogenic heat-induced compounds formed by the two jam making methods were evaluated. Decreases of total ellagic acid from 138.4 µg/g to 86.5 µg/g were measured in jam as compared with the intact fruit. Even higher losses of up to 90% of total flavonols were found in strawberry after the jam-making process. A comparison between the two processing methods proved shorter heating periods (around 60 min) even at temperatures as high as 100 °C enabled losses of antioxidant phenolics to be minimized. Carcinogenic heat-induced volatile compounds, mainly Maillard reaction products, were formed as a result of thermal treatment during jam processing. However, shorter heating periods also helped reduce the formation of these harmful compounds. These results are deeply discussed. From a practical standpoint, the processing conditions here proposed can be used by industry to obtain strawberry jam with higher content of antioxidant flavonoids and, at the same time, reduced amounts of carcinogenic compounds. PMID:26784230

  18. Cancer-Related Constituents of Strawberry Jam as Compared with Fresh Fruit.

    PubMed

    Flores, Gema; Ruiz Del Castillo, Maria Luisa

    2016-01-01

    The health awareness recently shown by consumers has led to a demand for health beneficial products. In particular, researchers are currently focusing their studies on the search for foods for cancer prevention activity. In the present work, we study comparatively the effect of two different processing methods on the contents of phenolic compounds (i.e., ellagic acid, myricetin, quercetin and kaempferol) with antioxidant and antitumor properties in strawberry jams. In turn, the results obtained were compared with those of unprocessed fruit. Additionally carcinogenic heat-induced compounds formed by the two jam making methods were evaluated. Decreases of total ellagic acid from 138.4 µg/g to 86.5 µg/g were measured in jam as compared with the intact fruit. Even higher losses of up to 90% of total flavonols were found in strawberry after the jam-making process. A comparison between the two processing methods proved shorter heating periods (around 60 min) even at temperatures as high as 100 °C enabled losses of antioxidant phenolics to be minimized. Carcinogenic heat-induced volatile compounds, mainly Maillard reaction products, were formed as a result of thermal treatment during jam processing. However, shorter heating periods also helped reduce the formation of these harmful compounds. These results are deeply discussed. From a practical standpoint, the processing conditions here proposed can be used by industry to obtain strawberry jam with higher content of antioxidant flavonoids and, at the same time, reduced amounts of carcinogenic compounds. PMID:26784230

  19. Elastic moduli and vibrational modes in jammed particulate packings.

    PubMed

    Mizuno, Hideyuki; Saitoh, Kuniyasu; Silbert, Leonardo E

    2016-06-01

    When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values. PMID:27415345

  20. Self organization and jamming in magnetic photoelastic particles

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Bares, Jonathan; Wang, Dong; Behringer, Robert

    2015-11-01

    Many experimental studies of simple particles in granular systems have been conducted, but the behavior of complex particles in such systems has not been addressed. There has been a growing interest in functionalized microparticles, and the study of these complex particles may reveal interesting analogues between micro- and macroparticles. We perform experiments to investigate magnetic particles in a 2D granular material close to the jamming transition. We incrementally compress photoelastic particles containing magnets and image the interparticle forces in each compression using a photoelastic technique. To track the orientation of individual particles, we draw UV-visible bars on each particle and image each compression of the system under ultraviolet light. We repeat the experimental procedure using varying ratios of magnetic to nonmagnetic particles from 0% magnetic to 100% magnetic. By using custom software to resolve particle deformations, we extract particle contact forces and demonstrate that as the concentration of nonmagnetic particles grows, the rate of increase of pressure with strain also grows. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G and W. M. Keck Foundation.

  1. Jamming under rapid pulling in dense granular suspensions

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Peters, Ivo R.; Jaeger, Heinrich

    2015-03-01

    It requires a lot of force to quickly pull out an object immersed in a bath of dense granular suspension like corn starch in water. To understand such striking force response, we experimentally measure the normal force required for pulling out a cylindrical rod vertically from the suspension at a controlled pulling velocity. We observe that for slow pulling velocities the force response is similar to that of highly viscous fluids but above a certain threshold velocity the force show a diverging behavior soon after the initial viscous-like response. The time delay between the initial viscous-like and the diverging force response crucially depends on the proximity of the container walls from the initial contact region of the pulling rod with the suspension. We use in-situ X-ray radiography techniques to map out the local velocity profiles inside the suspension using metallic tracer particles which reveals that the force divergence takes place under pulling when the motion inside the suspension extends up to the container walls. Although the exact mechanism remains to be explained, our experiments suggest that both the magnitude and the delay in force response under pulling are reminiscent of dynamic jamming under impact in dense granular suspensions. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago

  2. Rake receiver performance in the presence of narrowband jamming

    NASA Astrophysics Data System (ADS)

    Meng, Julian; Ding, Xin

    2005-06-01

    Direct-sequence spread spectrum (DSSS) modulation offers many properties that make it well suited for a mobile environment including some inherent narrowband interference or jamming (NBJ) suppression capability and resistance to multipath fading. The estimation and filtering of unwanted narrowband signals in DSSS systems has been extensively addressed in previous work but has given limited insight to system performance when multipath fading is introduced and a diversity solution such as the ubiquitous Rake receiver is implemented. In this case, multiple correlators (or fingers) are used to extract the desired signal replicas from the individual delay path components. For the maximum ratio combiner (MRC) version of the Rake receiver, the signal replicas from each finger are then combined in some weighted sense to formulate the final decision threshold. The focus of this study is twofold: to investigate the inaccuracies incurred on path delay estimation due to the presence of NBJ and its impact on the system Bit Error Rate (BER). In order to reduce the impact of NBJ, some adaptive NBJ suppression filters are suggested.

  3. Self-Driven Jamming of Growing Microbial Populations

    NASA Astrophysics Data System (ADS)

    Schreck, Carl; Delarue, Morgan; Gneiwek, Pawel; Hallatschek, Oskar

    When cells grow in confined spaces, they assemble into dense populations that interact both chemically and physically. Although in recent years scientists have uncovered a previously hidden layer of mechanical regulation in mammalian tissues that impacts gene expression and development, little is known about the consequences of mechanical constraints on single-celled microbes. This is largely due to a lack of appropriate culturing techniques and accurate computational models. Using physically explicit computer models that are developed alongside microfluidic experiments, we address two fundamental questions: (1) what structures self-assemble in confined geometries due to the cell growth and division process? and (2) how do those structures and associated stresses feed back on to cell physiology? We find that microbial growth in confinement can lead to jamming, heterogeneous stress fields, and intermittent flow that in turn result in spatially and temporally heterogeneous physiological responses. With computer simulations, we further explore the differences between this 'active' flow that is driven internally by cell growth and 'inactive' flow, such as shear and hopper flow, that is driven externally.

  4. A Geometric-Structure Theory for Maximally Random Jammed Packings

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Xu, Yaopengxiao; Jiao, Yang; Torquato, Salvatore

    2015-11-01

    Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density “random-close packing” polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.

  5. Jamming transitions in force-based models for pedestrian dynamics.

    PubMed

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds. PMID:26565291

  6. Wall slip of foams close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Cohen-Addad, S.; Le Merrer, M.; Lespiat, R.; Hohler, R.

    2014-11-01

    Aqueous foams are dense packings of gas bubbles in a surfactant solution. They exhibit unique rheological properties. When they flow along a solid smooth wall, they slip and experience viscous drag. This feature is crucial in many applications involving flow through microfluidic channels, pipes or spreading on surfaces. We focus on foams in the vicinity of the jamming transition where the bubbles are quasi spherical with small contact films at the wall and thick liquid channels between bubbles. What are the mechanisms of friction at play at the scale of the films, the channels and the bubbles that are at the origin of the macroscopic friction law? To address this question, we measure the velocity of a bubble monolayer or a wet 3D foam as it creeps along an immersed inclined plane, as a function of the inclination angle, bubble size and confinement. Two regimes of friction are evidenced: In addition to a previously reported non-linear Bretherton-like drag, we present the first direct evidence for a linear Stokes-like drag. We show that the key parameter governing the transition between the regimes is set by the Bond number for the monolayer or the confinement pressure for the foam. Institut des NanoSciences de Paris, sylvie.cohen-addad@insp.upmc.fr.

  7. Method for preventing jamming conditions in a compression device

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2002-06-18

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  8. A Geometric-Structure Theory for Maximally Random Jammed Packings

    PubMed Central

    Tian, Jianxiang; Xu, Yaopengxiao; Jiao, Yang; Torquato, Salvatore

    2015-01-01

    Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density “random-close packing” polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols. PMID:26568437

  9. Rearrangements during slow compression of a jammed 2D emulsion

    NASA Astrophysics Data System (ADS)

    Du, Xin; Orellana, Carlos; Hong, Xia; Weeks, Eric

    We experimentally study non-affine motion within an evaporating quasi two-dimensional emulsion system. Our samples are oil-in-water emulsions confined between two close-spaced parallel plates, so that the oil droplets are deformed into pancake shapes. In this system, water slowly evaporates from an open edge of the chamber and, as a consequence, the volume fraction of oil droplets gradually increases. By means of microscopy, we analyzed the motion of droplets and measure the deformation of the droplet's outlines. Based on this information, we calculate the force network and the Voronoi cell when the system approaching jamming state. Using a recently proposed method (J. Rieser et al., arXiv:1509.05496), we calculate the Voronoi cell anisotropy vectors which point from the center of each particle to the corresponding Voronoi cell centroid, and identify void spaces where droplets may be more likely to move toward according to the field of the vectors. These allow us to study the correlations between the force network, the Voronoi vector field, and the non-affine displacements of droplets in our evaporating system.

  10. Jamming and free energy landscapes for three caged soft disks

    NASA Astrophysics Data System (ADS)

    Du, Xin; Weeks, Eric

    2015-03-01

    We use a Monte Carlo simulation to study jamming in a model of three soft Brownian disks with harmonic repulsive potential confined in a circular corral. For large corrals, the disks can freely rearrange where one particle passes in between the other two, but for small corrals rearrangements become rare. Rearrangement events correspond to the system crossing over the energy barrier. With low temperature and/or small corral size, the energy barrier becomes larger and the system approaches a glass transition. We calculate the Helmholtz free energy from the distribution of configurations in the system and quantify both the entropic and potential components of the free energy barrier. In a hard disk model, the free energy barrier for rearrangements is entirely entropic. By comparing the entropic component of the soft model to a model of hard disks, we model the soft disks as hard disks with a temperature-dependent effective size. We find that our results are generalizable to other soft disk potentials as well.

  11. Jamming transitions in force-based models for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds.

  12. Characterizing and distinguishing free and jammed traffic flows from the distribution and correlation of experimental speed data

    NASA Astrophysics Data System (ADS)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Nakayama, Akihiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi

    2016-08-01

    From a physics point of view, the emergence of a traffic jam is considered to be a dynamical phase transition. To verify this, we performed a series of circuit experiments. In previous work, Tadaki et al (2013 New J. Phys 15 103034), we confirmed the occurrence of this phase transition and estimated the critical density between free and jammed flows by analyzing the fundamental diagram. In this paper, we characterize and distinguish free and jammed flows, beyond the analyses of fundamental diagrams, according to the distribution and correlation of experimental speed data. We find that the speed in free flow does not correlate and its distribution has a narrow single peak at the average. The distribution of speed in jammed flow has two peaks or a single broad peak. The two peaks indicate the car speeds inside and outside of jam clusters. The broad single peak appears as a result of the appearance and disappearance of jam clusters. We also find that the formation of jam clusters induces a long correlation in speed. We can identify the size of jam clusters and the relative distance between coexisting jam clusters from this speed correlation.

  13. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material

    NASA Astrophysics Data System (ADS)

    Keys, Aaron S.; Abate, Adam R.; Glotzer, Sharon C.; Durian, Douglas J.

    2007-04-01

    Supercooled liquids and dense colloidal suspensions exhibit anomalous behaviour known as `spatially heterogeneous dynamics' (SHD), which becomes increasingly pronounced as the system approaches the glass transition. Recently, the observation of SHD in confined granular packings under slow shear near the onset of jamming has bolstered speculation that the two transitions are related. Here, we report measurements of SHD in a system of air-driven granular beads, as a function of both density and effective temperature. On approach to jamming, the dynamics becomes progressively slower and more spatially heterogeneous. The rapid growth of timescales and dynamical length scales characterizing the heterogeneities can be described both by mode-coupling theory and the Vogel-Tammann-Fulcher (VTF) equation, such as in glass-forming liquids. The value of the control variable at the VTF transition coincides with point J (refs 9, 10), the random close-packed jamming density at which all motion ceases, in analogy to a zero-temperature ideal glass transition. Our findings demonstrate further universality of the jamming concept and provide a significant step forward in the quest for a unified theory of jamming in disparate systems.

  14. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs.

    PubMed

    Korus, Anna; Jaworska, Grażyna; Bernaś, Emilia; Juszczak, Lesław

    2015-05-01

    Low-sugar bilberry jams without added herbs and those with added mentha (1 %) and lemon balm (1 %) were examined for levels of selected physico-chemical indicators, antioxidant activity, colour and texture. Jams were obtained by two methods: cooked in an open pan and cooked in a vacuum evaporator. 100 g fresh mass contained 0.076-0.481 mg HMF, 5.8-7.1 mg vitamin C, 176-232 mg total polyphenols, 122-156 mg total flavonoids, 73-96 mg total anthocyanins, with antioxidant activity per 1 g of 405-575 μM Trolox (ABTS), 71-89 μM Trolox (DPPH) and 120-176 μM Fe(2+) (FRAP). Jams cooked in a vacuum evaporator had higher levels of the indicators examined, better colour and worse texture. Jams with added herbs generally showed higher levels of all indicators, but their colour and texture were slightly worse. Storing jams for 8 months caused a reduction in antioxidant constituents of 7-20 % along with a deterioration of colour and texture. PMID:25892779

  15. Simulation and Experimental Studies of Jamming for Model Two-Dimensional Particles Under Flow

    NASA Astrophysics Data System (ADS)

    Guariguata, A.; Wu, D. T.; Koh, C. A.; Sum, A. K.; Sloan, E. D.

    2009-06-01

    Jamming and plugging of flowlines with gas hydrates is the most critical issue in the flow assurance of oil and gas production lines. Because solid hydrate particles are often suspended in a fluid, the pipeline jamming and flow constriction formed by hydrates depend not only on particle/wall properties, such as friction, binding forces and mechanical characteristics, but also on the concentration of particles upstream of the restriction, flow velocity, fluid viscosity, and forces between the particles. Therefore, to gain insight into the jamming phenomena, both experiments and computer simulations on two-dimensional model systems have been carried out to characterize the flow of particles in a channel, with the eventual goal of applying that knowledge to gas hydrates jamming. Using the simulation software PFC2d®, we studied the effect of restriction geometry and flow velocity on the jamming process of particles. Results from the simulations were compared to experimental measurements on polyethylene discs floating on water flowing in an open channel.

  16. Research on the laser angle deception jamming technology of laser countermeasure

    NASA Astrophysics Data System (ADS)

    Ma, Shi-wei; Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan

    2015-10-01

    In recent years , laser guided weapons behave very well at destroying the military goals in the local wars, the single-shot probability, effective range and hitting precision getting better. And the semi-active laser guided weapons are the most widely used laser guided weapons. In order to improve the viability and protect important military goals, it's necessary to study the technology to against the semi-active guided weapons. This paper studies the working principle, the advantages and disadvantages of the semi-active guided weapons at first, and analyze the possibility of laser angle deception jamming system working. Then it analyzes the working principle and process of laser angle deception jamming technology. Finally it designs a half-real simulation system of laser angle deception jamming, which consists of semi-active laser guided weapons simulation system and laser angle deception jamming system. The simulation system demonstrates the working process of the laser angle deception jamming system. This paper provides fundamental base for the research on the countermeasure technology of semi-active laser guided weapons.

  17. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  18. Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and Jam: antioxidant activity.

    PubMed

    Silva, Branca M; Andrade, Paula B; Valentão, Patrícia; Ferreres, Federico; Seabra, Rosa M; Ferreira, Margarida A

    2004-07-28

    To study the antioxidant activity of quince fruit (pulp, peel, and seed) and jam, methanolic extracts were prepared. Each extract was fractionated into a phenolic fraction and an organic acid fraction and was analyzed by high-performance liquid chromatography (HPLC)/diode array detection and HPLC/UV, respectively. Antiradical activities of the extracts and fractions were evaluated by a microassay using 1,1'-diphenyl-2-picrylhydrazyl. The phenolic fraction always exhibited a stronger antioxidant activity than the whole methanolic extract. Organic acid extracts were always the weakest in terms of antiradical activity, which seems to indicate that the phenolic fraction gives a higher contribution for the antioxidant potential of quince fruit and jam. The evaluation of the antioxidant activity of methanolic extracts showed that peel extract was the one presenting the highest antioxidant capacity. The IC50 values of quince pulp, peel, and jam extracts were correlated with the caffeoylquinic acids total content. Among the phenolic fractions, the seed extract was the one that exhibited the strongest antioxidant activity. The IC50 values of quince pulp, peel, and jam phenolic extracts were strongly correlated with caffeoylquinic acids and phenolics total contents. For organic acid fractions, the peel extract was the one that had the strongest antiradical activity. The IC50 values of quince pulp, peel, and jam organic acid fractions were correlated with the ascorbic acid and citric acid contents. PMID:15264903

  19. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2014-11-01

    We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a

  20. Climbing, falling, and jamming during ant locomotion in confined environments

    PubMed Central

    Gravish, Nick; Monaenkova, Daria; Goodisman, Michael A. D.; Goldman, Daniel I.

    2013-01-01

    Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However, a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain insight into how animals move within confined spaces, we study the locomotion of the fire ant Solenopsis invicta, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to body length, L = 3.5 ± 0.5 mm. Ants can move rapidly (> 9 bodylengths per s) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls, which facilitate rapid slip-recovery during ascending and descending climbs. To examine the limits of slip-recovery in artificial tunnels, we perform perturbations consisting of rapid downward accelerations of the tunnels, which induce falls. Below a critical tunnel diameter, Ds = 1.31 ± 0.02 L, falls are always arrested through rapid interaction of appendages and antennae with tunnel walls to jam the falls. Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L), supporting our hypothesis that fire ants construct environments that simplify their control task when moving through the nest, likely without need for rapid nervous system intervention. PMID:23690589

  1. Climbing, falling, and jamming during ant locomotion in confined environments.

    PubMed

    Gravish, Nick; Monaenkova, Daria; Goodisman, Michael A D; Goldman, Daniel I

    2013-06-11

    Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However, a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain insight into how animals move within confined spaces, we study the locomotion of the fire ant Solenopsis invicta, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to body length, L = 3.5 ± 0.5 mm. Ants can move rapidly (> 9 bodylengths per s) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls, which facilitate rapid slip-recovery during ascending and descending climbs. To examine the limits of slip-recovery in artificial tunnels, we perform perturbations consisting of rapid downward accelerations of the tunnels, which induce falls. Below a critical tunnel diameter, Ds = 1.31 ± 0.02 L, falls are always arrested through rapid interaction of appendages and antennae with tunnel walls to jam the falls. Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L), supporting our hypothesis that fire ants construct environments that simplify their control task when moving through the nest, likely without need for rapid nervous system intervention. PMID:23690589

  2. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins. PMID:26434620

  3. Free amino acid composition of quince (Cydonia oblonga Miller) fruit (pulp and peel) and jam.

    PubMed

    Silva, Branca M; Casal, Susana; Andrade, Paula B; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2004-03-10

    Twenty-one free amino acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by GC/FID. The analyses showed some differences between quince pulps and peels. Generally, the highest content in total free amino acids and in glycine was found in peels. As a general rule, the three major free amino acids detected in pulps were aspartic acid, asparagine, and hydroxyproline. For quince peels, usually, the three most abundant amino acids were glycine, aspartic acid, and asparagine. Similarly, for quince jams the most important free amino acids were aspartic acid, asparagine, and glycine or hydroxyproline. This study suggests that the free amino acid analysis can be useful for the evaluation of quince jam authenticity. It seems that glycine percentage can be used for the detection of quince peel addition while high alanine content can be related to pear addition. PMID:14995121

  4. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process.

    PubMed

    Igual, M; García-Martínez, E; Camacho, M M; Martínez-Navarrete, N

    2016-04-01

    Fruits are widely revered for their micronutrient properties. They serve as a primary source of vitamins and minerals as well as of natural phytonutrients with antioxidant properties. Jam constitutes an interesting way to preserve fruit. Traditionally, this product is obtained by intense heat treatment that may cause irreversible loss of these bioactive compounds responsible for the health-related properties of fruits. In this work, different grapefruit jams obtained by conventional, osmotic dehydration (OD) without thermal treatment and/or microwave (MW) techniques were compared in terms of their vitamin, organic acid and phytochemical content and their stability through three months of storage. If compared with heating, osmotic treatments lead to a greater loss of organic acids and vitamin C during both processing and storage. MW treatments permit jam to be obtained which has a similar nutritional and functional value than that obtained when using a conventional heating method, but in a much shorter time. PMID:25956906

  5. Modeling the capability of penetrating a jammed crowd to eliminate freezing transition

    NASA Astrophysics Data System (ADS)

    Mohammed Mahmod, Shuaib

    2016-05-01

    Frozen state from jammed state is one of the most interesting aspects produced when simulating the multidirectional pedestrian flow of high density crowds. Cases of real life situations for such a phenomenon are not exhaustively treated. Our observations in the Hajj crowd show that freezing transition does not occur very often. On the contrary, penetrating a jammed crowd is a common aspect. We believe the kindness of pedestrians facing others whose walking is blocked is a main factor in eliminating the frozen state as well as in relieving the jammed state. We refine the social force model by incorporating a new social force to enable the simulated pedestrians to mimic the real behavior observed in the Hajj area. Simulations are performed to validate the work qualitatively.

  6. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  7. Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities

    NASA Astrophysics Data System (ADS)

    Budinski-Petković, Lj; Lončarević, I.; Jakšić, Z. M.; Vrhovac, S. B.

    2016-05-01

    Random sequential adsorption (RSA) on a triangular lattice with defects is studied by Monte Carlo simulations. The lattice is initially randomly covered by point-like impurities at a certain concentration p. The deposited objects are formed by self-avoiding random walks on the lattice. Jamming coverage {θ\\text{jam}} and percolation threshold θ \\text{p}\\ast are determined for a wide range of impurity concentrations p for various object shapes. Rapidity of the approach to the jamming state is found to be independent on the impurity concentration. The jamming coverage {θ\\text{jam}} decreases with the impurity concentration p and this decrease is more prominent for objects of larger size. For a certain defect concentration, decrease of the jamming coverage with the length of the walk \\ell making the object is found to obey an exponential law, {θ\\text{jam}}={θ0}+{θ1}{{\\text{e}}-\\ell /r} . The results for RSA of polydisperse mixtures of objects of various sizes suggest that, in the presence of impurities, partial jamming coverage of small objects can have even larger values than in the case of an ideal lattice. Percolation in the presence of impurities is also studied and it is found that the percolation threshold θ \\text{p}\\ast is practically insensitive to the concentration of point defects p. Percolation can be reached at highest impurity concentrations with angled objects, and the critical defect concentration p c is lowest for the most compact objects.

  8. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  9. Auditory detection of paired pulses by a dolphin in the presence of a pulse jam

    NASA Astrophysics Data System (ADS)

    Sukhoruchenko, M. N.

    2004-07-01

    From behavioral studies of a bottlenose dolphin ( Tursiops truncatus), the audibility thresholds were measured for a single pair of equal-amplitude pulses, i.e., clicks, presented to the dolphin in combination with a pulse jam. The pulse jam consisted of pairs of identical pulses with a pulse spacing τj within the pairs and a pair repetition rate f j. Series of pulses were interrupted by a pause R>1/ f j, within which the pulse jam was absent while a pair of test pulses was supplied to one of the two channels at random. Each series had a duration T, and the total stimulation cycle was J= T+ R. The dependence of the test pair detection threshold on the pulse spacing τj was studied at different fixed values of the pulse spacing in the test pair: τt=50, 100, 200, and 500 µs. Preliminary measurements performed with τj=τt=100 µs were used to adjust the parameters of the pulse jam. The threshold shift at τj=τt=100 µs reached 35 dB above the audibility threshold of the test pair in the absence of the pulse jam. On both sides of the point τj=τt=100 µs the thresholds decreased with varying τj to approximately 20 dB above the detection threshold of the test pair in the absence of the jam. However, in the course of training, the threshold curves gradually shifted downwards approaching the detection level of the test pair in the absence of the jam and becoming progressively flatter (the selectivity with respect to the pulse jam vanished). A decrease in the pause duration R restored the dependence of the test pair detection threshold on τj. In this case, a statistically significant maximum was obtained at τj=τt for τj within the critical interval (for τt<500 µs). Beyond the critical interval (for τt>500 µs), even with the smallest pause duration ( R=15 ms), no dependence of the test pair detection thresholds on τj could be observed.

  10. Adductor pollicis jamming injuries in the professional baseball player: 2 case reports.

    PubMed

    Altobelli, Grant G; Ruchelsman, David E; Belsky, Mark R; Graham, Thomas; Asnis, Peter; Leibman, Matthew I

    2013-06-01

    We characterize a mechanism of injury, injury pattern, and treatment algorithm for adductor pollicis myotendinous injuries in 2 professional baseball players. Similar to myotendinous eccentric injuries in other anatomical areas, the adductor pollicis sustains a sudden forceful eccentric load during a jammed swing, resulting in intramuscular strain or tendon rupture. Based on the reported injury mechanism, and magnetic resonance imaging features of these myotendinous injuries, the thumb of the top hand during a jammed swing was suddenly and forcefully eccentrically abducted from a contracted and adducted position, resulting in injury patterns. PMID:23707017

  11. Percolation and jamming transitions in particulate systems with and without cohesion

    NASA Astrophysics Data System (ADS)

    Kovalcinova, L.; Goullet, A.; Kondic, L.

