Science.gov

Sample records for james webb space

  1. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew

    2008-01-01

    The James Webb Space Telescope is being developed by NASA in partnership with the European and Canadian space agencies for launch during 2013. This mission is expected to carry the legacy of discovery of the Hubble Space Telescope through the next decade, and is designed with unique capability to address key questions about formation of the first galaxies after the Big Bang, their subsequelet volution, and the formation of stars and planets within our own galaxy. This talk will present an overview of the mission science objectives and the status of the mission development.

  2. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  3. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  4. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  5. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2014-07-01

    The James Webb Space Telescope (JWST) will be the most powerful space telescope that we've ever constructed, and it is a critical step towards answering the top science questions outlined in both the 2000 and 2010 Astronomy & Astrophysics Decadal Surveys. In this presentation, I'll first briefly highlight the science capabilities, current status, and science timeline of JWST out to its 2018 launch. I'll then describe several frontier science opportunities that are uniquely enabled by combining JWST's high spatial resolution and unprecedented IR throughput with the Thirty Meter Telescope's spectral capabilities and visible throughput. Like Hubble and current 10 meter telescopes on the ground, the combination of these two facilities will be a great 1-2 punch to usher in a new era in UVOIR astrophysics.

  6. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  7. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  8. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. The observatory has a large primary mirror 6.5 meter in diameter, designed to deliver high angular resolution in the infrared, combined with a large collecting area. The telescope optics are designed and fabricated to operate at the cryogenic temperatures (,...,40 k) required for an IR optimized telescope. The primary mirror is also a segmented mirror architecture. The observatory is designed to achieve cryogenic operating temperature via passive cooling, facilitated by a five-layer sunshield which keeps the telescope in the sun's shadow. Since the observatory dimensions exceed the Ariane 5 fairing size, the observatory has to be stowed for launch and deployed following launch. The observatory will be launched into an L2 orbit that provides continuous science operations and a benign thermal environment for optical stability.

  9. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; Quigley, Robert; Jetten, Mark; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  10. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  11. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, J.

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy between 5 and 29 microns. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

  12. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, J. P.

    2009-12-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will operate within the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy between 5 and 29 microns. The scientific investigations described here define the measurement capabilities of the telescope, but they do not imply that those particular observations will be made. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

  13. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Long, Knox S.; Lunine, Jonathan I.; McCaughrean, Mark J.; Mountain, Matt; Nella, John; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Smith, Eric P.; Sonneborn, George; Stiavelli, Massimo; Stockman, H. S.; Windhorst, Rogier A.; Wright, Gillian S.

    2006-04-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield

  14. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Flanagan, Kathryn A.; Franx, Marijn; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Lunine, Jonathan I.; McCaughrean, Mark J.; Mountain, Matt; Rieke, George H.; Rieke, Marcia J.; Sonneborn, George; Stiavelli, Massimo; Windhorst, Rogier; Wright, Gillian S.

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multi-object spectrograph, and a tunable filter imager that will cover the wavelength range, 0.6 < λ < 5.0 μm, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < λ < 29 μm. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these science goals, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope primary mirror is made of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST

  15. Milestone reached for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-03-01

    The primary mirror for the James Webb Space Telescope (JWST) - the successor to the Hubble Space Telescope - is complete after engineers at NASA's Goddard Space Flight Center in Maryland, US, put in place the craft's 18th and final mirror segment.

  16. Fine Guidance System for the James Webb Space Telescope Delivered

    NASA Video Gallery

    Video has music in the background but no dialogue. The second of four main instruments to fly aboard NASA's James Webb Space Telescope (Webb) has been delivered to NASA. The Fine Guidance Sensor (F...

  17. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. In this paper, we review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research. The James Webb Space Telescope was designed to meet science objectives in four themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. More recently, it has become clear that Webb will also make major contributions to studies of dark energy, dark matter

  18. Overview of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST's primary science goals are to detect and characterize the first galaxies, and study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWST is a segmented mirror telescope operating at approx.40K, a temperature achieved by passive cooling of the observatory, via a large, 5-layer membrane-based sunshield. We will review the scientific capabilities of JWST in the context of their synergy with survey facilities, and with the next generation of ground-based Extremely Large Telescopes. We will also present an overview of the observatory design, and report on recent progress in the construction of the observatory and its science instruments.

  19. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  20. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  1. James Webb Space Telescope Station-keeping

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2003-01-01

    The James Webb Space Telescope (JWST) is planned to be launched in 2011 to the Sun- Earth L2 libration point. The resultant delta-Vs (dV) from momentum unloads will perturb the orbit and necessitate frequent station-keeping maneuvers. The station-keeping dV budget is highly sensitive to the direction of the resultant dV vector. A simple spacecraft reorientation prior to each momentum unload will allow some control over the direction of the resultant dV vector. For each inertial momentum vector direction, an optimum spacecraft attitude is determined which gives a resultant dV vector that requires the least amount of station-keeping dV. Using this procedure, the station-keeping dV budget for JWST can be reduced by 60%.

  2. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  3. Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Acuna, Nadine; Beamesderfer, Michael; Ewin, Audrey; Fettig, Rainer; Franz, Dave; Hess, Larry; Hu, Ron; Kelly, Dan; King, Todd

    2004-01-01

    Two-dimensional MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use in the near-infrared region on the James Webb Space Telescope (JWST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The JWST environment requires cryogenic operation at 35K. Microshutter arrays are fabricated out of silicon-oxide-insulated (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 p. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi- layer metal deposition and patterning of shutter electrodes and magnetic pads, reactive ion etching (NE) of the front side to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form W e s and relieve shutters from the silicon substrate. An additional metal deposition and patterning is used to form back electrodes. Shutters are actuated using a magnetic force and latched using an electrostatic force. . . . KEYWORDS: microshutter, MEMS, RIE, DRIE, micro-optics, near inbred, space telescope

  4. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point in 2014. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA.

  5. Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, J. P.; JWST Science Working Group

    2005-12-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns.

  6. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-EarthMoon L2 libration point, 1.5 million km away from Earth. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate orbit determination (OD) solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cmsec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  7. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  8. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dustenshrouded protostars, to the genesis of planetary systems. Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope with four instruments, capable of imaging and spectroscopy from 0.6 to 27 microns wavelength.

  9. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope in orbit around the second Earth-Sun Lagrange point. It is the successor to the Hubble and Spitzer Space Telescopes, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  10. Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. The scientific investigations described here define the measurement capabilities of the telescope, but they do not imply that those particular observations will be made. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

  11. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have three instruments: The Near-Infrared Camera, and the Near-Infrared multi-object Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  12. Progress on the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    I will describe the scientific program anticipated for the James Webb Space Telescope and the progress in its construction. When the JWST was conceived in 1995 it was expected to make its greatest contributions in the study of the first objects to form after the Big Bang, in the evolution of galaxies, and in the formation and evolution of stars and planetary systems. Since then, the age-distance-redshift relation has become clear with the precise measurement of the Hubble constant, the discovery of the accelerating universe, and the remarkable agreement of CMBR calculations with direct measurements of the large-scale structure. So what is left and what has changed? Galaxy formation and growth is still mysterious, star formation is still hidden, the dark matter and dark energy are still unobservable, and the tools at hand may or may not help enough. But the JWST, as a general-purpose observatory, will be available for imaginative use, and is just what Simon White's polemic seems to request. As an example, the JWST should be quite capable of observing transiting exoplanets with remarkable precision, even though there was no requirement to do so, and its coronagraphs will be very good even without a monolithic primary mirror. The JWST mission has now been officially approved by NASA and is in the Federal budget. It is planned for launch in 2014. Flight instruments will begin to arrive at Goddard in mid-2010, and the first flight mirror segments have already passed their first cryogenic tests. The flight detectors have been selected and have remarkable performance; for example, the near IR detectors have dark currents of the order of 10 electrons per pixel per hour.

  13. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  14. The James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.

    2004-01-01

    The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.

  15. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss the top 10 astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  16. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  17. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  18. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  19. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a Rood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, Dr. Gardner will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope.

  20. Optical Testing of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.

    2014-01-01

    The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror, working to a 2018 launch date. Ground testing for the JWST will occur in two test campaigns, at NASAs Goddard Space Flight Center and Johnson Space Center. The talk describes the JWST and its optical ground testing, highlighting the roles of many of the University of Rochester Institute of Optics' alumni as well as current faculty and students.

  1. WebbPSF: James Webb Space Telescope PSF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Long, Joseph; Sivaramakrishnan, Anand; Lajoie, Charles-Phillipe; Elliot, Erin; Pueyo, Laurent; Albert, Loic

    2015-04-01

    WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.

  2. Observing Exoplanets with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin Mark

    2011-01-01

    The search for exoplanets and characterization of their properties has seen increasing success over the last few years. In excess of 500 exoplanets are known and Kepler has approx. 1000 additional candidates. Recently, progress has been made in direct imaging planets, both from the ground and in space. This presentation will discuss the history and current state of technology used for such discoveries, and highlight the new capabilities that will be enabled by the James Webb Space Telescope.

  3. Physical Characterization of TNOs with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Parker, Alex; Pinilla-Alonso, Noemi; Santos-Sanz, Pablo; Stansberry, John; Alvarez-Candal, Alvaro; Bannister, Michele; Benecchi, Susan; Cook, Jason; Fraser, Wesley; Grundy, Will; Guilbert, Aurelie; Merline, Bill; Moullet, Arielle; Mueller, Michael; Olkin, Cathy; Ragozzine, Darin

    2016-01-01

    Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.

  4. Seasonal Variations of the James Webb Space Telescope Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan; Petersen, Jeremy; Villac, Benjamin; Yu, Wayne

    2015-01-01

    While spacecraft orbital variations due to the Earth's tilt and orbital eccentricity are well-known phenomena, the implications for the James Webb Space Telescope present unique features. We investigate the variability of the observatory trajectory characteristics, and present an explanation of some of these effects using invariant manifold theory and local approximation of the dynamics in terms of the restricted three-body problem.

  5. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  6. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  7. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.

    2004-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the recent selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  8. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.; Campbell, Doug; Clampin, Mark; Decker, John; Greenhouse, Matt; Johns, Alan; Menzel, Mike; Smith, Robert; Sullivan, Pam

    2005-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  9. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, Philip

    2009-01-01

    This slide presentation review the mission objective, the organization of the mission planning, the design, and testing of the James Webb Space Telescope (JWST). There is also information about the orbit, in comparison to the Hubble Space Telescope, the mirror design, and the science instruments. Pictures of the full scale mockup of the JWST are given. A brief history of the universe is also presented from the big bang through the formation of galaxies, and the planets, to life itself. One of the goals of the JWST is to search for extra solar planets and then to search for signs of life.

  10. The James Webb Space Telescope (JWST), The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  11. Capabilities of the James Webb Space Telescope for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.

  12. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Scheduled to begin its 10 year mission no sooner than 2013, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  13. EMC Test Challenges for NASA's James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  14. The James Webb Space Telescope: Extending the Science

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks. to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this paper, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  15. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2011, will study the origin and evolution of luminous objects, galaxies, stars, planetary systems and the origins of life. It is optimized for near infrared wavelength operation of 0.6-28 micrometers and will have a 5 year mission life (with a 10 year goal). This presentation reviews JWST's science objectives, the JWST telescope and mirror requirements and how they support the JWST architecture. Additionally, an overview of the JWST primary mirror technology development effort is highlighted.

  16. The James Webb Space Telescope and its Detector Systems

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2009-01-01

    We describe the James Webb Space Telescope (JWST) mission, it's scientific goals, and how these drive detector systems technology. We describe the specific technologies that were developed (2.5 um and 5 um cutoff HgCdTe HAWAIIW2RG arrays for the 3 near-IR instruments, SIDECAR ASICs for the near-IR instruments, and Si:As arrays for the raid-IR instrument). We describe status in each of these areas with an emphasis on the performance of the flight detector systems themselves.

  17. Overview of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Smith, Eric P.

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture, space telescope designed to provide imaging and spectroscopy from 1.0 micron to 28 microns. JWST will be launched to an orbit at L2 aboard an Ariane 5 launcher in 2013. The Goddard Space Flight Center (GSFC) is the lead center for the JWST program and manages the project for NASA. The prime contractor for JWST is Northrop Grumman Aerospace Systems (NGST). JWST is an international partnership with the European Space Agency (ESA), and the Canadian Space Agency (CSA). ESA will contribute the Ariane 5 launch, and a multi-object infrared spectrograph. CSA will contribute the Fine Guidance Sensor (FGS), which includes the Tunable Filter Imager (TFI). The European consortium, in collaboration with the Jet Propulsion Laboratory (JPL), builds the mid-infrared imager (MIRI). In this paper we present an overview of the JWST science program, and discuss recent progress in the development of the observatory.

  18. Artist's Concept of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pictured is the chosen artist's rendering of NASA's next generation space telescope, a successor to the Hubble Space Telescope, was named the James Webb Space Telescope (JWST) in honor of NASA's second administrator, James E. Webb. To further our understanding of the way our present universe formed following the the big bang, NASA is developing the JWST to observe the first stars and galaxies in the universe. This grand effort will help to answer the following fundamental questions: How galaxies form and evolve, how stars and planetary systems form and interact, how the universe builds up its present elemental/chemical composition, and what dark matter is. To see into the depths of space, the JWST is currently plarning to carry instruments that are sensitive to the infrared wavelengths of the electromagnetic spectrum. The new telescope will carry a near-infrared camera, a multi-object spectrometer, and a mid-infrared camera/spectrometer. The JWST is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space. Marshall Space Flight Center (MSFC) is supporting Goddard Space Flight Center (GSFC) in developing the JWST by creating an ultra-lightweight mirror for the telescope at MSFC's Space Optics Manufacturing Technology Center. GSFC, Greenbelt, Maryland, manages the JWST, and TRW will design and fabricate the observatory's primary mirror and spacecraft. The program has a number of industry, academic, and government partners, as well as the European Space Agency and the Canadian Space Agency. (Image: Courtesy of TRW)

  19. The James Webb Space Telescope: extending the science

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2012-09-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb’s capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this paper, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  20. The James Webb Space Telescope: Extending the Science

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; JWST Science Working Group

    2013-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb’s capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this poster, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  1. MEMS microshutter arrays for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; Franz, David; Hess, Larry; Hu, Ron; Jackson, Kamili M.; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschka, Gunther; Kutyrev, Alexander; Lynch, Barney; Miller, Timothy; Moseley, Harvey, Jr.; Mikula, Vilem; Mott, Brent; Oh, Lance; Pontius, James T.; Rapchun, David; Ray, Chris; Schulte, Eric; Schwinger, Scott; Shu, Peter; Silverberg, Robert; Smith, Wayne; Snodgrass, Steve; Sohl, David; Sparr, Leroy; Steptoe-Jackson, Rosalind; Veronica, Valeriano; Wang, Liqin; Zheng, Yun; Zincke, Chris

    2006-12-01

    MEMS microshutter arrays (MSAs) are being developed at NASA Goddard Space Flight Center for use as an aperture array for the Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. Arrays are close-packed silicon nitride membranes with a pixel size of 105x204 μm. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on each shutter for light leak prevention to enhance optical contrast. Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies. Single-side indium flip chip bonding is performed to attach microshutter arrays to substrates.

  2. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschkar, Gunther; Kutyrev, Alexander; Lynch, Barney; Moseley, Harvey; Mott, Brent; Oh, Lance; Rapchum, Dave; Ray, Chris; Sappington, Carol; Silverberg, Robert; Smith, Wayne; Snodgrass, Steve; Steptoe-Jackson, Rosalind; Valeriano

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  3. The James Webb Space Telescope: Science and Mission Status

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA for launch later this decade. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe and peer through dusty clouds to see star and planet formation at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at 2 microns. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5- year prime science mission, with consumables for 10 years of science operations.

  4. High-Redshift Galaxies with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2015-08-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes and will continue their rich legacy of high-z galaxy studies with a combination of deep, high-resolution infrared photometry and multi-object or integral field spectroscopy. As a large (6.6m) cold (50K) space telescope, JWST is well optimized for studying high-z galaxies and the science goals include the formation of the first stars and galaxies in the early universe and the chemical, morphological and dynamical buildup of galaxies. Webb has four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch into orbit around the second Earth-Sun Lagrange point in 2018; the design is complete and it is in its construction and test phase. It is a partnership of NASA with the European and Canadian Space Agencies. Recent progress includes the completion of the mirrors and scientific instruments and the start of high-level assembly and cryogenic testing. Proposals for the first cycle of scientific observations will be due in February 2018; the community should begin planning their proposals now.

  5. Status Update on the James Webb Space Telescope Project

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold <50 K), infrared (IR)-optimized space observatory that will be launched in approx.2018. The observatory will have four instruments covering 0.6 to 28 micron, including a multi-object spectrograph, two integral field units, and grisms optimized for exoplanets. I will review JWST's key science themes, as well as exciting new ideas from the recent JWST Frontiers Workshop. I will summarize the technical progress and mission status. Recent highlights: All mirrors have been fabricated, polished, and gold-coated; the mirror is expected to be diffraction-limited down to a wavelength of 2 microns. The MIRI instrument just completed its cryogenic testing. STScI has released exposure time calculators and sensitivity charts to enable scientists to start thinking about how to use JWST for their science.

  6. Status Update on the James Webb Space Telescope Project

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched in approx.2018. The observatory will have four instruments covering 0.6 to 28 micron, including a multi-object spectrograph, two integral fie ld units, and grisms optimized for exoplanets. I will review JWST's k ey science themes, as well as exciting new ideas from the recent JWST Frontiers Workshop. I will summarize the technical progress and miss ion status. Recent highlights: All mirrors have been fabricated, polished, and gold-coated; the mirror is expected to be diffraction-limite d down to a wavelength of 2 micron. The MIRI instrument just complete d its cryogenic testing. STScI has released exposure time calculators and sensitivity charts to enable scientists to start thinking about how to use JWST for their science.

  7. Launch Window Trade Analysis for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  8. James Webb Space Telescope Launch Window Trade Analysis

    NASA Technical Reports Server (NTRS)

    Yu, Wayne; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  9. Transit Imaging and Spectroscopy with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST's optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit imaging and spectroscopy. We will review the capabilities of each science instrument, and discuss the performance of each mode, with reference to current transiting systems.

  10. The James Webb Space Telescope: Capabilities for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, stellar and planetary system formation, and the formation and evolution of planetary systems. We will review the design of JWST, and discuss the current status of the project, with emphasis on recent progress in the construction of the observatory. We also review the capabilities of the observatory for observations of exosolar planets and debris disks by means of coronagraphic imaging, and high contrast imaging and spectroscopy. This discussion will focus on the optical and thermal performance of the observatory, and will include the current predictions for the performance of the observatory, with special reference to the demands of exoplanet science observations.

  11. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  12. Solar System Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2016-02-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  13. Giant Planet Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Norwood, James; Moses, Julianne; Fletcher, Leigh N.; Orton, Glenn; Irwin, Patrick G. J.; Atreya, Sushil; Rages, Kathy; Cavalié, Thibault; Sánchez-Lavega, Agustin; Hueso, Ricardo; Chanover, Nancy

    2016-01-01

    This white paper examines the benefit of the upcoming James Webb Space Telescope (JWST) for studies of the Solar System's four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWST's superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper, we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant-planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.