    2015-09-01

    We consider percolation and jamming transitions for particulate systems exposed to compression. For the systems built of particles interacting by purely repulsive forces in addition to friction and viscous damping, it is found that these transitions are influenced by a number of effects, and in particular by the compression rate. In a quasistatic limit, we find that for the considered type of interaction between the particles, percolation and jamming transitions coincide. For cohesive systems, however, or for any system exposed to even slow dynamics, the differences between the considered transitions are found and quantified.

  12. Jamming efficiency evaluation of the IR smoke screen against high-orbit IR detector

    NASA Astrophysics Data System (ADS)

    Gao, Gui-qing; Li, Yong-xiang

    2011-08-01

    In order to lower the orientating capability of the DSP satellite, at first the paper analyzes early warning missile satellite detective system, introduces the jamming mechanism of infrared smoke screen, and a model of jamming efficiency evaluation of the IR smoke screen against early warning satellite was built from three sides of absorbency of smoke screen to infrared radiation, dispersion ability and infrared radiation from smoke screen self. At last the correlative conclusion was got based on the brief depiction of Early-warning Satellite.

  13. Edwards thermodynamics of the jamming transition for frictionless packings: ergodicity test and role of angoricity and compactivity.

    PubMed

    Wang, Kun; Song, Chaoming; Wang, Ping; Makse, Hernán A

    2012-07-01

    This paper illustrates how the tools of equilibrium statistical mechanics can help to describe a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J point) in frictionless packings. Using the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of ergodicity and "thermalization" at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the maximum entropy principle for grains. (iii) The intensive variables A and X describe the approach to jamming through a series of scaling relations as A → 0+ and X → 0-. Due to the force-strain coupling in the interparticle forces, the jamming transition is probed thermodynamically by a "jamming temperature" T(J) composed of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in static observables like pressure and volume, and we discuss other critical scenarios for the jamming transition. (v) Finally, we elaborate on a comparison with relevant studies by Gao, Blawzdziewicz, and O'Hern [Phys. Rev. E 74, 061304 (2006)], showing a breakdown of equiprobability of microstates obtained via fast quenches. A network analysis of the energy landscape reveals the origin of the inhomogeneities in the uneven distribution of the areas of the basins. Such inhomogeneities are also found in other

  14. Flow and Geometry Control the Onset of Jamming in Fractures with High Solid-Fraction Fluids

    NASA Astrophysics Data System (ADS)

    Medina, R.; Elkhoury, J. E.; Shannon, L. J.; Detwiler, R. L.; Morris, J.; Prioul, R.; Desroches, J.

    2013-12-01

    Fluids containing a large fraction of suspended solids are common in the subsurface. Examples include fluids used for environmental remediation, hydraulic fracturing fluids and magma. These fluid-solid mixtures behave as non-Newtonian fluids where interactions between fluid, suspended solids, and pore walls can lead to jamming of the suspended solids. Jamming causes the velocity of the solid to decrease locally to zero causing a rapid decrease in permeability as the fluid is forced to flow through the pore space within the immobilized solid. Here we present results from experiments that quantify the flow of non-Newtonian suspensions in an analog parallel-plate fracture (transparent 15cm x 15cm with ~3-mm aperture) and explore the dependence of jamming on flow conditions, fracture geometry, and the action of gravity. We used guar gum mixed with water (0.75%) as the fluid and added 50% by volume of crushed silica (< 300μm). Flow rates ranged from 0.2ml/min to 6.0ml/min, cell orientation varied from horizontal to vertical (bottom to top) flow and a transducer provided continuous measurement of differential pressure across the cell. A strobed LED panel backlit the cell and a high-resolution CCD camera captured frequent (0.2 Hz) images during all experiments. Particle image velocimetry (PIV) yielded measurements of the evolving velocity field during experiments (see Figure). In the vertical orientation during the initial period of high flow rate, outflow decreased rapidly and the differential pressure increased indicating jamming within the cell. Subsequent efforts to flush solids from the cell suggested that jamming occurred at the inlet of the cell. This was likely due to settling of solids within the flow field indicating that the time scale associated with settling was shorter than the time scale of advection through the cell. In the horizontal orientation, localized jamming occurred at the lowest flow rate in a region near the outlet. This suggests that when

  15. Resistance to HF jamming interference in mobile radio networks by an adaptive, distributed reconfiguration technique

    NASA Astrophysics Data System (ADS)

    Baker, D. J.; Wieselthier, J. E.; Ephremides, A.; McGregor, D. N.

    1984-08-01

    In radio communication, interference (and in particular jamming) represents an important limitation to the rate and range of information transfer. In a radio network environment, a combination of relaying and other classes of interference-combatting methods, such as spread spectrum signaling, may achieve highly robust resistance to jamming. Since the presence of relays is an inherent characteristic of a network, it is possible to use some nodes as relays when previously existing direct links are disabled as a result of jamming. The purpose of this report is to show how a distributed algorithm can enable an HF radio network to reconfigure itself to combat various jamming threats. We present models for the communication range that is achievable through the use of HF groundwave signals under both benign and stressed conditions and for cases of narrowband and wideband signaling. The models are used in our simulations. These simulations show that the choice of best frequency for communication in an HF network should not depend solely on communication range in a benign environment.

  16. Jelly Jam, the People Preserver. An Environmental Self-Teaching Activity Book. Bermuda Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for students in grades 2 through 4, this self-teaching, interdisciplinary reading and activity program approaches the environmental conditions, the state of natural resources, and the problems of pollution in Bermuda. A caring little animal named Jelly Jam is used to help children understand how air, water, and land pollution affect their…

  17. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    PubMed

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. PMID:26808869

  18. Research on power measurement device of jamming bomb based on Infrared Radiation

    NASA Astrophysics Data System (ADS)

    Chang, Shuai; Tong, Shoufeng; Song, Yansong; Dong, Yan

    2013-12-01

    In order to realize the non-connect measurement on the power and character of jamming bomb, we carried out the research on power measurement device of jamming bomb based on Infrared Radiation. First, the power and infrared radiant band of the jamming bomb was summarized and refined. Then, ensuring the feature and power of jamming bomb was characterized by the magnitude of Infrared Radiation. Afterwards, based on the theory of the above, a power measurement device of Infrared Radiation was simulated and developed. Including the selection of detector and the detector application design, analog signal processing and digital signal processing, using correlation measurement method to detect and calculate the power of device. Finally, the specific method and advantage of the device was introduced. The results of the experiment show that: the response time of the device is less than 3ms; the detection sensitivity is better than 3 x 108cm √HZ / W . The device successfully accomplished the accuracy measurement of Infrared Radiation between 1 to 20um wavelength with higher detection sensitivity and lower response time.

  19. Popular Culture, Cultural Resistance, and Anticonsumption Activism: An Exploration of Culture Jamming as Critical Adult Education

    ERIC Educational Resources Information Center

    Sandlin, Jennifer A.

    2007-01-01

    This chapter examines popular culture as a site of cultural resistance. Specifically, it explores how "culture jamming," a cultural-resistance activity, can be a form of adult education. It examines adult education and learning as it intersects with both consumerism and popular culture. Focus is placed on a growing social movement of individuals…

  20. Dynamic jamming effects on code synchronization of frequency-hop spread-spectrum

    NASA Astrophysics Data System (ADS)

    van Grouw, M. G.; Wickert, M. A.

    1989-06-01

    A general scheme for the code synchronization of Frequency-Hop Spread-Spectrum (FHSS) is presented. Synchronization performance is observed in the presence of channel dynamics and is characterized by mean synchronization time and mean time to loss of lock. A fixed-threshold multiple-dwell synchronization scheme is shown to adequately mitigate the effects of random hop jamming.

  1. Jelly Jam, the People Preserver. An Environmental Self-Teaching Activity Book.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for students in grades 2 through 4, this self-teaching, interdisciplinary reading and activity program comprises a complete supplemental reading, science, and social studies approach to the problems of environmental pollution. Jelly Jam, a caring little animal, helps children understand how air, water, and land pollution affects their own…

  2. Jelly Jam, the People Preserver. Teaching Guide. An Environmental Manual for Teachers and Parents. Revised Edition.

    ERIC Educational Resources Information Center

    Friedman, Judi

    Designed for teachers of students in grades 2 through 4, this teaching guide for a self-teaching, interdisciplinary reading and activity program comprises a complete supplemental reading, science, and social studies approach to the problems of environmental pollution. Jelly Jam, a caring little animal, helps children understand how air, water, and…

  3. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  4. Models in frequency-hopping-based proactive jamming mitigation for space communication networks

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Tian, Zhi

    2012-06-01

    In this paper, we consider a cognitive radio based space communication system in a game-theoretical framework, where players dynamically interact through wireless channels to utilize the wideband spectrum for their objectives. The performance indices include data rate, covertness, jamming, and anti-jamming; each of which relate to an effective signal-nose-ratio (SNR). The game players have different intents and asymmetric and hierarchical information about the frequency spectrum which are modeled as three different types of players: primary users, secondary users, and hostile active jammers. We consider the informational asymmetry in two situations: (1) different information sets for friendly users and jammers and (2) even among the friendly sensors; some sensors may only have partial or little information about others due to jammed observations. Such an asymmetric information pattern naturally partitions the sensors into leaders and followers. In our hierarchical anti-jammer approach, a two level approach includes a pursuit-evasion game and a Stackelberg game. At the higher-level, a non-cooperative pursuit-evasion game is constructed to model the interactions between jammer and primary users in the frequency-location domains. At the lower level, primary and secondary users play a dynamic Stackelberg game in the presence of jammers. Theoretical game solutions are provided to demonstrate the proposed proactive jamming mitigation strategy.

  5. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED...

  6. 21 CFR 150.161 - Artificially sweetened fruit preserves and jams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Artificially sweetened fruit preserves and jams. 150.161 Section 150.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FRUIT BUTTERS, JELLIES, PRESERVES, AND RELATED PRODUCTS Requirements for Specific Standardized...

  7. Analysis of acesulfame-K, saccharin and preservatives in beverages and jams by HPLC.

    PubMed

    Hannisdal, A

    1992-06-01

    A method is described that permits the simultaneous determination of acesulfame-K, saccharin and benzoic and sorbic acid in beverages and jams. The results of the HPLC analysis, using an RP-C 18 separation system with UV detection at 227 nm are reported. PMID:1496858

  8. Magic at the Marketplace: Choice Blindness for the Taste of Jam and the Smell of Tea

    ERIC Educational Resources Information Center

    Hall, Lars; Johansson, Petter; Tarning, Betty; Sikstrom, Sverker; Deutgen, Therese

    2010-01-01

    We set up a tasting venue at a local supermarket and invited passerby shoppers to sample two different varieties of jam and tea, and to decide which alternative in each pair they preferred the most. Immediately after the participants had made their choice, we asked them to again sample the chosen alternative, and to verbally explain why they chose…

  9. Deceptive jamming for countering UWB-SAR based on Doppler frequency phase template of false target

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Tang, Bin

    2016-04-01

    A false target deceptive jamming method for countering ultra-wideband synthetic aperture radar (UWB-SAR) is proposed in this paper, which is based on dechirp processing to intercepted UWB-SAR signal and inverse dechirp to jamming signal. The jammer quadrature down-converts and dechirps the intercepted UWB-SAR signal using a linear frequency modulation (LFM) signal oscillator, which could reduce the bandwidth and sample rate of analog-to-digital converter. Then, the jammer utilises the azimuth direction Doppler frequency phase between the false target and the jammer, and backward reflection coefficient template to modulate the phase of the intercepted UWB-SAR signal, and then delayed the modulated phase and also modulated the range direction Doppler frequency phase to the that. Finally, the jammer uses LFM signal oscillator to up-convert the narrowband jamming signal in order to recover the bandwidth of the signal. Parameter errors analysis and simulation results have shown that the detected parameters and motion characteristic errors reduce the resolution and offset the expected position of the false target, but it still could obtain an expected false target image. Theoretical analysis and simulation results indicated that the jamming signal proposed in this paper could produce a false target in the UWB-SAR image, which provide a feasible method for countering UWB-SAR in real time.

  10. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2016-08-01

    In many viruses, molecular motors forcibly pack single DNA molecules to near-crystalline density into ~50-100 nm prohead shells. Unexpectedly, we found that packaging frequently stalls in conditions that induce net attractive DNA-DNA interactions. Here, we present findings suggesting that this stalling occurs because the DNA undergoes a nonequilibrium jamming transition analogous to that observed in many soft-matter systems, such as colloidal and granular systems. Experiments in which conditions are changed during packaging to switch DNA-DNA interactions between purely repulsive and net attractive reveal strongly history-dependent dynamics. An abrupt deceleration is usually observed before stalling, indicating that a transition in DNA conformation causes an abrupt increase in resistance. Our findings suggest that the concept of jamming can be extended to a single polymer molecule. However, compared with macroscopic samples of colloidal particles we find that single DNA molecules jam over a much larger range of densities. We attribute this difference to the nanoscale system size, consistent with theoretical predictions for jamming of attractive athermal particles.

  11. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  12. JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects

    PubMed Central

    Conti, David V.; Richardson, Sylvia

    2016-01-01

    ABSTRACT Recently, large scale genome‐wide association study (GWAS) meta‐analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one‐at‐a‐time. This complicates the ability of fine‐mapping to identify a small set of SNPs for further functional follow‐up. We describe a new and scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re‐analysis of published marginal summary stactistics under joint multi‐SNP models. The correlation is accounted for according to estimates from a reference dataset, and models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance to various alternatives designed for single region settings. In multi‐region settings, where the only multivariate alternative involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results from MAGIC (meta‐analysis of glucose and insulin related traits consortium) – a GWAS meta‐analysis of more than 15,000 people. We re‐analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5, suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority to the reported index. PMID:27027514

  13. JAM: A Scalable Bayesian Framework for Joint Analysis of Marginal SNP Effects.

    PubMed

    Newcombe, Paul J; Conti, David V; Richardson, Sylvia

    2016-04-01

    Recently, large scale genome-wide association study (GWAS) meta-analyses have boosted the number of known signals for some traits into the tens and hundreds. Typically, however, variants are only analysed one-at-a-time. This complicates the ability of fine-mapping to identify a small set of SNPs for further functional follow-up. We describe a new and scalable algorithm, joint analysis of marginal summary statistics (JAM), for the re-analysis of published marginal summary statistics under joint multi-SNP models. The correlation is accounted for according to estimates from a reference dataset, and models and SNPs that best explain the complete joint pattern of marginal effects are highlighted via an integrated Bayesian penalized regression framework. We provide both enumerated and Reversible Jump MCMC implementations of JAM and present some comparisons of performance. In a series of realistic simulation studies, JAM demonstrated identical performance to various alternatives designed for single region settings. In multi-region settings, where the only multivariate alternative involves stepwise selection, JAM offered greater power and specificity. We also present an application to real published results from MAGIC (meta-analysis of glucose and insulin related traits consortium) - a GWAS meta-analysis of more than 15,000 people. We re-analysed several genomic regions that produced multiple significant signals with glucose levels 2 hr after oral stimulation. Through joint multivariate modelling, JAM was able to formally rule out many SNPs, and for one gene, ADCY5, suggests that an additional SNP, which transpired to be more biologically plausible, should be followed up with equal priority to the reported index. PMID:27027514

  14. Innovative Engagement with NASA Data: Best Practices in Hosting a Space-Themed Game Jam Event

    NASA Astrophysics Data System (ADS)

    Mader, M. M.

    2015-12-01

    Planetary mission milestones provide key opportunities to engage the public in the day to day work and showcase the value, wonder, and innovative technologies of planetary exploration. The Royal Ontario Museum (ROM), Canada, is designing unique experiences that will allow new audiences to relate to planetary mission results, through direct interaction with planetary materials and data. Through co-creation and collaboration, we aim to encourage STEM and STEAM learning through interactive programs that are interest driven by the participants. Based on these principles, the ROM, in collaboration with the University of Toronto, is hosting a Game Jam event (see http://www.rom.on.ca/en/activities-programs/programs/game-jam). A Game Jam invites creative, motivated, and inspired game developers to work in a collaborative environment over the course of 3 days to create games linked to a theme. This year's theme is "Space Rocks". Video games, fuelled by actual mission data, capture public interest in space and science in a unique and powerful way, giving us new insight into the real challenges we have on Earth and in space. The ROM Game Jam will allow 100 game developers to draw inspiration from our collection of over 100,000 rocks, minerals, and gems, including over 500 martian, lunar, and asteroidal meteorites. Participants will learn about the history of these specimens directly from ROM experts. NASA datasets related to our collection will be highlighted and curated for this event. The games produced during the Game Jam will live on and be featured online and at numerous ROM events throughout the year. Our presentation will highlight lessons learned from this experience, best practices, and future plans.

  15. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  16. Information warfare-worthy jamming attack detection mechanism for wireless sensor networks using a fuzzy inference system.

    PubMed

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S V

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  17. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    NASA Astrophysics Data System (ADS)

    Han, Endao; Peters, Ivo R.; Jaeger, Heinrich M.

    2016-07-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

  18. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  19. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury.

    PubMed

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  20. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury

    PubMed Central

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  1. The Med AppJam: a model for an interprofessional student-centered mHealth app competition.

    PubMed

    Youm, Julie; Wiechmann, Warren

    2015-03-01

    The Med AppJam is a 2-week long competition where students from the University of California, Irvine School of Medicine are partnered with students from the University of California, Irvine School of Information and Computer Sciences in interprofessional teams to develop mobile health applications for use by clinicians and patients. The success of the Med AppJam comes from the unique opportunity for students to mutually contribute their content expertise to improve the clinical landscape while expanding their technology literacy and savvy. Since 2012, about 285 computer science students and over 90 medical students have collaborated to design and develop 53 iOS mHealth apps during the event. The Med AppJam model has been replicated in an Autism AppJam, a competition focused on the needs of a specific population, and with high school students in a mini Pre-Med AppJam using a paper prototyping approach. It is proposed that other medical schools consider implementation of a local Med AppJam as a viable model for engaging students in technology for healthcare. PMID:25682357

  2. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    NASA Astrophysics Data System (ADS)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  3. Hydro-Geomorphologic Effects Of Large Wood Jams On A Third-Order Stream (Tierra Del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Mao, L.; Andreoli, A.; Comiti, F.; Lenzi, M. A.; Iturraspe, R.; Burns, S.; Novillo, M. G.

    2007-05-01

    Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase of stream morphological diversity and complexity also exerts also an important ecological role. This work reports on geomorphic role of large wood pieces and jams in a third order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old-growth nothofagus forested basin not influenced by the beavers damming activity. Even if the in-stream number of wood pieces (length > 1m; diameter > 0.1 m) is comparable to what observed in other climatic areas, the slow growth of the nothofagus forest causes a lower wood abundance in terms of volumetric load. Since the relatively small dimensions of the surveyed large wood pieces, almost the 70% of them demonstrated to have been fluvial transported and the also wood jams reflect the apparent dynamic of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost the half of the drop caused by steps and being responsible for the creation of 30% of the pools. The LW-forced pool volume is strongly and positively correlated to the height of the LW jam, and a significant inverse relationship between pool spacing and wood density within is evident if only the LW-forced pools are considered. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity.

  4. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming

    NASA Astrophysics Data System (ADS)

    Cohen, A. P.; Dorosz, S.; Schofield, A. B.; Schilling, T.; Sloutskin, E.

    2016-03-01

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t =1 ). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t =1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.

  5. Non-Gaussian behavior in jamming / unjamming transition in dense granular materials

    NASA Astrophysics Data System (ADS)

    Atman, A. P. F.; Kolb, E.; Combe, G.; Paiva, H. A.; Martins, G. H. B.

    2013-06-01

    Experiments of penetration of a cylindrical intruder inside a bidimensional dense and disordered granular media were reported recently showing the jamming / unjamming transition. In the present work, we perform molecular dynamics simulations with the same geometry in order to assess both kinematic and static features of jamming / unjamming transition. We study the statistics of the particles velocities at the neighborhood of the intruder to evince that both experiments and simulations present the same qualitative behavior. We observe that the probability density functions (PDF) of velocities deviate from Gaussian depending on the packing fraction of the granular assembly. In order to quantify these deviations we consider a q-Gaussian (Tsallis) function to fit the PDF's. The q-value can be an indication of the presence of long range correlations along the system. We compare the fitted PDF's obtained with those obtained using the stretched exponential, and sketch some conclusions concerning the nature of the correlations along a granular confined flow.

  6. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.

    PubMed

    Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E

    2016-03-01

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids. PMID:26991202

  7. Sub-Poissonian Statistics of Jamming Limits in Ultracold Rydberg Gases

    NASA Astrophysics Data System (ADS)

    Sanders, Jaron; Jonckheere, Matthieu; Kokkelmans, Servaas

    2015-07-01

    Several recent experiments have established by measuring the Mandel Q parameter that the number of Rydberg excitations in ultracold gases exhibits sub-Poissonian statistics. This effect is attributed to the Rydberg blockade that occurs due to the strong interatomic interactions between highly excited atoms. Because of this blockade effect, the system can end up in a state in which all particles are either excited or blocked: a jamming limit. We analyze appropriately constructed random-graph models that capture the blockade effect, and derive formulae for the mean and variance of the number of Rydberg excitations in jamming limits. This yields an explicit relationship between the Mandel Q parameter and the blockade effect, and comparison to measurement data shows strong agreement between theory and experiment.

  8. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-15

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  9. Flow of granular matter in a silo with multiple exit orifices: jamming to mixing.

    PubMed

    Kamath, Sandesh; Kunte, Amit; Doshi, Pankaj; Orpe, Ashish V

    2014-12-01

    We investigate the mixing characteristics of dry granular material while draining down a silo with multiple exit orifices. The mixing in the silo, which otherwise consists of noninteracting stagnant and flowing regions, is observed to improve significantly when the flow through specific orifices is stopped intermittently. This momentary stoppage of flow through the orifice is either controlled manually or is chosen by the system itself when the orifice width is small enough to cause spontaneous jamming and unjamming. We observe that the overall mixing behavior shows a systematic dependence on the frequency of closing and opening of specific orifices. In particular, the silo configuration employing random jamming and unjamming of any of the orifices shows early evidence of chaotic mixing. When operated in a multipass mode, the system exhibits a practical and efficient way of mixing particles. PMID:25615084

  10. Jamming and Attraction of Interacting Run-and-Tumble Random Walkers

    NASA Astrophysics Data System (ADS)

    Slowman, A. B.; Evans, M. R.; Blythe, R. A.

    2016-05-01

    We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability distribution in the steady state. This stationary distribution has a rich structure comprising three components: a jammed component, where the particles are adjacent and block each other; an attractive component, where the probability distribution for the distance between particles decays exponentially; and an extended component in which the distance between particles is uniformly distributed. The attraction between the particles is sufficiently strong that even in the limit where continuous space is recovered for a finite system, the two walkers spend a finite fraction of time in a jammed configuration. Our results potentially provide a route to understanding the motility-induced phase separation characteristic of active matter from a microscopic perspective.

  11. Jamming and Attraction of Interacting Run-and-Tumble Random Walkers.

    PubMed

    Slowman, A B; Evans, M R; Blythe, R A

    2016-05-27

    We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability distribution in the steady state. This stationary distribution has a rich structure comprising three components: a jammed component, where the particles are adjacent and block each other; an attractive component, where the probability distribution for the distance between particles decays exponentially; and an extended component in which the distance between particles is uniformly distributed. The attraction between the particles is sufficiently strong that even in the limit where continuous space is recovered for a finite system, the two walkers spend a finite fraction of time in a jammed configuration. Our results potentially provide a route to understanding the motility-induced phase separation characteristic of active matter from a microscopic perspective. PMID:27284675

  12. Jamming effects on code synchronization of burst-mode frequency-hop spread-spectrum

    NASA Astrophysics Data System (ADS)

    van Grouw, Mike G.; Wicker, Mark A.

    The authors characterize the performance of a multiple-dwell FHSS (frequency-hopping spread-spectrum) code synchronization scheme in the presence of channel dynamics. Random hop jamming is assumed. The coarse acquisition system uses both passive and active correlation to implement a serial search of the code-uncertainty region. The in-lock monitoring is accomplished using a two-dwell active correlator with a relatively long integration time. Both burst- and continuous-mode communications links are considered. Appropriate performance parameters are developed, and design considerations are discussed. Performance curves are given for the various cases considered. Although a fixed-threshold multiple-dwell synchronization scheme adequately mitigates the effects of dynamic jamming in a continuous-mode communications link, it is shown to be inadequate for a burst-mode communications link.

  13. Critical Phenomena in Driven Granular Matter: Jamming and Glassy Behavior - Final Report

    SciTech Connect

    Teitel, Stephen

    2013-02-20

    Granular materials, such as powders, seeds, grains, sand, rocks, etc., are ubiquitous both in nature and in industrial processes. At the scale of individual grains, granular systems are particularly simple: particles interact only when they touch. But when viewed in the aggregate, granular systems can display complex behavior. In particular, as the volume packing fraction of the grains increases, the system undergoes a jamming transition from a flowing liquid to a disordered but rigid solid. We study the critical behavior of such systems near the jamming transition using numerical simulations of a simple model of soft-core, bidisperse, frictionless disks in two dimensions. We seek to understand the structural and transport properties of such systems under a variety of physical perturbations such as steady state shear driven flow, and finite thermal fluctuations.

  14. Statistics of conserved quantities in mechanically stable packings of frictionless disks above jamming

    NASA Astrophysics Data System (ADS)

    Wu, Yegang; Teitel, S.

    2015-02-01

    We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction ϕJ. For configurations with a fixed isotropic global stress tensor, we compute the averages, variances, and correlations of conserved quantities (stress ΓC, force-tile area AC, Voronoi volume VC, number of particles NC, and number of small particles Ns C) on compact subclusters of particles C , as a function of the cluster size and the global system stress. We find several significant differences depending on whether the cluster C is defined by a fixed radius R or a fixed number of particles M . We comment on the implications of our findings for maximum entropy models of jammed packings.

  15. Traffic jam induced by a crosscut road in a traffic-flow model

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Seno, Tadachika

    1994-06-01

    A deterministic cellular automaton model is presented to simulate the traffic jam induced by a crosscut road in a two-dimensional traffic flow. The effect of a crosscut road on the traffic flow is investigated by the use of a computer simulation. The traffic jam appears when a shock (discontinuous interface of different car densities) is formed. The condition for shock formation is derived for car densities p y and p x of the crosscut road and its crossing streets. The phase diagram and the dependence of the traffic flow on the car densities are shown. Also, we study the shock structure and the scaling of its width. The width Δ w of the shock scales with the system size L as Δ w ≈ L{1}/{2}. We present a self-consistent mean-field theory for the traffic flow.

  16. Application of Edwards' statistical mechanics to high-dimensional jammed sphere packings.

    PubMed

    Jin, Yuliang; Charbonneau, Patrick; Meyer, Sam; Song, Chaoming; Zamponi, Francesco

    2010-11-01

    The isostatic jamming limit of frictionless spherical particles from Edwards' statistical mechanics [Song et al., Nature (London) 453, 629 (2008)] is generalized to arbitrary dimension d using a liquid-state description. The asymptotic high-dimensional behavior of the self-consistent relation is obtained by saddle-point evaluation and checked numerically. The resulting random close packing density scaling ϕ∼d2(-d) is consistent with that of other approaches, such as replica theory and density-functional theory. The validity of various structural approximations is assessed by comparing with three- to six-dimensional isostatic packings obtained from simulations. These numerical results support a growing accuracy of the theoretical approach with dimension. The approach could thus serve as a starting point to obtain a geometrical understanding of the higher-order correlations present in jammed packings. PMID:21230456

  17. Application of Photothermal Methods for Quantification of Carotenoids in Apricot Jams

    NASA Astrophysics Data System (ADS)

    Dóka, O.; Bicanic, D.; Stéger-Máté, M.; Végvári, Gy.

    2015-09-01

    Carotenes, found in a diversity of fruit-containing foods, are important sources of antioxidants; a good example is apricot jam. In the study described in this paper, both the total carotenoid content ( TCC) as well as the content of \\upbeta -carotene in six different apricot jams were quantified using traditional (UV-VIS) spectrophotometry (SP), high-performance liquid chromatography (HPLC), laser photoacoustic spectroscopy (LPAS), and the optothermal window (OW) method. Unlike SP and HPLC, LPAS and the OW methods require the minimum of sample preparation and only a one time calibration step which enables practically direct quantification of the TCC. Results were verified versus data obtained with SP as the reference technique. It was shown that LPAS and the OW method (at 473 nm) provide satisfactory results with R2=0.9884 and 0.9766 for LPAS and OW, respectively.

  18. Design of a 4-element Antenna Array for BDS Anti-jamming Applications

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Shi, Hongyu; Li, Hang; Zhang, Anxue

    2014-01-01

    In this paper, a compact 4-element antenna array with the dimension of 150 mm × 150 mm is proposed for BeiDou navigation satellite system (BDS) anti-jamming applications. The proposed antenna array comprises of four identical microstrip right-handed circularly polarized (RHCP) antenna elements. The four microstrip antenna elements are placed in the same polarity with a distance of 80 mm between adjacent elements. The antenna element which employs dual probe-fed structure has a relatively small volume of 45 mm × 45 mm × 5 mm. The antenna array has been fabricated and measured. The experimental results show that the proposed antenna array is quite suitable for BDS anti-jamming application.

  19. Aging and memory effects in the spin jam states of densely populated frustrated magnets

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Lee, Seung-Hun; Sato, Taku; Zhou, Haidong; Sinclair, Ryan; Yang, Junjie; Chen, Tianran; Chern, Gia-Wei; Klich, Israel

    Defects and randomness has been largely studied as the key mechanism of glassiness find in a dilute magnetic system. Even though the same argument has also been made to explain the spin glass like properties in dense frustrated magnets, the existence of a glassy state arise intrinsically from a defect free spin system, far from the conventional dilute limit with different mechanisms such as quantum fluctuations and topological features, has been theoretically proposed recently. We have studied field effects on zero-field cooled and field cooled susceptibility bifurcation and memory effects below freezing transition, of three different densely populated frustrated magnets which glassy states we call spin jam, and a conventional dilute spin glass. Our data show common behaviors among the spin jam states, which is distinct from that of the conventional spin glass. We have also performed Monte Carlo simulations to understand the nature of their energy landscapes.

  20. Non-local rheological properties of granular flows near a jamming limit.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  1. Climatic effects on ice-jam flooding of the Peace-Athabasca Delta

    NASA Astrophysics Data System (ADS)

    Beltaos, S.; Prowse, T.; Bonsal, B.; Mackay, R.; Romolo, L.; Pietroniro, A.; Toth, B.

    2006-12-01

    The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. In recent decades, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide habitat for aquatic life in the PAD region. Building on previous work that has identified the salient hydro-climatic factors, the frequency of ice-jam floods is considered under present (1961-1990) and future (2070-2099) climatic conditions. The latter are determined using temperature and precipitation output from the Canadian Climate Centre's second-generation Global Climate Model (CGCM2) for two different greenhouse-gas/sulphate emission scenarios. The analysis indicates that the ice season is likely to be reduced by 2-4 weeks, while future ice covers would be slightly thinner than they are at present. More importantly, a large part of the Peace River basin is expected to experience frequent and sustained mid-winter thaws, leading to significant melt and depleted snowpacks in the spring. Using an empirical relationship between ice-jam flood occurrence and size of the spring snowpack, a severe reduction in the frequency of ice-jam flooding is predicted under both future-climate scenarios that were considered. In turn, this trend is likely to accelerate the loss of aquatic habitat in the PAD region. Implications for potential mitigation and adaptation strategies are discussed. Copyright

  2. Large wood transport and jam formation in a series of flume experiments

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; MacKenzie, L. G.; Eaton, B. C.

    2015-12-01

    Large wood has historically been removed from streams, resulting in the depletion of in-stream wood in waterways worldwide. As wood increases morphological and hydraulic complexity, the addition of large wood is commonly employed as a means to rehabilitate in-stream habitat. At present, however, the scientific understanding of wood mobilization and transport is incomplete. This paper presents results from a series of four flume experiments in which wood was added to a reach to investigate the piece and reach characteristics that determine wood stability and transport, as well as the time scale required for newly recruited wood to self-organize into stable jams. Our results show that wood transitions from a randomly distributed newly recruited state to a self-organized, or jam-stabilized state, over the course of a single bankfull flow event. Statistical analyses of piece mobility during this transitional period indicate that piece irregularities, especially rootwads, dictate the stability of individual wood pieces; rootwad presence or absence accounts for up to 80% of the variance explained by linear regression models for transport distance. Furthermore, small pieces containing rootwads are especially stable. Large ramped pieces provide nuclei for the formation of persistent wood jams, and the frequency of these pieces in the reach impacts the travel distance of mobile wood. This research shows that the simulation of realistic wood dynamics is possible using a simplified physical model, and also has management implications, as it suggests that randomly added wood may organize into persistent, stable jams, and characterizes the time scale for this transition.

  3. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    PubMed Central

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2.

  4. Hydraulic features of Engineered Log Jams (ELJs) and their influence on salmonid behavior

    NASA Astrophysics Data System (ADS)

    Rice, W. D.; Fetter, D.; Somerville, G.; Tullos, D. D.; Palacijo, J.

    2010-12-01

    In an effort to recreate channel complexity and habitat, construction of Engineered Log Jams (ELJs) is increasing, yet questions remain regarding their effectiveness due to lack of observations of hydraulics and fish use around these structures. To address this limitation, we surveyed four different forms of engineered log jams in western Oregon. The structures and near-structure stream environments were surveyed for bathymetry, instrumented with an Acoustic Doppler Stream Profiler (ADCP) to measure velocities, and snorkeled to observe the behavior of salmonids. Further, tensor visualization of stream velocities were constructed to investigate circulation and flow patterns in and around the ELJ structures. We found that more complex structures created a more varied bottom profile, while simpler structures resulted in more simple pools. However, all log jams did increase the diversity of flow patterns, with areas of high and low velocity that appeared to influence fish behavior. Variation in the size of salmonids was related to greater variation in the velocity, and fish behavior (feeding, aggression) was observed to vary within the pools. Our results provide preliminary evidence of the influence of engineered structures on the diversity and versatility of fish habitat.

  5. Existence of isostatic, maximally random jammed monodisperse hard-disk packings

    PubMed Central

    Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore

    2014-01-01

    We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato–Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random jammed (MRJ) packings with exactly isostatic jammed backbones and a packing fraction (including rattlers) of ϕ=0.826. By contrast, the concept of random close packing (RCP) that identifies the most probable packings as the most disordered misleadingly identifies highly ordered disk packings as RCP in 2D. Fundamental structural descriptors such as the pair correlation function, structure factor, and Voronoi statistics show a strong contrast between the MRJ state and the typical hyperstatic, polycrystalline packings with ϕ≈0.88 that are more commonly obtained using standard packing protocols. Establishing that the MRJ state for monodisperse hard disks is isostatic and qualitatively distinct from commonly observed polycrystalline packings contradicts conventional wisdom that such a disordered, isostatic packing does not exist due to a lack of geometrical frustration and sheds light on the nature of disorder. This prompts the question of whether an algorithm may be designed that is strongly biased toward generating the monodisperse disk MRJ state. PMID:25512529

  6. Connections between structural jamming, local metabasin features, and relaxation dynamics in a supercooled glassy liquid

    NASA Astrophysics Data System (ADS)

    Frechero, M. A.; Alarcón, L. M.; Schulz, E. P.; Appignanesi, G. A.

    2007-01-01

    Dynamics in glass-forming liquids in the supercooled regime vary considerably from one point of the sample to another suggesting the existence of regions with different degrees of jamming. In fact, the existence of relatively compact regions with particles with an enhanced propensity for motion has been detected in model glassy systems. In turn, the structural relaxation has been shown to be accomplished by means of a series of fast transitions between metabasins in the potential energy landscape involving the collective motion of a substantial number of particles arranged in relatively compact clusters (democratic clusters or d clusters). In this work we shall complete this picture by identifying the connections between local structural jamming, metabasin confining strength, and d clusters. Thus we shall demonstrate that the degree of jamming of the local structure dictates the confining strength of the local metabasin and that the local high propensity regions and the d clusters are not only similar in nature but that they share a significant amount of particles.

  7. Information capacity of the matched Gaussian channel with jamming. Part 2: Infinite-dimensional channels

    NASA Astrophysics Data System (ADS)

    Baker, C. R.; Chao, I. F.

    1990-10-01

    The additive infinite-dimensional Gaussian channel subject to jamming is modeled as a two-person zero-sum game with mutual information as the payoff function. The jammer's noise is added to the ambient Gaussian noise. The coder's signal energy is subject to a constraint is necessary in order that the capacity without feedback be finite. It is shown that use of this same RKHS constraint on the jammer's process is too strong; the jammer would then not be able to reduce capacity, regardless of the amount of jamming energy available. The constraint on the jammer is thus on the total jamming energy, without regard to its distribution relative to that of the ambient noise energy. The existence of a saddle value for the problem does not follow from the von Neuman minimax theorem in the original problem formulation. However, a solution is shown to exist. A saddle point, saddle value, and the jammer's minimax strategy are determined. The solution is a function of the problem parameters: the constraint on the coder, the constraint on the jammer, and the covariance of the ambient Gaussian noise.

  8. Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2016-05-01

    We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling analysis of our resulting data for pressure p and shear stress σ . Our analysis determines the critical exponent β that describes the algebraic divergence of the Bagnold transport coefficients limγ˙→0p /γ˙2,σ /γ˙2˜(ϕJ-ϕ ) -β as the jamming transition ϕJ is approached from below. For the low strain rates considered in this work, we show that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent analysis of our data, in which the critical parameters become independent of the size of the window of data used in the analysis. We compare our resulting value β ≈5.0 ±0.4 against previous numerical results and competing theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws for dilatancy and friction.

  9. Molecular jamming--the cystine slipknot mechanical clamp in all-atom simulations.

    PubMed

    Pepłowski, Lukasz; Sikora, Mateusz; Nowak, Wiesław; Cieplak, Marek

    2011-02-28

    A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e., by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids. PMID:21361557

  10. Existence of isostatic, maximally random jammed monodisperse hard-disk packings.

    PubMed

    Atkinson, Steven; Stillinger, Frank H; Torquato, Salvatore

    2014-12-30

    We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato-Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random jammed (MRJ) packings with exactly isostatic jammed backbones and a packing fraction (including rattlers) of [Formula: see text]. By contrast, the concept of random close packing (RCP) that identifies the most probable packings as the most disordered misleadingly identifies highly ordered disk packings as RCP in 2D. Fundamental structural descriptors such as the pair correlation function, structure factor, and Voronoi statistics show a strong contrast between the MRJ state and the typical hyperstatic, polycrystalline packings with [Formula: see text] that are more commonly obtained using standard packing protocols. Establishing that the MRJ state for monodisperse hard disks is isostatic and qualitatively distinct from commonly observed polycrystalline packings contradicts conventional wisdom that such a disordered, isostatic packing does not exist due to a lack of geometrical frustration and sheds light on the nature of disorder. This prompts the question of whether an algorithm may be designed that is strongly biased toward generating the monodisperse disk MRJ state. PMID:25512529

  11. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam.

    PubMed

    Silva, Branca M; Andrade, Paula B; Mendes, Gisela C; Seabra, Rosa M; Ferreira, Margarida A

    2002-04-10

    The organic acids present in several samples of quince fruit (pulp and peel) and quince jam (homemade and industrially manufactured) were analyzed by HPLC. The sample preparation was simple, involving only extraction with methanol (40 degrees C) and filtration through a Sep-pack C18 cartridge. The chromatographic separation was achieved using an ion exclusion column, Nucleogel Ion 300 OA (300 x 7.7 mm), in conjunction with a column heating device at 30 degrees C. An isocratic elution with H(2)SO(4) 0.01 N as the mobile phase, with a flow rate of 0.1 mL/min, and UV detection at 214 nm were used. These analyses showed that all samples presented a similar profile composed of at least six identified organic acids: citric, ascorbic, malic, quinic, shikimic, and fumaric acids. Several samples also contained oxalic acid. This study suggests that the organic acids levels and ratios may be useful for the determination of percent fruit content of quince jams. The citric acid value can also be used in the differentiation of the type of manufacture of the commercial quince jams (homemade or industrially manufactured). PMID:11929290

  12. Edwards thermodynamics of the jamming transition for frictionless packings: Ergodicity test and role of angoricity and compactivity

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Song, Chaoming; Wang, Ping; Makse, Hernán A.

    2012-07-01

    This paper illustrates how the tools of equilibrium statistical mechanics can help to describe a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J point) in frictionless packings. Using the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of ergodicity and “thermalization” at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the maximum entropy principle for grains. (iii) The intensive variables A and X describe the approach to jamming through a series of scaling relations as A→0+ and X→0-. Due to the force-strain coupling in the interparticle forces, the jamming transition is probed thermodynamically by a “jamming temperature” TJ composed of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in static observables like pressure and volume, and we discuss other critical scenarios for the jamming transition. (v) Finally, we elaborate on a comparison with relevant studies by Gao, Blawzdziewicz, and O’Hern [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.74.061304 74, 061304 (2006)], showing a breakdown of equiprobability of microstates obtained via fast quenches. A network analysis of the energy landscape reveals the origin of the inhomogeneities in the uneven distribution of the areas of the basins

  13. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks

    PubMed Central

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-01-01

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. Yet, the use of a large number of IoT devices can severely worsen the spectrum scarcity problem. The usable spectrum resources are almost entirely occupied, and thus, the increasing demands of radio access from IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as cellular telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric and asymmetric ciphers) may not be suitable for CIoT networks since these networks are composed of low-profile devices. In this paper, we address the security issues in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative in nature, we propose to employ cooperative jamming to achieve secure transmission. In our proposed cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the Signal to Interference plus Noise Ratio (SINR) at the eavesdropper subject to the Quality of Service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper (ECSI). By using Semi-Definite Programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative

  14. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  15. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks.

    PubMed

    Li, Zhen; Jing, Tao; Ma, Liran; Huo, Yan; Qian, Jin

    2016-01-01

    The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. The use of a large number of IoT devices makes the spectrum scarcity problem even more serious. The usable spectrum resources are almost entirely occupied, and thus, the increasing radio access demands of IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric cryptography and asymmetric cryptography) may be compromised in CIoT networks, since these types of networks are heterogeneous. In this paper, we address the security issue in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative networks, we propose to employ cooperative jamming to achieve secrecy transmission. In the cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the signal to interference plus noise ratio (SINR) at the eavesdropper subject to the quality of service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the considered minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper. By using semi-definite programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative jamming scheme

  16. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities

    NASA Astrophysics Data System (ADS)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2013-08-01

    Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤ϕ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061302 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and

  17. The key role of log jams in the influence of transport and deposition of woody debris in a mountain stream

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Turowski, Jens M.; Stoffel, Markus; Badoux, Alexandre

    2014-05-01

    Log jams in mountains streams are preferred storage sites for bedload material and woody debris. The resulting formation of steps and pools within a channel reduces flow velocities and thereby mitigates natural hazards in case of flood events. However, this requires analysing the resilience of log jams during high discharge events which in case of failure can release large amounts of stored material. In this study we investigate log jams in the Erlenbach mountain stream in the Swiss Prealps regarding their storage function of woody debris and residence times of stored logs. Nine log jams were surveyed in detail regarding their position, extent and volume. Artificially introduced wood pieces were tagged with Radio Frequency Identification (RFID) transponders and tracked along a study reach for five months. These tracers confirmed the hypothesis of debris dams being a preferred storage site for dead wood in mountain streams by the calculating tracer data point densities. The average point density for obstruction free channel reaches amounts to 0.13 pieces per m2 while it increases to 0.46 pieces per m2 for channel areas covered by log jams. The size and position of the log jams are mainly determined by bank erosion and hillslope activity as log jams are situated in highly active zones. Large logs of coniferous wood within the jams were dated using tree-ring analysis and their residence times within the channel determined based on the year of tree dieback. The residence times of large logs stored within the jams show a strong connection to the last two exceptional discharge events that occurred at the Erlenbach in 2007 and 2010 (flood events with return times of 50 and 20 years, respectively). The highest number of logs died back in 2007. The year with the second largest number of introduced logs is 2010. The consecutive years after those two high discharge events showed a declining number of trees entering the stream. So both events presumably caused a reactivation

  18. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.

    PubMed

    Wong, Sui-To; Wen, Eleanor; Fong, Dawson

    2013-08-01

    Malfunction of a Codman Hakim programmable valve due to jamming of its programmable component may necessitate shunt revision. The authors report a method for programming jammed Codman Hakim programmable valves by using a Strata II magnet and additional neodymium magnets. The programming method was derived after studying a jammed valve in the laboratory that was explanted from an 10-year-old boy with a history of fourth ventricle ependymoma. Programming the explanted valve with a Codman programmer failed, but rotating a Strata II magnet above the valve resulted in rotation of the spiral cam in the valve. It was found that the Strata II magnet could be used to program the jammed valve by rotating the magnet 90° or multiples of 90° above the valve. The strength of the magnetic field of the Strata II magnet was able to be increased by putting neodymium magnets on it. The programming method was then successfully used in a patient with a jammed Codman Hakim programmable valve. After successful programming using this method, clinical and radiological follow-up of the patient was advised. PMID:23705870

  19. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Burridge, Keith

    2016-01-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF. PMID:26985018

  20. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  1. Calculating the free energy of nearly jammed hard-particle packings using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Stillinger, Frank H.; Torquato, Salvatore

    2007-07-01

    We present a new event-driven molecular dynamics (MD) algorithm for measuring the free energy of nearly jammed packings of spherical and non-spherical hard particles. This Bounding Cell Molecular Dynamics (BCMD) algorithm exactly calculates the free-energy of a single-occupancy cell (SOC) model in which each particle is restricted to a neighborhood of its initial position using a hard-wall bounding cell. Our MD algorithm generalizes previous ones in the literature by enabling us to study non-spherical particles as well as to measure the free-energy change during continuous irreversible transformations. Moreover, we make connections to the well-studied problem of computing the volume of convex bodies in high dimensions using random walks. We test and verify the numerical accuracy of the method by comparing against rigorous asymptotic results for the free energy of jammed and isostatic disordered packings of both hard spheres and ellipsoids, for which the free energy can be calculated directly as the volume of a high-dimensional simplex. We also compare our results to previously published Monte Carlo results for hard-sphere crystals near melting and jamming and find excellent agreement. We have successfully used the BCMD algorithm to determine the configurational and free-volume contributions to the free energy of glassy states of binary hard disks [A. Donev, F.H. Stillinger, S. Torquato, Do binary hard disks exhibit an ideal glass transition? Phys. Rev. Lett. 96 (22) (2006) 225502]. The algorithm can also be used to determine phases with locally- or globally-minimal free energy, to calculate the free-energy cost of point and extended crystal defects, or to calculate the elastic moduli of glassy or crystalline solids, among other potential applications.

  2. Air-fluidized grains as a model system: Self-propelling and jamming

    NASA Astrophysics Data System (ADS)

    Daniels, Lynn J.

    This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. [12]. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we

  3. High-velocity drag friction in granular media near the jamming point.

    PubMed

    Takehara, Yuka; Okumura, Ko

    2014-04-11

    Drag friction that acts on a disk in a two-dimensional granular medium is studied at high packing fractions. We concentrate on a high-velocity region, in which the dynamic component of the force, obtained as an average of a strongly fluctuating force, clearly scales with velocity squared. We find that the total force composed of dynamic and static components, as well as its fluctuation, diverges with practically the same exponent as the packing fraction approaches the jamming point. To explain the critical behavior, we propose a simple theory equipped with a diverging length scale, which agrees well with the data and elucidates physical pictures for the divergence. PMID:24766018

  4. Granular fingers on jammed systems: new fluidlike patterns arising in grain-grain invasion experiments.

    PubMed

    Pinto, S F; Couto, M S; Atman, A P F; Alves, S G; Bernardes, A T; de Resende, H F V; Souza, E C

    2007-08-10

    In this Letter we report spontaneous pattern formation in dense granular assemblies confined to a Hele-Shaw cell and quasistatic regime. Varied unexpected patterns, ranging from rounded to fingered, are observed due to the displacement of one granular material by another. Computer simulations reproduce the major features observed in these experiments. Two mechanisms are responsible for the pattern formation: crystallization of the injected grains and plastic deformation of the displaced grains. The experiment suggests analogies with viscous fingering and jamming transition experiments. PMID:17930866

  5. Jamming II: Edwards’ statistical mechanics of random packings of hard spheres

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Song, Chaoming; Jin, Yuliang; Makse, Hernán A.

    2011-02-01

    The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that

  6. Universality of jamming criticality in overdamped shear-driven frictionless disks.

    PubMed

    Vågberg, Daniel; Olsson, Peter; Teitel, S

    2014-10-01

    We investigate the criticality of the jamming transition for overdamped shear-driven frictionless disks in two dimensions for two different models of energy dissipation: (i) Durian's bubble model with dissipation proportional to the velocity difference of particles in contact, and (ii) Durian's "mean-field" approximation to (i), with dissipation due to the velocity difference between the particle and the average uniform shear flow velocity. By considering the finite-size behavior of pressure, the pressure analog of viscosity, and the macroscopic friction σ/p, we argue that these two models share the same critical behavior. PMID:25325662

  7. The role of log jams and exceptional flood events in mobilizing coarse particulate organic matter in a steep headwater stream

    NASA Astrophysics Data System (ADS)

    Jochner, M.; Turowski, J. M.; Badoux, A.; Stoffel, M.; Rickli, C.

    2015-02-01

    Export rates of coarse particulate organic matter (CPOM) from mountain catchments have been observed to strongly increase with rising discharge, but the mechanism leading to this strong relationship is unclear. Here, we show that log jams in the Erlenbach, a steep headwater stream in the Swiss Prealps, are an effective barrier for the transport of CPOM pieces, and thus become sites of storage of large quantities of material over time. Exceptional discharge events with return periods exceeding 20 years play a dual role in CPOM transport. First, they destroy existing log jams, releasing the stored material (wood and sediment). Second, they intensify channel-hillslope coupling, thereby recruiting new logs to the channel, around which new jams can form.

  8. Junctional adhesion molecules (JAMs) are differentially expressed in fibroblasts and co-localize with ZO-1 to adherens-like junctions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Junctional Adhesion Molecules (JAMs) are components and regulators of the well-characterized epithelial and endothelial tight junction. Since the molecular components of native fibroblast adherens-like junctions remain poorly described we determined JAM expression profiles in fibroblasts. We found J...