  14. Overview of the James Webb Space Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Smith, Eric P.

    2010-07-01

    The James Webb Space Telescope (JWST) is a large aperture, space telescope designed to provide imaging and spectroscopy from 1.0 μm to 28 μm. JWST will be launched to an orbit at L2 aboard an Ariane 5 launcher in 2013. The Goddard Space Flight Center (GSFC) is the lead center for the JWST program and manages the project for NASA. The prime contractor for JWST is Northrop Grumman Aerospace Systems (NGST). JWST is an international partnership with the European Space Agency (ESA), and the Canadian Space Agency (CSA). ESA will contribute the Ariane 5 launch, and a multi-object infrared spectrograph. CSA will contribute the Fine Guidance Sensor (FGS), which includes the Tunable Filter Imager (TFI). The European consortium, in collaboration with the Jet Propulsion Laboratory (JPL), builds the mid-infrared imager (MIRI). In this paper we present an overview of the JWST science program, and discuss recent progress in the development of the observatory.

  15. Overview of the James Webb Space Telescope observatory

    NASA Astrophysics Data System (ADS)

    Clampin, Mark

    2011-09-01

    The James Webb Space Telescope (JWST) is a large aperture, space telescope designed to provide imaging and spectroscopy over the near and mid-infrared from 1.0 μm to 28 μm. JWST is a passively cooled infrared telescope, employing a five layer sunshield to achieve an operating temperature of ~40 K. JWST will be launched to an orbit at L2 aboard an Ariane 5 launcher in 2013. The Goddard Space Flight Center (GSFC) is the lead center for the JWST program and manages the project for NASA. The prime contractor for JWST is Northrop Grumman Aerospace Systems (NGST). JWST is an international partnership with the European Space Agency (ESA), and the Canadian Space Agency (CSA). ESA will contribute the Ariane 5 launch, and a multi-object infrared spectrograph. CSA will contribute the Fine Guidance Sensor (FGS), which includes the Tunable Filter Imager (TFI). A European consortium, in collaboration with the Jet Propulsion Laboratory (JPL), builds the mid-infrared imager (MIRI). In this paper we present an overview of the JWST science program, and discuss recent progress in the development of the observatory. In this paper we will discuss the scientific motivations for JWST, and discuss recent progress in the construction of the observatory, focusing on the telescope and its optics, which have recently completed polishing.

  16. The James Webb Space Telescope: Mission Overview and Status

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.

    2011-01-01

    The James Webb Space Telescope (JWST) is the Infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq m aperture (6 m class) telescope yielding diffraction limited angular resolution at a wave1ength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi-object and integral-field spectroscopy over the 0.6 Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program.

  17. Overview of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a cryogenic, 6.5 meter diameter space telescope. JWST has a unique architecture, compared to previous space telescopes, that is driven by its science requirements, ia passively cooled cryogenic design, and the need to stow the observatory for launch. JWST's large, segmented mirror meets the requirement for high angular resolution in the infrared coupled with a significant increase in collecting area compared to the Spitzer and Hubble Space telescopes in order to detect the first galaxies. JWST's unique five-layer sunshield allows the telescope and instrument module to passively cool to cryogenic temperatures. JWST will be launched on an Ariane 5, and so both its telescope optics, and the sunshield have to be stowed in order to fit the Ariane 5 fairing. Following launch the sunshield and telescope optics must be deployed, and the primary mirror phased for science operations. In this presentation we will review the design of the observatory and highlight recent progress in the construction of the JWST observatory. In particular, we address recent progress with the telescope optics, sunshield and spacecraft. We will discuss predicted observatory performance in terms of the scientific goals of JWST and address key operational considerations that might bear upon frontier science observations.

  18. Science operations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Sonneborn, George; Pollizzi, Joe; Brown, Thomas; Isaacs, John

    2012-09-01

    The James Webb Space Telescope (JWST) will be a powerful space observatory whose four science instruments will deliver rich imaging and multiplexed spectroscopic datasets to the astronomical and planetary science communities. The ground segment for JWST, now being designed and built, will carry out JWST's science operations. The ground segment includes: software that the scientific community will use to propose and specify new observations; systems that will schedule science and calibration observations in a way that respects physical and investigator-specified constraints, while satisfying preferences for efficient observing, low background levels, and distributed subscription across a year; the infrastructure to regularly measure and maintain the telescope's wavefront; orbit determination, ranging, and tracking; communication via the Deep Space Network to command the observatory and retrieve scientific data; onboard scripts that execute each observing program in an event-driven fashion, with occasional interruptions for targets of opportunity or time-critical observations; and a system that processes and calibrates the data into science-ready products, automatically recalibrates when calibrations improve, and archives the data for timely access by the principal investigator and later worldwide access by the scientific community. This ground system builds on experience from operating the Hubble Space Telescope, while solving challenges that are unique to JWST. In this paper, we describe the elements of the JWST ground system, how it will work operationally from the perspective of the observatory itself, and how a typical user will interact with the system to turn their idea into scientific discovery.

  19. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  20. Microshutter array development for the James Webb space telescope

    NASA Astrophysics Data System (ADS)

    Li, Mary J.; Acuna, Nadine; Amatucci, Edward; Beamesderfer, Michael; Boucarut, Ray A.; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey J.; Fettig, Rainer; Franz, David E.; Hess, Larry; Hu, Ron; Jhabvala, Murzy D.; Kelly, Daniel; King, Todd T.; Kletetschka, Gunther; Kotechi, Carl A.; Kutyrev, Alexander; Loughlin, James P.; Lynch, Bernard A.; Moseley, Harvey; Mott, Brent; Newell, Bill; Oh, Lance; Rapchun, David A.; Ray, Chris; Sappington, Carol; Schulte, Eric; Schwinger, Scott; Smith, Wayne; Snodgrass, Steve; Sparr, Leroy M.; Steptoe-Jackson, Rosalind; Wang, Liqin L.; Zheng, Yun; Zincke, Chris A.

    2005-02-01

    Micro Electromechanical System (MEMS) microshutter arrays are being developed at NASA Goddard Space Flight Center for use as a field selector of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). The microshutter arrays are designed for the spontaneous selection of a large number of objects in the sky and the transmission of light to the NIRSpec detector with high contrast. The JWST environment requires cryogenic operation at 35 K. Microshutter arrays are fabricated out of silicon-on-insulator (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100 x 200 μm. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are processed for blocking light from gaps between shutters and frames. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes multi-layer metal depositions, the patterning of magnetic stripes and shutter electrodes, a reactive ion etching (RIE) to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch to form mechanical supporting grids and release shutters from the silicon substrate. An additional metal deposition is used to form back electrodes. Shutters are actuated by a magnetic force and latched using an electrostatic force. Optical tests, addressing tests, and life tests are conducted to evaluate the performance and the reliability of microshutter arrays.

  1. Wavefront Control Toolbox for James Webb Space Telescope Testbed

    NASA Technical Reports Server (NTRS)

    Shiri, Ron; Aronstein, David L.; Smith, Jeffery Scott; Dean, Bruce H.; Sabatke, Erin

    2007-01-01

    We have developed a Matlab toolbox for wavefront control of optical systems. We have applied this toolbox to the optical models of James Webb Space Telescope (JWST) in general and to the JWST Testbed Telescope (TBT) in particular, implementing both unconstrained and constrained wavefront optimization to correct for possible misalignments present on the segmented primary mirror or the monolithic secondary mirror. The optical models implemented in Zemax optical design program and information is exchanged between Matlab and Zemax via the Dynamic Data Exchange (DDE) interface. The model configuration is managed using the XML protocol. The optimization algorithm uses influence functions for each adjustable degree of freedom of the optical mode. The iterative and non-iterative algorithms have been developed to converge to a local minimum of the root-mean-square (rms) of wavefront error using singular value decomposition technique of the control matrix of influence functions. The toolkit is highly modular and allows the user to choose control strategies for the degrees of freedom to be adjusted on a given iteration and wavefront convergence criterion. As the influence functions are nonlinear over the control parameter space, the toolkit also allows for trade-offs between frequency of updating the local influence functions and execution speed. The functionality of the toolbox and the validity of the underlying algorithms have been verified through extensive simulations.

  2. The Scientific Capabilities of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The scientific capabilities of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and dark matter, gas, stars, metals morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. A comprehensive, top-level review of JWST sciences was published in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since that paper was published, the JWST Science Working Group, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. In this poster, the main science themes and white papers are reviewed.

  3. James Webb Space Telescope Synergy with Dark Energy Missions

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.

    2014-01-01

    As the successor to the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST) will be a general-purpose observatory which will impact all areas of observational astronomy. Two future dark energy missions are being planned: Euclid in Europe and the Wide-Field Infrared Survey Telescope (WFIRST) in the US. While JWST is designed to go very deep in the infrared, the dark energy missions will conduct wide-area surveys of a substantial fraction of the sky in the optical and near-infrared. Synergy between JWST and Euclid or WFIRST could proceed in several ways. (1) JWST will make contributions to dark energy science that will be complementary to the results from the wide-area surveys. These contributions could include a more precise measurement of the current value of the Hubble constant, and rest-frame near-infrared light curves for high-redshift type Ia supernovae. (2) JWST could directly contribute to the dark energy science of the wide-area missions by providing additional calibration, investigating anomalies in the dataset, or with complementary observations that are deeper over a smaller area. (3) JWST could make follow-up observations of Euclid or WFIRST discoveries of rare objects, such as high-redshift quasars, strong-lens systems, galaxy clusters and supernovae.

  4. Cometary Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Bodewits, Dennis; Farnham, Tony L.; Gudipati, Murthy S.; Harker, David E.; Hines, Dean C.; Knight, Matthew M.; Kolokolova, Ludmilla; Li, Aigen; de Pater, Imke; Protopapa, Silvia; Russell, Ray W.; Sitko, Michael L.; Wooden, Diane H.

    2016-01-01

    The James Webb Space Telescope (JWST), as the largest space-based astronomical observatory with near- and mid-infrared instrumentation, will elucidate many mysterious aspects of comets. We summarize four cometary science themes especially suited for this telescope and its instrumentation: the drivers of cometary activity, comet nucleus heterogeneity, water ice in comae and on surfaces, and activity in faint comets and main belt asteroids. With JWST, we can expect the most distant detections of gas, especially CO2, in what we now consider to be only moderately bright comets. For nearby comets, coma dust properties can be simultaneously studied with their driving gases, measured simultaneously with the same instrument or contemporaneously with another. Studies of water ice and gas in the distant Solar System will help us test our understanding of cometary interiors, and coma evolution. The question of cometary activity in main belt comets will be further explored with the possibility of a direct detection of coma gas. We explore the technical approaches to these science cases and provide simple tools for estimating comet dust and gas brightness. Finally, we consider the effects of the observatory's non-sidereal tracking limits and provide a list of potential comet targets during the first five years of the mission.

  5. Titan Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, Richard; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon; Cornet, Thomas; Hayes, Alexander; Lellouch, Emmanuel; Lemmon, Mark; Lopez Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas; Turtle, Elizabeth; West, Robert

    2015-11-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is an ambitious next-generation large-aperture (6.5 m) space observatory focused on pushing the boundaries of infrared astronomy (0.6-28.0 μm). This long-wavelength focus gives it very substantial potential for solar system science, since the thermal emissions from the surfaces and atmospheres of many planets, moons and small bodies peak in this part of the spectrum. Here we report the findings of a task team convened to examine the potential for Titan science using JWST. These can be divided into five broad areas: (i) the surface, especially the rotational lightcurve; (ii) clouds in the lower atmosphere from direct imaging and near-IR spectroscopy; (iii) composition of the lower atmosphere, especially methane relative humidity; (iv) composition of the middle atmosphere, including thermal and fluorescent emissions from gases; (v) hazes in the middle atmosphere, including seasonal changes in hemispheric contrast. The capability of the major JWST instruments in each area is considered, and limitations such as potential saturation is noted and mitigation strategies (such as sub-arraying) discussed. Overall we find that JWST can make significant contributions to Titan science in many areas, not least in temporal monitoring of seasonal change after the end of the Cassini mission in 2017, in partnership with other next-generation observing facilities (TMT, GMT, EELT, ALMA).

  6. Navigation Concepts for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl

    2003-01-01

    This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.

  7. James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Cryogenic Component Test Facility

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2004-01-01

    This viewgraph presentation provides information on the design, construction, and operation of a cryogenic chamber, and its use in testing the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST).

  8. James Webb Space Telescope (JWST) Stationkeeping Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Alberding, Cassandra; Yu, Wayne

    2014-01-01

    The James Webb Space Telescope (JWST) will launch in 2018 into a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point, with a planned mission lifetime of 11 years. This paper discusses our approach to Stationkeeping (SK) maneuver planning to determine an adequate SK delta-V budget. The SK maneuver planning for JWST is made challenging by two factors: JWST has a large Sunshield, and JWST will be repointed regularly producing significant changes in Solar Radiation Pressure (SRP). To accurately model SRP we employ the Solar Pressure and Drag (SPAD) tool, which uses ray tracing to accurately compute SRP force as a function of attitude. As an additional challenge, the future JWST observation schedule will not be known at the time of SK maneuver planning. Thus there will be significant variation in SRP between SK maneuvers, and the future variation in SRP is unknown. We have enhanced an earlier SK simulation to create a Monte Carlo simulation that incorporates random draws for uncertainties that affect the budget, including random draws of the observation schedule. Each SK maneuver is planned to optimize delta-V magnitude, subject to constraints on spacecraft pointing. We report the results of the Monte Carlo simulations and discuss possible improvements during flight operations to reduce the SK delta-V budget.

  9. James Webb Space Telescope (JWST) and Star Formation

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.

    2010-01-01

    The 6.5-m aperture James Webb Space Telescope (JWST) will be a powerful tool for studying and advancing numerous areas of astrophysics. Its Fine Guidance Sensor, Near-Infrared Camera, Near-Infrared Spectrograph, and Mid-Infrared Instrument will be capable of making very sensitive, high angular resolution imaging and spectroscopic observations spanning 0.7 - 28 ?m wavelength. These capabilities are very well suited for probing the conditions of star formation in the distant and local Universe. Indeed, JWST has been designed to detect first light objects as well as to study the fine details of jets, disks, chemistry, envelopes, and the central cores of nearby protostars. We will be able to use its cameras, coronagraphs, and spectrographs (including multi-object and integral field capabilities) to study many aspects of star forming regions throughout the galaxy, the Local Group, and more distant regions. I will describe the basic JWST scientific capabilities and illustrate a few ways how they can be applied to star formation issues and conditions with a focus on Galactic regions.

  10. Stationkeeping Monte Carlo Simulation for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Alberding, Cassandra M.; Yu, Wayne H.

    2014-01-01

    The James Webb Space Telescope (JWST) is scheduled to launch in 2018 into a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point, with a planned mission lifetime of 10.5 years after a six-month transfer to the mission orbit. This paper discusses our approach to Stationkeeping (SK) maneuver planning to determine an adequate SK delta-V budget. The SK maneuver planning for JWST is made challenging by two factors: JWST has a large Sunshield, and JWST will be repointed regularly producing significant changes in Solar Radiation Pressure (SRP). To accurately model SRP we employ the Solar Pressure and Drag (SPAD) tool, which uses ray tracing to accurately compute SRP force as a function of attitude. As an additional challenge, the future JWST observation schedule will not be known at the time of SK maneuver planning. Thus there will be significant variation in SRP between SK maneuvers, and the future variation in SRP is unknown. We have enhanced an earlier SK simulation to create a Monte Carlo simulation that incorporates random draws for uncertainties that affect the budget, including random draws of the observation schedule. Each SK maneuver is planned to optimize delta-V magnitude, subject to constraints on spacecraft pointing. We report the results of the Monte Carlo simulations and discuss possible improvements during flight operations to reduce the SK delta-V budget.

  11. Optical verification of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    McComas, Brian; Rifelli, Rich; Barto, Allison; Contos, Adam; Whitman, Tony; Wells, Conrad; Hagopian, John

    2006-06-01

    The optical system of the James Webb Space Telescope (JWST) is split between two of the Observatory's element, the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The OTE optical design consists of an 18-hexagonal segmented primary mirror (25m2 clear aperture), a secondary mirror, a tertiary mirror, and a flat fine steering mirror used for fine guidance control. All optical components are made of beryllium. The primary and secondary mirror elements have hexapod actuation that provides six degrees of freedom rigid body adjustment. The optical components are mounted to a very stable truss structure made of composite materials. The OTE structure also supports the ISIM. The ISIM contains the Science Instruments (SIs) and Fine Guidance Sensor (FGS) needed for acquiring mission science data and for Observatory pointing and control and provides mechanical support for the SIs and FGS. The optical performance of the telescope is a key performance metric for the success of JWST. To ensure proper performance, the JWST optical verification program is a comprehensive, incremental, end-to-end verification program which includes multiple, independent, cross checks of key optical performance metrics to reduce risk of an on-orbit telescope performance issues. This paper discusses the verification testing and analysis necessary to verify the Observatory's image quality and sensitivity requirements. This verification starts with component level verification and ends with the Observatory level verification at Johnson Space Flight Center. The optical verification of JWST is a comprehensive, incremental, end-to-end optical verification program which includes both test and analysis.

  12. James Webb Space Telescope Ka-Band Trade

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Luers, Ed

    2004-01-01

    In August 2003 James Webb Space Telescope (JWST) had its Initial Review Confirmation Assessment Briefing with NASA HQ management. This is a major milestone as the project was approved to proceed from Phase A to B, and NASA will commit funds for the project towards meeting its science goals from the Earth-Sun s Lagrange 2 (L2) environment. At this briefing, the Project was asked, "to take another look" into using, the JPL s Deep Space Network (DSN) as the provider of ground stations and evaluate other ground station options. The current operations concept assumes S-band and X-band communications with a daily &hour contact using the DSN with the goal of transmitting over 250 Gigabit (Gb) of data to the ground. The Project has initiated a trade study to look at this activity, and we would like to share the result of the trade in the conference. Early concept trades tends to focus on the "normal" operation mode of supporting telemetry (science and engineering), command and radio metrics. Entering the design phase, we find that we have the unique ranging requirement for our L2 orbit using alternating ground stations located in different hemispheres. The trade must also address emergency operations (which are covered when using the DSN). This paper describes the issues confronting this Project and how the DSN and the JWST Project are working together to find an optimized approach for meeting these issues. We believe this trade is of major interest for future Code S and other L2 missions in that JWST will set the standard.

  13. Titan Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, Richard K.; Ádámkovics, Máté; Bézard, Bruno; Bjoraker, Gordon L.; Cornet, Thomas; Hayes, Alexander G.; Lellouch, Emmanuel; Lemmon, Mark T.; López-Puertas, Manuel; Rodriguez, Sébastien; Sotin, Christophe; Teanby, Nicholas A.; Turtle, Elizabeth P.; West, Robert A.