  9. JAM3 methylation status as a biomarker for diagnosis of preneoplastic and neoplastic lesions of the cervix

    PubMed Central

    Yin, Aijun; Zhang, Qing; Kong, Xiangnan; Jia, Lin; Yang, Ziyan; Meng, Lihua; Li, Li; Wang, Xiao; Qiao, Yunbo; Lu, Nan; Yang, Qifeng; Shen, Keng; Kong, Beihua

    2015-01-01

    DNA methylation is clinically relevant to important tumorigenic mechanisms. This study evaluated the methylation status of candidate genes in cervical neoplasia and determined their diagnostic performance in clinical practice. Cervical cancer and normal cervix tissue was used to select the top 5 discriminating loci among 27 loci in 4 genes (CCNA1, CADM1, DAPK1, JAM3), and one locus of JAM3 (region M4) was identified and confirmed with 267 and 224 cervical scrapings from 2 independent colposcopy referral studies. For patients with atypical squamous cells of unknown significance and those with low-grade squamous intraepithelial lesion, with JAM3-M4 compared to a triage marker of hrHPV testing, the specificity for cervical intraepithelial neoplasia 3 CIN3 and cancer cases (CIN3+) / no neoplasia and CIN1 (CIN1−) was significantly increased, from 21.88 to 81.82 and 15.38 to 85.18, respectively. The corresponding positive predictive value (PPV) was increased from 26.47 to 57.14 and 18.52 to 63.64, respectively. For hrHPV-positive patients, compared to a triage marker of cytology testing, JAM3-M4 showed increased specificity and PPV, from 30.67 to 87.65 and 38.82 to 82.14, respectively. We assessed whether JAM3-M4 could distinguish productive from transforming CIN2; the coincidence rate of JAM3-M4 and P16 was as high as 60.5%. PMID:26517242

  10. Predicting Trigger Level for Ice Jam Flooding of the lower Mohawk River using LiDAR and GIS

    NASA Astrophysics Data System (ADS)

    Foster, J.; Marsellos, A.; Garver, J.

    2011-12-01

    Ice jams are an annual occurrence along the Mohawk River in upstate New York. The jams commonly result in significant flooding especially when the progress of the ice is impeded by obstructions to the channel and flood plain. To minimize flooding hazards it is critical to know the trigger level of flooding so that we can better understand chronic jam points and simulate flooding events as jams occur as the lower Mohawk. A better understanding of jamming and trigger points may facilitate measures to reduce flooding and avoid the costly damage associated with these hazards. To determine the flood trigger level for one segment of the lower Mohawk we used Air-LiDAR elevation data to construct a digital elevation model to simulate a flooding event. The water flood simulation using a LiDAR elevation model allows accurate water level measurements for determining trigger levels of ice dam flooding. The study area comprises three sections of the lower Mohawk River from the (Before location) to the (After location), which are constrained by lock stations centered at the New York State Canal System Lock 9 (E9 Lock) and the B&M Rail Bridge at the Schenectady International (SI) Plant. This area is notorious for ice jams including one that resulted in a major flooding event on January 25th, 2010 which resulted in flood levels at 74.4 m in the upper portion of the second section of the study area (Lock 9) and at 73.4 m in the lower portion (SI plant). Minimum and maximum elevation levels were found to determine the values at which up stream water builds up and when flooding occurs. From these values, we are able to predict the flooding as the ice jam builds up and breaks as it progresses downstream. Similar methodology is applied to find the trigger points for flooding along other sections of the Mohawk River constrained by lock stations, and it may provide critical knowledge as to how to better manage the hazard of flooding due to ice jams.

  11. Importance of the Two Dissimilatory (Nar) Nitrate Reductases in the Growth and Nitrate Reduction of the Methylotrophic Marine Bacterium Methylophaga nitratireducenticrescens JAM1

    PubMed Central

    Mauffrey, Florian; Martineau, Christine; Villemur, Richard

    2015-01-01

    Methylophaga nitratireducenticrescens JAM1 is the only reported Methylophaga species capable of growing under anaerobic conditions with nitrate as electron acceptor. Its genome encodes a truncated denitrification pathway, which includes two nitrate reductases, Nar1 and Nar2; two nitric oxide reductases, Nor1 and Nor2; and one nitrous oxide reductase, Nos; but no nitrite reductase (NirK or NirS). The transcriptome of strain JAM1 cultivated with nitrate and methanol under anaerobic conditions showed the genes for these enzymes were all expressed. We investigated the importance of Nar1 and Nar2 by knocking out narG1, narG2 or both genes. Measurement of the specific growth rate and the specific nitrate reduction rate of the knockout mutants JAM1ΔnarG1 (Nar1) and JAM1ΔnarG2 (Nar2) clearly demonstrated that both Nar systems contributed to the growth of strain JAM1 under anaerobic conditions, but at different levels. The JAM1ΔnarG1 mutant exhibited an important decrease in the nitrate reduction rate that consequently impaired its growth under anaerobic conditions. In JAM1ΔnarG2, the mutation induced a 20-h lag period before nitrate reduction occurred at specific rate similar to that of strain JAM1. The disruption of narG1 did not affect the expression of narG2. However, the expression of the Nar1 system was highly downregulated in the presence of oxygen with the JAM1ΔnarG2 mutant. These results indicated that Nar1 is the major nitrate reductase in strain JAM1 but Nar2 appears to regulate the expression of Nar1. PMID:26733997

  12. Exact solution of a jamming transition: Closed equations for a bootstrap percolation problem

    NASA Astrophysics Data System (ADS)

    de Gregorio, Paolo; Lawlor, Aonghus; Bradley, Phil; Dawson, Kenneth A.

    2005-04-01

    Jamming, or dynamical arrest, is a transition at which many particles stop moving in a collective manner. In nature it is brought about by, for example, increasing the packing density, changing the interactions between particles, or otherwise restricting the local motion of the elements of the system. The onset of collectivity occurs because, when one particle is blocked, it may lead to the blocking of a neighbor. That particle may then block one of its neighbors, these effects propagating across some typical domain of size named the dynamical correlation length. When this length diverges, the system becomes immobile. Even where it is finite but large the dynamics is dramatically slowed. Such phenomena lead to glasses, gels, and other very long-lived nonequilibrium solids. The bootstrap percolation models are the simplest examples describing these spatio-temporal correlations. We have been able to solve one such model in two dimensions exactly, exhibiting the precise evolution of the jamming correlations on approach to arrest. We believe that the nature of these correlations and the method we devise to solve the problem are quite general. Both should be of considerable help in further developing this field.

  13. Exact solution of a jamming transition: Closed equations for a bootstrap percolation problem

    PubMed Central

    De Gregorio, Paolo; Lawlor, Aonghus; Bradley, Phil; Dawson, Kenneth A.

    2005-01-01

    Jamming, or dynamical arrest, is a transition at which many particles stop moving in a collective manner. In nature it is brought about by, for example, increasing the packing density, changing the interactions between particles, or otherwise restricting the local motion of the elements of the system. The onset of collectivity occurs because, when one particle is blocked, it may lead to the blocking of a neighbor. That particle may then block one of its neighbors, these effects propagating across some typical domain of size named the dynamical correlation length. When this length diverges, the system becomes immobile. Even where it is finite but large the dynamics is dramatically slowed. Such phenomena lead to glasses, gels, and other very long-lived nonequilibrium solids. The bootstrap percolation models are the simplest examples describing these spatio-temporal correlations. We have been able to solve one such model in two dimensions exactly, exhibiting the precise evolution of the jamming correlations on approach to arrest. We believe that the nature of these correlations and the method we devise to solve the problem are quite general. Both should be of considerable help in further developing this field. PMID:15809425

  14. Jammed granular cones affect frictional resistive forces at the onset of intrusion

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Goldman, Daniel

    Characterizing the functional form of granular resistive forces has allowed for analysis of the locomotion of animals and robots on and within dry granular media. Resistive force theory (RFT) has been an effective tool in predicting these forces for various locomotive gaits within the ``frictional fluid'' regime, where intrusions are sufficiently slow such that granular inertial effects are negligible. These forces have been typically described by a linear dependence to submersion depth. However, recent experiments on robotic jumping [Aguilar & Goldman, Nature Physics, 2015] have revealed the importance of considering the nonlinear effects at the onset of intrusion to accurately predict robot kinematics. Particle image velocimetry (PIV) analysis of sidewall grain flow during foot intrusion reveals a jammed granular cone that develops beneath the foot at the onset of intrusion. A geometric model of cone development combined with empirical RFT forces on angled conical surfaces was able to predict the non-linear force trajectory vs. depth for experimental intrusions of various foot sizes, suggesting that intruders experience non-linear frictional forces according to the shape of the granular jamming fronts that form at the onset of movement. This work was supported by NSF Physics of Living Systems, Burroughs Wellcome Fund, and the Army Research Office.

  15. Design of Controller Switching Strategy for Reusable Launch Vehicle with Elevon Jamming Failure

    NASA Astrophysics Data System (ADS)

    Komatsu, Hayato; Suzuki, Tatsuya; Okuma, Shigeru

    When Reusable launch vehicles (RLV) return to earth, it flies just by gliding without thrust. In this phase, one of the most likely and important faults to occur in the airframe is a jamming of the elevon. To tolerate this failure, the flight control system must keep stability and performance during such a failure. One of the effective ways to overcome this problem is to switch the controllers based on the information of the detected failure in the plant. Generally speaking, the controller must have integrators so as to yield the zero steady-state error for the controlled output even if there exist some perturbations in the plant dynamics. In this paper, the design of controller switching scenario is addressed especially focusing on the decision of the controller state at the instant of switching the controllers with integrator. Then, the proposed switching scenario is applied to the control of ALFLEX (Automatic Landing FLight EXperiment), which is the automatic landing experimental vehicle being developed for RLV, considering the occurrence of the jamming fault. Some simulations are shown to verify the usefulness of the proposed idea.

  16. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    NASA Astrophysics Data System (ADS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-01

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita , Radiation MeasurementsRMEAEP1350-4487 41, 1080 (2006).10.1016/j.radmeas.2006.07.013]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).APHYEE0927-650510.1016/j.astropartphys.2008.07.007] a little better than DPMJET-III [S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. DPRVDAQ1550-7998 75, 043005 (2007).10.1103/PhysRevD.75.043005][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. DPRVDAQ1550-7998 75, 043006 (2007).10.1103/PhysRevD.75.043006]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  17. On the Routing Protocol Influence on the Resilience of Wireless Sensor Networks to Jamming Attacks

    PubMed Central

    Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Monroy, Raul; Nolazco-Flores, Juan Arturo

    2015-01-01

    In this work, we compare a recently proposed routing protocol, the multi-parent hierarchical (MPH) protocol, with two well-known protocols, the ad hoc on-demand distance vector (AODV) and dynamic source routing (DSR). For this purpose, we have developed a simulator, which faithfully reifies the workings of a given protocol, considering a fixed, reconfigurable ad hoc network given by the number and location of participants, and general network conditions. We consider a scenario that can be found in a large number of wireless sensor network applications, a single sink node that collects all of the information generated by the sensors. The metrics used to compare the protocols were the number of packet retransmissions, carrier sense multiple access (CSMA) inner loop retries, the number of nodes answering the queries from the coordinator (sink) node and the energy consumption. We tested the network under ordinary (without attacks) conditions (and combinations thereof) and when it is subject to different types of jamming attacks (in particular, random and reactive jamming attacks), considering several positions for the jammer. Our results report that MPH has a greater ability to tolerate such attacks than DSR and AODV, since it minimizes and encapsulates the network segment under attack. The self-configuring capabilities of MPH derived from a combination of a proactive routes update, on a periodic-time basis, and a reactive behavior provide higher resilience while offering a better performance (overhead and energy consumption) than AODV and DSR, as shown in our simulation results. PMID:25825979

  18. How does particle shape affect the near jamming properties of granular materials? Pentagons vs. disks

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Bares, Jonathan; Behringer, Bob

    Understanding the role of particle shape in system-scale properties is a fundamental challenge in granular physics. We investigated the difference between the response of systems made of pentagons vs. more traditional disks. We performed isotropic compression experiments on 2D photoelastic pentagons and disks near the jamming transition. These experiments show qualitative and quantitative differences in the macroscopic responses of the two systems, such as shifts in the packing fraction at jamming onset and differences in the contact number evolution. Some of these differences are due to a reduction of packing order and the appearance of side-side contacts for the pentatons. We also examined the stress relaxation and dynamical heterogeneity of pentagon particles by performing cyclic compression to allow the system explore phase diagram. We contrast disk and pentagon evolution using four-point-susceptibility and G2 techniques. Work supported by NSF-DMR1206351, DMS1248071, NASA NNX15AD38G, and the W.M. Keck Foundation.

  19. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  20. Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.

    PubMed

    Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy

    2014-04-01

    A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures. PMID:24827171

  1. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive. We show that dimerization produces distinct types of moving phases which depend on the direction of the driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions, a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the critical depinning force. The jamming can also cause unusual effects such as an increase in the critical depinning force when the size of the pinning sites is reduced.

  2. Jammed elastic shells - a 3D experimental soft frictionless granular system

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout

    2015-03-01

    We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.

  3. Neighborhood Jams.

    ERIC Educational Resources Information Center

    Zingher, Gary

    1995-01-01

    Examines the role of the neighborhood in books for children and young adults. Discusses community characteristics, historical fiction, "special and scary places," neighborhoods in conflict and harmony, and the neighborhood as a memory base. Presents activities including animated maps, games, murals, small group dramas, and storytelling. (AEF)

  4. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades.

    PubMed

    Kamiloglu, Senem; Pasli, Ayca Ayfer; Ozcelik, Beraat; Van Camp, John; Capanoglu, Esra

    2015-11-01

    Black carrot is indicated to play an important role in nutrition, as it comprises a variety of health-promoting components, including polyphenols. The objective of the present study was to monitor the stability of total phenolics, antioxidant capacity and phenolic acids in black carrot jams and marmalades after processing, storage and in vitro gastrointestinal digestion. Total phenolic content and antioxidant capacity were determined using spectrophotometric methods, whereas phenolic acids were identified using HPLC-PDA. Jam and marmalade processing significantly decreased total phenolics (89.2-90.5%), antioxidant capacity (83.3-91.3%) and phenolic acids (49.5-96.7%) (p < 0.05). After 20 weeks of storage, the percent decrease in total phenolics in samples stored at 25 °C (26.4-48.0%) was slightly higher than the samples stored at 4 °C (21.0-42.5%). In addition, jam and marmalade processing led to increases in the percent recovery of bioaccessible total phenolics (7.2-12.6%) and phenolic acids (4.7-31.5%), as well as antioxidant capacity (1.4-8.1%). In conclusion, current study highlighted black carrot jams and marmalades as good sources of polyphenols, with high bioaccessibility levels. PMID:25976794

  5. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    PubMed Central

    Han, Endao; Peters, Ivo R.; Jaeger, Heinrich M.

    2016-01-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions. PMID:27436628

  6. Evaluation of Electronic Counter-Countermeasures Training Using Microcomputer-Based Technology: Phase I. Basic Jamming Recognition.

    ERIC Educational Resources Information Center

    Gardner, Susan G.; Ellis, Burl D.

    Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…

  7. High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming.

    PubMed

    Han, Endao; Peters, Ivo R; Jaeger, Heinrich M

    2016-01-01

    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions. PMID:27436628

  8. Ice regime of the lower Peace River and ice-jam flooding of the Peace-Athabasca Delta

    NASA Astrophysics Data System (ADS)

    Beltaos, Spyros; Prowse, Terry D.; Carter, Tom

    2006-12-01

    The Peace-Athabasca Delta (PAD) in northern Alberta is one of the world's largest inland freshwater deltas, home to large populations of waterfowl, muskrat, beaver, and free-ranging wood bison. Beginning in the mid-1970s, a paucity of ice-jam flooding in the lower Peace River has resulted in prolonged dry periods and considerable reduction in the area covered by lakes and ponds that provide a habitat for aquatic life in the PAD region. Using archived hydrometric data and in situ observations, the ice regime of the lower Peace is described and quantified, setting the stage for identification of the conditions that lead to ice-jam flooding and replenishment of Delta habitat. The first such condition is the occurrence of a mechanical, as opposed to a thermal, breakup event; second, the river flow should be at least 4000 m3/s; and third, an ice jam should form within the last 50 km of the Peace River. The type of breakup event depends on the freeze-up stage and spring flow. The former has increased as a result of flow regulation, and the latter has decreased owing to changing climatic patterns. Both trends tend to inhibit the occurrence of mechanical breakups and contribute to less frequent ice-jam flooding. Potential mitigation strategies are discussed. Copyright

  9. Scale-dependent interactions between wood and channel dynamics: Modeling jam formation and sediment storage in gravel-bed streams

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.

    2013-12-01

    A stochastic model is used to investigate how the geomorphic function of wood changes with watershed scale, assuming wood recruitment occurs due to the mortality of individual trees, not to mass recruitment events such as landslides or episodic bank erosion. The model replicates the downstream decline in total wood load observed in the field, but predicts that the functional wood load peaks in channels having bankfull widths about 33% of the characteristic riparian tree height. The model also predicts that the greatest potential impact of jams on channel pattern—both in terms of sediment stored behind individual jams and the potential for jams to trigger avulsions—will typically be associated with channel widths between 25% and 67% of the riparian tree height. The simulation results are used to refine the categories that describe wood in alluvial channels, and the equivalent terms that describe the size of streams with forested riparian areas: small channels (or channels with large wood) are associated with widths less than 25% of the tree height; large channels (or channels with small wood) are associated with widths greater than 67% of tree height; and medium channels (or channels with intermediate wood) have widths between 25% and 67% of the tree height. We surmise that large wood acts primarily to store bed material (in small channels); intermediate wood tends to form channel-spanning jams, which can induce channel avulsions and create anabranched channel patterns (in medium channels); and small wood may increase the morphologic diversity, but does not store significant quantities of bed material or form channel-spanning jams capable of inducing stream avulsions (in large channels).

  10. Exact results for the jammed state of binary mixtures of superdisks on the plane

    NASA Astrophysics Data System (ADS)

    Švrakić, N. M.; Aleksić, Branislav N.; Belić, Milivoj R.

    2016-01-01

    By analytical and numerical methods we investigate the late stage deposition of binary mixtures of oriented "superdisks" on a plane. Superdisks are objects bounded by Lamé curves | x | 2 p +| y | 2 p = 1, where deformation parameter p controls their size and shape. For deposition of single-type superdisks, the maximum packing and jamming densities are known to be nonanalytic at p = 0.5. For binary mixtures of superdisks, we discover that nonanalyticities form a locus of points separating "phase diagram" of shape combinations into regions with different excluded-area constructions. An analytical expression for this phase boundary and exact constructions of the excluded-areas are presented. The corresponding saturation coverages are obtained by extensive numerical Monte Carlo simulations.

  11. Trafficlike Collective Movement of Ants on Trails: Absence of a Jammed Phase

    NASA Astrophysics Data System (ADS)

    John, Alexander; Schadschneider, Andreas; Chowdhury, Debashish; Nishinari, Katsuhiro

    2009-03-01

    We report experimental results on unidirectional trafficlike collective movement of ants on trails. Our work is primarily motivated by fundamental questions on the collective spatiotemporal organization in systems of interacting motile constituents driven far from equilibrium. Making use of the analogies with vehicular traffic, we analyze our experimental data for the spatiotemporal organization of ants on a trail. From this analysis, we extract the flow-density relation as well as the distributions of velocities of the ants and distance headways. Some of our observations are consistent with our earlier models of ant traffic, which are appropriate extensions of the asymmetric simple exclusion process. In sharp contrast to highway traffic and most other transport processes, the average velocity of the ants is almost independent of their density on the trail. Consequently, no jammed phase is observed.

  12. Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hoon; Lee, Choong Woong

    A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.

  13. Absence of jamming in ant trails: feedback control of self-propulsion and noise.

    PubMed

    Chaudhuri, Debasish; Nagar, Apoorva

    2015-01-01

    We present a model of ant traffic considering individual ants as self-propelled particles undergoing single-file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to the absence of jamming even at very high densities [John et al., Phys. Rev. Lett. 102, 108001 (2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first-order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster. PMID:25679642

  14. Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli of grain packs

    SciTech Connect

    Pride, Steven R.; Berryman, James G.

    2009-01-05

    An analysis is presented to show how it is possible for unconsolidated granular packings to obey overall non-Hertzian pressure dependence due to the imperfect and random spatial arrangements of the grains in these packs. With imperfect arrangement, some gaps that remain between grains can be closed by strains applied to the grain packing. As these gaps are closed, former rattler grains become jammed and new stress-bearing contacts are created that increase the elastic stiffness of the packing. By allowing for such a mechanism, detailed analytical expressions are obtained for increases in bulk modulus of a random packing of grains with increasing stress and strain. Only isotropic stress and strain are considered in this analysis. The model is shown to give a favorable fit to laboratory data on variations in bulk modulus due to variations in applied pressure for bead packs.

  15. Critical Scaling of Bagnold Rheology at the Jamming Transition of Frictionless Disks

    NASA Astrophysics Data System (ADS)

    Teitel, Stephen; Vågberg, Daniel; Olsson, Peter

    We simulate shear-driven, frictionless, bidisperse disks in two dimensions, as a function of applied shear strain rate and packing fraction, for a model with a normal viscous dissipation that results in Bagnoldian rheology for all control parameters. Carrying out a critical scaling analysis of the pressure and shear stress near the jamming transition we find values of the critical exponents that disagree with theoretical predictions of Otsuki and Hayakawa but are closer to more recent theoretical results by DeGiuli et al., as well as earlier simulations by Peyneau and Roux. We find that it is essential to include leading corrections-to-scaling to arrive at self-consistent results. This work has been supported by NSF Grant No. DMR-1205800, Swedish Research Council Grant No. 2010-3725, and the Dutch Organization for Scientific Research (NWO).

  16. Magic at the marketplace: Choice blindness for the taste of jam and the smell of tea.

    PubMed

    Hall, Lars; Johansson, Petter; Tärning, Betty; Sikström, Sverker; Deutgen, Thérèse

    2010-10-01

    We set up a tasting venue at a local supermarket and invited passerby shoppers to sample two different varieties of jam and tea, and to decide which alternative in each pair they preferred the most. Immediately after the participants had made their choice, we asked them to again sample the chosen alternative, and to verbally explain why they chose the way they did. At this point we secretly switched the contents of the sample containers, so that the outcome of the choice became the opposite of what the participants intended. In total, no more than a third of the manipulated trials were detected. Even for remarkably different tastes like Cinnamon-Apple and bitter Grapefruit, or the smell of Mango and Pernod was no more than half of all trials detected, thus demonstrating considerable levels of choice blindness for the taste and smell of two different consumer goods. PMID:20637455

  17. Geomorphic Effects of Engineered Log Jams in River Restoration, Middle Fork John Day River

    NASA Astrophysics Data System (ADS)

    Duffin, J.; McDowell, P. F.

    2014-12-01

    The Middle Fork of the John Day River (MFJD) Intensively Monitored Watershed in eastern Oregon is a multi-phase restoration implementation and monitoring project. MFJD is a tributary to the Colombia and is part of one of the longest free flowing rivers systems in the continental United States. It is a gravel and cobble bed river with a drainage area of 2,100 km2. The river has endured extensive channel and floodplain degradation from years of channel alteration and straightening due to human influences including dredge mining, ranching, and farming. As part of the river restoration project on the MFJD, engineered log jams have been constructed to address many of the restoration goals including creating scour pools, inhibiting bank erosion, creating and maintaining a sinuous river planform, and increasing complexity of fish habitat. There is a need for more detailed understanding on ELJ channel morphologic effects and how site-specific characteristics and differences in log jam infrastructure interact to create the in-channel features over timescales longer than a few years. This study uses detailed channel bed topographic surveys collected either with a total station or RTK-GPS technology. Geomorphic change detection techniques are utilized to monitor topographic change under and around the 26 log structures in two different river reaches over a six to seven year period The log structures are often associated with deepening of pools as desired, but also some structures show sedimentation under the structure. Differences in the patterns will be assessed based on the design, location, and specific characteristics of the log structures; variables include number and placement of logs, volume of structure, location on meander bend, and sediment sizes.

  18. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack. PMID:25941377

  19. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation

    PubMed Central

    Kawahara, Akito Y.; Barber, Jesse R.

    2015-01-01

    The bat–moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18–14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack. PMID:25941377

  20. Brazil nut effect: Influence of friction and jamming on the transition line

    NASA Astrophysics Data System (ADS)

    Cordero, P.; Godoy, S.; Risso, D.; Soto, R.

    2009-01-01

    We report a molecular dynamics study of the behavior of a bidimensional system consisting of a large disk (the intruder) immersed in a bed of many small disks. All collisions are instantaneous and inelastic and all possible parameters of the system are kept fixed except for two dimensionless parameters determining the frequency and amplitude of the vibrating base. A systematic exploration of this parameter space leads to determining a transition line separating a zone in which the Brazil nut effect is observed and one in which it is not. It is observed for the BNE to be present it is necessary that the characteristic velocity of the vibrating base is above a certain threshold. This threshold increases as the characteristic acceleration of the base gets larger. The results strongly suggest that, in the region of the parameter space in which the study is made, there is a minimum amplitude and a maximum frequency for the Brazil nut effect to take place. The shape of the transition line is understood in connection with the friction of the system with the lateral walls and with jamming. Friction with the lateral walls produces a net downward force, eventually leading to a convective current that pushes the intruder up. Although the energy injection rate, that helps the development of the convective current, is proportional mainly to the square of the velocity of the base, it is found that the average frictional force decreases when increasing the base acceleration. Therefore, for large base accelerations, higher values of the base velocity are needed to produce a convective current sufficiently strong. But if the system is not excited enough the friction which would produced convective currents are balanced by the reaction forces that result from jamming.

  1. Random three-dimensional jammed packings of elastic shells acting as force sensors

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.

  2. Random three-dimensional jammed packings of elastic shells acting as force sensors.

    PubMed

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J), we found the probability distribution of the interparticle forces P(f) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle. PMID:27415341

  3. Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration

    PubMed Central

    2012-01-01

    Background Recently, an increased interest in the identification of valuable possibilities for preserving the antioxidant properties of products obtained by thermal processing of fruits rich in bioactive compounds can be noticed. In this regard, an extensive analysis is necessary in terms of thermal processed products behavior in relation to various factors. The purpose of the present study was to assess the effect which processing and storage at 20°C has on the antioxidant properties and color quality of low-sugar bilberry jam with different low-methoxyl pectin (LMP) concentrations. Results For all measured parameters, it should be noted that thermal processing induced significant alterations reported to the values registered for fresh fruit. Most important losses due to thermal processing were recorded for total monomeric anthocyanins (TMA) (81-84%), followed by L-ascorbic acid (L-AsAc) content (53-58%), total phenolics (TP) content (42-51%) and FRAP (ferric reducing antioxidant power) values (36-47%). Moreover, depreciation of the investigated compounds occurred during storage at 20°C. Jam storage for 7 months resulted in severe losses in TMA content in the range 58-72% from the value recorded one day after processing. This coincided with marked increases in polymeric color percent of these products after 7 months of storage. Also, bilberry jam storage for 7 months resulted in a decrease in L-AsAc content of 40-53% from the value recorded one day after processing, 41-57% in TP content and 33-46% from the value recorded one day after processing for FRAP values. By decreasing of LMP concentration in the jam recipe from 1 to 0.3% there has been an increase in losses of investigated compounds. Conclusion Overall, the results indicated that bilberry jams can also represent a good source of antioxidant compounds, although compared to the fruit, important losses seem to occur. Practical application of this work is that this kind of information will be very useful in

  4. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to

  5. Effect of xantham gum, steviosides, clove, and cinnamon essential oils on the sensory and microbiological quality of a low sugar tomato jam.

    PubMed

    Gliemmo, María F; Montagnani, María A; Schelegueda, Laura I; González, Malena M; Campos, Carmen A

    2016-03-01

    The partial or total decrease of sugar content in the formulation of jams affects their physical, chemical and microbiological stability. In order to minimize these technological problems, we studied the effect of xanthan gum (XG), steviosides, cinnamon (CO), and clove (CLO) essential oils on the sensory and microbiological quality of a low sugar tomato jam. Levels of 0.250 g/100 g steviosides and 0.450 g/100 g XG showed maximum score of overall acceptability of jam. The combination of essential oils produced synergistic and additive effects in vitro on growth of Z. bailii and Z. rouxii, respectively. However, in the jam, CO was more effective and CLO did not modify the CO action. Cell surface was one of the sites of action of CO since a decrease in yeast cell surface hydrophobicity was observed. From the microbiological and sensory points of view, 0.0060 g/100 g CO showed the maximum score of jam overall acceptability and did not cause yeast inactivation but it could be useful as an additional stress factor against yeast post--process contamination. The adequate levels of XG, steviosides, and CO can improve the quality of a low sugar jam formulation. PMID:25712155

  6. Research on the jamming mechanism for intense light bomb by antagonizing low-light level night-vision device

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Li, Zhongmin; Zhang, Jinchun

    2013-08-01

    The low-light level night-vision device was widely applied in military and common field. The working principle of the low-light level night-vision device and radiation shine mechanism of highlight interference bomb were analysed. The tactical use way of the highlight interference bomb was briefly analysed. In addition, the computing method of flash radiation was provided. The jamming mechanism for intense light bomb by antagonizing low-light level night-vision device was analysed from the relation between surroundings illuminate and luminance of fluorescent screen, the relation between target illuminate and damage threshold of fluorescent screen and the influence on lifetime of instrument by intense light, which provided reference to study the jamming technology on the low-light level night-vision device.

  7. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  8. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams.

    PubMed

    Bursać Kovačević, Danijela; Putnik, Predrag; Dragović-Uzelac, Verica; Vahčić, Nada; Babojelić, Martina Skendrović; Levaj, Branka

    2015-08-15

    The objective of this study was to detect influences of cultivar, cultivation and processing on anthocyanin content and color in purees and low-sugar jams produced from strawberry cultivars (Elsanta, Maya, Marmolada, Queen Elisa), grown under conventional and organic cultivation. Color was determined by CIELab values while anthocyanins were quantified by HPLC-UV/VIS-PDA. Queen Elisa was the best cultivar for processing as it had highest total anthocyanin content (TAC) that was well preserved in processing. On average, processing purees to jams decreased TAC for 28% where pelargonidin-3-glucoside revealed most noticeable loss (53%) and cyanidin-3-rutinoside was best preserved in processing. Obtained results indicated that measurement of colorimetric parameters are strongly correlated with content of anthocyanins. In other words, loss of anthocyanins during processing was accompanied by noticeable decrease in lightness, red/yellow color and total color change. Results showed that change of color is useful predictor for estimating anthocyanins in strawberry purees and jams. PMID:25794726

  9. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  10. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology.

    PubMed

    Morelli, Lucíula Lemos Lima; Prado, Marcelo Alexandre

    2012-11-01

    Optimization of the extraction methodology for antioxidant phenolic compounds in red grape jam was performed with an ultrasound-assisted system. The antioxidant phenolic compounds were extracted and analyzed by determining the total phenolic content (Folin Ciocalteu), as well as by employing free radical DPPH() and the beta-carotene/linoleic acid system. To optimize the parameters of solvent concentration, time and extraction temperature, the experiments were carried out using the central composite rotatable design (CCRD) method. Using response surface methodology (RSM), the best combinations achieved were with 60% ethanol and water for 20min at 50°C. The optimized parameters for this method were compared to an extraction method that has been commonly noted in the literature, which used to be the standard method, and the results were expressed in the milligram equivalent of quercetin per gram of jam (mg E.Q/g Jam). With the new method, the antioxidant potential measured by DPPH(ⁱ) was 70% higher than that obtained with the standard extraction method, and the antioxidant potential measured using the beta-carotene/linoleic acid system was 65% higher. In addition, a significant decrease in the total analysis time was achieved (from 10h to 30min), when compared to the standard method. PMID:22512996

  11. The role of log jams and exceptional flood events in mobilizing coarse particulate organic matter in a steep headwater stream

    NASA Astrophysics Data System (ADS)

    Jochner, M.; Turowski, J. M.; Badoux, A.; Stoffel, M.; Rickli, C.

    2015-07-01

    Coarse particulate organic matter (CPOM) fulfills important functions in the physical and ecological system of a stream. CPOM delivery to and export from the stream has implications for the stream's morphology and sediment transport capacity as well as the energy budget and food availability. Export rates of CPOM from mountain catchments have been observed to strongly increase with rising discharge, but the mechanism leading to this strong relationship is unclear. Here, we show that log jams in the Erlenbach, a steep headwater stream in the Swiss Prealps, are an effective barrier for the transport of CPOM pieces, and thus become sites of storage of large quantities of material over time. Exceptional discharge events with return periods exceeding 20 years play a dual role in CPOM transport in the Erlenbach. First, they appear to destroy existing log jams, releasing the stored material (wood and sediment). Second, they intensify channel-hillslope coupling, thereby recruiting new logs to the channel, around which new jams can form. This allows for the formulation of a new, fully episodic end-member in a four-end-member model of CPOM dynamics of steep mountain streams based on wood delivery and export.

  12. Quenched Stresses And Linear Elastic Response Of Random Packings Of Frictionless Particles Near Jamming

    NASA Astrophysics Data System (ADS)

    Karimi, Kamran

    We study stress correlations and elastic response in large-scale computer simulations of particle packings near jamming. We show that there are characteristic lengths in both the stresses and elastic response that diverge in similar ways as the confining pressure approaches zero from above. For the case of the stress field, we show that the power spectrum of the hydrostatic pressure and shear stress agrees with a field-theoretic framework proposed by Henkes and Chakraborty [15] at short to intermediate wavelengths (where the power is flat in Fourier space), but contains significant excess power at wavelengths larger than about 50 to 100 particle diameters, with the specific crossover point going to larger wavelength at decreasing pressure, consistent with a divergence at p = 0. These stress correlations were missed in previous studies by other groups due to limited system size. For the case of the elastic response, we probe the system in three ways: i) point forcing, ii) constrained homogeneous deformation where the system is driven with no-slip boundary conditions, and iii) free periodic homogeneous deformation. For the point force, we see distinct characteristic lengths for longitudinal and transverse modes each of which diverges in a different way with decreasing pressure with xiT ˜ p--1/4 and xiL ˜ p--0.4 respectively. For the constrained homogeneous deformation we see a scaling of the local shear modulus with the size of the probing region consistent with xi ˜ p--1/2 similar to the xiL ˜ p --0.4 observed in the longitudinal component of the point response and in perfect agreement with the rigidity length discussed in recently proposed scenarios for jamming. Finally, we show that the transverse and longitudinal contributions to the strain field in response to unconstrained deformation (either volumetric or shear) have markedly different behavior. The transverse contribution is surprisingly invariant with respect to p with localized shear transformations

  13. Helical inner-wall texture prevents jamming in granular pipe flows.

    PubMed

    Verbücheln, Felix; Parteli, Eric J R; Pöschel, Thorsten

    2015-06-01

    Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength λ follows the equation Q = Q0·{1 - B sin[arctan(2πD/λ)]}, where Q0 is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only one additional fit parameter, B, and describes the particle mass flux with the helical texture with excellent quantitative agreement with simulation results. Future application of the method proposed here has the potential to improve granular pipe flows in a broad range of processes without the need for energy input from any external source. PMID:25914100

  14. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats.

    PubMed

    Götze, Simone; Koblitz, Jens C; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-01-01

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat's attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1-11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900

  15. Shear bands at the Jamming Transition: The role of Weak Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Irani, Ehsan; Chaudhuri, Pinaki; Heussinger, Claus

    2015-03-01

    We study the rheology of a particulate sytem close to jamming in the presence of weakly attractive interactions. Lees-Edwards boundary conditions are used to simulate a shear-controlled flow. In addition to Bagnold scaling at large shear rates, the attraction results in a finite yield stress in the limit of small shear rates. In the yield regime a fragile solid is formed and the rheology can be explained by a scaling argument that exploits the vicinity to the isostatic state. In the transition region the shear stress develops a minimum, which (in large enough systems) leads to the formation of persistent shear bands. These features are rationalized by a scenario that involves the competition between attraction-induced structure formation and its break-down because of shearing. Properties of shear bands are studied in order to reveal the physical mechanisms that underly the non-monotonic flow curve and the flow heterogenities in the transition region. This work may help to elucidate the origin of shear bands in different materials with finite and short-ranged attractive forces.

  16. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.

    PubMed

    Saito, Kuniaki; Inagaki, Sachi; Mituyama, Toutai; Kawamura, Yoshinori; Ono, Yukiteru; Sakota, Eri; Kotani, Hazuki; Asai, Kiyoshi; Siomi, Haruhiko; Siomi, Mikiko C

    2009-10-29

    PIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, primary piRNA processing remains elusive. Here we analysed piRNA processing in a Drosophila ovarian somatic cell line where Piwi, but not Aub or AGO3, is expressed; thus, only the primary piRNAs exist. In addition to flamenco, a Piwi-specific piRNA cluster, traffic jam (tj), a large Maf gene, was determined as a new piRNA cluster. piRNAs arising from tj correspond to the untranslated regions of tj messenger RNA and are sense-oriented. piRNA loading on to Piwi may occur in the cytoplasm. zucchini, a gene encoding a putative cytoplasmic nuclease, is required for tj-derived piRNA production. In tj and piwi mutant ovaries, somatic cells fail to intermingle with germ cells and Fasciclin III is overexpressed. Loss of tj abolishes Piwi expression in gonadal somatic cells. Thus, in gonadal somatic cells, tj gives rise simultaneously to two different molecules: the TJ protein, which activates Piwi expression, and piRNAs, which define the Piwi targets for silencing. PMID:19812547

  17. Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings

    NASA Astrophysics Data System (ADS)

    Martiniani, Stefano; Schrenk, K. Julian; Stevenson, Jacob D.; Wales, David J.; Frenkel, Daan

    2016-01-01

    We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V . To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011), 10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014), 10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom.

  18. Motivation and intention to integrate physical activity into daily school life: the JAM World Record event.

    PubMed

    Vazou, Spyridoula; Vlachopoulos, Symeon P

    2014-11-01

    Research on the motivation of stakeholders to integrate physical activity into daily school life is limited. The purpose was to examine the motivation of stakeholders to participate in a world record physical activity event and whether motivation was associated with future intention to use activity breaks during the daily school life and future participation in a similar event. After the 2012 JAM (Just-a-Minute) World Record event, 686 adults (591 women; 76.1% participated for children <10 years) completed measures of motivational regulations and future intention to (a) use the activity breaks and (b) participate in the event. High intrinsic motivation and low extrinsic motivation and amotivation for participation in the next event were reported. Hierarchical regression analysis, controlling for age, gender, and occupation, showed that intrinsic forms of motivation positively predicted, whereas amotivation negatively predicted, future intention to participate in the event and use the activity breaks. Multivariate analyses of variance revealed that school-related participants were more intrinsically motivated and intended to use the activity breaks and repeat the event more than those who were not affiliated with a school. Nonschool participants reported higher extrinsic motivation and amotivation than school-related participants. PMID:25001232

  19. Rheological Aspects of the Solid-Liquid Transition in Jammed Systems

    NASA Astrophysics Data System (ADS)

    Coussot, P.

    A common property of jammed systems is a yield stress they have to overcome in order to start to flow. In rheology it is generally assumed that the corresponding solid-liquid transition is continuous, the steady state viscosity progressively decreasing from infinity to a finite value as the applied shear stress is increased beyond the yield stress. Recent experiments with various materials such as colloidal suspensions, foams, emulsions, or polymer gels, show that this transition is in fact abrupt: in steady state, at a critical stress the material viscosity abruptly turns from infinity to a finite value. This phenomenon corresponds to another effect observed from MRI-rheometry tests: in steady state such pasty materials either flow at a sher rate larger than a critical, finite value, associated to a critical stress, or do not flow at all. This phenomenon has also a dynamic character, which is in particular illustrated by the "viscosity bifurcation" in time under controlled stress: below the critical stress value the shear rate progressively decreases until reaching stoppage; beyond this critical stress the shear rate increases and reaches a finite value. Moreover for a material initially at rest the interface between the sheared and unsheared regions, i.e. the slope break, progressively reaches its asymptotic position in time. From these results we deduce that usual macroscopic observations basically reflect complex space and time evolutions of flow and material characteristics in the rheometer gap, rather than local time-dependent properties.

  20. Stress dynamics of a 2D dense granular system near shear jamming

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2013-03-01

    We study the dynamics of pressure and shear stress in a frictional 2D dense granular system using a novel apparatus that can provide fixed-volume shear without generating inhomogeneities. Under increasing shear strain, the system's pressure shows a strong increase with strain, characterized by a ``Reynolds coefficient,'' R =d2 P / dγ2 . R depends only on packing fraction ϕ, and shows a strong increase as ϕ approaches ϕJ from below. In the meantime, the system's shear stress shows a non-monotonic behavior with increasing strain. It first increases with strain as the system is in ``fragile'' states and builds up long force chains along the compression direction. After a certain amount of strain, force chains along the dilation direction starts to build up, and the system transfers into a ``shear-jammed'' state and the shear stress starts to decrease with strain. Under oscillatory shear, both pressure and shear stress show limit-cycle behavior and reach steady states after many cycles. However, the limit cycles of pressure and shear stress are very different: the pressure exhibits a hysteresis-free parabolic curve, while the shear stress exhibits a strongly hysteretic loop. This work is funded by NSF grants: DMR0906908, DMS0835571, NASA grant NNX10AU01G and ARO grant W911NF-11-1-0110.

  1. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats

    PubMed Central

    Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-01-01

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900

  2. Production of Optimized DEM Using IDW Interpolation Method (Case Study; Jam and Riz Basin-Assaloyeh)

    NASA Astrophysics Data System (ADS)

    Soleimani, K.; Modallaldoust, S.

    In this research, preparing the optimized Digital Elevation Model (DEM)of Jam and Riz basin was studied by use of Inverse Distance Weighting (IDW) and utilization of GIS technique. Performing of IDW method depends on several factors including cell size, number of neighbor`s points, point searching radius and optimized power. On this basis, two Geostatistical methods were used for determination of points searching radius of standard ellipse and standard deviation ellipse. Considering the fixed cell size in network with value of 3 which represents weighting degree of points and with determining the rotation angle and measure of axis of standard deviation ellipse and calculation of optimized radius in standard ellipse by use of statistical method, then optimized power was automatically derived in ArcGIS 9.2 environment. In this method the number of neighbor's points was selected with four repetition points of 3, 5, 7 and 15. However, 8 digital elevation models were gained after the mentioned processes. Finally, digital elevation models of 1 to 8 were compared with control points using compare means test in SPSS11.5 statistical software which shown the IDW-3 with the best conditions recommended as the optimized model. Although the results are showing a similar forms but from them IDW3 model has the lowest mean standard error of 0.26842 which is used seven neighbor points.

  3. Evaluating River Restoration Objectives As Research Hypotheses: A Case Study Of Engineered Log Jams

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Vernon, C. R.

    2010-12-01

    Recent evaluations of river restoration monitoring efforts in the U.S. indicate the need for improved approaches to quantifying the effectiveness of restoration actions. As part of a river restoration project involving the installation of engineered log jams (ELJ), a monitoring framework was designed to quantify the effectiveness of ELJ installation at achieving stated restoration goals. During the ELJ planning and design phases, project managers were required to identify specific salmon habitat benefits expected to result from the restoration actions. The expected habitat benefits were restated as restoration hypotheses with quantifiable metrics focused on characteristics of the physical environment that were directly linked to the proposed restoration activities. A before-after sampling design was established to quantify metrics of channel planform and lateral profile; channel bedform and longitudinal profile; large woody debris; riverbed substrate; and hydrologic connectivity. The monitoring framework will quantify the cause-effect relationships among restoration activities and salmon habitat benefits, and will inform the planning and design of similar future restoration actions through the restoration program’s adaptive management process.

  4. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models

    NASA Astrophysics Data System (ADS)

    Priyanka; Jain, Kavita

    2016-04-01

    We consider several one-dimensional driven lattice-gas models that show a phase transition in the stationary state between a high-density fluid phase in which the typical length of a hole cluster is of order unity and a low-density jammed phase where a hole cluster of macroscopic length forms in front of a particle. Using a hydrodynamic equation for an interface growth model obtained from the driven lattice-gas models of interest here, we find that in the fluid phase, the roughness exponent and the dynamic exponent that, respectively, characterize the scaling of the saturation width and the relaxation time of the interface with the system size are given by the Kardar-Parisi-Zhang exponents. However, at the critical point, we show analytically that when the equal-time density-density correlation function decays slower than inverse distance, the roughness exponent varies continuously with a parameter in the hop rates, but it is one-half otherwise. Using these results and numerical simulations for the density-density autocorrelation function, we further find that the dynamic exponent z =3 /2 in all cases.

  5. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    NASA Astrophysics Data System (ADS)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  6. Effects of Engineered Log Jams on Channel Morphology, Middle Fork of the John Day River, Oregon

    NASA Astrophysics Data System (ADS)

    Duffin, J.; McDowell, P. F.

    2015-12-01

    Engineered log jams (ELJs) were constructed on the Middle Fork of the John Day River in eastern Oregon as part of a large river restoration project. These log structures were designed to address many of the restoration goals including creating scour pools, creating and maintaining a sinuous river planform, providing fish cover, and increasing complexity of fish habitat. This study uses geomorphic change detection techniques to monitor topographic change under and around the 26 log structures in two different river reaches over a six to seven year period. This study finds that the ELJs are remaining stable within the river, even following a large flood in 2011. While some pools are shallowing or shifting laterally slightly, in general they are maintaining deep pool habitat. The study provides insight into which log structure variables are most related to the patterns and amounts of aggradation and degradation. Analysis suggests that volume of aggradation is related to both porosity and volume of the log structures, while the area of aggradation was correlated with porosity, as well as, the proportion of logs within bankfull. Understanding the geomorphic changes to the riverbed in response to the placement of the ELJs can influence the design and future effectiveness of ELJs.

  7. Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings.

    PubMed

    Martiniani, Stefano; Schrenk, K Julian; Stevenson, Jacob D; Wales, David J; Frenkel, Daan

    2016-01-01

    We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V. To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014)10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom. PMID:26871142

  8. Optimal predator risk assessment by the sonar-jamming arctiine moth Bertholdia trigona.

    PubMed

    Corcoran, Aaron J; Wagner, Ryan D; Conner, William E

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator--the echolocating bat--whose active biosonar reveals its stage of attack. We used a prey defense--clicking used for sonar jamming by the tiger moth Bertholdia trigona--that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation--the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  9. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    PubMed Central

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  10. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.

    PubMed

    Stamper, Sarah A; Madhav, Manu S; Cowan, Noah J; Fortune, Eric S

    2012-12-01

    Recent studies have shown that central nervous system neurons in weakly electric fish respond to artificially constructed electrosensory envelopes, but the behavioral relevance of such stimuli is unclear. Here we investigate the possibility that social context creates envelopes that drive behavior. When Eigenmannia virescens are in groups of three or more, the interactions between their pseudo-sinusoidal electric fields can generate 'social envelopes'. We developed a simple mathematical prediction for how fish might respond to such social envelopes. To test this prediction, we measured the responses of E. virescens to stimuli consisting of two sinusoids, each outside the range of the Jamming Avoidance Response (JAR), that when added to the fish's own electric field produced low-frequency (below 10 Hz) social envelopes. Fish changed their electric organ discharge (EOD) frequency in response to these envelopes, which we have termed the Social Envelope Response (SER). In 99% of trials, the direction of the SER was consistent with the mathematical prediction. The SER was strongest in response to the lowest initial envelope frequency tested (2 Hz) and depended on stimulus amplitude. The SER generally resulted in an increase of the envelope frequency during the course of a trial, suggesting that this behavior may be a mechanism for avoiding low-frequency social envelopes. Importantly, the direction of the SER was not predicted by the superposition of two JAR responses: the SER was insensitive to the amplitude ratio between the sinusoids used to generate the envelope, but was instead predicted by the sign of the difference of difference frequencies. PMID:23136154

  11. On the appearance of traffic jams in a long chain with a shortcut in the bulk

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh.; Pesheva, N. C.; Brankov, J. G.

    2015-11-01

    The Totally Asymmetric Simple Exclusion Process (TASEP) is studied on open long chains with a shunted section between two simple chain segments in the maximum current phase. The reference case, when the two branches are chosen with equal probability, is considered. The conditions for the occurrence of traffic jams and their properties are investigated both within the effective rates approximation and by extensive Monte Carlo simulations for arbitrary length of the shortcut. Our main results are: (1) For any length of the shortcut and any values of the external rates in the domain of the maximum current phase, there exists a position of the shortcut where the shunted segment is in a phase of coexistence with a completely delocalized domain wall; (2) The main features of the coexistence phase and the density profiles in the whole network are well described by the domain wall theory. Apart from the small inter-chain correlations, they depend only on the current through the shortcut; (3) The model displays unexpected features: (a) the current through the longer shunted segment is larger than the current through the shortcut, and (b) the delocalized domain wall in the coexistence phase of the long shunted segment induces similar behavior even in shortcuts containing a small number of sites; (4) From the viewpoint of vehicular traffic, most comfortable conditions for the drivers are provided when the shortcut is shifted downstream from the position of coexistence, when both the shunted segment and the shortcut exhibit low-density lamellar flow. Most unfavorable is the opposite case of upstream shifted shortcut, when both the shunted segment and the shortcut are in a high-density phase describing congested traffic of slowly moving cars. The above results are relevant also to phenomena like crowding of molecular motors moving along twisted protofilaments.

  12. Effects of compression on the vibrational modes of marginally jammed solids

    NASA Astrophysics Data System (ADS)

    Wyart, Matthieu; Silbert, Leonardo E.; Nagel, Sidney R.; Witten, Thomas A.

    2005-11-01

    Glasses have a large excess of low-frequency vibrational modes in comparison with most crystalline solids. We show that such a feature is a necessary consequence of the weak connectivity of the solid, and that the frequency of modes in excess is very sensitive to the pressure. We analyze, in particular, two systems whose density D(ω) of vibrational modes of angular frequency ω display scaling behaviors with the packing fraction: (i) simulations of jammed packings of particles interacting through finite-range, purely repulsive potentials, comprised of weakly compressed spheres at zero temperature and (ii) a system with the same network of contacts, but where the force between any particles in contact (and therefore the total pressure) is set to zero. We account in the two cases for the observed (a) convergence of D(ω) toward a nonzero constant as ω→0 , (b) appearance of a low-frequency cutoff ω* , and (c) power-law increase of ω* with compression. Differences between these two systems occur at a lower frequency. The density of states of the modified system displays an abrupt plateau that appears at ω* , below which we expect the system to behave as a normal, continuous, elastic body. In the unmodified system, the pressure lowers the frequency of the modes in excess. The requirement of stability despite the destabilizing effect of pressure yields a lower bound on the number of extra contact per particle δz:δz⩾p1/2 , which generalizes the Maxwell criterion for rigidity when pressure is present. This scaling behavior is observed in the simulations. We finally discuss how the cooling procedure can affect the microscopic structure and the density of normal modes.