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μm). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors—sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  14. XML: James Webb Space Telescope Database Issues, Lessons, and Status

    NASA Technical Reports Server (NTRS)

    Detter, Ryan; Mooney, Michael; Fatig, Curtis

    2003-01-01

    This paper will present the current concept using extensible Markup Language (XML) as the underlying structure for the James Webb Space Telescope (JWST) database. The purpose of using XML is to provide a JWST database, independent of any portion of the ground system, yet still compatible with the various systems using a variety of different structures. The testing of the JWST Flight Software (FSW) started in 2002, yet the launch is scheduled for 2011 with a planned 5-year mission and a 5-year follow on option. The initial database and ground system elements, including the commands, telemetry, and ground system tools will be used for 19 years, plus post mission activities. During the Integration and Test (I&T) phases of the JWST development, 24 distinct laboratories, each geographically dispersed, will have local database tools with an XML database. Each of these laboratories database tools will be used for the exporting and importing of data both locally and to a central database system, inputting data to the database certification process, and providing various reports. A centralized certified database repository will be maintained by the Space Telescope Science Institute (STScI), in Baltimore, Maryland, USA. One of the challenges for the database is to be flexible enough to allow for the upgrade, addition or changing of individual items without effecting the entire ground system. Also, using XML should allow for the altering of the import and export formats needed by the various elements, tracking the verification/validation of each database item, allow many organizations to provide database inputs, and the merging of the many existing database processes into one central database structure throughout the JWST program. Many National Aeronautics and Space Administration (NASA) projects have attempted to take advantage of open source and commercial technology. Often this causes a greater reliance on the use of Commercial-Off-The-Shelf (COTS), which is often limiting

  15. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example

  16. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response

  17. Overview and Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments spanning the wavelength range of 0.6 microns to 28 microns. JWST's primary science goals are to detect and characterize the first galaxies, study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWST has a unique design based on the concept of passive cooling by means of a multi-layer sunshield to achieve the telescope's cryogenic operating temperature. Each of the five layers of the sunshield is approximately the size of a tennis court, and made of aluminized kapton. By maintaining an observatory attitude whereby the sunshield keeps the telescope in the shade from the sun's rays, the telescope and science instruments can operate at cryogenic temperature (-40 K). On the sun facing side of the observatory the spacecraft bus houses most of the electronic sub-systems, and provides a platform for the solar array and communications hardware. JWST is sufficiently large that it cannot fit inside .the fairing of its Ariane 5 launcher without being stowed in a more compact configuration, so the ability to deploy its major SUb-systems such as the telescope optics and sunshield after launch are another major feature of the observatory. Development of observatory is making rapid progress as major hardware SUb-systems nearcompletion. Polishing of the JWST telescope mirrors is complete with 18 primary mirror segments, the secondary mirror, tertiary and fine steering mirror all gold coated and through acceptance testing. Engineering test articles of each sunshield membrane layer are underway. The first layer 3 membrane is complete and is undergoing testing to evaluate its tensioned shape for compliance with alignment tolerances. As each major SUb-system is tested, the expected scientific performance of the observatory can be evaluated using test results and integrated system models of the

  18. MEMS Microshutter Array System for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jackson, Kamili; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschka, Gunther; Kutyrev, Alexander; Lynch, Barney; Miller, Timothy; Moseley, Harvey; Mikula, Vilem; Mott. Brent; Oh, Lance

    2008-01-01

    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range

  19. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    NASA James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. Its architecture, e.g. aperture, wavelength range and operating temperature, is driven by JWST's science objectives. Introduction: Scheduled to start its 5 year mission after 2018, JWST will study the origin and evolution of galaxies, stars and planetary systems. Its science mission is to: Identify the first bright objects that formed in the early Universe, and follow the ionization history. Determine how galaxies form. Determine how galaxies and dark matter, including gas, stars, metals, overall morphology and active nuclei evolved to the present day. Observe the birth and early development of stars and the formation of planets. And, study the physical and chemical properties of solar systems for the building blocks of Life. Principle: To accomplish the JWST science objectives requires a larger aperture infrared cryogenic space telescope. A large aperture is required because the objects are very faint. The infrared spectral range is required because the objects are so far away that their ultraviolet and visible wavelength spectral lines are red-shifted into the infrared. Because the telescope is infrared, it needs to be cryogenic. And, because of the telescope is infrared, it must operate above the Earth's atmosphere, i.e. in space. JWST is probably the single most complicated mission that humanity has attempted. It is certainly the most difficult optical fabrication and testing challenge of our generation. The JWST 6.5 m diameter primary mirror is nearly a parabola with a conic constant of -0.9967 and radius of curvature at 30K of 15.880 m. The primary mirror is divided into 18 segments with 3 different prescriptions; each with its own off-axis distance and aspheric departure. The radius of curvature

  20. James Webb Space Telescope Studies of Dark Energy

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    time-variable source gives the angular diameter distance through measured time delays of multiple images. Finally, the growth of structure can also be constrained by measuring the mass of the largest galaxy clusters over cosmic time. HST has contributed to the study of dark energy through SN1a and gravitational lensing, as discussed above. HST has also helped to characterize galaxy clusters and the HST-measured constraints on the current Hubble constant H(sub 0) are relevant to the interpretation of dark energy measurements (Riess et al 2009a). HST has not been used to constrain BAO as the large number of galaxy redshifts required, of order 100 million, is poorly matched to HST's capabilities. As the successor to HST, the James Webb Space Telescope (JWST; Gardner et al 2006) will continue and extend HST's dark energy work in several ways.

  1. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    NASA Technical Reports Server (NTRS)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  2. Line of Sight Stabilization of James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Meza, Luis; Tung, Frank; Anandakrishnan, Satya; Spector, Victor; Hyde, Tupper

    2005-01-01

    The James Webb Space Telescope (JWST) builds upon the successful flight experience of the Chandra Xray Telescope by incorporating an additional LOS pointing servo to meet the more stringent pointing requirements. The LOS pointing servo, referred to in JWST as the Fine Guidance Control System (FGCS), will utilize a Fine Guidance Sensor (FGS) as the sensor, and a Fine Steering Mirror (FSM) as the actuator. The FSM is a part of the Optical Telescope Element (OTE) and is in the optical path between the tertiary mirror and the instrument focal plane, while the FGS is part of the Integrated Science Instrument Module (ISIM). The basic Chandra spacecraft bus attitude control and determination architecture, utilizing gyros, star trackers/aspect camera, and reaction wheels, is retained for JWST. This system has achieved pointing stability of better than 0.5 arcseconds. To reach the JWST requirements of milli-arcsecond pointing stability with this ACS hardware, the local FGCS loop is added to the optical path. The FGCS bandwidth is about 2.0 Hz and will therefore attenuate much of the spacecraft ACS induced low frequency jitter. In order to attenuate the higher frequency (greatet than 2.0 Hz) disturbances associated with reaction wheel static and dynamic imbalances, as well as bearing run-out, JWST will employ a two-stage passive vibration isolation system consisting of (1) 7.0 Hz reaction wheel isolators between each reaction wheel and the spacecraft bus, and (2) a 1.0 Hz tower isolator between the spacecraft bus and the Optical Telescope Element (OTE). In order to sense and measure the LOS, the FGS behaves much like an autonomous star tracker that has a very small field of view and uses the optics of the telescope. It performs the functions of acquisition, identification and tracking of stars in its 2.5 x 2.5 arcminute field of view (FOV), and provides the centroid and magnitude of the selected star for use in LOS control. However, since only a single star is being tracked

  3. James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Cryogenic Component Test Facility

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.; Tolson, Julius; Or, Tak; Skocik, Christopher; Glazer, Stuart

    2004-01-01

    Contents include the following: James Webb Space Telescope/Integrated Science Instrument Module (JWST/ISIM) Overview. ISIM Thermal Verification Requirements. Emittance Test Objectives. Cryochamber Design Requirements. Cryochamber Construction. Emittance Test Sample Selection and Configuration. Error Sources and Error Mitigation. Cryochamber Operation. Cryochamber and Emittance Sample Test Results.

  4. The James Webb Space Telescope: Inspiration and Context for Physics and Chemistry Teaching

    ERIC Educational Resources Information Center

    Hillier, Dan; Johnston, Tania; Davies, John

    2012-01-01

    This article describes the design, delivery, evaluation and impact of a CPD course for physics and chemistry teachers. A key aim of the course was to use the context of the James Webb Space Telescope project to inspire teachers and lead to enriched teaching of STEM subjects. (Contains 1 box and 3 figures.)

  5. James Webb Space Telescope (JWST) Optical Telescope Element (OTE) Development Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2004-01-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) is a segmented, cryogenic telescope scheduled for launch in 2011. In September of 2002, NASA selected prime contractor Northrop Grumman Space Technology (NGST) to build the observatory including management of the OTE. NGST is teamed with subcontractors Ball Aerospace, Alliant Techsystems (ATK). and Kodak. The team has completed several significant design, technology, architecture definition, and manufacturing milestones in the past year that are summarized in this paper.

  6. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2013, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  7. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  8. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 201 3, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  9. Wavefront Aberrations Due to Alignment and Figure Compensation of the NASA James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This viewgraph presentation describes wavefront aberrations due to the alignment and improper compensation of the NASA James Webb Space Telescope. The contents include: 1) James Webb Space Telescope (JWST); 2) Optical design of JWST; 3) Alignment Observables for JWST; 4) Low order Zernike Polynomials; 5) PM SM Ability to Target Low Order Aberrations; 6) Compensator definitions and Modes; 7) Field impact from compensation; 8) PM align error compensated by PM figure; 9) PM align error compensated by SM alignment; 10) SM align error compensated by PM figure; 11) SM figure error compensated by SM alignment; 12) Worst Case Pupil Maps; 13) Worst Case Pupil Maps at BEST FOCUS; 14) Field impact from compensation (+/- 1 arcmin FOV); and 15) Concluding Remarks.

  10. Optical Modeling of the Alignment and Test of the NASA James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Hayden, Bill; Keski-Kuha, Ritva; Feinberg, Lee

    2007-01-01

    Optical modeling challenges of the ground alignment plan and optical test and verification of the NASA James Webb Space Telescope are discussed. Issues such as back-out of the gravity sag of light-weighted mirrors, as well as the use of a sparse-aperture auto-collimating flat system are discussed. A walk-through of the interferometer based alignment procedure is summarized, and sensitivities from the sparse aperture wavefront test are included as examples.'

  11. Matlab based Toolkits used to Interface with Optical Design Software for NASA's James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    The viewgraph presentation provides an introduction to the James Webb Space Telescope (JWST). The first part provides a brief overview of Matlab toolkits including CodeV, OSLO, and Zemax Toolkits. The toolkit overview examines purpose, layout, how Matlab gets data from CodeV, function layout, and using cvHELP. The second part provides examples of use with JWST, including wavefront sensitivities and alignment simulations.

  12. Combining Social Media with Innovative Ways of Communicating about the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret

    2012-01-01

    In keeping with the cutting-edge nature of the James Webb Space Telescope, NASA is using a variety of social and interactive media to engage the public. While we do have a regularly updated static website, we are now also using various interactives (like Flash games and a 3D Tour of the spacecraft) to better explain what the Webb telescope is and how it works. To encourage future generations, we are a partner in an educational engineering design challenge which makes use of a virtual Second Life-like world. Additionally, the public can now watch Webb come together before their eyes by accessing our live webcam, which shows telescope hardware being built in our cleanroom. We are working to make Webb as much of a part of pop culture as the Hubble Space Telescope is. We facilitated the filming of a "Late Night with Jimmy Fallon” segment (called "Hubble Gotchu") featuring Webb and Webb scientists at NASA's Goddard Space Flight Center. A visit to the highly rated sitcom "The Big Bang Theory” resulted in Webb lithos, magnets, posters, a scale model, and more being regularly featured on the set of the show. The most important aspect to creating interesting ways to engage the public is having the ability to communicate and form relationships with as many people as possible. To that end, we are using tools like blogs (e.g., NASA Blueshift) and popular social media (Facebook, Twitter, YouTube, and Flickr) to reach out to as many people as we can and to enable them to share and spread the content we provide.

  13. Astronomy from Space: The Hubble, Herschel and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.

  14. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  15. James Webb Space Telescope (JWST) the First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mission Objective: a) Study origin & evolution of galaxies, stars & planetary systems; b) Optimized for near infrared wavelength (0.6 - 28 microns); c) 5 year Mission Life (10 year Goal). Organization: a) Mission Lead: Goddard Space Flight Center; b) International collaboration with ESA & CSA; c) Prime Contractor: Northrop Grumman Space Technology Instruments: a) Near Infrared Camera (NIRCam) - Univ. of Arizona; b) Near Infrared Spectrometer (NIRSpec) - ESA; c) Mid-Infrared Instrument (MIRI) - JPL/ESA; d) Fine Guidance Sensor (FGS) - CSA. Operations: Space Telescope Science Institute.

  16. Wavefront Sensing with the Fine Guidance Sensor for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Aronstein, David; Dean, Bruce H.; Howard,Joe; Shiri, Ron

    2008-01-01

    An analysis is presented that utilizes the Fine Guidance Sensor (FGS) for focal-plane wavefront sensing (WFS) for the James Webb Space Telescope (JWST). WFS with FGS increases the number of wavefront measurements taken in field of the telescope, but has many challenges over the other JWST instruments that make it unique, such as; less sampling of the Point Spread Function (PSF), a smaller diversity-defocus range, a smaller image detector size, and a polychromatic object or source. Additionally, presented is an analysis of sampling for wavefront sensing. Results are shown based on simulations of flight and the cryogenic optical testing at NASA Johnson Space Center.

  17. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  18. Giving Birth to the James Webb Space Telescope: Part 1

    NASA Technical Reports Server (NTRS)

    Mather, John

    2013-01-01

    In late October 1995, I found a remarkable message on my answering machine from Ed Weiler, then the Program Scientist for the Hubble Space Telescope. Would I work on the next generation space telescope, the successor to the beautiful HST? It took me mere moments to work out the answer: Of course! At the time, my work on the COsmic Background Explorer (COBE) was finished, I was writing a book about it (The Very First Light, with John Boslough), and I thought NASA might never do anything nearly as spectacular again. Wow, was I happy to be surprised by that call!

  19. Fabrication of Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Zheng, Yun; Hess, Larry; Hu, Ron; Kelly, Dan; Lynch, Barney; Oh, Lance; Ray, Chris; Smith, Wayne; Babu, Sachi

    2004-01-01

    Two-dimensional MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use in the near-infrared region on the Next Generation Space Telescope (NGST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45K. Microshutter arrays are fabricated out of silicon-oxide-insulated (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100x100 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi-layer metal deposition and patterning of shutter electrodes and magnetic pads, reactive ion etching (RE) of the front side to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and relieve shutters from the silicon substrate. An additional metal deposition and patterning is used to form back electrodes. Shutters are actuated using a magnetic force and latched using an electrostatic force.

  20. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  1. Finding Acceptable James Webb Space Telescope Mission Orbits From a Fixed Ariane Flight Profile

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Janes, Leigh

    2005-01-01

    The James Webb Space Telescope (JWST) will be launched into orbit about the Sun/Earth L2 libration point. Trajectory design was recently completed which included expected separation states from the Ariane launch vehicle, constraints such as eclipses, maximum orbit size, maximum Sun-Vehicle-Earth/Moon angles, and launch opportunities. The results of this trajectory design give a set of possible trajectories for JWST with bounded stray light zones and provide a complete launch window. This data is also used to design the initial trajectory correction maneuver such that a maneuver towards the Sun is not required.

  2. An Automated SVD for Alignment and Control of James Webb Space Telescope Mirrors

    NASA Technical Reports Server (NTRS)

    Shiri, Sharam; Howard, Joseph M.; Aronstein, David L.; Ha, Kong; Smith, J. Scott; Dean, Bruce

    2008-01-01

    The James Webb Space Telescope (JWST) is a three-mirror anastigmatic telescope. The alignment of the segmented primary and secondary mirrors in the wavefront sensing and control process involves a series of actuators to control the six degrees-of-freedom motion on each surface in addition to the radius of curvature. The control matrix developed from the alignment parameters is over-determined and singular value decomposition (SVD) method is used to solve it in the least square sense. An automated SVD scheme has been developed to identify the most contributing modes in a typical alignment process and reduce the impact of error-prone modes from the control process.

  3. Effects of ice on the transmission of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan

    2007-09-01

    The James Webb Space Telescope (JWST) has among its challenges the minimization of the effects of ice on its optical performance in terms of transmission. The ice is a result of JWST's architecture, mission design and materials selection. The optical properties of ice are introduced to illustrate why there is concern among JWST's designers about ice build up. Several alternate methods of determining the impact on mirror reflectance are compared. Two are derived from Beer's Law and the third is full thin film treatment. It is shown and argued that only the thin film method captures enough of the physics of interaction of the incident light with an ice coated mirror.

  4. Continued Development of a Precision Cryogenic Dilatometer for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Karlmann, Paul B.; Dudik, Matthew J.; Halverson, Peter G.; Levine, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2004-01-01

    As part of the James Webb Space Telescope (JWST) materials working group, a novel cryogenic dilatometer was designed and built at NASA Jet Propulsion Laboratory to help address stringent coefficient of thermal expansion (CTE) knowledge requirements. Previously reported results and error analysis have estimated a CTE measurement accuracy for ULE of 1.7 ppb/K with a 20K thermal load and 0.1 ppb/K with a 280K thermal load. Presented here is a further discussion of the cryogenic dilatometer system and a description of recent work including system modifications and investigations.

  5. Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.

    2007-01-01

    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.

  6. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  7. Finding Our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2003-01-01

    NASA's Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  8. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2004-01-01

    NASA s Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  9. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  10. Prototype Motor Controllers Demonstrated for the James Webb Space Telescope Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    2004-01-01

    NASA is in the process of designing the James Webb Space Telescope. This telescope will investigate images of objects in deep space (stars, galaxies, etc.) by using light in the infrared region of the light spectrum. To make such observations, the telescope must have light sensors that operate at very cold temperatures, near absolute zero. To achieve this low-temperature tolerance, designers must place the light sensors behind a Sun shield that will prevent sunlight, and its heat, from reaching the sensors. In this cold region inside the telescope, electric motors and some motor controls must operate at temperatures near 40 K (40 degrees above absolute zero). These motors will be used to position light filters needed by the telescope. There are motors that operate at the low temperatures, but there is little technology for low-temperature motor-control electronics. The drawing shows how the motors and their controls are positioned behind the Sun shield. Simplified version of the layout of the motor and control electronics that are located, as dictated by mission requirements, in the cold zone of the James Webb Space Telescope. A Sun shield provides protection and isolation of these electronics from the heat of the rays of the sun. Room temperature compoenets (control computer, motor select command, motor phase drive, power supply, parallel to serial, and sun shield) as well as 40-kelvin components (motor select, serial to parallel, and motors) are shown. The Low Temperature Electronics Group at the NASA Glenn Research Center has been working to develop motor control electronics that will operate at a temperature of 40 K. The group conducted tests to determine which electronic components will operate at such very low temperatures. Then, components that were determined to operate successfully at the low temperatures were used to design low-temperature motor-controller circuits. A prototype motor controller circuit was built, evaluated, and demonstrated to operate at

  11. The James Webb Space Telescope and its Potential for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST s optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit imaging and spectroscopy and direct imaging. We also review the recent discovery of Fomalhaut B and implications for debris disk imaging nd exoplanet detection with JWST.

  12. Exploring Extrasolar Planetary Systems: New Observations of Extrasolar Planets Enabled by the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The search for extrasolar planets has been increasingly success over the last few years. In excess of 700 systems are now known, and Kepler has approx.2500 additional candidate systems, yet to be confirmed. Recently, progress has also been made in directly imaging extrasolar planets, both from the ground and in space. In this presentation will discuss the techniques employed to discover planetary systems, and highlight the capabilities, enabled by the James Webb Space Telescope (JWST). JWST is a large 6.5 meter aperture infrared telescope that is scheduled for launch in 2018, and will allow us to transition to characterizing the properties of these extrasolar planets and the planetary systems in which they reside.