  13. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g_{2}(r) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  14. CASK interacts with PMCA4b and JAM-A on the Mouse Sperm Flagellum to Regulate Ca2+ Homeostasis and Motility1

    PubMed Central

    Aravindan, Rolands G.; Fomin, Victor P.; Naik, Ulhas P.; Modelski, Mark J.; Naik, Meghna U.; Galileo, Deni S.; Duncan, Randall L.; Martin-DeLeon, Patricia A.

    2012-01-01

    Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P<0.001) ATP levels, significantly (P<0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10-fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used coimmunoprecipitation studies to show that CASK (Ca2+/calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b’s enzymatic activity, consequent Ca2+ accumulation, and a ~6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions. PMID:22020416

  15. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    NASA Astrophysics Data System (ADS)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    between the hydrocarbon and aqueous sand slurries controls the the critical radius of the contacts between dolomite cemented and limonite cemented sand bodies. The cross-cutting relationships established in the field show that the laminations formed at the jamming transition in the aqueous sand slurry. We interpret the laminations as preserving evidence for dynamic permeability instabilities in the dewatering slurry. Relatively high permeability channels formed as pore fluid flow rearranged grains during initial dewatering. Once initiated, the flow localized further into the higher permeability channels resulting in a feedback that caused the permeability in the channels to increase.

  16. Geologic map of the Jam Up Cave and Pine Crest quadrangles, Shannon, Texas, and Howell Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Repetski, John E.

    2013-01-01

    The Jam Up Cave and Pine Crest 7.5-minute quadrangles are located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,400 to 3,100 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from about 690 ft where the Jacks Fork River exits the northeastern corner of the Jam Up Cave quadrangle to about 1,350 ft in upland areas along the north-central edge and southwestern corner of the Pine Crest quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. This reach of the upper Jacks Fork, with its clean, swiftly-flowing water confined by low cliffs and bluffs, provides one of the most beautiful canoe float trips in the nation. Most of the land in the quadrangles is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangles is publicly owned by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2005 and 2006.

  17. Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition.

    PubMed

    Mills, P; Snabre, P

    2009-11-01

    We consider the steady shear flow of a homogeneous and dense assembly of hard spheres suspended in a Newtonian viscous fluid. In a first part, a mean-field approach based on geometric arguments is used to determine the viscous dissipation in a dense isotropic suspension of smooth hard spheres and the hydrodynamic contribution to the suspension viscosity. In a second part, we consider the coexistence of transient solid clusters coupled to regions with free flowing particles near the jamming transition. The fraction of particles in transient clusters is derived through the Landau-Ginzburg concepts for first-order phase transition with an order parameter corresponding to the proportion of "solid" contacts. A state equation for the fraction of particle-accessible volume is introduced to derive the average normal stresses and a constitutive law that relates the total shear stress to the shear rate. The analytical expression of the average normal stresses well accounts for numerical or experimental evaluation of the particle pressure and non-equilibrium osmotic pressure in a dense sheared suspension. Both the friction level between particles and the suspension dilatancy are shown to determine the singularity of the apparent shear viscosity and the flow stability near the jamming transition. The model further predicts a Newtonian behavior for a concentrated suspension of neutrally buoyant particles and no shear thinning behavior in relation with the shear liquefaction of transient solid clusters. PMID:19856003

  18. A neural mechanism of hyperaccurate detection of phase advance and delay in the jamming avoidance response of weakly electric fish.

    PubMed

    Kashimori, Y; Inoue, S; Kambara, T

    2001-08-01

    The weakly electric fish Eigenmannia can detect the phase difference between a jamming signal and its own signal down to micros. To clarify the neuronal mechanism of this hyperaccurate detection of phase difference, we present a neural network model of the torus of the midbrain which plays an essential role in the detection of phase advances and delays. The small-cell model functions as a coincidence detector and can discriminate a time difference of more than 100 micros. The torus model consists of laminae 6 and 8. The model of lamina 6 is made with multiple encoding units, each of which consists of a single linear array of small cells and a single giant cell. The encoding unit encodes the phase difference into its spatio-temporal firing pattern. The spatially random distribution of small cells in each encoding unit improves the encoding ability of phase modulation. The neurons in lamina 8 can discriminate the phase advance and delay of jamming electric organ discharges (EODs) compared with the phase of the fish's own EOD by integrating simultaneously the outputs from multiple encoding units in lamina 6. The discrimination accuracy of the feature-detection neurons is of the order of 1 micros. The neuronal mechanism generating this hyperacuity arises from the spatial feature of the system that the innervation sites of small cells in different encoding units are distributed randomly and differently on the dendrites of single feature-detection neurons. The mechanism is similar to that of noise-enhanced information transmission. PMID:11508775

  19. Reconfiguration of a flexible fiber immersed in a 2D dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud

    2015-11-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

  20. Closed-loop stabilization of the Jamming Avoidance Response reveals its locally unstable and globally nonlinear dynamics.

    PubMed

    Madhav, Manu S; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2013-11-15

    The Jamming Avoidance Response, or JAR, in the weakly electric fish has been analyzed at all levels of organization, from whole-organism behavior down to specific ion channels. Nevertheless, a parsimonious description of the JAR behavior in terms of a dynamical system model has not been achieved at least in part due to the fact that 'avoidance' behaviors are both intrinsically unstable and nonlinear. We overcame the instability of the JAR in Eigenmannia virescens by closing a feedback loop around the behavioral response of the animal. Specifically, the instantaneous frequency of a jamming stimulus was tied to the fish's own electrogenic frequency by a feedback law. Without feedback, the fish's own frequency diverges from the stimulus frequency, but appropriate feedback stabilizes the behavior. After stabilizing the system, we measured the responses in the fish's instantaneous frequency to various stimuli. A delayed first-order linear system model fitted the behavior near the equilibrium. Coherence to white noise stimuli together with quantitative agreement across stimulus types supported this local linear model. Next, we examined the intrinsic nonlinearity of the behavior using clamped frequency difference experiments to extend the model beyond the neighborhood of the equilibrium. The resulting nonlinear model is composed of competing motor return and sensory escape terms. The model reproduces responses to step and ramp changes in the difference frequency (df) and predicts a 'snap-through' bifurcation as a function of dF that we confirmed experimentally. PMID:23997196

  1. Using Variable Speed Limits to Eliminate Wide Moving Jams: a Study Based on Three-Phase Traffic Theory

    NASA Astrophysics Data System (ADS)

    Wang, Yizhi; Zhang, Yi; Hu, Jianming; Li, Li

    2012-09-01

    One frequently observed congested traffic flow pattern is wide moving jam (WMJ), in which the average vehicle speed is very low and the density is very high. In some recent studies, variable speed limits (VSL) were proposed as effective measures to eliminate or abate the influence of jam waves. However, in most of these studies, the stochastic features of driving behaviors and the resulting uncertainty of traffic flow dynamics were not fully considered. In this paper, we use cellular automaton (CA) model-based simulations to test the performances of different VSL control strategies and apply the three-phase traffic theory to further analyze the obtained results. Based on the simulation results, we got two novel findings. Firstly, we observed seven, instead of the previously assumed six, states of traffic flow in the evolution process of WMJ, when VSL were applied. Secondly and more importantly, we found that inappropriate speed limit may induce new WMJ and exaggerate congestions in two ways: one way corresponds to an F → J transition and the other corresponds to an F → S → J transition. Based on these findings, the appropriate lower bound of VSL was finally discussed in this paper.

  2. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1.

    PubMed

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Imhof, Beat A; Dejana, Elisabetta; Engelhardt, Britta; Nourshargh, Sussan

    2009-06-11

    Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1beta [IL-1beta] but not tumor necrosis factor-alpha [TNF-alpha]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-alpha p55/p75 receptor-deficient leukocytes (TNFR(-/-)) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-alpha in ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) recipient mice, TNFR(-/-) leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-alpha to directly stimulate neutrophils is blocked, TNF-alpha-induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration. PMID:19211506

  3. Teen Bands to Battle on a National Stage: NAMM Expands Its SchoolJam Showcase with a Little Help from MENC

    ERIC Educational Resources Information Center

    Giordano, Geoff

    2009-01-01

    SchoolJam, a popular teen musicians' showcase in Texas that provides recognition for young performers as well as funding for their school music programs, is about to go nationwide. The competition, which NAMM, the International Music Products Association, brought to the United States from Germany in 2007, allows groups of musicians age 13 to 18 to…

  4. Statistical properties of entropy-consuming fluctuations in jammed states of laponite suspensions: Fluctuation relations and generalized Gumbel distribution.

    PubMed

    Majumdar, Sayantan; Sood, A K

    2012-04-01

    We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution. PMID:22680472

  5. Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories.

    PubMed

    Kawasaki, Takeshi; Berthier, Ludovic

    2016-08-01

    We use computer simulations to analyze the yielding transition during large-amplitude oscillatory shear of a simple model for soft jammed solids. Simultaneous analysis of global mechanical response and particle-scale motion demonstrates that macroscopic yielding, revealed by a smooth crossover in mechanical properties, is accompanied by a sudden change in the particle dynamics, which evolves from nondiffusive motion to irreversible diffusion as the amplitude of the shear is increased. We provide numerical evidence that this sharp change corresponds to a nonequilibrium first-order dynamic phase transition, thus establishing the existence of a well-defined microscopic dynamic signature of the yielding transition in amorphous materials in oscillatory shear. PMID:27627368

  6. Submersed macrophyte communities before and after an episodic ice jam in the St. Clair and Detroit rivers

    USGS Publications Warehouse

    Nichols, S. Jerrine; Schloesser, Donald W.; Hudson, Patrick L.

    1989-01-01

    We conducted surveys in 1983 and 1984 of submersed macrophyte communities off six islands in the St. Clair and Detroit rivers using low altitude aerial photography and ground-truth collections. Sample collections in 1984 followed one of the coldest winters on record, during which ice up to 4 m thick developed in areas that were normally ice-free. Growth of many of the 20 taxa collected was delayed in the spring of 1984, as compared with the spring of 1983. By September 1984, however, total abundance of all taxa was equal to or greater than that in 1983. The location, size, and shape of plant beds in September 1984 were similar to those in 1983. We concluded that the unusual ice jam in early spring of 1984 had little, if any, permanent effect on submersed macrophytes in the St. Clair and Detroit rivers.

  7. Jammed Particle Configurations and Dynamics in High-Density Lennard-Jones Binary Mixtures in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Shiba, H.; Onuki, A.

    We examine the changeover in the particle configurations and the dynamics in dense Lennard-Jones binary mixtures composed of small and large particles. By varying the composition at a low temperature, we realize crystal with defects, polycrystal with small grains, and glass with various degrees of disorder. In particular, we show configurations where small crystalline regions composed of the majority species are enclosed by percolated amorphous layers composed of the two species. We visualize the dynamics of configuration changes using the method of bond breakage and following the particle displacements. In quiescent jammed states, the dynamics is severely slowed down and is highly heterogeneous at any compositions. We apply shear flow by relative motions of boundary layers. Then plastic deformations multiply occur in relatively fragile regions, growing into large-scale shear bands where the strain is highly localized. Such bands appear on short time scales and evolve on l ong time scales with finite lifetimes.

  8. Easy and Inexpensive Technique for Removal of Round Headed, Jammed Locking Screws in Distal Tibial Interlocking Plate

    PubMed Central

    Singh, Harpreet; Sharma, Rohit; Gupta, Sachin; Singh, Narinderjit; Singh, Simarpreet

    2015-01-01

    Introduction: The advent of locking plates has brought new problems in implant removal. Difficulty in removing screws from a locking plate is well-known. These difficulties include cold welding between the screw head and locking screw hole, stripping of the recess of the screw head for the screwdriver, and cross-threading between threads in the screw head and screw hole. However, there are cases in which removal is difficult. We describe a new technique for removing a round headed, jammed locking screws from a locking plate. Case Report: 55 years old male patient received a locking distal tibial plate along with distal fibular plate 3years back from UAE. Now patient came with complaint of non-healing ulcer over medial aspect of lower 1/3rd of right leg from past 1 year. Non operative management did not improve the symptoms. The patient consented to implant removal, with the express understanding that implant removal might be impossible because already one failed attempt had been performed at some other hospital six months back. We then decided to proceed with the new technique. The rest of the proximal screws were removed using a technique not previously described. We used stainless steel metal cutting blades that are used to cut door locks or pad locks to cut the remaining stripped headed screws. Conclusion: This technique is very quick, easy to perform and inexpensive because the metal cutting blades which are used to cut the screws are very cheap. Yet it is very effective technique to remove the stripped headed or jammed locking screws. It is also very less destructive because of very less heat production during the procedure there is no problem of thermal necrosis to the bone or the surrounding soft tissue. PMID:27299064

  9. 77 FR 73732 - In the Matter of the Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Matter of the Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa'al-Jihad, aka... fi Bilad al-Rafidayn, aka The Organization of al-Jihad's Base of Operations in Iraq, aka al-Qaida of Jihad in Iraq, aka al-Qaida in Iraq, aka al-Qaida in Mesopotamia, aka al-Qaida in the Land of the...

  10. 77 FR 73732 - In the Matter of Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa'al...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Matter of Amendment of the Designation of al-Qa'ida in Iraq, aka Jam'at al Tawhid wa'al-Jihad, aka The... al-Rafidayn, aka The Organization of al-Jihad's Base of Operations in Iraq, aka al-Qaida of Jihad in Iraq, aka al-Qaida in Iraq, aka al-Qaida in Mesopotamia, aka al-Qaida in the Land of the Two...

  11. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Imhof, Beat A.; Dejana, Elisabetta; Engelhardt, Britta

    2009-01-01

    Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1β [IL-1β] but not tumor necrosis factor-α [TNF-α]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-α p55/p75 receptor-deficient leukocytes (TNFR−/−) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-α in ICAM-2−/−, JAM-A−/−, and PECAM-1−/− recipient mice, TNFR−/− leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-α to directly stimulate neutrophils is blocked, TNF-α–induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2−/−, JAM-A−/−, and PECAM-1−/− mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration. PMID:19211506

  12. Delineation of the Clinical, Molecular and Cellular Aspects of Novel JAM3 Mutations Underlying the Autosomal Recessive Hemorrhagic Destruction of the Brain, Subependymal Calcification and Congenital Cataracts

    PubMed Central

    Akawi, Nadia A.; Canpolat, Fuat E.; White, Susan M.; Quilis-Esquerra, Josep; Sanchez, Martin Morales; Gamundi, Maria José; Mochida, Ganeshwaran H.; Walsh, Christopher A.; Ali, Bassam R.; Al-Gazali, Lihadh

    2014-01-01

    We have recently shown that the hemorrhagic destruction of the brain, subependymal calcification and congenital cataracts is caused by biallelic mutations in the gene encoding junctional adhesion molecule 3 (JAM3) protein. Affected members from three new families underwent detailed clinical examination including imaging of the brain. Affected individuals presented with a distinctive phenotype comprising hemorrhagic destruction of the brain, subependymal calcification and congenital cataracts. All patients had a catastrophic clinical course resulting in death in 7 out of 10 affected individuals. Sequencing the coding exons of JAM3 revealed three novel homozygous mutations: c.2T>G (p.M1R), c.346G>A (p.E116K) and c.656G>A (p.C219Y). The p.M1R mutation affects the start codon and therefore is predicted to impair protein synthesis. Cellular studies showed that the p.C219Y mutation resulted in a significant retention of the mutated protein in the endoplasmic reticulum, suggesting a trafficking defect. The p.E116K mutant traffics normally to the plasma membrane as the wild type and may have lost its function due to the lack of interaction with an interacting partner. Our data further support the importance of JAM3 in the development and function of the vascular system and the brain. PMID:23255084

  13. Lars Onsager Prize: The mean field solution for Hard Sphere Jamming and a new scenario for the low temperature landscape of glasses

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    In a hard spheres systems particles cannot overlap. Increasing the density we reach a point where most of the particles are blocked and the density cannot be increased any more: this is the jamming point. The jamming point separates the phase, where all the constraint can be satisfied, from an unsatifiable phase, where spheres do have to overlap. A scaling theory of the behavior around the jamming critical point has been formulated and a few critical exponents have been introduced. The exponents are apparently super-universal, as far as they do seem to be independent from the space dimensions. The mean field version of the model (i.e. the infinite dimensions limit) has been solved analytically using broken replica symmetry techniques and the computed critical exponents have been found in a remarkable agreement with three-dimensional and two-dimensional numerical results and experiments. The theory predicts in hard spheres (in glasses) a new transition (the Gardener transition) from the replica symmetric phase to the replica broken phase at high density (at low temperature), in agreement with simulations on hard sphere systems. I will briefly discuss the possible consequences of this new picture on the very low temperature behavior of glasses in the quantum regime.

  14. Percolation and jamming of linear k-mers on a square lattice with defects: Effect of anisotropy.

    PubMed

    Tarasevich, Yuri Yu; Burmistrov, Andrei S; Shinyaeva, Taisiya S; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I

    2015-12-01

    Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear k-mers on a square lattice that contains defects. The point defects with a concentration d are placed randomly and uniformly on the substrate before deposition of the k-mers. The general case of unequal probabilities for orientation of depositing of k-mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA) model, the deposition of k-mers is distributed over different sites on the substrate. In the single-cluster relaxation (RSC) model, the single cluster grows by the random accumulation of k-mers on the boundary of the cluster (Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical concentration of defects d(c) is observed. In the zero-defect lattices, the jamming concentration p(j) (RRSA model) and the density of single clusters p(s) (RSC model) decrease with increasing length k-mers and with a decrease in the order parameter. For the RRSA model, the value of d(c) decreases for short k-mers (k<16) as the value of s increases. For k=16 and 32, the value of d(c) is almost independent of s. Moreover, for short k-mers, the percolation threshold is almost insensitive to the defect concentration for all values of s. For the RSC model, the growth of clusters with ellipselike shapes is observed for nonzero values of s. The density of the clusters p(s) at the critical concentration of defects d(c) depends in a complex manner on the values of s and k. An interesting finding for disordered systems (s=0) is that the value of p(s) tends towards zero in the limits of the very long k-mers, k→∞, and very small critical concentrations d(c)→0. In this case, the introduction of defects results in a suppression of k-mer stacking and in the formation of empty or loose

  15. Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass.

    PubMed

    Tsukahara, M; Mitrovic, S; Gajdosik, V; Margaritondo, G; Pournin, L; Ramaioli, M; Sage, D; Hwu, Y; Unser, M; Liebling, Th M

    2008-06-01

    We describe an approach for exploring microscopic properties of granular media that couples x-ray microtomography and distinct-element-method (DEM) simulations through image analysis. We illustrate it via the study of the intriguing phenomenon of instant arching in an hourglass (in our case a cylinder filled with a polydisperse mixture of glass beads that has a small circular shutter in the bottom). X-ray tomography provides three-dimensional snapshots of the microscopic conditions of the system both prior to opening the shutter, and thereafter, once jamming is completed. The process time in between is bridged using DEM simulation, which settles to positions in remarkably good agreement with the x-ray images. Specifically designed image analysis procedures accurately extract the geometrical information, i.e., the positions and sizes of the beads, from the raw x-ray tomographs, and compress the data representation from initially 5 gigabytes to a few tens of kilobytes per tomograph. The scope of the approach is explored through a sensitivity analysis to input data perturbations in both bead sizes and positions. We establish that accuracy of size--much more than position--estimates is critical, thus explaining the difficulty in considering a mixture of beads of different sizes. We further point to limits in the replication ability of granular flows away from equilibrium; i.e., the difficulty of numerically reproducing chaotic motion. PMID:18643256

  16. Why is the bulk modulus of jammed solids and granular packings much larger than the shear modulus?

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio; Weaire, Denis

    2013-03-01

    In granular packings and metallic glasses, the rigidity to compression is much more pronounced than with respect to shear, resulting in the bulk modulus being much larger than the shear modulus. This state of affairs becomes dramatic in marginal jammed solids which are solid-like to compression but not to shear (Ellenbroek, Zeravcic, van Saarloos, van Hecke, EPL 87, 34004 (2009)). For metallic glasses, it was argued by Weaire et al. some time ago (Acta Metall. 19, 779 (1971)) that this effect might be due to the nonaffinity of the particle displacements. These arise because the force acting on a particle upon strain as a result of the strain-induced motion of its neighbors is not balanced in the absence of local order. Hence the particles undergo nonaffine displacements to relax these forces to the expense of the elastic storage energy, leading to lower values of the elastic moduli. Using the nonaffine theory of Zaccone and Scossa-Romano (PRB, 83, 184205 (2011)) we found a conclusive solution to this long standing problem. We show that in packings and related materials the excluded volume between neighbors induces geometric correlations which significantly reduce the nonaffinity under compression but leave the nonaffinity in shear substantially unaltered.

  17. Jamming and percolation in generalized models of random sequential adsorption of linear k -mers on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Dubinin, Dmitri O.; Laptev, Valeri V.; Vygornitskii, Nikolai V.

    2015-12-01

    The jamming and percolation for two generalized models of random sequential adsorption (RSA) of linear k -mers (particles occupying k adjacent sites) on a square lattice are studied by means of Monte Carlo simulation. The classical RSA model assumes the absence of overlapping of the new incoming particle with the previously deposited ones. The first model is a generalized variant of the RSA model for both k -mers and a lattice with defects. Some of the occupying k adjacent sites are considered as insulating and some of the lattice sites are occupied by defects (impurities). For this model even a small concentration of defects can inhibit percolation for relatively long k -mers. The second model is the cooperative sequential adsorption one where, for each new k -mer, only a restricted number of lateral contacts z with previously deposited k -mers is allowed. Deposition occurs in the case when z ≤(1 -d ) zm where zm=2 (k +1 ) is the maximum numbers of the contacts of k -mer, and d is the fraction of forbidden contacts. Percolation is observed only at some interval kmin≤k ≤kmax where the values kmin and kmax depend upon the fraction of forbidden contacts d . The value kmax decreases as d increases. A logarithmic dependence of the type log10(kmax) =a +b d , where a =4.04 ±0.22 ,b =-4.93 ±0.57 , is obtained.

  18. Buckling of cornstarch solutions after pinch-off: evidence for a jamming transition at high extensional rates

    NASA Astrophysics Data System (ADS)

    Roche, Matthieu; Akkaya, Oyku M.; Kellay, Hamid; Stone, Howard A.

    2010-11-01

    We studied the behavior of density-matched cornstarch solutions during and after pinch-off from a needle. We observed an exponential slowing down in the thinning dynamics of the bridge connecting the droplet to the needle during which the bridge adopts a cylindrical shape. At this stage, the flow is mainly extensional allowing us to explore the behavior of starch solutions at extension rates greater than 10 s-1. The bridge continues to thin and then destabilizes leading to break-up in multiple parts. These parts retract on themselves and buckle. We show that this buckling behavior can be understood as a consequence of a liquid-to-solid transition of starch solutions during thinning. Using microscopy, we demonstrate that the neck is inhomogeneous during the last stages of pinch-off: the thinner sections of the neck are fluid while the thicker regions are jammed. We explain buckling by showing that the bridge deforms around its fluid sections, making this system analogous to a chain of solid links connected by fluid bridges.

  19. Jamming and percolation in generalized models of random sequential adsorption of linear k-mers on a square lattice.

    PubMed

    Lebovka, Nikolai I; Tarasevich, Yuri Yu; Dubinin, Dmitri O; Laptev, Valeri V; Vygornitskii, Nikolai V

    2015-12-01

    The jamming and percolation for two generalized models of random sequential adsorption (RSA) of linear k-mers (particles occupying k adjacent sites) on a square lattice are studied by means of Monte Carlo simulation. The classical RSA model assumes the absence of overlapping of the new incoming particle with the previously deposited ones. The first model is a generalized variant of the RSA model for both k-mers and a lattice with defects. Some of the occupying k adjacent sites are considered as insulating and some of the lattice sites are occupied by defects (impurities). For this model even a small concentration of defects can inhibit percolation for relatively long k-mers. The second model is the cooperative sequential adsorption one where, for each new k-mer, only a restricted number of lateral contacts z with previously deposited k-mers is allowed. Deposition occurs in the case when z≤(1-d)z(m) where z(m)=2(k+1) is the maximum numbers of the contacts of k-mer, and d is the fraction of forbidden contacts. Percolation is observed only at some interval k(min)≤k≤k(max) where the values k(min) and k(max) depend upon the fraction of forbidden contacts d. The value k(max) decreases as d increases. A logarithmic dependence of the type log(10)(k(max))=a+bd, where a=4.04±0.22,b=-4.93±0.57, is obtained. PMID:26764641

  20. Tracking performance of a combined Costas/AFC-loop under noisy Rayleigh/Rician channel conditions with additive Gaussian noise jamming

    NASA Astrophysics Data System (ADS)

    Kleine, Achim

    Models were developed to investigate the tracking behavior of combined Costas/AFC (Automatic Frequency Control) feedback loops under Rayleigh/Rician fading conditions with additive Gaussian noise jamming. A general linearized tracking model was developed for land-mobile channels. The model can be used for the nonlinearized case with sinusoidal phase detection characteristic using a standard solution of the Fokker-Planck equation. A tracking analysis for Costas/AFC loops with coherent automatic gain control, and an accuracy analysis for interferometers equipped with Costas/AFC loops are treated as examples. The tracking model is the most inaccurate in the case of quasistationary channels.