  13. Thermal Test Verification of Emission Control through Directional Baffles for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew; Rashford, Robert; Switzer, Timothy; Shaw, David; White, Bryant; Lynch, Michael; Huber, Frank; Bachtell, Neal

    2009-01-01

    The thermal performance of NASA s planned James Webb Space Telescope is highly reliant on a collection of directional baffles that are part of the Integrated Science Instrument Module Electronics Compartment. In order to verify the performance of the baffle concept, two test assemblies were recently fabricated and tested at the Goddard Space Flight Center. The centerpiece of the testing was a fixture that used bolometers to measure the emission field through the baffles while the radiator panels and baffles ran a flight-like temperature. Although not all test goals were able to be met due to facility malfunctions, the test was able to prove the design viability enough to gain approval to begin manufacturing the flight article.

  14. The Near Infrared Spectrograph on the James Webb Space Telescope: Instrument Overview and User Interface Development

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Beck, Tracy; Karakla, Diane M.; Kassin, Susan; Keyes, Tony; Muzerolle, James; Pavlovsky, Cheryl; Soderblom, David; Ubeda, Leonardo

    2015-08-01

    The Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope will provide astronomers the ability to observe through fixed slits, the integral field unit, or in multi-object mode with the micro-shutter array, at spectral resolutions of R ˜ 100, 1000, and 2700. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We will provide a general overview of the NIRSpec instrument and the user interface development, including proposal planning and the data calibration and reduction pipeline. We will discuss the capabilities of NIRSpec for survey science, and introduce the science use cases that are being used to drive development of the NIRSpec user interfaces.

  15. Operations Concept for Moving Target Observations with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Sonneborne, George

    2012-01-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities for the study of Solar System objects. JWST is a large aperture, cryogenic, infrared-optimized, general purpose space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST instrumentation will provide imaging. coronagraphy, and spectroscopy between 6000A to 29 microns. This spectral region contains many atomic, molecular, and particulate diagnostics that are especially relevant for the study of gaseous, rocky and icy bodies in the Solar System. This talk describes the concept for observations of moving targets, including the system design for acquiring and tracking guide stars to hold the science target fIxed in the instrument field of view.

  16. The James Webb Space Telescope and its Capability for for Exoplanet Observations

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 .meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. In this presentation we will discuss the status of the JWST project and review the expected scientific performance of the observatory for observations of exosolar planets by means of transit observations, and direct coronagraphic imaging. In particular we will discuss recent simulations of photometric and spectroscopic transit observations that demonstrate the capabilities of JWST to characterize superearth atmospheres in the light of recent Kepler and Corot discoveries

  17. Observing Planetary Rings and Small Satellites with the James Webb Space Telescope: Science Justification and Observation Requirements

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Showalter, Mark R.; French, Richard G.; Burns, Joseph A.; Cuzzi, Jeffrey N.; de Pater, Imke; Hamilton, Douglas P.; Hedman, Matthew M.; Nicholson, Philip D.; Tamayo, Daniel; Verbiscer, Anne J.; Milam, Stefanie N.; Stansberry, John A.

    2016-01-01

    The James Webb Space Telescope (JWST) will provide unprecedented opportunities to observe the rings and small satellites in our Solar System, accomplishing three primary objectives: (1) discovering new rings and moons, (2) unprecedented spectroscopy, and (3) time-domain observations. We give details on these science objectives and describe requirements that JWST must fulfill in order to accomplish the science objectives.

  18. Cryogenic Photogrammetry and Radiometry for the James Webb Space Telescope Microshutters

    NASA Technical Reports Server (NTRS)

    Chambers, Victor J.; Morey, Peter A.; Zukowski, Barbara J.; Kutyrev, Alexander S.; Collins, Nicholas R.

    2012-01-01

    The James Webb Space Telescope (JWST) relies on several innovations to complete its five year mission. One vital technology is microshutters, the programmable field selectors that enable the Near Infrared Spectrometer (NIRSpec) to perform multi-object spectroscopy. Mission success depends on acquiring spectra from large numbers of galaxies by positioning shutter slits over faint targets. Precise selection of faint targets requires field selectors that are both high in contrast and stable in position. We have developed test facilities to evaluate microshutter contrast and alignment stability at their 35K operating temperature. These facilities used a novel application of image registration algorithms to obtain non-contact, sub-micron measurements in cryogenic conditions. The cryogenic motion of the shutters was successfully characterized. Optical results also demonstrated that shutter contrast far exceeds the NIRSpec requirements. Our test program has concluded with the delivery of a flight-qualified field selection subsystem to the NIRSpec bench.

  19. Looking Back in Time: Building the James Webb Space Telescope (JWST) Optical Telescope Element

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee

    2016-01-01

    When it launches in 2018, the James Webb Space Telescope (JWST) will look back in time at the earliest stars and galaxies forming in the universe. This talk will look back in time at the development of the JWST telescope. This will include a discussion of the design, technology development, mirror development, wave front sensing and control algorithms, lightweight cryogenic deployable structure, pathfinder telescope, and integration and test program evolution and status. The talk will provide the engineering answers on why the mirrors are made of Beryllium, why there are 18 segments, where and how the mirrors were made, how the mirrors get aligned using the main science camera, and how the telescope is being tested. It will also look back in time at the many dedicated people all over the country who helped build it.

  20. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  1. Crowded Field Photometry and Multiplexed Spectroscopy with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2015-08-01

    The science case for the James Webb Space Telescope is often conveyed through a few broad bins; exoplanet characterization, studies of planet formation, tracking galaxy growth through cosmic time, and finding high redshift galaxies. While JWST offers tremendous scientific promise in these areas, the telescope is expected to have a very broad scientific impact across most areas of modern astrophysics. One of JWST's biggest scientific opportunities will be in the study of crowded fields such as star clusters. In this presentation, I'll give a brief status update on JWST with a focus on what tools the community will soon have to plan stellar population science programs. I will show simulated images of massive star clusters as seen through the eye of JWST, and use these to motivate what new frontiers can be enabled through powerful infrared sensitivity, ultra high resolution, and multiplexed spectroscopy.

  2. Actuator usage and fault tolerance of the James Webb Space Telescope optical element mirror actuators

    NASA Astrophysics Data System (ADS)

    Barto, A.; Acton, D. S.; Finley, P.; Gallagher, B.; Hardy, B.; Knight, J. S.; Lightsey, P.

    2012-09-01

    The James Webb Space Telescope (JWST) telescope's secondary mirror and eighteen primary mirror segments are each actively controlled in rigid body position via six hexapod actuators. The mirrors are stowed to the mirror support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed position before the Wavefront Sensing & Control (WFS&C) alignment and phasing process begins. The actuation system is electrically, but not mechanically redundant. Therefore, with the large number of hexapod actuators, the fault tolerance of the OTE architecture and WFS&C alignment process has been carefully considered. The details of the fault tolerance will be discussed, including motor life budgeting, failure signatures, and motor life.

  3. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth/Moon L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  4. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  5. Demonstration of extended capture range for James Webb Space Telescope phase retrieval.

    PubMed

    Carlisle, R Elizabeth; Acton, D Scott

    2015-07-20

    A geometrical phase retrieval (GPR) algorithm is applied to the problem of image stacking in order to extend the capture range of normal phase retrieval (PR) on the James Webb Space Telescope (JWST), and potentially eliminate a lengthy image-stacking process that is based on centroids. Computer simulations are used to establish the capture range of the existing PR algorithm for JWST and demonstrate that it is increased by more than a factor of 10 when combined with GPR, guaranteeing PR capture 95% of the time. An experiment using a scale optical model of JWST was conducted to demonstrate the effectiveness of the GPR algorithm in both coherent and incoherent imaging. PMID:26367828

  6. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  7. Studies of the Coldest Brown Dwarfs with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2016-01-01

    The coolest T and Y-class Brown Dwarf objects are very faint and are therefore very poorly understood, since they are barely detectable with the current astronomical instrumentation. The upcoming James Webb Space Telescope now in development for a launch in the Fall of 2018 will have vastly increased sensitivity in the near and mid-infrared compared to any current facilities and will not be affected by telluric absorption over its entire wavelength range of operations. As a result it will be an ideal tool to obtain information about the composition and temperature-pressure structure in these objects' atmospheres. This presentation will outline the JWST guaranteed time observing plans for these studies.

  8. Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis

    NASA Technical Reports Server (NTRS)

    Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.

    2004-01-01

    This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.

  9. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  10. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z.-Y.; Zhang, Z.-W.; Vilenius, E.; Müller, Th.; Ortiz, J. L.; Braga-Ribas, F.; Bosh, A.; Duffard, R.; Lellouch, E.; Tancredi, G.; Young, L.; Milam, Stefanie N.; the JWST “Occultations” Focus Group

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  11. How can the James Webb Space Telescope measure First Light, Reionization, and Galaxy Assembly?

    NASA Astrophysics Data System (ADS)

    Windhorst, R. A.; Jansen, R. A.; Cohen, S. H.; Yan, H.; Conselice, C.

    2005-12-01

    In this poster, we first briefly review the capabilities of the 6.5 meter James Webb Space Telescope (JWST) --- slated for launch to a halo L2 orbit in 2013 --- including the considerations to make this an optimized infrared telescope that can deploy automatically in space. The main science themes of JWST are to measure First Light, Reionization, Galaxy Assembly, as well as the process of Star-formation and the origin of Planetary Systems. In this poster, we will summarize how the JWST will go about measuring First Light, Reionization, and Galaxy Assembly, building on lessons learned from the Hubble Space Telescope. We will show what more nearby galaxies observed in their restframe UV--optical light will likely look like to JWST at very high redshifts, and discuss quantitative methods to determine structural parameters of faint galaxies in deep JWST images as a function of cosmic epoch. We will also discuss to what extent JWST's short wavelength performance --- which needed to be relaxed in the latest definition of the telescope --- may affect JWST's ability to accurately determine faint galaxy parameters. Space permitting, we will also discuss if ultradeep JWST images will run into the natural confusion limit, and what new generations of algorithms may be needed to automatically detect objects in very crowded, ultradeep JWST fields. This work was funded by NASA JWST Interdisciplinary Scientist grant NAG5-12460 from GSFC.

  12. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  13. The Hubble, the James Webb Space Telescope and Looking to the Future: Space Science at a Cross Road?

    SciTech Connect

    Mountain, Matt

    2008-04-30

    After eighteen years of observing the Universe, the Hubble Space Telescope is about to be upgraded and repaired by NASA's Shuttle astronauts in the summer of this year. This will breathe new life into a telescope that has been described as the most productive in history. This talk will discuss some of Hubble's results, describe what we hope to achieve in this last servicing mission, and how we manage the Hubble science operation on behalf of NASA and the science community. In addition I will show how some of the science programs and the way we operate Hubble are paving the way for a very different space observatory, the James Webb Space Telescope (JWST). The James Webb will open up new opportunities for space science in the same way the Hubble did in the 1990's. I will also discuss briefly the challenges of launching a 6.5m cryogenic telescope out to L2. As we look to the future, how this perspective has led the Space Telescope Science Institute to take another look at our successful partnership with NASA's human spaceflight program as we explore the types of space observatories we will need in the 2020 timeframe.

  14. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  15. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  16. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The Big Bang 13.7 billion years ago started the expansion of our piece of the universe, and portions of it stopped expanding and made stars, galaxies, planets, and people. I summarize the history of the universe, and explain how humans have learned about its size, its expansion, and its constituents. The COBE (Cosmic Background Explorer) mission measured the remnant heat radiation from the Big Bang, showed that its color (spectrum) matches the predictions perfectly, and discovered hot and cold spots in the radiation that reveal the primordial density variations that enabled us to exist. My current project, the James Webb Space Telescope (JWST), is the planned successor to the Hubble Space Telescope, and will extend its scientific discoveries to ever greater distances and ever closer to the Big Bang itself. Its infrared capabilities enable it to see inside dust clouds to study the formation of stars and planets, and it may reveal the atmospheric properties of planets around other stars. Planned for launch in 2013, it is an international project led by NASA along with the European and Canadian Space Agencies.

  17. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  18. Large Scale Refrigeration Plant for Ground Testing the James Webb Telescope at NASA Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Decker, Lutz; Howe, D.; Urbin, J.; Homan, Jonathan; Reis, Carl; Creel, J.; Ganni, V.; Knudsen, P.; Sidi-Yekhlef, A.

    2010-04-01

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle-Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  19. James Webb Space Telescope - Applying Lessons Learned to I&T

    NASA Technical Reports Server (NTRS)

    Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis

    2008-01-01

    The James Webb Space Telescope (JWST) is part of a new generation of spacecraft acquiring large data volumes from remote regions in space. To support a mission such as the JWST, it is imperative that lessons learned from the development of previous missions such as the Hubble Space Telescope and the Earth Observing System mission set be applied throughout the development and operational lifecycles. One example of a key lesson that should be applied is that core components, such as the command and telemetry system and the project database, should be developed early, used throughout development and testing, and evolved into the operational system. The purpose of applying lessons learned is to reap benefits in programmatic or technical parameters such as risk reduction, end product quality, cost efficiency, and schedule optimization. In the cited example, the early development and use of the operational command and telemetry system as well as the establishment of the intended operational database will allow these components to be used by the developers of various spacecraft components such that development, testing, and operations will all use the same core components. This will reduce risk through the elimination of transitions between development and operational components and improve end product quality by extending the verification of those components through continual use. This paper will discuss key lessons learned that have been or are being applied to the JWST Ground Segment integration and test program.

  20. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    SciTech Connect

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    2010-04-01

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox will provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.

  1. An Overview of Integration and Test of the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Drury, Michael; Becker, Neil; Bos, Brent; Davila, Pamela; Frey, Bradley; Hylan, Jason; Marsh, James; McGuffey, Douglas; Novak, Maria; Ohl, Raymond; Redman, Kevin; Sampler, Henry; Sullivan, Joseph; Walker, Ian; Wright, Geraldine; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1x2.2x1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are integrated and aligned to the structure under ambient, clean room conditions. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature. We present an overview of the ISIM integration within the context of Observatory-level construction. We describe the integration and verification plan for the ISIM element, including an overview of our incremental verification approach, ambient mechanical integration and test plans and optical alignment and cryogenic test plans. We describe key ground support equipment and facilities.

  2. James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics

    NASA Technical Reports Server (NTRS)

    Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.

    2013-01-01

    The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).

  3. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  4. Studying Galaxy Formation and Reionization with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will review the current status of the project.

  5. Cryogenic Characterization and Testing of Magnetically-Actuated Microshutter Arrays for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    King, T. T.; Kletetschka, G.; Jah, M. A.; Li, M. J.; Jhabvala, M. D.; Wang, L. L.; Beamesderfer, M. A.; Kutyrev, A. S.; Silverberg, R. F.; Rapchun, D.; Schwinger, D. S.

    2004-01-01

    Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (approximately 35 K) spectrographic astronomy measurements in the near-infrared region. Functioning as a focal plane object selection device, the MSA is a 2-D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close- packed silicon nitride shutters (cell size of 100 x 200 microns) patterned with a torsion flexure to allow opening to 90 degrees. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K less than or equal to T less than 300K). The magnetic rotisserie has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 x 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in pathfinder test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to approximately 10(exp 6) shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.

  6. James Webb Space Telescope Optical Simulation Testbed I: overview and first results

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-08-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.

  7. Cryogenic characterization and testing of magnetically-actuated microshutter arrays for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    King, T. T.; Kletetschka, G.; Jah, M. A.; Beamesderfer, M. A.; Li, M. J.; Wang, L. L.; Moseley, S. H.; Sparr, L. M.; Jhabvala, M. D.; Kutyrev, A. S.; Silverberg, R. F.; Rapchun, D.; Zheng, Y.; Schwinger, D. S.; Voellmer, G. M.

    2005-08-01

    Two-dimensional MEMS microshutter arrays (MSA) have been fabricated at the NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST) to enable cryogenic (~35 K) spectrographic astronomy measurements at near-infrared wavelengths. Functioning as a focal plane object selection device, the MSA is a 2D programmable aperture mask with fine resolution, high efficiency and high contrast. The MSA are close-packed silicon nitride shutters (cell size of 100 µm × 200 µm) patterned with a torsion flexure to allow their opening to 90°. A layer of magnetic material is deposited onto each shutter to permit magnetic actuation. Two electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2D addressing. New techniques were developed to test MSA under mission-similar conditions (8 K <= T < 300 K). The 'magnetic rotisserie' has proven to be an excellent tool for rapid characterization of MSA. Tests conducted with the magnetic rotisserie method include accelerated cryogenic lifetesting of unpackaged 128 × 64 MSA and parallel measurement of the magneto-mechanical stiffness of shutters in 'pathfinder' test samples containing multiple MSA designs. Lifetest results indicate a logarithmic failure rate out to ~106 shutter actuations. These results have increased our understanding of failure mechanisms and provide a means to predict the overall reliability of MSA devices.

  8. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  9. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sakamoto, T.

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  10. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  11. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  12. A New Large Vibration Test Facility Concept for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug

    2014-01-01

    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  13. Status of the James Webb Space Telescope and its Capabilities for Exoplanet Observations

    NASA Astrophysics Data System (ADS)

    Clampin, Mark

    2015-12-01

    The James Webb Space Telescope (JWST) is a large aperture, infrared telescope planned for launch in 2018. JWST is a facility observatory that will address a broad range of science goals covering four major themes: First light and Re-Ionization, the Assembly of Galaxies, the Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. With a 6.5 meter diameter mirror it will be the largest space telescope ever flown, and is the first cryogenic telescope to incorporate passive cooling, achieved by means of a large sunshade, to reach its ~40 K operating temperature. JWST has a complement of four science instruments that offer a range of capabilities for exoplanet imaging and transit imaging and spectroscopy. I will present an overview of the observatory design, highlight recent progress towards integration, testing, and science operations. I will also discuss JWST’s launch and commissioning timeline. Finally, I will present the capabilities of JWST to conduct programs which address the observations of exoplanets.

  14. Warm molecular Hydrogen at high redshift with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Guillard, P.; Boulanger, F.; Lehnert, M. D.; Appleton, P. N.; Pineau des Forêts, G.

    2015-12-01

    The build-up of galaxies is regulated by a complex interplay between gravitational collapse, galaxy merging and feedback related to AGN and star formation. The energy released by these processes has to dissipate for gas to cool, condense, and form stars. How gas cools is thus a key to understand galaxy formation. Spitzer Space Telescope infrared spectroscopy revealed a population of galaxies with weak star formation and unusually powerful H_2 line emission. This is a signature of turbulent dissipation, sustained by large-scale mechanical energy injection. The cooling of the multiphase interstellar medium is associated with emission in the H_2 lines. These results have profound consequences on our understanding of regulation of star formation, feedback and energetics of galaxy formation in general. The fact that H_2 lines can be strongly enhanced in high-redshift turbulent galaxies will be of great importance for the James Webb Space Telescope observations which will unveil the role that H_2 plays as a cooling agent in the era of galaxy assembly.

  15. Deployable Sunshield Design and Development for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Parrish, Keith; Flynn, J.; Tao, A.; Perrygo, C.

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), passively cooled cryogenic space telescope with a suite of near and mid-infrared instruments. Passive cooling of the telescope and near infrared instruments to below 40 Kelvin is enabled by a large, 15 meter by 21 meter, deployable sunshield. In addition to protecting the telescope from the Sun's heat, the sunshield's size and custom shape provide a large field of regard enabling continuous exposures of up to ten days and all sky visibility over the course of a year. The sunshield's five separated thin Kapton membrane layers must be compactly stowed and protected during launch and carefully controlled during several deployment steps. After describing the sunshield's architecture evolution and demanding requirements, we will present an overview of the sunshield's design solution and deployment procedures. Recent design and testing progress using a full-size sunshield test-bed is also presented along with an overview of its predicted on-orbit thermal and stray-light performance.