  1. Ginkgolide B Inhibits JAM-A, Cx43, and VE-Cadherin Expression and Reduces Monocyte Transmigration in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Liu, Xueqing; Sun, Wenjia; Zhao, Yanyang; Chen, Beidong; Wu, Wei; Bao, Li; Qi, Ruomei

    2015-01-01

    Aim. To investigate the effect of ginkgolide B on junction proteins and the reduction of monocyte migration in oxidized low-density lipoprotein- (ox-LDL-) treated endothelial cells. Methods. Human umbilical vein endothelial cells (HUVECs) were used in the present study. Immunofluorescence and Western blot were performed to determine the expression of junctional adhesion molecule-A (JAM-A), connexin 43 (Cx43), and vascular endothelial cadherin (VE-cadherin). Monocyte migration was detected by the Transwell assay. Results. ox-LDL stimulation increased JAM-A expression by 35%, Cx43 expression by 24%, and VE-cadherin expression by 37% in HUVECs. Ginkgolide B (0.2, 0.4, and 0.6 mg/mL) dose-dependently abolished the expression of these junction proteins. The monocyte transmigration experiments showed that the level of monocyte migration was sixfold higher in the ox-LDL-treated group than in the control group. Ginkgolide B (0.6 mg/mL) nearly completely abolished monocyte migration. Both ginkgolide B and LY294002 suppressed Akt phosphorylation and the expression of these junction proteins in ox-LDL-treated endothelial cells. These results suggest that the ginkgolide B-induced inhibition of junction protein expression is associated with blockade of the PI3K/Akt pathway. Conclusion. Ginkgolide B suppressed junction protein expression and reduced monocyte transmigration that was induced by ox-LDL. Ginkgolide B may improve vascular permeability in atherosclerosis. PMID:26246869

  2. PRKAG3 and CAST genetic polymorphisms and quality traits of dry-cured hams--I. Associations in Spanish dry-cured ham Jamón Serrano.

    PubMed

    Gou, P; Zhen, Z Y; Hortós, M; Arnau, J; Diestre, A; Robert, N; Claret, A; Čandek-Potokar, M; Santé-Lhoutellier, V

    2012-12-01

    The functional single polymorphisms identified in the calpastatin (CAST) gene have been related to the rate of meat tenderization and the protein turnover after slaughter, and the Ile199Val polymorphism identified in the coding region of the protein kinase AMP-activated (PRKAG3) gene has been proven to affect ultimate pH in muscle. The aim of the present study was to show the effects of these genetic polymorphisms on the quality traits of Spanish dry-cured ham Jamón Serrano. A tissue sample from 665 crossbreed pigs were genotyped for PRKAG3 Ile199Val, CAST Arg249Lys and CAST Ser638Arg polymorphisms, and a subsample of 120 dry cured hams was selected to perform physico-chemical, rheological, instrumental colour and sensory analyses. Associations between the polymorphisms and several quality traits of dry-cured ham, mainly related to flavour and texture, were found. The genotypes PRKAG3 Ile/Ile, CAST249 Arg/Arg and CAST638 Arg/Arg, and the haplotype CAST 249Arg-638Arg were the most favourable for Jamón Serrano production. PMID:22762995

  3. Comparing simulated wildfire effects to jam distribution and habitat quality in an intermediate-sized stream 10 years after a high intensity fire

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2013-12-01

    Large wood governs channel morphology and determines the quality and distribution of aquatic habitat in many forested river networks. This is particularly true in streams that contain both key pieces large enough to form morphologically effective jams, as well as smaller mobile wood. In these streams, jams create spawning habitat by retaining sediment, increase rearing and over-wintering habitat by forming pools, and force avulsions which create side channels. To explore the effects of wildfire-induced increases in wood loading on channel morphology and aquatic habitat we have applied the stochastic reach-scale channel simulator (RSCS) to a case study of Fishtrap Creek, an intermediate-sized stream in the interior of British Columbia which experienced a high intensity fire in 2003. As predicted by model simulations, high quality spawning, rearing, and over-wintering habitats, as well as multi-thread channels, are found exclusively in association with wood, while plane-bed morphologies dominate where wood is absent. However, valley confinement and glacial legacy exert an important control on the magnitude of the impacts of the fire-derived wood; where the stream is confined, wood is suspended and morphologically ineffective, while un-confined segments contain high effective wood loads, multi-thread channels, and abundant aquatic habitat. These findings suggest that the morphologic effects of wood are highly dependent on valley geometry, which is in turn dictated by glacial legacy throughout much of North America, and that the impacts of valley confinement on the effectiveness of introduced wood must be considered in future model iterations. Plane bed morphology typical of reaches without large wood present Complex forced pool-riffle morphology typical of reaches with high wood loading

  4. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    SciTech Connect

    Rodney, David; Schuh, Christopher A.

    2009-11-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  5. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    USGS Publications Warehouse

    Steve M. Jepsen; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2015-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  6. Henrique da Rocha Lima.

    PubMed

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión's disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene. PMID:26131867

  7. Henrique da Rocha Lima*

    PubMed Central

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión’s disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene. PMID:26131867

  8. Traffic jams in fish bones

    PubMed Central

    Melville, David B

    2011-01-01

    Extracellular matrix (ECM) proteins, cell adhesion molecules, cytokines, morphogens and membrane receptors are synthesized in the ER and transported through the Golgi complex to the cell surface and the extracellular space. The first leg in this journey from the ER to Golgi is facilitated by the coat protein II (COPII) vesicular carriers. Genetic defects in genes encoding various COPII components cause a broad spectrum of human diseases, from anemia to skeletal deformities. Here, we summarize our findings in zebrafish and discuss how mutations in COPII elements may cause specific cellular and developmental defects. PMID:21178403

  9. Deterministic models for traffic jams

    NASA Astrophysics Data System (ADS)

    Nagel, Kai; Herrmann, Hans J.

    1993-10-01

    We study several deterministic one-dimensional traffic models. For integer positions and velocities we find the typical high and low density phases separated by a simple transition. If positions and velocities are continuous variables the model shows self-organized critically driven by the slowest car.

  10. Fiches pratiques: Nouvelles histoires de modes; Pour se faire une tartine; Le Texte litteraire: "Decouverte" de Guy de Maupassant; Un Regiment dans un nuage (Practical Ideas: New Approaches to Grammatical Mood; How to Make Oneself Bread and Jam; The Literary Text: "Discovered" by Guy de Maupassant; A Regiment in a Cloud).

    ERIC Educational Resources Information Center

    Saraceni, Luisa; And Others

    1993-01-01

    Four activities are offered for French second-language classroom use: an exercise to aid comprehension of indicative and subjunctive mood; a lesson in making bread and jam, designed for young children; a study of narration within a novel, using a Guy de Maupassant story; and an exercise in discourse analysis. (MSE)

  11. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-{alpha} via distinct NF-{kappa}B pathways in human nasal epithelial cells

    SciTech Connect

    Ohkuni, Tsuyoshi; Kojima, Takashi; Ogasawara, Noriko; Masaki, Tomoyuki; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ichimiya, Shingo; Murata, Masaki; Tanaka, Satoshi; Himi, Tetsuo; Sawada, Norimasa

    2011-01-01

    Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P{sub 3}CSK{sub 4}, TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-{alpha}. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-{alpha} after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-{kappa}B pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.

  12. Leonardo da Vinci and the Downburst.

    NASA Astrophysics Data System (ADS)

    Gedzelman, Stanley David

    1990-05-01

    Evidence from the drawings, experiments, and writings of Leonardo da Vinci are presented to demonstrate that da Vinci recognized and, possibly, discovered the downburst and understood its associated airflow. Other early references to vortex flows resembling downbursts are mentioned.

  13. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. PMID:25861730

  14. Fluorine substitution enhanced photovoltaic performance of a D-A(1)-D-A(2) copolymer.

    PubMed

    Dang, Dongfeng; Chen, Weichao; Yang, Renqiang; Zhu, Weiguo; Mammo, Wendimagegn; Wang, Ergang

    2013-10-18

    A new alternating donor-acceptor (D-A1-D-A2) copolymer containing two electron-deficient moieties, isoindigo and quinoxaline, was synthesized. The photovoltaic performance of this polymer could be improved by incorporating fluorine atoms into the quinoxaline units, resulting in an efficiency of 6.32%. This result highlights the attractive promise of D-A1-D-A2 copolymers for high-performance bulk heterojunction solar cells. PMID:24000353

  15. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign.

    PubMed

    Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens

    2016-03-01

    Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance. PMID:26721261

  16. Virtual observatory publishing with DaCHS

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Neves, M. C.; Rothmaier, F.; Wambsganss, J.

    2014-11-01

    The Data Center Helper Suite DaCHS is an integrated publication package for building VO and Web services, supporting the entire workflow from ingestion to data mapping to service definition. It implements all major data discovery, data access, and registry protocols defined by the VO. DaCHS in this sense works as glue between data produced by the data providers and the standard protocols and formats defined by the VO. This paper discusses central elements of the design of the package and gives two case studies of how VO protocols are implemented using DaCHS' concepts.

  17. Origin of the DA and non-DA white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1989-01-01

    Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.

  18. CYBERWAR-2012/13: Siegel 2011 Predicted Cyberwar Via ACHILLES-HEEL DIGITS BEQS BEC ZERO-DIGIT BEC of/in ACHILLES-HEEL DIGITS Log-Law Algebraic-Inversion to ONLY BEQS BEC Digit-Physics U Barabasi Network/Graph-Physics BEQS BEC JAMMING Denial-of-Access(DOA) Attacks 2012-Instantiations

    NASA Astrophysics Data System (ADS)

    Huffmann, Master; Siegel, Edward Carl-Ludwig

    2013-03-01

    Newcomb-Benford(NeWBe)-Siegel log-law BEC Digit-Physics Network/Graph-Physics Barabasi et.al. evolving-``complex''-networks/graphs BEC JAMMING DOA attacks: Amazon(weekends: Microsoft I.E.-7/8(vs. Firefox): Memorial-day, Labor-day,...), MANY U.S.-Banks:WF,BoA,UB,UBS,...instantiations AGAIN militate for MANDATORY CONVERSION to PARALLEL ANALOG FAULT-TOLERANT but slow(er) SECURITY-ASSURANCE networks/graphs in parallel with faster ``sexy'' DIGITAL-Networks/graphs:``Cloud'', telecomm: n-G,..., because of common ACHILLES-HEEL VULNERABILITY: DIGITS!!! ``In fast-hare versus slow-tortoise race, Slow-But-Steady ALWAYS WINS!!!'' (Zeno). {Euler [#s(1732)] ∑- ∏()-Riemann[Monats. Akad. Berlin (1859)] ∑- ∏()- Kummer-Bernoulli (#s)}-Newcomb [Am.J.Math.4(1),39 (81) discovery of the QUANTUM!!!]-{Planck (01)]}-{Einstein (05)]-Poincar e [Calcul Probabilités,313(12)]-Weyl[Goett. Nach.(14); Math.Ann.77,313(16)]-(Bose (24)-Einstein(25)]-VS. -Fermi (27)-Dirac(27))-Menger [Dimensiontheorie(29)]-Benford [J.Am. Phil.Soc.78,115(38)]-Kac[Maths Stats.-Reason. (55)]- Raimi [Sci.Am.221,109(69)]-Jech-Hill [Proc.AMS,123,3,887(95)] log-function

  19. Jam-Resistant Cutters For Emergency Separation

    NASA Technical Reports Server (NTRS)

    Ordonez, Arturo C.; Yee, Ronald N.

    1990-01-01

    Pyrotechnic emergency-separation system includes shaped explosive charges that sever pair of hinges. System ensures reliable opening of escape hatch. Two pairs of cutters provided for each hinge so if one pair of cutters fails, other completes job. Pressure of explosions vented to prevent charge holders from fragmenting and forming sharp edges around open hatch. Exit slide deployed without tearing. Before detonation L-shaped retainers bear on hinge. After denonation, retainers fold outward to facilitate egress of severed hinges.

  20. Energy Is Jamming the Locks to Excellence.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    Schools cannot pass on rapidly rising fuel costs by raising fees. While the price and availability of fuel remain out of the school administrator's hands, the administrator can influence the amount of fuel the school consumes. The administrator can manage four heat sources (heating plants, using conventional fuels, lights, people, and sun) and is…

  1. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  2. Colloidal Jamming Dynamics in Microchannel Bottlenecks.

    PubMed

    Sendekie, Zenamarkos B; Bacchin, Patrice

    2016-02-16

    The purpose of this work is to examine the interplay between hydrodynamic conditions and physicochemical interactions from filtration experiments of microparticles. Experiments are performed in microfluidic filters with real-time visualization at pore scale. Both flow rate and pressure are measured with time to analyze the dynamics of pore clogging and permeability. Flux stepping experiments are performed at different physicochemical conditions to determine the different clogging conditions. The results allow distinguishing different clogging behaviors according to filtration conditions which are discussed by considering particle-particle and particle-wall colloidal interactions whose main characteristics are an important repulsive barrier at 0.01 mM, a significant secondary minimum at 10 mM, and low repulsive barrier at 100 mM. Clogging delay at moderate ionic strength and deposit fragility and associated sweeping out of aggregates of particles at high ionic strength are discussed from the deposit structure, specific resistance, and deposit relaxation analyses. It has also been observed that an opening angle at microchannel entrance causes rapid clogging, this effect being more pronounced when the repulsion is partially screened. Three different scenarios are discussed by analogy to crowd swarming: panic scenario (0.01 mM) where repulsion between particles induce pushing effects leading to the creation of robust arches at pore entrances; herding instinct scenario (10 mM) where the attraction (in secondary minima) between particles enhances the transport in pores and delays clogging; and sacrifice scenario (100 mM) where the capture efficiency is high but the aggregate formed at the wall is fragile. PMID:26789199

  3. Measurement of D->A Momentum Aperture and Test of D->A Field Qualities

    SciTech Connect

    Halling, Mike

    1992-02-27

    The data presented here were taken during two shifts dedicated to D->A studies. The goal during both of these study periods was a test of the field quality of the D->A channel devices, but for the first study period on 10/21/91 the TBT system was not operational so we simply measured the transfer efficiency as a function of momentum. The conclusion from these measurements is as follows: (1) The momentum aperture of the D->A channel is smaller than expected. (2) The restriction is in physical space is somewhere near A:IKIK. (3) The field quality of the injection channel devices is adequate.

  4. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats.

    PubMed

    Yao, Fan-Rong; Wang, Hui-Sheng; Guo, Yuan; Zhao, Yan

    2016-02-01

    A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes. PMID:26606866

  5. Common colds on Tristan da Cunha

    PubMed Central

    Shibli, M.; Gooch, S.; Lewis, H. E.; Tyrrell, D. A. J.

    1971-01-01

    Eight epidemics of respiratory disease have been observed among islanders of Tristan da Cunha. They seem to be initiated by the arrival of ships and transmission seemed to occur as a result of close human contact but could not always be traced. Islanders suffered from less colds than those in less isolated communities. PMID:5282927

  6. The PAN-DA data acquisition system

    SciTech Connect

    Petravick, D.; Berg, D.; Berman, E.; Bernett, M.; Constanta-Fanourakis, P.; Dorries, T.; Haire, M.; Kaczar, K; MacKinnon, B.; Moore, C.; Nicinski, T.; Oleynik, G.; Pordes, R.; Sergey, G.; Votava, M.; White, V.

    1989-05-01

    The Online and Data Acquisition software groups at Fermi National Accelerator Laboratory have extended the VAXONLINE data acquisition package to include a VME based data path. The resulting environment, PAN-DA, provides a high throughput for logging, filtering, formatting and selecting events. 10 refs., 1 fig.

  7. Hidden sketches by Leonardo da Vinci revealed

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-02-01

    Three drawings on the back of Leonardo da Vinci's The Virgin and Child with St Anne (circa 1508) have been discovered by researchers led by Michel Menu from the Centre de Recherche et de Restauration des Musées de France (C2RMF) and the Louvre Museum in Paris.

  8. How to Think Like Leonardo da Vinci

    ERIC Educational Resources Information Center

    Caouette, Ralph

    2008-01-01

    To be effective and relevant in twenty-first-century learning, art needs to be more inclusive. In this article, the author discusses how teachers can find a good example in Leonardo da Vinci for building an art program. His art, design, and curiosity are the perfect foundation for any art program, at any level. (Contains 3 resources and 3 online…

  9. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  10. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  11. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  12. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  13. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  14. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  15. 32 CFR 516.25 - DA Form 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true DA Form 4. 516.25 Section 516.25 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Reporting Legal Proceedings to HQDA § 516.25 DA Form 4. (a) General. The DA Form 4 (See figure...

  16. 32 CFR 516.25 - DA Form 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true DA Form 4. 516.25 Section 516.25 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Reporting Legal Proceedings to HQDA § 516.25 DA Form 4. (a) General. The DA Form 4 (See figure...

  17. A Day in the Life at DaVita Academy

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company name means "giving life," the bar for learning and development programs is held high. In this article, the author describes what it takes to graduate from DaVita Academy, the soft skills training program dialysis services company DaVita offers all its employees. DaVita's chief executive officer, Kent Thiry, states that the Academy…

  18. The DA{phi}NE-Light Facility

    SciTech Connect

    Burattini, Emilio; Cinque, Gianfelice; Dabagov, Sultan; Grilli, Antonio; Marcelli, Augusto; Pace, Elisabetta; Piccinini, Massimo; Raco, Agostino; Monti, Francesca

    2004-05-12

    The new Synchrotron Radiation facility at Frascati exploits the intense photon emission from DA{phi}NE, the 0,51 GeV storage ring circulating over 1 A of electrons. Among the three beamlines commissioned, the Synchrotron INfrared Beamline At Da{phi}ne (SINBAD) is fully operational by a brilliant SR beam spanning the entire IR. Recently, the soft X-ray beamline has been characterized and, once implemented the double-crystal monocromator, X-ray Absorption Spectroscopy is applied on material standards in the distinguishing energy region below 4 keV. An UltraViolet line, presently dedicated to photobiology dosimetry, has also given first results on cell irradiation in the UVB band.

  19. The Real Code of Leonardo da Vinci

    PubMed Central

    Ose, Leiv

    2008-01-01

    Leonardo da Vinci was born in Italy. Among the researchers and scientists, he is favourably known for his remarkable efforts in scientific work. His investigations of atherosclerosis judiciously combine three separate fields of research. In 1506, he finished his masterpiece, painting of Mona Lisa. A careful clinical examination of the famous painting reveals a yellow irregular leather-like spot at the inner end of the left upper eyelid and a soft bumpy well-defined swelling of the dorsum of the right hand beneath the index finger about 3 cm long. This is probably the first case of familial hypercholesterolemia (FH). The FH code of Leonardo da Vinci was given immense consideration by scientists like Carl Muller, who described the xanthomas tuberosum and angina pectoris. On the contrary, Akira Endo searched for microbial metabolites that would inhibit HMG-CoA reductase, the rate-limiting enzyme in the synthesis of cholesterol and finally, Michael Brown and Joseph Goldstein published a remarkable series of elegant and insightful papers in the 70s and 80s. They established that the cellular uptake of low-density lipoprotein (LDL) essentially requires the LDL receptor. In conclusion: this was the real Code of Leonardo da Vinci. PMID:19924278

  20. 40 CFR 60.52Da - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Recordkeeping requirements. 60.52Da Section 60.52Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility Steam Generating Units for...

  1. Asteroid 2012 DA14 To Whiz Past Earth Safely

    NASA Video Gallery

    The small near-Earth asteroid 2012 DA14 will pass very close to Earth on Feb. 15, 2013. Asteroid 2012 DA14 will be closest to Earth at about 11:24 a.m. PST (2:24 p.m. EST and 1924 UTC), on Feb. 15,...

  2. The Case: Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  3. Da Costa's syndrome or neurocirculatory asthenia.

    PubMed Central

    Paul, O

    1987-01-01

    The syndrome variously called Da Costa's syndrome, effort syndrome, neurocirculatory asthenia, etc has been studied for more than 100 years by many distinguished physicians. Originally identified in men in wartime, it has been widely recognised as a common chronic condition in both sexes in civilian life. Although the symptoms may seem to appear after infections and various physical and psychological stresses, neurocirculatory asthenia is most often encountered as a familial disorder that is unrelated to these factors, although they may aggravate an existing tendency. Respiratory complaints (including breathlessness, with and without effort, and smothering sensations) are almost universal, and palpitation, chest discomfort, dizziness and faintness, and fatigue are common. The physical examination is normal. The aetiology is obscure but patients usually have a normal life span. Reassurance and measures to improve physical fitness are helpful. PMID:3314950

  4. 75 FR 52292 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Diamond Aircraft... new airworthiness directive (AD) for all Diamond Aircraft Industries GmbH Models DA 40 and DA...

  5. 75 FR 75868 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Register on August 25, 2010 (75 FR 52292). That NPRM proposed to require a retrofit of the rear passenger... 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034... Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation Administration,...

  6. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  7. Metal Lines in DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Zuckerman, B.; Koester, D.; Reid, I. N.; Hünsch, M.

    2003-10-01

    We report Keck telescope HIRES echelle observations of DA white dwarfs in a continuation of an extensive search for metals. These spectra are supplemented with new JHK magnitudes that are used to determine improved atmospheric parameters. Of the DA white dwarfs not in binary or common proper motion systems, about 25% show Ca II lines. For these, Ca abundances are determined from comparison with theoretical equivalent widths from model atmosphere calculations; in a few cases we also obtain Mg, Fe, Si, and Al abundances. If Ca is not observed, we generally determine very stringent upper limits. We compare the data to predictions of previously published models involving the accretion/diffusion of interstellar matter and of comets. The derived abundances are not obviously compatible with the predictions of either model, which up to now could only be tested with traces of metals in helium-rich white dwarfs. By modifying certain assumptions in the published interstellar accretion model we are able to match the distribution of the elements in the white dwarf atmospheres, but, even so, tests of other expectations from this scenario are less successful. Because comet accretion appears unlikely to be the primary cause of the DAZ phenomenon, the data suggest that no more than about 20% of F-type main-sequence stars are accompanied by Oort-like comet clouds. This represents the first observational estimate of this fraction. A plausible alternative to the accretion of cometary or interstellar matter is disruption and accretion of asteroidal material, a model first suggested in 1990 to explain excess near-infrared emission from the DAZ G29-38. An asteroidal debris model to account for the general DAZ phenomenon does not presently disagree with the HIRES data, but neither is there any compelling evidence in support of such a model. The HIRES data indicate that in close red dwarf/white dwarf binaries not known to be cataclysmic variables there is, nonetheless, significant mass

  8. Der Telemanipulator daVinci als mechanisches Trackingsystem

    NASA Astrophysics Data System (ADS)

    Käst, Johannes; Neuhaus, Jochen; Nickel, Felix; Kenngott, Hannes; Engel, Markus; Short, Elaine; Reiter, Michael; Meinzer, Hans-Peter; Maier-Hein, Lena

    Der Telemanipulator daVinci (Intuitive Surgical, Sunnyvale, Kalifornien) ist ein M aster-Slave System für roboterassistierte minimalinvasive Chirurgie. Da er über integrierte Gelenksensoren verfügt, kann er unter Verwendung der daVinci-API als mechanisches Trackingsystem verwendet werden. In dieser Arbeit evaluieren wir die Präzision und Genauigkeit eines daVinci mit Hilfe eines Genauigkeitsphantoms mit bekannten Maßen. Der ermittelte Positionierungsfehler liegt in der Größenordnung von 6 mm und ist somit für einen Großteil der medizinischen Fragestellungen zu hoch. Zur Reduktion des Fehlers schlagen wir daher eine Kalibrierung der Gelenksensoren vor.

  9. 40 CFR 60.49Da - Emission monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring. 60.49Da Section 60... Generating Units § 60.49Da Emission monitoring. (a) An owner or operator of an affected facility subject...

  10. 40 CFR 60.49Da - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring. 60.49Da Section 60... Generating Units for Which Construction is Commenced After September 18, 1978 § 60.49Da Emission...

  11. 40 CFR 60.49Da - Emission monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring. 60.49Da Section 60... Generating Units § 60.49Da Emission monitoring. (a) An owner or operator of an affected facility subject...

  12. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  13. Migration of ATLAS PanDA to CERN

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme Andrew; Klimentov, Alexei; Koblitz, Birger; Lamanna, Massimo; Maeno, Tadashi; Nevski, Pavel; Nowak, Marcin; Emanuel De Castro Faria Salgado, Pedro; Wenaus, Torre

    2010-04-01

    The ATLAS Production and Distributed Analysis System (PanDA) is a key component of the ATLAS distributed computing infrastructure. All ATLAS production jobs, and a substantial amount of user and group analysis jobs, pass through the PanDA system, which manages their execution on the grid. PanDA also plays a key role in production task definition and the data set replication request system. PanDA has recently been migrated from Brookhaven National Laboratory (BNL) to the European Organization for Nuclear Research (CERN), a process we describe here. We discuss how the new infrastructure for PanDA, which relies heavily on services provided by CERN IT, was introduced in order to make the service as reliable as possible and to allow it to be scaled to ATLAS's increasing need for distributed computing. The migration involved changing the backend database for PanDA from MySQL to Oracle, which impacted upon the database schemas. The process by which the client code was optimised for the new database backend is discussed. We describe the procedure by which the new database infrastructure was tested and commissioned for production use. Operations during the migration had to be planned carefully to minimise disruption to ongoing ATLAS offline computing. All parts of the migration were fully tested before commissioning the new infrastructure and the gradual migration of computing resources to the new system allowed any problems of scaling to be addressed.

  14. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. PMID:27113203

  15. A cosmologia no ensino da geografia

    NASA Astrophysics Data System (ADS)

    Santos, S. C.; Chiaradia, A. P. M.

    2003-08-01

    O principal objetivo deste trabalho é auxiliar o professor de Geografia em sala de aula no ensino de tópicos relacionados com a Cosmologia. A idéia deste trabalho surgiu quando foi constatado que o professor de Geografia tem dificuldades de ensinar este tópico. Esta constatação foi feita por uma das autoras ao lecionar este tópico no ensino fundamental e em discussões com outros professores de Geografia. Da mesma maneira que ocorria desde os tempos mais antigos, os alunos têm muito interesse em conhecer os fenômenos que ocorrem no Cosmo, porém os livros didáticos de Geografia utilizados em sala de aula não são ricos em informações sobre este assunto. Assim, o professor de Geografia tem poucas informações para discutir este assunto em sala de aula e não dá a devida importância para este tópico. Então, foi desenvolvido um material de apoio para professores de Geografia sobre a origem do Universo, sua evolução e seu possível futuro evolutivo segundo as mais recentes teorias, com base em perguntas feitas pelos alunos de ensino fundamental e as informações trazidas nos livros didáticos Não cabe a este material inovar e tão pouco trazer uma metodologia de ensino de Cosmologia. Neste material o professor de Geografia pode encontrará um banco de informações, que constitui no estabelecimento de conceitos, teorias e hipóteses, sobre a Cosmologia, em linguagem simples e de fácil entendimento. Para desenvolvê-lo, foram feitas pesquisas não exaustivas em livros e revistas científicas, compilação e discussão em forma cronológica das teorias aceitas sobre modelos cosmológicos. Portanto, este material será apresentado neste trabalho.

  16. Overview of ATLAS PanDA Workload Management

    SciTech Connect

    Maeno T.; De K.; Wenaus T.; Nilsson P.; Stewart G. A.; Walker R.; Stradling A.; Caballero J.; Potekhin M.; Smith D.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  17. The ATLAS PanDA Monitoring System and its Evolution

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  18. Overview of ATLAS PanDA Workload Management

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  19. Geomagnetic observations on tristan da cunha, south atlantic ocean

    USGS Publications Warehouse

    Matzka, J.; Olsen, N.; Maule, C.F.; Pedersen, L.W.; Berarducci, A.M.; Macmillan, S.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37?? 05' S, 12?? 18' W, is therefore of crucial importance. We have conducted several sets of repeat station measurements during magnetically quiet conditions (Kp 2o or less) in 2004. The procedures are described and the results are compared to those from earlier campaigns and to the predictions of various global field models. Features of the local crustal bias field and the solar quiet daily variation are discussed. We also evaluate the benefit of continuous magnetic field recordings from Tristan da Cunha, and argue that such a data set is a very valuable addition to geomagnetic satellite data. Recently, funds were set up to establish and operate a magnetometer station on Tristan da Cunha during the Swarm magnetic satellite mission (2011-2014).

  20. Recent Improvements in the ATLAS PanDA Pilot

    NASA Astrophysics Data System (ADS)

    Nilsson, P.; Caballero Bejar, J.; Compostella, G.; Contreras, C.; De, K.; Dos Santos, T.; Maeno, T.; Potekhin, M.; Wenaus, T.

    2012-12-01

    The Production and Distributed Analysis system (PanDA) in the ATLAS experiment uses pilots to execute submitted jobs on the worker nodes. The pilots are designed to deal with different runtime conditions and failure scenarios, and support many storage systems. This talk will give a brief overview of the PanDA pilot system and will present major features and recent improvements including CernVM File System integration, the job retry mechanism, advanced job monitoring including JEM technology, and validation of new pilot code using the HammerCloud stress-testing system. PanDA is used for all ATLAS distributed production and is the primary system for distributed analysis. It is currently used at over 130 sites worldwide. We analyze the performance of the pilot system in processing LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its further evolution.

  1. Situação da Mulher na Astronomia Brasileira

    NASA Astrophysics Data System (ADS)

    Silva, Adriana V. R.

    2007-07-01

    O conteúdo desse texto surgiu de uma apresentação de mesmo título que fiz na XXXI Reunião Anual da Sociedade Astronômica Brasileira (SAB) em 2005. Esse tema foi inspirado originalmente pela minha participação no "2nd UIPAP International Conference on Women in Physics" realizado entre 23 e 25 de maio de 2005 no Rio de Janeiro. Essa é uma conferência internacional que acontece de três em três anos, sendo que a primeira ocorreu em 2002 na cidade de Paris, França. Participei dessa conferência como membro da delegação da Sociedade Brasileira de Física e um dos trabalhos que apresentei versava sobre a situação das mulheres na Astronomia brasileira, cujos resultados principais discorro a seguir. A situação das astrônomas, baseada nos dados dos sócios da SAB coletados no final de 2004, é comparada com a das físicas brasileiras e também com as nossas colegas americanas. Os dados identificam ainda uma maior evasão da carreira por parte das mulheres do que os homens. Alguns dos possíveis motivos da evasão são discutidos, como o desejo de constituir família e/ou isolamento. Resultados um tanto preocupantes com relação à distribuição de bolsas de produtividade do CNPq também são apresentados. As principais discussões e estratégias recomendadas nesse congresso são mencionadas de forma resumida ao final.

  2. The future of PanDA in ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  3. The role of transparency in da Vinci stereopsis.

    PubMed

    Zannoli, Marina; Mamassian, Pascal

    2011-10-15

    The majority of natural scenes contains zones that are visible to one eye only. Past studies have shown that these monocular regions can be seen at a precise depth even though there are no binocular disparities that uniquely constrain their locations in depth. In the so-called da Vinci stereopsis configuration, the monocular region is a vertical line placed next to a binocular rectangular occluder. The opacity of the occluder has been mentioned to be a necessary condition to obtain da Vinci stereopsis. However, this opacity constraint has never been empirically tested. In the present study, we tested whether da Vinci stereopsis and perceptual transparency can interact using a classical da Vinci configuration in which the opacity of the occluder varied. We used two different monocular objects: a line and a disk. We found no effect of the opacity of the occluder on the perceived depth of the monocular object. A careful analysis of the distribution of perceived depth revealed that the monocular object was perceived at a depth that increased with the distance between the object and the occluder. The analysis of the skewness of the distributions was not consistent with a double fusion explanation, favoring an implication of occlusion geometry in da Vinci stereopsis. A simple model that includes the geometry of the scene could account for the results. In summary, the mechanism responsible to locate monocular regions in depth is not sensitive to the material properties of objects, suggesting that da Vinci stereopsis is solved at relatively early stages of disparity processing. PMID:21906614

  4. Publishing Planetary Data to the VO using DaCHS

    NASA Astrophysics Data System (ADS)

    Demleitner, M.

    2014-04-01

    Publishing to the Virtual Observatory has many advantages, but between standards compliance, registration, data organisation, and server operation it is also requires a nontrivial effort if starting from scratch. The DaCHS software from the German Astrophysical Virtual Observatory offers a packaged solution letting publishers concentrate on working with their own data and metadata as much as possible. For the planetary community, publishing is further facilitated by built-in support for the EPN-TAP data model. This contribution will show a typical publishing workflow together with a brief overview of how DaCHS meshes in with the VO and Web-based data usage.

  5. Asteroid 1986 DA - Radar evidence for a metallic composition

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Rosema, K. D.; Campbell, D. B.; Chandler, J. F.; Hine, A. A.; Hudson, R. S.

    1991-01-01

    Echoes from the near-earth object 1986 DA show it to be significantly more reflective than other radar-detected asteroids. This result supports the hypothesis that 1986 DA is a piece of NiFe metal derived from the interior of a much larger object that melted, differentiated, cooled, and subsequently was disrupted in a catastrophic collision. This 2-kilometer asteroid, which appears smooth at centimeter to meter scales but extremely irregular at 10- to 100-meter scales, might be (or have been a part of) the parent body of some iron meteorites.

  6. Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II.

    PubMed

    Tohri, Akihiko; Dohmae, Naoshi; Suzuki, Takehiro; Ohta, Hisataka; Inoue, Yasunori; Enami, Isao

    2004-03-01

    To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061]. PMID:15009208

  7. DATA ASSESSMENT REPORTS FOR CEMS AT SUBPART DA FACILITIES

    EPA Science Inventory

    EPA promulgated minimum quality assurance (QA) requirements for Continuous Emission Monitoring Systems (CEMS) in 40 CFR Part 60 Appendix F. Appendix F requires Da source owners to develop site-specific QA plans and report the results of EPA specified QA activities each calendar q...

  8. Asteroid 1986 DA: Radar evidence for a metallic composition

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.; Campbell, D. B.; Chandler, J. F.; Hine, A. A.; Hudson, R. S.; Rosema, K. D.; Shapiro, Irwin I.

    1991-01-01

    Radar observations of the near-Earth asteroid 1986 DA were carried out at the Arecibo Observatory in April 1986, two months after its discovery. Radar results are consistent with the hypothesis that 1986 HA is a piece of NiFe metal derived from the interior of a much larger object that melted, differentiated, cooled and subsequently was disrupted in a catastrophic collision. This 2-km asteroid might be (or have been part of) the parent body of some iron meteorites. Or 1986 DA might share the parentage and/or part of the dynamical history of some meteorites without ever having contributed any of its own ejecta to our meteorite sample. Analysis of the samples returned from 1986 DA might ultimately involve economic considerations. Meteoritic metal is mostly iron with about 8 percent nickel, but also contains substantial concentrations of precious and strategic metals, including approx. 1 ppm of gold and approx. 10 ppm of platinum group elements. If these abundances apply to 1986 DA, it contains some 10(exp 16) g of iron, 10 (exp 15) g of nickel, 10(exp 11) g of platinum group metals, and 10(exp 10) g of gold.

  9. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs...

  10. Training and Health. Leonardo da Vinci Series: Good Practices.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.

    This document profiles programs in the fields of health and medicine that are offered through the European Commission's Leonardo da Vinci program. The following programs are profiled: (1) CYTOTRAIN (a transnational vocational training program in cervical cancer screening); (2) Apollo (a program of open and distance learning for paramedical…

  11. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  12. The Potential da Vinci in All of Us

    ERIC Educational Resources Information Center

    Petto, Sarah; Petto, Andrew

    2009-01-01

    The study of the human form is fundamental to both science and art curricula. For vertebrates, perhaps no feature is more important than the skeleton to determine observable form and function. As Leonard da Vinci's famous Proportions of the Human Figure (Virtruvian Man) illustrates, the size, shape, and proportions of the human body are defined by…

  13. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potential combustion concentration (80 percent reduction) for each 24-hour period of steam generator... owner or operator of a fluidized bed combustion electric utility steam generator (atmospheric or... Steam Generating Units for Which Construction is Commenced After September 18, 1978 § 60.47Da...

  14. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potential combustion concentration (80 percent reduction) for each 24-hour period of steam generator... owner or operator of a fluidized bed combustion electric utility steam generator (atmospheric or... Steam Generating Units for Which Construction is Commenced After September 18, 1978 § 60.47Da...

  15. Women and Technical Professions. Leonardo da Vinci Series: Good Practices.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.

    This document profiles programs for women in technical professions that are offered through the European Commission's Leonardo da Vinci program. The following programs are profiled: (1) Artemis and Diana (vocational guidance programs to help direct girls toward technology-related careers); (2) CEEWIT (an Internet-based information and…

  16. Studying and Working Abroad. Leonardo da Vinci Series: Good Practices.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.

    This document profiles recent successful examples of students studying and working abroad as part of the European Commission's Leonardo da Vinci program, which is designed to give students across the European Union the opportunity to experience vocational training in a foreign country. The following examples are presented: (1) 3 Finnish students…

  17. Modelagem do vento e da fotosfera de AG Carinae

    NASA Astrophysics Data System (ADS)

    Groh, J. H.; Damineli, A.

    2003-08-01

    A trajetória evolutiva das estrelas de alta massa depende fortemente de suas taxas de perda de massa. Apesar do rápido progresso no estudo destas estrelas, a taxa de perda de massa e outros parâmetros físicos básicos, como a temperatura superficial e a velocidade terminal do vento ainda não estão bem determinados. Isto ocorre devido à presença de ventos irregulares, rápidos e fortes ao redor destas estrelas, tornando a interpretação dos seus espectros uma tarefa difícil. Assim, a modelagem do vento e da fotosfera dessas estrelas está sendo cada vez mais usada para obter tais parâmetros a partir dos espectros. O aumento da taxa de perda de massa durante a fase LBV (Variáveis Luminosas Azuis), comparado com outros tipos de estrelas, tem sido atribuído a instabilidades do tipo S Doradus. Dispomos de uma base de dados espectroscópicos cobrindo 22 anos de observações de AG Carinae, incluindo um ciclo S Doradus completo, com espectros CCD em alta resolução na faixa óptica e infravermelha. Utilizamos o programa desenvolvido por Schmutz (1997) para uma análise preliminar desse ciclo, obtendo a taxa de perda de massa a partir da linha do Ha. Não existe uma correlação clara da taxa de perda de massa com mudanças da temperatura efetiva, do raio da estrela e do fluxo na banda V. A estrela atingiu seu mínimo fotométrico (raio mínimo) em 1990 e o máximo fotométrico (raio máximo) em 1995, enquanto que o fluxo máximo da linha do Ha ocorreu em 1996. Além disso a taxa de perda de massa não segue esse ciclo, contrariamente às idéias correntes. Para fazer um modelo mais realista estamos usando o programa CMFGEN (Hillier & Miller), que trata a fotosfera e o vento estelar de forma consistente, considerando a radiação fora do equilíbrio termodinâmico (NLTE) e com blanketting total de linhas. Simulamos o espectro de AG Carinae em duas épocas extremas do ciclo S Dor para testar os resultados obtidos com o modelo mais simplificado.

  18. Roles and Delegation of Authority (R/DA) System

    SciTech Connect

    ABBOTT,JOHN P.; HUTCHINS,JAMES C.; SCHOCH,DAVID G.

    1999-11-01

    The processes of defining managerial roles and providing for delegation of authority are essential to any enterprise. At most large organizations, these processes are defined in policy manuals and through sets of standard operating procedures for many, if not all, business and administrative functions. Many of these staff-initiated, administrative functions require the routing of documents for approval to one or more levels of management. These employee-oriented, back office types of workflows tend to require more flexibility in determining to whom these documents should go to, while, at the same time, providing the responsible parties with the flexibility to delegate their approval authority or allow others to review their work. Although this practice is commonplace in manual, paper-based processes that exist in many organizations, it is difficult to provide the same flexibility in the more structured, electronic-based, workflow systems. The purpose of this report is to present a framework or architecture for creating a R/DA system and provide some insights associated with its design and utilization. To improve understanding and clarify subsequent discussion, the goals and requirements for the major R/DA system components, namely, the database and interface modules, are initially presented along with the identification of important concepts and the definition of critical terms. Next high-level functions relating the types of inputs to the outputs of the R/DA interface module are introduced and discussed. Then the relationships between the major R/DA modules and the primary components associated with its creation and maintenance are presented and analyzed. Finally, some conclusions are drawn relative to the advantages associated with developing a R/DA system for use in implementing an enterprise-wide, work-facilitating information system.

  19. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  20. 49 CFR 178.58 - Specification 4DA welded steel cylinders for aircraft use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4DA welded steel cylinders for...) SPECIFICATIONS FOR PACKAGINGS Specifications for Cylinders § 178.58 Specification 4DA welded steel cylinders for aircraft use. (a) Type, size, and service pressure. A DOT 4DA is a welded steel sphere (two...

  1. In vivo breakdown products of the 32 kDa thylakoid herbicide binding protein. [Spirodela oligorrhiza

    SciTech Connect

    Greenberg, B.M.; Mattoo, A.K.; Gaba, V.; Edelman, M.

    1986-04-01

    The 32 kDa herbicide binding protein of PSII is degraded rapidly in the light. This phenomenon was investigated in Spirodela oligorrhiza. When fronds were radiolabeled in the presence of cycloheximide only the chloroplast-encoded proteins were labeled. Under these conditions, a breakdown product of 23.5 kDa was observed. This polypeptide was further degraded with kinetics similar to that of the 32 kDa protein. The 23.5 kDa polypeptide cross-reacted with an antibody specific to the 32 kDa protein. By protease digestion it was determined that the 23.5 kDa polypeptide is the intact N-terminal piece of the 32 kDa protein. Thus, this product corresponds to the membrane anchor of the 32 kDa protein. Using the same antibody, breakdown products of 16 kDa, 14 kDa and 12 kDa were observed. These products have also been observed in Zea mays and Solanum nigrum. Using DCMU during pulse-chase experiments at different light intensities, evidence was obtained that the 23.5 kDa breakdown product is generated in vivo.

  2. JCoDA: a tool for detecting evolutionary selection

    PubMed Central

    2010-01-01

    Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary

  3. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100mW/cm2, which is largely exceed the disturbing threshold and therefore verify the feasibility of using this kind of laser disturbing the satellite-based detector. According to the results. using the similar laser power density absolutely saturate the requirements to laser disturbing satellite-based detector. If considering the peak power of pulsed laser, even decrease laser average power, it is also possible to damage the detector. This result will provide the reliable evidences to evaluate the effect of laser disturbing satellite-based detector.

  4. Jam proof closure assembly for lidded pressure vessels

    DOEpatents

    Cioletti, Olisse C.

    1992-01-01

    An expendable closure assembly is provided for use (in multiple units) with a lockable pressure vessel cover along its rim, such as of an autoclave. This assembly is suited to variable compressive contact and locking with the vessel lid sealing gasket. The closure assembly consists of a thick walled sleeve insert for retention in the under bores fabricated in the cover periphery and the sleeve is provided with internal threading only. A snap serves as a retainer on the underside of the sleeve, locking it into an under bore retention channel. Finally, a standard elongate externally threaded bolt is sized for mating cooperation with the so positioned sleeve, whereby the location of the bolt shaft in the cover bore hole determines its compressive contact on the underlying gasket.

  5. Robot flow, clogging and jamming in confined spaces

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A. D.; Goldman, Daniel I.

    We hypothesized that when a collection of robots operate in confined space, maximization of individual effort could negatively affect the collective performance by impeding the mobility of the individuals. To test our hypothesis, we built and programmed groups of 1-4 autonomous robotic diggers to construct a tunnel in a model cohesive soil. The robots' mobility, defined in terms of the residence time (T) required for a robot to move one body-length within the tunnel, was compared between groups of maximally active robots (mode 1), groups with different levels of activity between individuals (mode 2), and maximally active robots with a ``giving up'' behavior (mode 3), in which the robot ceased the attempt to excavate in a crowded tunnel. In small groups of two robots, T was ~3 sec and did not depend on the mode of operation. However, an increase in the number of robots caused an increase in T which depended upon mode. The residence time in groups of four robots in mode 1 (~9 sec) significantly exceeded the residence time in mode 2 and 3 (~4 sec), indicating that crowding was causing slower movement of individuals, particularly under maximum effort (mode 1). We will use our robophysical studies to discover principles of collective construction in subterranean social animals.

  6. Jam It Up! Creating Music in Preschool. Early Childhood.

    ERIC Educational Resources Information Center

    Wilcox, Ella, Comp.

    1994-01-01

    Contends that, from the earliest possible moment and even before birth, it is apparent that babies respond to sound stimuli. Presents a series of music activities designed to make music an integral part of children's lives. Includes activities involving singing, rhythm, musical instruments, and listening to guest musicians in the classroom. (CFR)

  7. Jamming, Yielding, and Rheology of Weakly Vibrated Granular Media

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Wortel, Geert H.; van Dellen, Louwrens T. H.; Dauchot, Olivier; van Hecke, Martin

    2011-09-01

    We establish that the rheological curve of dry granular media is nonmonotonic, both in the presence and absence of external mechanical agitations. In the presence of weak vibrations, the nonmonotonic flow curves govern a hysteretic transition between slow but steady and fast, inertial flows. In the absence of vibrations, the nonmonotonic flow curve governs the yielding behavior of granular media. Finally, we show that nonmonotonic flow curves can be seen in at least two different flow geometries and for several granular materials.

  8. Jamming, Yielding and Rheology of Weakly Vibrated Granular Media

    NASA Astrophysics Data System (ADS)

    Wortel, Geert; Dijksman, Joshua; Dauchot, Olivier; van Hecke, Martin

    2012-02-01

    We establish that the rheological curve of dry granular media is nonmonotonic, both in the presence and absence of external mechanical agitations. In the absence of vibrations, the nonmonotonic flow curve governs the yielding behavior of granular media. In the presence of weak vibrations, the nonmonotonic flow curves govern a hysteretic transition between slow but steady and fast, inertial flows. For large agitations, the transition becomes non-hysteretic. We probe the fluctuations near the point where the 1st order transition becomes of 2nd order.

  9. Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks.

    PubMed

    Correia, Sónia C; Perry, George; Moreira, Paula I

    2016-10-01

    The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology. PMID:27460705

  10. Bacteria Delay the Jamming of Particles at Microchannel Bottlenecks.

    PubMed

    Sendekie, Zenamarkos Bantie; Gaveau, Arthur; Lammertink, Rob G H; Bacchin, Patrice

    2016-01-01

    Clogging of channels by complex systems such as mixtures of colloidal and biological particles is commonly encountered in different applications. In this work, we analyze and compare the clogging mechanisms and dynamics by pure and mixture suspensions of polystyrene latex particles and Escherichia coli by coupling fluorescent microscopic observation and dynamic permeability measurements in microfluidic filters. Pure particles filtration leads to arches and deposit formation in the upstream side of the microfilter while pure bacteria form streamers in the downstream zone. When mixing particle and bacteria, an unexpected phenomenon occurs: the clogging dynamics is significantly delayed. This phenomenon is related to apparent "slippery" interactions between the particles and the bacteria. These interactions limit the arches formation at the channels entrances and favour the formation of dendritic structures on the pillars between the channels. When these dendrites are eroded by the flow, fragments of the deposit are dragged towards the channels entrances. However, these bacteria/particles clusters being lubricated by the slippery interactions are deformed and stretched by the shear thus facilitating their passage through the microchannels. PMID:27510611

  11. Visual Culture Jam: Art, Pedagogy, and Creative Resistance

    ERIC Educational Resources Information Center

    Darts, David

    2004-01-01

    In this article, the author argues that visual culture is an essential direction for contemporary art educators who are committed to examining social justice issues and fostering democratic principles through their teaching. The study explores how visual culture education can empower students to perceive and meaningfully engage in the ideological…

  12. James Newton Howard: JAMs with TRI-M.

    ERIC Educational Resources Information Center

    Reninger, Rosemary D.

    2000-01-01

    Presents an interview with James Newton Howard, a film composer. Provides background information on Howard. Addresses topics such as his most challenging and rewarding scores, his musical background, and the benefits of being associated with the American Society of Composers, Authors, and Publishers (ASCAP). (CMK)

  13. Particle-scale reversibility in athermal particulate media below jamming.

    PubMed

    Schreck, Carl F; Hoy, Robert S; Shattuck, Mark D; O'Hern, Corey S

    2013-11-01

    We perform numerical simulations of repulsive, frictionless athermal disks in two and three spatial dimensions undergoing cyclic quasistatic simple shear to investigate particle-scale reversible motion. We identify three classes of steady-state dynamics as a function of packing fraction φ and maximum strain amplitude per cycle γ(max). Point-reversible states, where particles do not collide and exactly retrace their intracycle trajectories, occur at low φ and γ(max). Particles in loop-reversible states undergo numerous collisions and execute complex trajectories but return to their initial positions at the end of each cycle. For sufficiently large φ and γ(max), systems display irreversible dynamics with nonzero self-diffusion. Loop-reversible dynamics enables the reliable preparation of configurations with specified structural and mechanical properties over a broad range of φ. PMID:24329257

  14. The last traffic jam: psychologic consequences of nuclear war

    SciTech Connect

    Lipton, J.E.

    1983-02-01

    Probable psychologic problems resulting from a nuclear explosion are described. The attendant stresses are difficult to predict but the behavior of victims of Hiroshima and Nagasaki serve as models. Behavior patterns during evacuation, shelter period and postattack are described. (JMT)

  15. Correlated Percolation Models of Jamming and Glass Transitions

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea; Schwarz, Jennifer

    2007-03-01

    Toninelli, Biroli, and Fisher recently introduced a model of correlated percolation called the Knight model, which they claimed to prove underwent a dynamical glass transition. This transition had novel properties, with a discontinuous jump in the order parameter, but with diverging time scales and correlation lengths. We show that their proof misidentified the critical point, so that these properties are currently unproven for this model. However, we show that these novel properties can in fact be proven for suitably modified models of correlated percolation, with qualitatively similar culling rules. We discuss the features of the models necessary for a rigorous proof to be possible. We also discuss properties of models such as the force balance model and the original Knight model, which appear to undergo novel transitions despite the lack of a rigorous proof of such a transition.

  16. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group... of the weight of the combination; except that the weight of pineapple may be not less than one-tenth... one-half of the weight of the combination; except that the weight of pineapple may be not less...

  17. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group... of the weight of the combination; except that the weight of pineapple may be not less than one-tenth... one-half of the weight of the combination; except that the weight of pineapple may be not less...

  18. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group... of the weight of the combination; except that the weight of pineapple may be not less than one-tenth... one-half of the weight of the combination; except that the weight of pineapple may be not less...

  19. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group... of the weight of the combination; except that the weight of pineapple may be not less than one-tenth... one-half of the weight of the combination; except that the weight of pineapple may be not less...

  20. 21 CFR 150.160 - Fruit preserves and jams.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Pineapple, Raspberry, red raspberry, Rhubarb, Strawberry, Tangerine, Tomato, Yellow tomato, Youngberry Group... of the weight of the combination; except that the weight of pineapple may be not less than one-tenth... one-half of the weight of the combination; except that the weight of pineapple may be not less...