  16. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; Mclean, Kyle F.; McMann, Joseph; Melf, Markus; Miner, Linda; Ohl, Raymond G.; Redman, Kevin; Roedel, Andreas; Schweiger, Paul; Plate, Maurice T.; Wells, Martyn; Wenzel, Greg W.; Williams, Patrick K.; Young, Jerrod

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  17. Focus determination for the James Webb Space Telescope Science Instruments: A Survey of Methods

    NASA Technical Reports Server (NTRS)

    Davila, Pamela S.; Bolcar, Matthew R.; Boss, B.; Dean, B.; Hapogian, J.; Howard, J.; Unger, B.; Wilson, M.

    2006-01-01

    The James Webb Space Telescope (JWST) is a segmented deployable telescope that will require on-orbit alignment using the Near Infrared Camera as a wavefront sensor. The telescope will be aligned by adjusting seven degrees of freedom on each of 18 primary mirror segments and five degrees of freedom on the secondary mirror to optimize the performance of the telescope and camera at a wavelength of 2 microns. With the completion of these adjustments, the telescope focus is set and the optical performance of each of the other science instruments should then be optimal without making further telescope focus adjustments for each individual instrument. This alignment approach requires confocality of the instruments after integration and alignment to the composite metering structure, which will be verified during instrument level testing at Goddard Space Flight Center with a telescope optical simulator. In this paper, we present the results from a study of several analytical approaches to determine the focus for each instrument. The goal of the study is to compare the accuracies obtained for each method, and to select the most feasible for use during optical testing.

  18. Observing Outer Planet Satellites (Except Titan) with the James Webb Space Telescope: Science Justification and Observational Requirements

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Laszlo; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  19. Science Opportunities with the Near-IR Camera (NIRCam) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Rieke, Marcia; Eisenstein, Daniel; Greene, Thomas P.; Krist, John; McCarthy, Don; Meyer, Michael; Stansberry, John

    2012-01-01

    The Near-Infrared Camera (NIRCam) on the James Webb Space Telescope (JWST) offers revolutionary gains in sensitivity throughout the 1-5 micrometer region. NIRCam will enable great advances in all areas of astrophysics, from the composition of objects in our own Kuiper Belt and the physical properties of planets orbiting nearby stars to the formation of stars and the detection of the youngest galaxies in the Universe. NIRCam also plays an important role in initial alignment of JWST and the long term maintenance of its image quality. NIRCam is presently undergoing instrument Integration and Test in preparation for delivery to the JWST project. Key near-term milestones include the completion of cryogenic testing of the entire instrument; demonstration of scientific and wavefront sensing performance requirements; testing of replacement H2RG detectors arrays; and an analysis of coronagraphic performance in light of measured telescope wavefront characteristics. This paper summarizes the performance of NIRCam, the scientific and education/outreach goals of the science team, and some results of the on-going testing program.

  20. Mechanical slit mask mechanism for the James Webb Space Telescope Spectrometer

    NASA Astrophysics Data System (ADS)

    Henein, Simon; Spanoudakis, Peter; Schwab, Philippe; Giriens, Laurent; Lisowski, Leszek; Onillon, Emmanuel; Myklebust, Leif I.

    2003-09-01

    This paper presents the mechanical slit mask designed for the Near Infrared Spectrograph of the James Webb Space Telescope. This mechanism is designed to function at a cryogenic temperature of 30K, in vacuum. The reconfigurable mask allows to form 24 optical slits in a 137×137 mm2 field of view. The slit length is fixed (4.8 mm) and their width can range from 50 μm to 137 mm. The slit positioning accuracy is ±5 μm and the slit width accuracy is ±8 μm. The paper concentrates on the working principle of the mechanism which is based on an improved "inch-worm" stepping motion of 48 masking bars forming the optical curtain. Voice coil actuators are used to drive the various clutches and the principal mobile stage. Ratchets which engage in the teeth of a rack machined on the bars allow to cancel the accumulation of motion errors as steps succeed one another. The design makes significant use flexure structures. Cryogenic performance and life tests have been performed successfully on subassemblies of the mechanism.

  1. Mechanical slit mask mechanism for the James Webb Space Telescope spectrometer

    NASA Astrophysics Data System (ADS)

    Henein, Simon; Spanoudakis, Peter; Schwab, Philippe; Giriens, Laurent; Lisowski, Leszek; Onillon, Emmanuel; Myklebust, Leif I.

    2004-10-01

    A mechanical slit mask mechanism has been designed for the Near Infrared Spectrograph of the James Webb Space Telescope. This mechanism was successfully tested at a cryogenic temperature of 30K, in vacuum. The reconfigurable mask allows to form 24 optical slits in a 137 x 137 mm2 field of view. The slit length is fixed (4.8 mm) and their width can range from 50 μm to 137 mm. The slit positioning accuracy is +/- 5 μm and the slit width accuracy is +/- 8 μm. The working principle of the mechanism is based on an improved "inch-worm" stepping motion of 48 masking bars forming the optical curtain. Voice coil actuators are used to drive the various clutches and the principal mobile stage. Ratchets which engage in the teeth of a rack machined on the bars allow to cancel the accumulation of motion errors as steps succeed one another. The design makes significant use flexure structures. Cryogenic performance, life and vibration tests have been performed successfully on subassemblies of the mechanism and a full-scale prototype.

  2. A contamination control cover for the Mid Infrared Instrument of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Glauser, Adrian M.; Langer, Ulrich; Zehnder, Alex; Güdel, Manuel

    2008-07-01

    During its cold mission phase at 7 Κ the Mid Infrared Instrument (MIRI) is the coldest spot on the James Webb Space Telescope (JWST) and will act consequently as a cryopump of the instrument's environment. Since the absorption of outgassing molecules from the spacecraft (mainly water and hydrocarbons) on optical surfaces would lead to a significant degradation of the optical performance of MIRI, a Contamination Control Cover (CCC) has been introduced. This cover is placed in the entrance optical path of MIRI right after the picko. mirror (POM) and will be closed during the instrument's cool down phase and at MIRI's operational temperature each time the POM is heated up for decontamination. The CCC will be used further as an optical shutter for dark sky calibration and for the protection against latency images which might emerge from coronagraphic filter changes. Therefore, the CCC has been designed to be multi operational with approximately 3000 life cycles. A contact-free labyrinth seal allows the required reduction of molecular flow towards the instrument and avoids the possibility of any freezing. The CCC is operational between 300 Κ and 7 Κ and is actuated by two redundant stepper motors. In this paper we describe the design of the CCC and the results of the qualification campaign. Further a dedicated measurement of its molecular conductance at various temperatures is presented.

  3. Mirror placement optimization for the multi-segmented James Webb Space Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Porpora, D.; Wachs, J.; Barto, A.; Knight, J. S.

    2014-08-01

    The Primary Mirror (PM) of NASA's James Webb Space Telescope (JWST) consists of 18 segment assemblies that are aligned on-orbit using hexapod actuators to function as a single monolithic optic. The individual segment assemblies are polished into one of three different prescriptions. Each segment of a given prescription may be placed in one of six different locations for that prescription, resulting in tens of millions of possible placement combinations of the 18 segments on the backplane of the telescope. A method is proposed to optimize the placement based on minimizing the known alignment offsets of as-built mirrors in combination with the predicted shifts of each attachment point on the telescope backplane due to material creep, cool down shifts, launch shifts, and gravity release. The optimization routine can be configured to allow for minimization of errors in any of the six rigid-body degrees of freedom and can further reduce selection options based on defined hardware constraints. Such a routine can be utilized to minimize initial misalignments of the PM on-orbit, reducing the need to exercise mirror actuators to achieve an aligned state. The end result is reduced commissioning time and increased probability of success of the mission.

  4. Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.; Rieke, Marcia; Eisenstein, Daniel; Greene, Thomas P.; Krist, John; McCarthy, Don; Meyer, Michael; Stansberry, John

    2012-09-01

    The Near-Infrared Camera (NIRCam) on the James Webb Space Telescope (JWST) offers revolutionary gains in sensitivity throughout the 1-5 μm region. NIRCam will enable great advances in all areas of astrophysics, from the composition of objects in our own Kuiper Belt and the physical properties of planets orbiting nearby stars to the formation of stars and the detection of the youngest galaxies in the Universe. NIRCam also plays an important role in initial alignment of JWST and the long term maintenance of its image quality. NIRCam is presently undergoing instrument Integration and Test in preparation for delivery to the JWST project. Key near-term milestones include the completion of cryogenic testing of the entire instrument; demonstration of scientific and wavefront sensing performance requirements; testing of replacement H2RG detectors arrays; and an analysis of coronagraphic performance in light of measured telescope wavefront characteristics. This paper summarizes the performance of NIRCam, the scientific and education/outreach goals of the science team, and some results of the on-going testing program.

  5. Statistical analysis of the surface figure of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John

    2012-09-01

    The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.

  6. James Webb Space Telescope: Supporting Multiple Ground System Transitions in One Year

    NASA Technical Reports Server (NTRS)

    Detter, Ryan; Fatig, Curtis; Steck, Jane

    2004-01-01

    Ideas, requirements, and concepts developed during the very early phases of the mission design often conflict with the reality of a situation once the prime contractors are awarded. This happened for the James Webb Space Telescope (JWST) as well. The high level requirement of a common real-time ground system for both the Integration and Test (I&T), as well as the Operation phase of the mission is meant to reduce the cost and time needed later in the mission development for re-certification of databases, command and control systems, scripts, display pages, etc. In the case of JWST, the early Phase A flight software development needed a real-time ground system and database prior to the spacecraft prime contractor being selected. To compound the situation, the very low level requirements for the real-time ground system were not well defined. These two situations caused the initial real-time ground system to be switched out for a system that was previously used by the Bight software development team. To meet the high-!evel requirement, a third ground system was selected based on the prime spacecraft contractor needs and JWST Project decisions. The JWST ground system team has responded to each of these changes successfully. The lessons learned from each transition have not only made each transition smoother, but have also resolved issues earlier in the mission development than what would normally occur.

  7. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  8. James Webb Space Telescope segment phasing using differential optical transfer functions

    NASA Astrophysics Data System (ADS)

    Codona, Johanan L.; Doble, Nathan

    2015-04-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms.

  9. How can the James Webb Space Telescope measure First Light, Reionization, and Galaxy Assembly?

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Jansen, R. A.; Cohen, S. H.; Mechtley, M.; Yan, H.; Conselice, C.

    2006-12-01

    In this poster, we briefly review the capabilities of the 6.5 meter James Webb Space Telescope (JWST) --slated for launch to a halo L2 orbit in 2013 --including the considerations to make this an optimized infrared telescope that can deploy automatically in space. The main science themes of JWST are to measure First Light, Reionization, Galaxy Assembly, as well as the process of Star-formation and the origin of Planetary Systems. In this poster, we will summarize how the JWST will go about measuring First Light, Reionization, and Galaxy Assembly, building on lessons learned from the Hubble Space Telescope and the Hubble UltraDeep Field (HUDF) in particular. We will show what more nearby galaxies observed in their restframe UV--optical light will likely look like to JWST at very high redshifts, and discuss quantitative methods to determine the structural parameters of faint galaxies in deep JWST images as a function of cosmic epoch. We will also discuss to what extent JWST's short wavelength performance --which needed to be relaxed in the 2005 definition of the telescope --may affect JWST's ability to accurately determine faint galaxy parameters. Space permitting, we will also discuss if ultradeep JWST images will run into the natural confusion limit, and what new generations of algorithms may be needed to automatically detect objects in very crowded, ultradeep JWST fields. We will show an interactive web-tool (see poster by L. Will, M. Mechtley et al.) that lets the user pan and zoom through the HUDF data-base from redshifts z=0 to z=6, and visualize what JWST will add from AB=29.5-32.0 mag and between redshifts z=7-20. This work was funded by JWST Interdisciplinary Scientist grant NAG5-12460 from NASA HQ.

  10. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Plate, Maurice Te; Vila, M. Begona; Warner, Gerry D.; Wright, Raymond H.; Wright, David; Zhou, Julia; Zielinski, Thomas P.

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  11. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    SciTech Connect

    Ford, K. E. Saavik; McKernan, Barry; Sivaramakrishnan, Anand; Martel, André R.; Koekemoer, Anton; Lafrenière, David; Parmentier, Sébastien

    2014-03-10

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  12. Studies of Supernovae, SNR, and Dust with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2012-01-01

    The james Webb Space Telescope (JWST) will provide breakthrough capabilities for the study of supernovae and supernova remnants, as well as many other science objectives. JWST is a large aperture, cryogenic, infrared-optimized general purpose space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST instrumentation will provide imaging, coronagraphy, and spectroscopy between 6000A to 29 microns. This spectral region contains many atomic, molecular, and particulate diagnostics that are especially relevant for the study of dust formation. The spectroscopic capabilities include velocity resolution down to approx. 100 km/sec, a near-IR multi-object spectrograph with a approx. 3x3 arcmin field of view array of approx. 250,000 addressable shutters, and near-IR and mid-IR approx. 3x3 arcsec integral field units. The JWST telescope will have a 6.5m-diameter segmented primary mirror and will be diffraction-limited at 2 microns (PSF FWHM - 0.07 arcsec). The imaging and spectroscopic sensitivities will be about 100x lower than previous capabilities in the near- and mid-IR. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The JWST telescope and instruments will be passively cooled to approx. 40K by a sunshield that will be unfolded after launch. The sunshield geometry limits the JWST pointing on the sky to be between 85 deg and 135 deg from the Sun. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations, and a Target of Opportunity response time of 48 hours.

  13. James Webb Space Telescope XML Database: From the Beginning to Today

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis C.

    2005-01-01

    The James Webb Space Telescope (JWST) Project has been defining, developing, and exercising the use of a common eXtensible Markup Language (XML) for the command and telemetry (C&T) database structure. JWST is the first large NASA space mission to use XML for databases. The JWST project started developing the concepts for the C&T database in 2002. The database will need to last at least 20 years since it will be used beginning with flight software development, continuing through Observatory integration and test (I&T) and through operations. Also, a database tool kit has been provided to the 18 various flight software development laboratories located in the United States, Europe, and Canada that allows the local users to create their own databases. Recently the JWST Project has been working with the Jet Propulsion Laboratory (JPL) and Object Management Group (OMG) XML Telemetry and Command Exchange (XTCE) personnel to provide all the information needed by JWST and JPL for exchanging database information using a XML standard structure. The lack of standardization requires custom ingest scripts for each ground system segment, increasing the cost of the total system. Providing a non-proprietary standard of the telemetry and command database definition formation will allow dissimilar systems to communicate without the need for expensive mission specific database tools and testing of the systems after the database translation. The various ground system components that would benefit from a standardized database are the telemetry and command systems, archives, simulators, and trending tools. JWST has exchanged the XML database with the Eclipse, EPOCH, ASIST ground systems, Portable spacecraft simulator (PSS), a front-end system, and Integrated Trending and Plotting System (ITPS) successfully. This paper will discuss how JWST decided to use XML, the barriers to a new concept, experiences utilizing the XML structure, exchanging databases with other users, and issues that have

  14. Thermal System Verification and Model Validation for NASA's Cryogenic Passively Cooled James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul E.; Parrish, Keith A.

    2005-01-01

    A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description

  15. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  16. Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.

  17. Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Villanueva, Gerónimo L.; Altieri, Francesca; Clancy, R. Todd; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopéz-Valverde, Miguel A.; Mumma, Michael J.; Novak, Robert E.; Smith, Michael D.; Vandaele, Ann-Carine; Wolff, Michael J.; Ferruit, Pierre; Milam, Stefanie N.

    2016-01-01

    In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east-west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.″07 at 2 μm). Spectroscopic observations will be achievable in the 0.7-5 μm spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1-1.25 μm range. Imaging will be attainable with the Near-Infrared Camera at 4.3 μm and with two narrow filters near 2 μm, while the nightside will be accessible with several filters in 0.5 to 2 μm. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 μm, studies of chemical transport via observations of the O2 nightglow at 1.27 μm, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

  18. DETECTABILITY OF FREE FLOATING PLANETS IN OPEN CLUSTERS WITH THE JAMES WEBB SPACE TELESCOPE

    SciTech Connect

    Pacucci, Fabio; Ferrara, Andrea; D'Onghia, Elena

    2013-12-01

    Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate N-dot {sub o} (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρ{sub *} of the cluster: N-dot {sub o}=αρ{sub ⋆}, with α = (23 ± 5) × 10{sup –6} pc{sup 3} Myr{sup –1}. For the Pleiades (M45), we predict that ∼26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ∼500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of F {sub ν} (4.4 μm) ≈4 × 10{sup 2} nJy, which would lead to a very clear detection (S/N ∼ 100) in only one hour of integration.

  19. Thermal-Stress Control of Microshutter Arrays in Cryogenic Applications for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Kelly, Daniel P.; Chuang, Wen-Hsien; Hess, Larry; Hu, Ron; Jhabvala, Murzy; King, Todd; Li, Mary J.; Loughlin, James; Moseley, S. Harvey; Ray, Christopher

    2004-01-01

    We report on methods to minimize thermally-induced deformation in a MEMS-based reconfigurable aperture. The device is an enabling component of the Near-Infrared Spectrometer, a principle instrument on NASA's James Webb Space Telescope. The Microshutter Array consists of 384 x 175 individually addressable shutters which can be magnetically rotated 90 deg into the plane of the array and electrostatically latched open. Each shutter is a 100 x 200 micron rectangular membrane suspended by a small neck region and torsion flexure. The primary materials in the shutter are a 5000A Si3N4 layer for mechanical rigidity, 2000A Al for opacity and electrostatic latching, and 2800A CoFe for magnetic actuation. This multi-layer stack presents a challenge due to the operating temperatures required for the device: both room temperature (300K) and cryogenic temperature (35K). Thermal expansion of the materials causes the shutters to bow out of plane excessively, which can prevent actuation of the shutters, cause damage to portions of the array, and allow light leakage around closed shutters. Here we present our investigation of several methods to prevent microshutter bowing including deposition of additional materials on the shutters to create a symmetrical layer stack and replacing the current stack with low-coefficient of thermal expansion materials. Using shutter-size suspended cantilever beams as a rapid-development test bed, we have reduced out-of-plane bowing between 300K and 35K to 10% or better. We are currently applying these results to microshutter arrays to develop shutters that remain flat from room temperature to cryogenic temperature while retaining the required mechanical, optical, and magnetic properties.

  20. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  1. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  2. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  3. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to

  4. The James Webb Space Telescope instrument suite layout: optical system engineering considerations for a large deployable space telescope

    NASA Astrophysics Data System (ADS)

    Bos, Brent J.; Davila, Pamela S.; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul A.; Contreras, James; Whitman, Tony

    2004-10-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 μm. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the mission requirements. Four instruments required accommodation within the telescope"s field of view: a Near-Infrared Camera (NIRCam), a Near-Infrared Spectrometer (NIRSpec), a Mid-Infrared Instrument (MIRI) and a Fine Guidance Sensor (FGS) with a tunable filter module. The size and position of each instrument"s field of view allocation were developed through an iterative, concurrent engineering process involving key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  5. Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James; Ohl, Raymond; Quigley, Rob; Redman, Kevin; Sampler, Henry; Wright, Geraldine; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was

  6. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  7. Detecting gravitationally lensed Population III galaxies with the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Zackrisson, Erik; Zitrin, Adi; Trenti, Michele; Rydberg, Claes-Erik; Guaita, Lucia; Schaerer, Daniel; Broadhurst, Tom; Östlin, Göran; Ström, Tina

    2012-12-01

    Small galaxies consisting entirely of Population III (pop III) stars may form at high redshifts, and could constitute one of the best probes of such stars. Here, we explore the prospects of detecting gravitationally lensed pop III galaxies behind the galaxy cluster J0717.5+3745 (J0717) with both the Hubble Space Telescope (HST) and the upcoming James Webb Space Telescope (JWST). By projecting simulated catalogues of pop III galaxies at z ≈ 7-15 through the J0717 magnification maps, we estimate the lensed number counts as a function of flux detection threshold. We find that the ongoing HST survey Cluster Lensing And Supernova survey with Hubble (CLASH), targeting a total of 25 galaxy clusters including J0717, potentially could detect a small number of pop III galaxies if ˜1 per cent of the baryons in these systems have been converted into pop III stars. Using JWST exposures of J0717, this limit can be pushed to ˜0.1 per cent of the baryons. Ultradeep JWST observations of unlensed fields are predicted to do somewhat worse, but will be able to probe pop III galaxies with luminosities intermediate between those detectable in HST/CLASH and in JWST observations of J0717. We also explain how current measurements of the galaxy luminosity function at z = 7-10 can be used to constrain pop III galaxy models with very high star formation efficiencies (˜10 per cent of the baryons converted into pop III stars).

  8. The James Webb Space Telescope’s Plan for Operations and Instrument Capabilities for Observations in the Solar System

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  9. Toward Direct Imaging of Low-mass Gas-Giant Planets with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Schlieder, J. E.; Beichman, C. A.; Meyer, M. R.; Greene, T.

    2016-01-01

    In preparation for observations with the James Webb Space Telescope (JWST), we have identified new members of the nearby, young M dwarf sample and compiled an up to date list of these stars. Here we summarize our efforts to identify young M dwarfs, describe the current sample, and detail its demographics in the context of direct planet imaging. We also describe our investigations of the unprecedented sensitivity of the JWST when imaging nearby, young M dwarfs. The JWST is the only near term facility capable of routinely pushing direct imaging capabilities around M dwarfs to sub-Jovian masses and will provide key insight into questions regarding low-mass gas-giant properties, frequency, formation, and architectures.

  10. From the Big Bang to the Nobel Prize and on to the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the univerre, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the Jarnes Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where rtars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  11. Integrated Modeling Activities for the James Webb Space Telescope: Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.

  12. The James Webb Telescope Instrument Suite Layout: Optical System Engineering Considerations for a Large, Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Davila, Pam; Jurotich, Matthew; Hobbs, Gurnie; Lightsey, Paul; Contreras, Jim; Whitman, Tony

    2003-01-01

    The James Webb Space Telescope (JWST) is a space-based, infrared observatory designed to study the early stages of galaxy formation in the Universe. The telescope will be launched into an elliptical orbit about the second Lagrange point and passively cooled to 30-50 K to enable astronomical observations from 0.6 to 28 microns. A group from the NASA Goddard Space Flight Center and the Northrop Grumman Space Technology prime contractor team has developed an optical and mechanical layout for the science instruments within the JWST field of view that satisfies the telescope s high-level performance requirements. Four instruments required accommodation within the telescope's field of view: a Near-Infrared Camera (NIRCam) provided by the University of Arizona; a Near-Mared Spectrometer (NIRSpec) provided by the European Space Agency; a Mid-Infrared Instrument (MIRI) provided by the Jet Propulsion Laboratory and a European consortium; and a Fine Guidance Sensor (FGS) with a tunable filter module provided by the Canadian Space Agency. The size and position of each instrument's field of view allocation were developed through an iterative, concurrent engineering process involving the key observatory stakeholders. While some of the system design considerations were those typically encountered during the development of an infrared observatory, others were unique to the deployable and controllable nature of JWST. This paper describes the optical and mechanical issues considered during the field of view layout development, as well as the supporting modeling and analysis activities.

  13. Detector Arrays for the James Webb Near Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2009-01-01

    NASA Goddard Space Flight Center is delivering the detector subsystem for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). Of all JWST instruments, NIRSpec has the most stringent detector requirements. In this poster, we describe recent performance testing results and relate them to NIRSpec's science requirements.

  14. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  15. The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mosier, Gary E.; Howard, Joseph M.; Johnston, John D.; Parrish, Keith A.; Hyde, T. Tupper; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.

  16. Updates to the optical alignment and test plan for the James Webb Space Telescope integrated science instrument module

    NASA Astrophysics Data System (ADS)

    Ohl, R.

    2009-08-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of ~2.2x2.2x1.7m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical telescope element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using optomechanical metrology. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work updates the assembly and ambient and cryogenic optical alignment, test and verification plan for ISIM.

  17. Recent Developments in the Alignment and Test Plans for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond

    2008-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1 x 2.2 x 1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using an OTE SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a approximately 1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. Temperature-induced mechanical SI alignment and structural changes are measured using a photogrammetric measurement system at ambient and cryogenic temperatures. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature using OSIM. We present an updated plan for the assembly and ambient and cryogenic optical alignment, test and verification of the ISIM element.

  18. Shake, Rattle and Roll: James Webb Telescope Components Pass Tests

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows a model of one of three detectors for the Mid-Infrared Instrument on NASA's upcoming James Webb Space Telescope. The detector, which looks green in this picture, and is similar to the charge-coupled devices, or 'CCDs,' in digital cameras, is housed in the brick-like unit shown here, called a focal plane module.

  19. Shake, Rattle and Roll: James Webb Telescope Components Pass Tests

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Mike Ressler (right) and Kalyani Sukhatme of JPL pose in the clean room with a model component, called a focal plane module, of the Mid-Infrared Instrument on NASA's James Webb Space Telescope. Ressler is the project scientist for the instrument, and Sukhatme is the project element manager for the instrument's focal plane module.

  20. Multi-Object Spectroscopy with the James Webb Space Telescope’s Near Infrared Spectrograph: Observing Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Karakla, Diane M.; Beck, Tracy

    2015-08-01

    The James Webb Space Telescope’s (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We give examples of how this and other use cases are guiding development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  1. Flight model performance of the integral field unit for the James Webb Space Telescope's near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Purll, David J.; Lobb, Daniel R.; Barnes, Andrew R.; Talbot, R. Gordon; Rolt, Stephen; Robertson, David J.; Closs, Martin F.; te Plate, Maurice

    2010-07-01

    The Near Infrared Spectrograph (NIRSpec) developed by EADS Astrium GmbH for the European Space Agency (ESA) is a spectrograph covering the 0.6-5.0 μm waveband to fly on the James Webb Space Telescope (JWST). NIRSpec will be primarily operated as a multi-object spectrograph but also includes an integral field unit (IFU) allowing a 3×3 arcsec field of view to be sampled continuously with 0.1 arcsec spatial resolution. The IFU, based on an advanced image slicer concept, is a very compact athermal unit made of aluminium. It contains three 30-element monolithic mirror arrays forming slicer, pupil and slit mirrors, and single-surface image relay and plane fold mirrors, produced using 5-axis diamond-machining techniques. Many of the mirrors have complex surfaces like toric sections with 3rd-order corrections in order to achieve the required performance within a small allowed volume, and could only have been fabricated with the most advanced free-form machining. The mechanical design accommodates the differential expansion between the aluminium IFU and its titanium parent assembly across a 250K drop to operating temperature using an isostatic mounting system. This paper presents the development of the IFU from the design and diamond-machining techniques to the optical and cryogenic testing of the assembled flight model unit.

  2. Optical modeling activities for NASA's James Webb Space Telescope (JWST): III. Wavefront aberrations due to alignment and figure compensation

    NASA Astrophysics Data System (ADS)

    Howard, Joseph M.

    2007-09-01

    This paper is part three of a series describing the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients [1-2]. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (i.e. the primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This architecture effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, and the tertiary mirror is fixed. Simulations are performed of various combinations of alignment and figure errors corrected by the primary and secondary mirrors. Single field point knowledge is assumed in the corrections, and aberrations over the field are reported for the varying cases.

  3. Global alignment optimization strategies, procedures, and tools for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Bos, Brent J.; Howard, Joseph M.; Young, Philip J.; Gracey, Renee; Seals, Lenward T.; Ohl, Raymond G.

    2012-09-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. Thermal, finite element and optical modeling will then be used to predict the on-orbit optical performance of the observatory. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. If this becomes necessary, ISIM has a variety of adjustments that can be made. The lengths of the six kinematic mount struts that attach the ISIM to the OTE can be modified and five science instrument focus positions and two pupil positions can be individually adjusted as well. In order to understand how to manipulate the ISIM’s degrees of freedom properly and to prepare for the ISIM flight model testing, we have completed a series of optical-mechanical analyses to develop and identify the best approaches for bringing a non-compliant ISIM Element back into compliance. During this work several unknown misalignment scenarios were produced and the simulated optical performance metrics were input into various mathematical modeling and optimization tools to determine how the ISIM degrees of freedom should be adjusted to provide the best overall optical performance.

  4. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 3; Wavefront Aberrations due to Alignment and Figure Compensation

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part three of a series describing the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, giving alignment control of the telescope. The tertiary mirror is fixed, however, as well as the location of the science instrumentation. Simulations are performed of various combinations of active alignment corrections of component figure errors, and of primary mirror figure corrections of alignment errors. Single field point and moderate field knowledge is assumed in the corrections. Aberrations over the field are reported for the varying cases, and examples presented.

  5. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    NASA's James Webb Space Telescope (JWST) faces difficult technical and budgetary challenges to overcome before it is scheduled launch in 2010. The Integrated Science Instrument Module (ISIM), shares these challenges. The major challenge addressed in this paper is the data network used to collect, process, compresses and store Infrared data. A total of 114 Mbps of raw information must be collected from 19 sources and delivered to the two redundant data processing units across a twenty meter deployed thermally restricted interface. Further data must be transferred to the solid-state recorder and the spacecraft. The JWST detectors are kept at cryogenic temperatures to obtain the sensitivity necessary to measure faint energy sources. The Focal Plane Electronics (FPE) that sample the detector, generate packets from the samples, and transmit these packets to the processing electronics must dissipate little power in order to help keep the detectors at these cold temperatures. Separating the low powered front-end electronics from the higher-powered processing electronics, and using a simple high-speed protocol to transmit the detector data minimize the power dissipation near the detectors. Low Voltage Differential Signaling (LVDS) drivers were considered an obvious choice for physical layer because of their high speed and low power. The mechanical restriction on the number cables across the thermal interface force the Image packets to be concentrated upon two high-speed links. These links connect the many image packet sources, Focal Plane Electronics (FPE), located near the cryogenic detectors to the processing electronics on the spacecraft structure. From 12 to 10,000 seconds of raw data are processed to make up an image, various algorithms integrate the pixel data Loss of commands to configure the detectors as well as the loss of science data itself may cause inefficiency in the use of the telescope that are unacceptable given the high cost of the observatory. This

  6. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish

  7. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  8. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  9. EMC Testing on the Integrated Science Instrument Module (ISIM) - A Summary of the EMC Test Campaign for the Science Payload of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    McCloskey, John

    2016-01-01

    This paper describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft/observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  10. James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.

  11. James Webb Space Telescope - L2 Communications for Science Data Processing

    NASA Technical Reports Server (NTRS)

    Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis

    2008-01-01

    JWST is the first NASA mission at the second Lagrange point (L2) to identify the need for data rates higher than 10 megabits per second (Mbps). JWST will produce approximately 235 Gigabits of science data every day that will be downlinked to the Deep Space Network (DSN). To get the data rates desired required moving away from X-band frequencies to Ka-band frequencies. To accomplish this transition, the DSN is upgrading its infrastructure. This new range of frequencies are becoming the new standard for high data rate science missions at L2. With the new frequency range, the issues of alternatives antenna deployment, off nominal scenarios, NASA implementation of the Ka-band 26 GHz, and navigation requirements will be discussed in this paper. JWST is also using Consultative Committee for Space Data Systems (CCSDS) standard process for reliable file transfer using CCSDS File Delivery Protocol (CFDP). For JWST the use of the CFDP protocol provides level zero processing at the DSN site. This paper will address NASA implementations of Ground Stations in support of Ka-band 26 GHz and lesson learned from implementing a file base (CFDP) protocol operational system.

  12. Testing the equipment for the cryogenic optical test of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin

    2014-08-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.

  13. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  14. Una mirada hacia el pasado -- El Telescopio Espacial James Webb

    NASA Video Gallery

    La NASA planea usar el nuevo Telescopio Espacial James Webb para mirar el pasado. Al observar la luz de las estrellas que se formaron al principio del universo, la NASA está a punto de arrojar nuev...

  15. An Update on the Role of Systems Modeling in the Design and Verification of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Muheim, Danniella; Menzel, Michael; Mosier, Gary; Irish, Sandra; Maghami, Peiman; Mehalick, Kimberly; Parrish, Keith

    2010-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2014. System-level verification of critical performance requirements will rely on integrated observatory models that predict the wavefront error accurately enough to verify that allocated top-level wavefront error of 150 nm root-mean-squared (rms) through to the wave-front sensor focal plane is met. The assembled models themselves are complex and require the insight of technical experts to assess their ability to meet their objectives. This paper describes the systems engineering and modeling approach used on the JWST through the detailed design phase.

  16. Noise properties and signal-dependent interpixel crosstalk of the detectors of the Near-Infrared Spectrograph of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Giardino, Giovanna; Sirianni, Marco; Birkmann, Stephan M.; Rauscher, Bernard J.; Lindler, Don; Böker, Torsten; Ferruit, Pierre; De Marchi, Guido; Stuhlinger, Martin; Jensen, Peter; Strada, Paolo

    2013-03-01

    The Near-Infrared Spectrograph (NIRSpec) is one of the four science instruments of the James Webb Space Telescope. Its focal plane consists of two HAWAII-2RG sensors operating in the wavelength range of 0.6 to 5.0 μm and, as part of characterizing NIRSpec, the noise properties of these detectors under dark and illuminated conditions were studied. Under dark conditions, and as already known, 1/f noise in the detector system causes somewhat higher noise levels than can be accounted for by a simple model that includes white read noise and shot noise on integrated charge. More surprisingly, for high levels of accumulated charge, significantly lower total noise than expected was observed. This effect is shown to be due to pixel-to-pixel correlations introduced by signal-dependent interpixel crosstalk, with an interpixel coupling factor, α, that ranges from ˜0.01 for zero signal to ˜0.03 close to saturation.

  17. Cryogenic performance of a high precision photogrammetry system for verification of the James Webb Space Telescope Integrated Science Instrument Module and associated ground support equipment structural alignment requirements

    NASA Astrophysics Data System (ADS)

    Nowak, Maria D.; Cleveland, Paul E.; Cofie, Emmanuel; Crane, J. Allen; Davila, Pamela S.; Eegholm, Bente H.; Hammond, Randolph P.; Heaney, James B.; Hylan, Jason E.; Johnston, John D.; Ohl, Raymond G.; Orndorff, Joseph D.; Osgood, Dean L.; Redman, Kevin W.; Sampler, Henry P.; Smee, Stephen A.; Stock, Joseph M.; Threat, Felix T.; Woodruff, Robert A.; Young, Philip J.

    2010-08-01

    The James Webb Space Telescope (JWST) is a general astrophysics mission which consists of a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~35K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The alignment philosophy of ISIM is such that the cryogenic changes in the alignment of the SI interfaces are captured in the ISIM alignment error budget. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled and temperature-induced structural changes are concurrently measured with a photogrammetry metrology system to ensure they are within requirements. We compare the ISIM photogrammetry system performance to the ISIM metrology requirements and describe the cryogenic data acquired to verify photogrammetry system level requirements, including measurement uncertainty. The ISIM photogrammetry system is the baseline concept for future tests involving the Optical Telescope Element (OTE) and Observatory level testing at Johnson Space Flight Center.

  18. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  19. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  20. Stretching Webb's Wings

    NASA Video Gallery

    Behind the Webb shows how the James Webb Space Telescope's protective sunshield will be folded up inside the rocket that carries it into orbit. Engineers explain to "Behind the Webb" how the sunshi...

  1. Relative Throughput of the Near-IR Science Instruments of the James Webb Space Telescope as Measured in the Ground Testing of the Integrated Science Instrument Module

    NASA Astrophysics Data System (ADS)

    Malumuth, Eliot; Birkmann, Stephan; Kelly, Douglas M.; Kimble, Randy A.; Lindler, Don; Martel, Andre; Ohl, Raymond George; Rieke, Marcia J.; Rowlands, Neil; Te Plate, Maurice

    2016-06-01

    Data were obtained for the purpose of measuring the relative throughput of the Near-IR Science Instruments (SIs) of the James Webb Space Telescope (JWST) as part of the second and third cryogenic-vacuum tests (CV2/CV3) of the Integrated Science Instrument Module (ISIM) conducted at the Goddard Space Flight Center (GSFC) in 2014 and 2015/2016, at the beginning and end of the environmental test program, respectively. In this work we focus on data obtained as part of the Initial Optical Baseline and as part of the Final Performance test -- two epochs that roughly bracket the CV3 test.The purpose of the test is to trend relative throughput to monitor for any potential changes from gross problems such as contamination or degradation of an optical element. Point source data were taken at a variety of wavelengths for NIRCam Module A and Module B, NIRSpec, NIRISS, Guider 1 and Guider 2 using the Laser Diode (LD) 1.06 micron, LD 1.55 micron, 2.1 micron LED and 3.5 micron LED, as well as for NIRCam Mod A and B and NIRISS using a tungsten source and the F277W, and F480M filters. Spectra were taken using the G140M, G235M, and G395M gratings for NIRSpec, the GRISMR grism for NIRCam Mod A and B and the GR150C grism for NIRISS. The results of these measurements will be compared to what would be expected given the efficiency of each of the optical elements in each SI.Although these data were taken as a check against gross problems, they can also be used to provide the first relative throughput estimate for each SI through the various filters/source wavelengths measured in their flight-like configurations.The data, the reduction steps and the resulting cross calibration are presented.

  2. Relative Throughput of the Near-IR Science Instruments for the James Webb Space Telescope as Measured During Ground Testing the Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Malumuth, Eliot; Birkmann, Stephan; Kelly, Douglas M.; Kimble, Randy A.; Lindler, Don; Martel, Andre; Ohl, Raymond G.; Rieke, Marcia J.; Rowlands, Neil; Te Plate, Maurice

    2016-01-01

    Data were obtained for the purpose of measuring the relative throughput of the Near-IR Science Instruments (SIs) of the James Webb Space Telescope (JWST) as part of the second and third cryogenic-vacuum tests (CV2CV3) of the Integrated Science Instrument Module (ISIM) conducted at the Goddard Space Flight Center (GSFC) in 2014 and 20152016, at the beginning and end of the environmental test program, respectively. This Poster focuses on data obtained as part of the Initial Optical Baseline and as part of the Final Performance test -- two epochs that roughly bracket the CV3 test. The purpose of the test is to trend relative throughput to monitor for any potential changes from gross problems such as contamination or degradation of an optical element. Point source data were taken at a variety of wavelengths for NIRCam Module A and Module B, NIRSpec, NIRISS, Guider 1 and Guider 2 using the Laser Diode (LD) 1.06 micron, LD 1.55 micron, 2.1 micron LED and 3.5 micron LED, as well as for NIRCam Mod A and B and NIRISS using a tungsten source and the F277W, and F480M filters. Spectra were taken using the G140M, G235M, and G395M gratings for NIRSpec, the GRISMR grism for NIRCam Mod A and B and the GR150C grism for NIRISS. The results of these measurements are compared to what would be expected given the efficiency of each of the optical elements in each SI. Although these data were taken as a check against gross problems, they can also be used to provide the first relative throughput estimate for each SI through the various filters source wavelengths measured in their flight-like configurations.

  3. Bringing it all together: a unique approach to requirements for wavefront sensing and control on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Contos, Adam R.; Acton, D. Scott; Atcheson, Paul D.; Barto, Allison A.; Lightsey, Paul A.; Shields, Duncan M.

    2006-06-01

    The opto-mechanical design of the 6.6 meter James Webb Space Telescope (JWST), with its actively-controlled secondary and 18-segment primary mirror, presents unique challenges from a system engineering perspective. To maintain the optical alignment of the telescope on-orbit, a process called wavefront sensing and control (WFS&C) is employed to determine the current state of the mirrors and calculate the optimal mirror move updates. The needed imagery is downloaded to the ground, where the WFS&C algorithms to process the images reside, and the appropriate commands are uploaded to the observatory. Rather than use a dedicated wavefront sensor for the imagery as is done in most other applications, a science camera is used instead. For the success of the mission, WFS&C needs to perform flawlessly using the assets available among the combination of separate elements (ground operations, spacecraft, science instruments, optical telescope, etc.) that cross institutional as well as geographic borders. Rather than be yet another distinct element with its own set of requirements to flow to the other elements as was originally planned, a novel approach was selected. This approach entails reviewing and auditing other documents for the requirements needed to satisfy the needs of WFS&C. Three actions are taken: (1) when appropriate requirements exist, they are tracked by WFS&C ; (2) when an existing requirement is insufficient to meet the need, a requirement change is initiated; and finally (3) when a needed requirement is missing, a new requirement is established in the corresponding document. This approach, deemed a "best practice" at the customer's independent audit, allows for program confidence that the necessary requirements are complete, while still maintaining the responsibility for the requirement with the most appropriate entity. This paper describes the details and execution of the approach; the associated WFS&C requirements and verification documentation; and the

  4. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES

    SciTech Connect

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran; Tuli, Manan; Schaerer, Daniel

    2011-10-10

    The James Webb Space Telescope (JWST) is expected to revolutionize our understanding of the high-redshift universe, and may be able to test the prediction that the first, chemically pristine (Population III) stars are formed with very high characteristic masses. Since isolated Population III stars are likely to be beyond the reach of JWST, small Population III galaxies may offer the best prospects of directly probing the properties of metal-free stars. Here, we present Yggdrasil, a new spectral synthesis code geared toward the first galaxies. Using this model, we explore the JWST imaging detection limits for Population III galaxies and investigate to what extent such objects may be identified based on their JWST colors. We predict that JWST should be able to detect Population III galaxies with stellar population masses as low as {approx}10{sup 5} M{sub sun} at z {approx} 10 in ultra deep exposures. Over limited redshift intervals, it may also be possible to use color criteria to select Population III galaxy candidates for follow-up spectroscopy. The colors of young Population III galaxies dominated by direct starlight can be used to probe the stellar initial mass function (IMF), but this requires almost complete leakage of ionizing photons into the intergalactic medium. The colors of objects dominated by nebular emission show no corresponding IMF sensitivity. We also note that a clean selection of Population III galaxies at z {approx} 7-8 can be achieved by adding two JWST/MIRI filters to the JWST/NIRCam filter sets usually discussed in the context of JWST ultra deep fields.

  5. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  6. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test at GSFC

    NASA Technical Reports Server (NTRS)

    Yew, Calinda M.

    2014-01-01

    JWST ISIM has entered into its system-level testing program at NASA Goddard Space Flight Center (GSFC). In December 2013, ISIM successfully completed the first in a series of three cryo-vacuum tests, which included two flight science instruments. Since then, there have been full-fledged efforts towards the CV2 test scheduled to finish at the end of 2014. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. In order to satisfy the program requirements, GSFC had to develop unique structural and thermal hardware to test ISIM. Most noteworthy is a helium shroud structure and cooling system built in order to achieve operational temperatures below 20K (-253C). This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) communicates the performance and challenges of the SES during the first ISIM test, and (3) summarizes the action plan to improve the system prior to the next test.

  7. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  8. TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE

    SciTech Connect

    Shabram, Megan; Fortney, Jonathan J.; Greene, Thomas P.; Freedman, Richard S.

    2011-02-01

    We explore the transmission spectrum of the Neptune-class exoplanet GJ 436b, including the possibility that its atmospheric opacity is dominated by a variety of nonequilibrium chemical products. We also validate our transmission code by demonstrating close agreement with analytic models that use only Rayleigh scattering or water vapor opacity. We find broad disagreement with radius variations predicted by another published model. For GJ 436b, the relative coolness of the planet's atmosphere, along with its implied high metallicity, may make it dissimilar in character compared to 'hot Jupiters'. Some recent observational and modeling efforts suggest low relative abundances of H{sub 2}O and CH{sub 4} present in GJ 436b's atmosphere, compared to calculations from equilibrium chemistry. We include these characteristics in our models and examine the effects of absorption from methane-derived higher-order hydrocarbons. To our knowledge, the effects of these nonequilibrium chemical products on the spectra of close-in giant planets have not previously been investigated. Significant absorption from HCN and C{sub 2}H{sub 2} is found throughout the infrared, while C{sub 2}H{sub 4} and C{sub 2}H{sub 6} are less easily seen. We perform detailed simulations of James Webb Space Telescope observations, including all likely noise sources, and find that we will be able to constrain chemical abundance regimes from this planet's transmission spectrum. For instance, the width of the features at 1.5, 3.3, and 7 {mu}m indicates the amount of HCN versus C{sub 2}H{sub 2} present. The NIRSpec prism mode will be useful due to its large spectral range and the relatively large number of photo-electrons recorded per spectral resolution element. However, extremely bright host stars like GJ 436 may be better observed with a higher spectroscopic resolution mode in order to avoid detector saturation. We find that observations with the MIRI low-resolution spectrograph should also have high signal

  9. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  10. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  11. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  12. Behind the Webb: 'Spinning a Webb'

    NASA Video Gallery

    The James Webb Space Telescope will be launched into orbit using an Ariane 5 rocket from French Guiana. While the launch is a short-lived phase of the mission, it is a very stressful one. Engineers...

  13. Behind the Webb Episode: All Sewn Up

    NASA Video Gallery

    The newest video in the "Behind the Webb" series takes viewers behind the scenes to reveal how the pieces that make up each layer of the James Webb Space Telescope's thin sunshield are bonded toget...

  14. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  15. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  16. The James Webb STEM Innovation Project: Bringing JWST to the Education Community

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Harris, J.; Ryer, H.; Taylor, J.; Bishop, M.

    2012-01-01

    Building awareness of a NASA mission prior to launch and connecting that mission to the education community can be challenging. In order to address this challenge, the Space Telescope Science Institute's Office of Public Outreach has developed the James Webb STEM innovation Project (SIP) - an interdisciplinary project that focuses on the engineering aspects and potential scientific discoveries of JWST, while incorporating elements of project-based learning. Students in participating schools will use skills from multiple subject areas to research an aspect of the JWST's design or potential science and create models, illustrated essays, or technology-based projects to demonstrate their learning. Student projects will be showcased during special events at select venues in the project states - thus allowing parents and community members to also be benefactors of the project. Currently, the SIP is being piloted in New York, California, and Maryland. In addition, we will be implementing the SIP in partnership with NASA Explorer Schools in the states of New Mexico, Michigan, Texas, Tennessee, and Iowa.

  17. Webb Telescope Backplane Arrives at NASA Goddard Space Flight Center

    NASA Video Gallery

    Webb Telescope's Backplane arrived at Joint Base Andrews on Monday, August 24, 2015 aboard a U.S. Air Force C-5 cargo plane. The Backplane, inside the Space Telescope Transporter for Air Road and S...

  18. Capturing the Imagination: The Promise of the Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Livio, M.; Eisenhammer, B.; Kakadelis, S.; Villard, R.; Stiavelli, M.; Stockman, P.

    2010-08-01

    The Webb Space Telescope will take us on a journey back to the beginning, enabling us to see the first galaxies, the birth of stars, the creation of planets, and the origins of galactic structure. News, education, and outreach activities led by the Space Telescope Science Institute Office of Public Outreach use the promise of Webb's scientific return and technical prowess to capture the imagination—inspiring and educating youth and adults about key science, technology, engineering, and mathematics concepts and the process of science itself. We highlight activities designed to introduce cutting-edge Webb science and technology to established audiences cultivated through a decade of Hubble-based Amazing Space, ViewSpace, HubbleSite, and NewsCenter products and services. Critical underlying components include a commitment to evaluation of audience needs and partnerships between scientists and educators.

  19. Behind the Webb Episode 29: Working Stiff

    NASA Video Gallery

    The James Webb Space Telescope needs to be kept as cold as possible in order to detect infrared light from faint and very distant objects. A key component of this is the observatory’s tennis court-...

  20. Seasonal Variations of the James Webb Space Telescope Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan; Peterson, Jeremy; Villac, Benjamin; Yu, Wayne

    2015-01-01

    LV separation state is fixed ECEF, so inertial states vary with hourly, daily, monthly, and yearly frequencies The net effect of all frequencies leads to significant variations in orbit geometry Injection states can be matched with invariant manifolds of periodic orbits in the CR3BP to explain observed final orbit.

  1. Active Galactic Nuclei with James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    I'll discuss several ways in which JWST will probe the cosmic history of accretion onto supermassive black holes, and the co-evolution of host galaxies. Key investigations include: 1) Measurements of redshift, luminosity, and AGN fraction for obscured AGN candidates identified by other missions. 2) Measurements of AGN hosts at all redshifts, including stellar masses, morphology, interactions, and star formation rates. 3) Measurements of stellar mass and black hole mass in AGN at high redshift, to chart the early history of black hole and galaxy growth.

  2. James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ahn N.

    2016-01-01

    A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.

  3. Dr. von Braun with Governor Wallace and NASA Administrator Webb

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Governor of Alabama George Wallace (left), NASA Administrator James Webb and Marshall Space Flight Center (MSFC) Director Dr. von Braun during a tour of MSFC on June 8, 1965. Governor Wallace and Dr. Webb were at MSFC to witness the first test firing of a Saturn V Booster, along with members of the Alabama legislature and press reporters.

  4. Dr. von Braun, Governor Wallace and NASA Administrator Webb

    NASA Technical Reports Server (NTRS)

    1965-01-01

    In this photograph are Alabama Governor George Wallace (left), Marshall Space Flight Center Dr. Wernher von Braun (Center) and NASA Administrator James Webb (right). Governor Wallace and Dr. Webb were at MSFC to witness the first test firing of a Saturn V Booster, along with members of the Alabama legislature and press reporters.

  5. Desafíos de la ingeniería -- El Telescopio Espacial James Webb

    NASA Video Gallery

    Cómo colocas un telescopio del tamaño de una cancha de tenis en un cohete ancho como una camioneta? Este es el tipo de preguntas que la gente de la NASA responde acerca del Telescopio Espacial Jame...

  6. Space Station Live: Historic Vacuum Chamber to Test Webb Telescope

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot recently visited Johnson Space Center’s 400,000 cubic foot vacuum chamber, Chamber A, and spoke with Mary Cerimele, the lab manager for this historic facility.

  7. Elastic Distribution of Microshutters, Measurements Obtainable on James Web Space Telescope

    NASA Technical Reports Server (NTRS)

    Kletetschka, Gunther; King, Todd; Mikula, Vilem

    2008-01-01

    Spectrographic astronomy measurements in the near-infrared region will be done by functional two-dimensional microshutter arrays that are being fabricated at the NASA Goddard Space Flight Center for the James Webb Space Telescope (JWST). These micro-shutter arrays will represent the first mission-critical MEMS devices to be flown in space. JWST will use microshutter arrays to select focal plane object. 2-D programmable aperture masks of more than 200,000 elements select such space object. The use of silicon wafer material promises high efficiency and high contrast. Microshutter operation temperature is around 35K. Microshutter arrays are fabricated as close-packed silicon nitride membranes with a unit cell size of 105 x 204 micrometers. A layer of magnetic material is deposited onto each shutter. Individual shutters are equipped with a torsion flexure. Reactive ion etching (RIE) releases the shutters so they can open up to 90 degrees using the torsion flexure. Shutter rotation is initiated into a silicon support structure via an external magnetic field. Two electrically independent aluminum electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing to hold specific shutters open via external electronics.

  8. Behind the Webb Episode 27

    NASA Video Gallery

    This episode of "Behind the Webb" explores the multi-tasking capabilities of one of the cameras on the Webb Space Telescope, the Near-Infrared Spectrograph. Newly designed technology known as "micr...

  9. James Web Space Telescope: supporting multiple ground system transitions in one year

    NASA Astrophysics Data System (ADS)

    Detter, Ryan; Fatig, Curtis; Steck, Jane

    2004-09-01

    Ideas, requirements, and concepts developed during the very early phases of the mission design often conflict with the reality of a situation once the prime contractors are awarded. This happened for the James Webb Space Telescope (JWST) as well. The high level requirement of a common real-time ground system for both the Integration and Test (I&T), as well as the Operation phase of the mission is meant to reduce the cost and time needed later in the mission development for recertification of databases, command and control systems, scripts, display pages, etc. In the case of JWST, the early Phase A flight software development needed a real-time ground system and database prior to the spacecraft prime contractor being selected. To compound the situation, the very low level requirements for the real-time ground system were not well defined. These two situations caused the initial real-time ground system to be switched out for a system that was previously used by the flight software development team. To meet the high-level requirement, a third ground system was selected based on the prime spacecraft contractor needs and JWST Project decisions. The JWST ground system team has responded to each of these changes successfully. The lessons learned from each transition have not only made each transition smoother, but have also resolved issues earlier in the mission development than what would normally occur.

  10. Reducing the Read Noise of the James Webb Space Telescope Near Infrared Spectrograph Detector Subsystem

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard; Arendt, Richard G.; Fixsen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.

    2012-01-01

    We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments.

  11. The James Webb Space Telescope: Observatory Status and the Path to Launch

    NASA Technical Reports Server (NTRS)

    McElwain, Michael; Bowers, Chuck; Clampin, Mark; Niedner, Mal

    2016-01-01

    JWST will carry out transformative science from the very early universe and across cosmic time. JWST OTE and ISIM have been combined to form OTIS, which will commence environmental testing. The full JWST team has made tremendous progress since the last AT+I meeting in 2014.JWST on track following 2011 replan and remains on schedule to launch in October 2018.

  12. The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    NASA Astrophysics Data System (ADS)

    Rieke, G. H.; Ressler, M. E.; Morrison, Jane E.; Bergeron, L.; Bouchet, Patrice; García-Marín, Macarena; Greene, T. P.; Regan, M. W.; Sukhatme, K. G.; Walker, Helen

    2015-07-01

    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 × 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper. We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflection can produce the extended cross-like artifacts around images with these arrays at short wavelengths, ~5 μm. The modeling of the behavior of these devices is helping optimize how we operate them and also providing inputs to the development of the data pipeline.

  13. Adding Context to James Webb Space Telescope Surveys with Current and Future 21 cm Radio Observations

    NASA Astrophysics Data System (ADS)

    Beardsley, A. P.; Morales, M. F.; Lidz, A.; Malloy, M.; Sutter, P. M.

    2015-02-01

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  14. Primary mirror segment assembly integration and alignment for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Mallette, Mark; Fischer, David; Coon, Matthew; Amon, John; Kuipers, Les; Spina, John

    2010-08-01

    The Optical Telescope Element (OTE) consists of a 6.6 m, all-reflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration and alignment verification requirements. Each mirror segment is mechanically integrated with the Primary Mirror Backplane Support Structure (PMBSS) using compound angle shims to compensate for global alignment and local co-planarity errors. The processes used to determine the mechanical shim prescription, primary mirror alignment and integration, and placement verification are discussed. In an effort to reduce process uncertainty and program risk, the JWST program recently conducted a PMSA Integration Demonstration at ITT. Through this activity, full scale demonstrations of the Ground Support Equipment (GSE) and critical integration processes were successfully completed. The results of these demonstrations indicate that the equipment, processes, and procedures developed by ITT meet the critical requirements for PMSA placement.

  15. Shedding light on cosmic reionization with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Chevallard, J.

    2015-12-01

    Current observational constraints on cosmic reionization mainly rely on CMB-based measures of the electron Thomson scattering optical depth τE, and on the absorption signatures of neutral hydrogen on the spectra of distant QSOs and GRBs afterglow. These, however, only probe the last phase of reionization (QSOs and GRBs), or its duration (τE), therefore leaving most of the reionization history unconstrained. The origin of H-ionizing photons is also largely uncertain. While several observations suggest that star forming galaxies may be the primary sources of these photons, many uncertain quantities prevent a rigorous quantification of their role in ionizing the IGM. With the launch of JWST, scheduled in 2018, a new window will open to study cosmic reionization. The large wavelength coverage, unique sensitivity and different spectroscopic and imaging capabilities of JWST will provide new constraints on both the reionization history and contribution of different sources to the Universe ionizing budget. In this contribution, I will review current observational constraints on cosmic reionization, and discuss the role of JWST to improve our understanding of this phase.

  16. Ambient optomechanical alignment and pupil metrology for the flight instruments aboard the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffery S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; Mclean, Kyle F.; McMann, Joseph; Melf, Markus; Miner, Linda; Ohl, Raymond G.; Redman, Kevin; Roedel, Andreas; Schweiger, Paul; Te Plate, Maurice; Wells, Martyn; Wenzel, Greg W.; Williams, Patrick K.; Young, Jerrod

    2014-09-01

    While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney's expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or "drone"—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.

  17. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Wells, Martyn; Pel, J.-W.; Glasse, Alistair; Wright, G. S.; Aitink-Kroes, Gabby; Azzollini, Ruymán; Beard, Steven; Brandl, B. R.; Gallie, Angus; Geers, V. C.; Glauser, A. M.; Hastings, Peter; Henning, Th.; Jager, Rieks; Justtanont, K.; Kruizinga, Bob; Lahuis, Fred; Lee, David; Martinez-Delgado, I.; Martínez-Galarza, J. R.; Meijers, M.; Morrison, Jane E.; Müller, Friedrich; Nakos, Thodori; O'Sullivan, Brian; Oudenhuysen, Ad; Parr-Burman, P.; Pauwels, Evert; Rohloff, R.-R.; Schmalzl, Eva; Sykes, Jon; Thelen, M. P.; van Dishoeck, E. F.; Vandenbussche, Bart; Venema, Lars B.; Visser, Huib; Waters, L. B. F. M.; Wright, David

    2015-07-01

    We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 × 7.7'' in extent and at spectral resolving powers ranging from 1300 to 3700. Each channel includes an all-reflective integral field unit (IFU): an "image slicer" that reformats the input field for presentation to a grating spectrometer. Two 1024 × 1024 focal plane detector arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5-28.5 μm spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage and resolution. The point spread function of the reconstructed images is shown to be diffraction limited and the optical transmission is shown to be consistent with the design expectations.

  18. STS-102 Astronaut James Voss Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  19. Updated point spread function simulations for JWST with WebbPSF

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Sivaramakrishnan, Anand; Lajoie, Charles-Philippe; Elliott, Erin; Pueyo, Laurent; Ravindranath, Swara; Albert, Loïc.

    2014-08-01

    Accurate models of optical performance are an essential tool for astronomers, both for planning scientific observations ahead of time, and for a wide range of data analysis tasks such as point-spread-function (PSF)-fitting photometry and astrometry, deconvolution, and PSF subtraction. For the James Webb Space Telescope, the WebbPSF program provides a PSF simulation tool in a flexible and easy-to-use software package available to the community and implemented in Python. The latest version of WebbPSF adds new support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions. It also provides additional options for modeling instrument defocus and/or pupil misalignments. The software infrastructure of WebbPSF has received enhancements including improved parallelization, an updated graphical interface, a better configuration system, and improved documentation. We also present several comparisons of WebbPSF simulated PSFs to observed PSFs obtained using JWST's flight science instruments during recent cryovac tests. Excellent agreement to first order is achieved for all imaging modes cross-checked thus far, including tests for NIRCam, FGS, NIRISS, and MIRI. These tests demonstrate that WebbPSF model PSFs have good fidelity to the key properties of JWST's as-built science instruments.

  20. Astronaut James Newman during in-space evaluation of portable foot restraint

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, conducts an in-space evaluation of the portable foot restraint (PFR) which will be used operationally on the first Hubble Space Telescope (HST) servicing mission and future Shuttle missions. Behind him the starboard Orbital Maneuvering System (OMS) pod can be seen.

  1. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    NASA Astrophysics Data System (ADS)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  2. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  3. Walter Prescott Webb: Futurologist.

    ERIC Educational Resources Information Center

    Henderson, Richard B.

    1982-01-01

    Examines how the writings of historian Walter Prescott Webb have influenced modern futurist works. Webb's concerns about new frontiers, population growth, the environment, and other aspects of society are discussed. (AM)

  4. Astronaut Virgil Grissom and family at airport with NASA administrator Webb

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom and his family are shown at the airport at Patrick Air Force Base with NASA administrator James E. Webb (right). Grissom is speaking into microphones for the news media.

  5. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  6. Behind the Webb Episode 28 - Strong and Steady

    NASA Video Gallery

    Because the Webb Telescope will be launched into space and operate in an extremely cold environment, it needs to be built with materials that are both lightweight and stable. It needs to maintain i...

  7. Preservation of Thermal Control Specular Gold Baffle Surface on the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC)

    NASA Technical Reports Server (NTRS)

    MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-01-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources

  8. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  9. NASA James Webb Space Telescope Engineering of the Primary Mirror Segment Assemblies (PMSA) and the Primary Mirror Backplane Support Structure (PMBSS)

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.

    2015-01-01

    The design, engineering tests of the PMSAs PMBSS show that we have a robust system that not only meets but exceeds (better than) the design requirements for these components. In the next 2 years the Telescope Observatory will be subjected to a simulated launch environment (sine vibeacoustics) and operations tests at cryogenic temperatures. Launch is schedule for the last quarter of 2018.

  10. James Bay

    Atmospheric Science Data Center

    2013-04-17

    article title:  First Views of James Bay, Canada     ... show the winter landscape of James Bay, Ontario, Canada from three of the instrument's nine cameras. The image at left captures the opening ... down. The image on the right was taken seven minutes after the first image from the most oblique, aftward-viewing camera. "These ...

  11. Space Geoengineering: James A. Van Allen's Role in Detecting and Disrupting the Magnetosphere, 1958-1962 (Invited)

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2010-12-01

    James A. Van Allen’s celebrated discovery of Earth’s radiation belts in 1958 using Explorer 1 and 3 satellites was immediately followed by his agreement to monitor tests of nuclear weapons in space aimed at disrupting the magnetosphere. This is “space geoengineering” on a planetary scale. “Space is radioactive,” noted Van Allen’s colleague Eric Ray, and the military wanted to make it even more radioactive by nuclear detonations that, in time of war might disrupt enemy radio communications from half a world away and damage or destroy enemy intercontinental ballistic missiles. This study of Van Allen’s participation in Project Argus (1958) and Project Starfish (1962) is based on new posthumous accessions to the Van Allen Papers. At the time radio astronomers protested that, “No government has the right to change the environment in any significant way without prior international study and agreement.” Van Allen later regretted his participation in experiments that disrupted the natural magnetosphere. In a larger policy framework, the history of these space interventions and the protests they generated serve as a cautionary tale for today’s geoengineers who are proposing heavy-handed manipulation of the planetary environment as a response to future climate warming. Anyone claiming that geoengineering has not yet been attempted should be reminded of the planetary-scale engineering of these nukes in space. N. Christofilos describing the intended effect of the Argus nuclear explosions on the magnetosphere, which would direct a stream of radioactive particles along magnetic lines of force half a world away.

  12. James R. Thompson

    NASA Technical Reports Server (NTRS)

    1986-01-01

    James R. Thompon served as director of the Marshall Space Flight Center from September 29, 1986 until July 6, 1989, when he was appointed as NASA Deputy Administrator. Prior to his tenure as Marshall's Director, Thompson served from March to June 1986 as the vice-chairman of the NASA task force investigating the cause of the Space Shuttle Challenger accident. He was credited with playing a significant role in returning the Space Shuttle to flight following the Challenger disaster.

  13. James Bay

    Atmospheric Science Data Center

    2013-04-17

    article title:  First Light over James Bay     View Larger Image MISR "First light", 16:40 UTC, 24 February 2000 . This is the first image of Earth's ... the line of flight. At the top of the image, the dark-to-light transition captures the opening of the MISR cover. Progressing southward, ...

  14. Mounting small optics for cryogenic space missions

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Jacoby, Mike S.; Kvamme, E. Todd

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) includes numerous optical assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the optical assemblies for the NIRCam instrument. With using examples from NIRCam, this paper covers techniques for mounting small mirrors and lenses for cryogenic space missions.

  15. From the Universe to the Classroom : A Professional Development Program for Hubble and Webb

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, F.; McCallister, D.; Ryer, H.; Knisely, L.

    2014-01-01

    The education team at the Space Telescope Science Institute (STScI) designs professional development workshops that support the needs of the education community. The purpose of these workshops is to share the latest information about the Hubble and James Webb space telescopes, current NASA science, and curriculum support tools with the education community. The workshops also address STEM topics and the latest educational research, while emphasizing real-world connections. Over the years, our professional development program has been pivotal to disseminating resources, providing educators with the necessary background to use these resources, and helping us better understand community needs. Educators and scientists are both critical to the implementation of quality professional development due to their unique areas of expertise. As a result, our professional development program is founded on the experience of educators who work in partnership with scientists and other content experts. These teams develop workshops that enhance educators’ content and pedagogical knowledge. This poster will highlight examples of how scientists and educators have worked together to develop workshop materials and content.

  16. James Johnson on Asteroid Mission Simulation Testing

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks to James Johnson, the test director for a simulated mission to an asteroid taking place at the Space Vehicle Mockup Facility at the Johnson Space Cente...

  17. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  18. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  19. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  20. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a side view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  1. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  2. Obituary: James Houck (1940 - 2015)

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Barry, Donald; Soifer, Thomas

    's priorities for the 1990s (the "Bahcall Report"), and his persuasive advocacy convinced the panel that SIRTF should be the decade's highest priority. Subsequently, Jim chaired the NASA HQ Astrophysics Advisory Committee and played a crucial role in organizing and participating in legislative advocacy for the SIRTF "new start" that was needed. Jim's extraordinary technical expertise was vital to the essential redesign of SIRTF required to meet NASA targets for the mission cost. Following the success of IRAS, SIRTF was intended primarily as a photometric mission. Jim was the advocate for spectroscopy which subsequently turned out to be the instrument in greatest demand for the cryogenic Spitzer mission. Jim's first scientific paper with the IRS in 2005 announced the presence of a large population of quasars in the early universe so heavily obscured by dust that they had been invisible to optical telescopes. The legacy of the Spitzer IRS is now permanently in place as the "Cornell Atlas of Spitzer IRS Sources" (CASSIS at cassis.sirtf.com), providing an easily accessible archive of mid-infrared spectra (5-37 micron) for everything from outer planet satellites to quasars at the edge of the observable universe. CASSIS will be the fundamental reference archive of mid-infrared spectra for the upcoming James Webb Space Telescope. During all these years of major research projects, Jim maintained a consistent dedication to high quality undergraduate teaching, simultaneously with advising numerous PhD students. His most notable legacy for undergraduates at Cornell was his development by 1974 of a research quality telescope close to campus to teach instrumentation and observational techniques. The 25 inch telescope of the Hartung-Boothroyd Observatory not only trained Cornell students for decades, but was also a testbed for spectrographs. What students felt about Jim was summarized by a former undergraduate who told us, "It is no stretch whatsoever to say that I would not be anything

  3. Beyond the Hubble Space Telescope: Early Development of the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert W.; Patrick McCray, W.

    In this paper we investigate the early history of what was at first called the Next Generation Space Telescope, later to be renamed the James Webb Space Telescope. We argue that the initial ideas for such a Next Generation Space Telescope were developed in the context of the planning for a successor to the Hubble Space Telescope. Much the most important group of astronomers and engineers examining such a successor was based at the Space Telescope Science Institute in Baltimore. By the late 1980s, they had fashioned concepts for a successor that would work in optical, ultraviolet and infrared wavelengths, concepts that would later be regarded as politically unrealistic given the costs associated with them. We also explore how the fortunes of the planned Next Generation Space Telescope were intimately linked to that of its "parent," the Hubble Space Telescope.

  4. Conference James F.Buckli

    ScienceCinema

    None

    2011-04-25

    L'association du personnel a le plaisir d'accueillir Mons. James F.Buckli, astronaute, né en 1947. Il a participé à la mission Space Lab D1 qui pour la première fois mettait 8 personnes sur orbite.L'ass.du pers. remercie aussi Gordon White(s) de la mission américaine d'avoir permis d'organiser cette conférence

  5. William James's Moral Theory

    ERIC Educational Resources Information Center

    Cooper, Wesley

    2003-01-01

    James's moral theory, primarily as set out in "The Moral Philosopher and the Moral Life" (in his "The Will To Believe" (1897)), is presented here as having a two-level structure, an empirical or historical level where progress toward greater moral inclusiveness is central, and a metaphysical or end-of-history level--James's "kingdom of…

  6. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  7. Simulating PSFs for WFIRST and JWST with WebbPSF

    NASA Astrophysics Data System (ADS)

    Long, Joseph D.; Perrin, Marshall D.; Van Der Marel, Roeland P.

    2016-01-01

    Accurate models of a telescope's point spread function are key to predicting its performance and extracting information from observations. Developed at STScI since 2010, WebbPSF is a flexible Python-based PSF simulation tool initially developed for JWST's imaging, spectroscopy, and coronagraphic instruments. We present improvements that allow this tool to simulate PSFs for the WFIRST wide-field imaging mode, as well as additional spectroscopy modes for the NIRSpec, MIRI, and NIRISS instruments on JWST. The WFIRST wide field imaging mode is also the first WebbPSF model to simulate PSF variation across the entire field of view. These variations are included in the Fraunhofer-domain PSF calculation as Zernike polynomial terms up to Z22. As WFIRST is still early in its development, high-spatial-frequency wavefront errors (beyond Z22) are incorporated using an optical path difference map from another notable 2.4 meter space telescope. Common infrastructure to build simulated optical instruments has been made available as POPPY (Physical Optics Propagation in Python), an open-source library that has seen contributions from users in astronomy and beyond.

  8. 5. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 DETAIL OF PORTICO (SOUTH ELEVATION) - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  9. Manufacture of Cryoshroud Surfaces for Space Simulation Chambers

    NASA Technical Reports Server (NTRS)

    Ash, Gary S.

    2008-01-01

    Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.

  10. Space Optics for the 21st Century

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    2006-01-01

    Technological advances over the last decade in metrology, fabrication techniques and materials have made a significant impact on spacebased astronomy and together with advances in adaptive optics offer the opportunity for even more radical changes in the future. The Hubble Space Telescope primary mirror is 2.4 meters in diameter and weighs on the order of 150 kilograms per square meter. The technology demonstration mirrors developed for the James Webb Telescope had an order of magnitude less in area density and developments in membrane optics offer the opportunity to achieve another order of magnitude decrease. Similar advances in mirrors for x-ray astronomy means that across the spectrum future space based telescopes will have greater and greater collecting areas with ever increasing resolution.

  11. James Joule and meteors

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    1989 was the hundredth anniversary of the death of James Prescott Joule, the Prescott being his mother's family name and the Joule, rhyming with cool, originating from the Derbyshire village of Youlgreave. Joule is rightly famous for his experimental efforts to establish the law of conservation of energy, and for the fact that J, the symbol known as the mechanical equivalent of heat, is named after him. Astronomically his "light has been hidden under a bushel". James Joule had a major influence on the physics of meteors.

  12. James Ferguson remembered

    NASA Astrophysics Data System (ADS)

    Davenhall, Clive

    2012-03-01

    The year 2010 marked the three hundredth anniversary of the birth of the astronomer, author and lecturer James Ferguson (1710-1776). Subsequently I visited the site of the churchyard where Ferguson is buried. He is mentioned in a plaque on the site and I thought that the details might be of interest.

  13. How James Wood Works

    ERIC Educational Resources Information Center

    Goldstein, Evan R., Comp.

    2008-01-01

    Reading through news-media clippings about James Wood, one might reasonably conclude that "pre-eminent critic" is his official job title. In fact, Wood is a staff writer for "The New Yorker" and a professor of the practice of literary criticism at Harvard University. But at a time when there is much hand-wringing about the death of the…

  14. Reply to James Muir

    ERIC Educational Resources Information Center

    White, John

    2004-01-01

    In "EPAT", vol. 36, no. 1, 2004, James Muir takes the author and fellow philosophers of education to task for their ignorance of the history of philosophy of education. "[T]oo many currently influential educationists, Professor White in particular, are literally unaware that educational philosophy has a history more than three hundred years in…

  15. Utopian Totalism versus Utopian Realism: A Reply to Darren Webb

    ERIC Educational Resources Information Center

    Halpin, David

    2009-01-01

    Over one half of Darren Webb's article on the concept of utopia in contemporary educational theory (Webb, 2009) reviews critically the "utopian realist" approach the author has advocated in various publications about education over the past nine years. The conception of utopianism to which the author subscribes also stresses the role of patient…

  16. William James's Talks about Teaching

    ERIC Educational Resources Information Center

    Brewer, Charles L.

    2003-01-01

    More than 100 years after it was published, William James's (1899/1939) book, "Talks to Teachers on Psychology," is relevant and helpful for teachers and those who aspire to teach. In this article, I highlight certain memorable points in "Talks" and relate them to James's (1890) classic work, "The Principles of Psychology." Many of James's…

  17. William James on Teaching Democracy.

    ERIC Educational Resources Information Center

    Miller, Joshua

    1998-01-01

    Analyzes philosopher William James' writings on political representation and participatory democracy. Although he argued in favor of democratic principles, James also strongly supported the role of a well-educated elite serving as leaders. Attempts to reconcile these contradictory positions and considers James' influence on the development of…

  18. Reliability of Electronics for Cryogenic Space Applications Being Assessed

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2005-01-01

    Many future NASA missions will require electronic parts and circuits that can operate reliably and efficiently in extreme temperature environments below typical device specification temperatures. These missions include the Mars Exploration Laboratory, the James Webb Space Telescope, the Europa Orbiter, surface rovers, and deep-space probes. In addition to NASA, the aerospace and commercial sectors require cryogenic electronics in applications that include advanced satellites, military hardware, medical instrumentation, magnetic levitation, superconducting energy management and distribution, particle confinement and acceleration, and arctic missions. Besides surviving hostile space environments, electronics capable of low-temperature operation would enhance circuit performance, improve system reliability, extend lifetime, and reduce development and launch costs. In addition, cryogenic electronics are expected to result in more efficient systems than those at room temperature.

  19. STS-69 Mission Specialist James H. Newman in white room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At Launch Pad 39A, STS-69 Mission Specialist James H. Newman chats with white room closeout crew members Rene Arriens (far left), Travis Thompson and Bob Saulnier (right) prior to entering the Space Shuttle Endeavour.

  20. Address by James C. Fletcher, Administrator National Aeronautics and Space Administration at the National Academy of Engineering, Washington, D.C., 10 November 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.

  1. Large segmented UV-optical space telescope using a Hybrid Sensor Active Control (HSAC) architecture

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce; Hyde, Tupper; Oegerle, Bill; Bolcar, Matthew R.; Smith, J. Scott

    2009-08-01

    Future large UV-optical space telescopes offer new and exciting windows of scientific parameter space. These telescopes can be placed at L2 and borrow heavily from the James Webb Space Telescope (JWST) heritage. For example, they can have similar deployment schemes, hexagonal mirrors, and use Wavefront Sensing and Control (WFSC) technologies developed for JWST. However, a UV-optical telescope requires a 4x improvement in wavefront quality over JWST to be diffraction-limited at 500 nm. Achieving this tolerance would be difficult using a passive thermal architecture such as the one employed on JWST. To solve this problem, our team has developed a novel Hybrid Sensor Active Control (HSAC) architecture that provides a cost effective approach to building a segmented UV-optical space telescope. In this paper, we show the application of this architecture to the ST-2020 mission concept and summarize the technology development requirements.

  2. Studies for space-based deployable Sun shields

    NASA Astrophysics Data System (ADS)

    Nurre, John P.

    2003-09-01

    Lockheed Martin has been using developing deployable shade structures for years. This paper describes one year's development program, which produced three successive versions of Sun Shield models, culminating in a 3.8m×2.8m automatically deploying version. This development effort was in support of future spacecraft (James Webb Space Telescope / JWST, Terrestrial Planet Finder / TPF) that use Sun-isolating shields to deflect the Sun's heat and thus allow the spacecraf to passively cool to the cold-space sink. The configuration chosen was a late-1999 configuration of JWST, of which the largest of the scale models was 1/6 scale. The technologies developed are applicable to a wider range of applications such as light baffles and solar sails.

  3. 9. Historic American Buildings Survey Theodore Webb, Photographer, Feb. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey Theodore Webb, Photographer, Feb. 3, 1934 FIREPLACE AND PANELING (LIVING ROOM SOUTHEAST) - Colonel William Whitley House, Stanford-Crab Orchard Pike, Stanford, Lincoln County, KY

  4. 10. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 CORNICE DETAIL, WING (FROM MAIN ROOF) - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  5. 13. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 DETAIL OF MAIN ENTRANCE (SOUTH ELEVATION) - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  6. 14. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 DETAIL OF INTERIOR DOOR (RECEPTION ROOM) - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  7. 8. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 DETAIL OF PORTICO CORNICE AND COLUMN CAP - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  8. 15. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Historic American Buildings Survey Theodore Webb, Photographer, Mar. 16, 1934 DETAIL OF WINDOW (EAST RECEPTION ROOM) - Kentucky School for the Blind, 1867 Frankfort Avenue, Louisville, Jefferson County, KY

  9. 2. Historic American Buildings Survey Theodore Webb, Photographer, Jan. 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Theodore Webb, Photographer, Jan. 31, 1934 WAREHOUSE, BUILDING NO. 2, (SOUTHEAST) FRONT + SIDE - Textile Mill & Storage Warehouse, U.S. Route 60, Grahamton, Meade County, KY

  10. James Van Allen and His Namesake NASA Mission

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Hoxie, V. C.; Jaynes, A.; Kale, A.; Kanekal, S. G.; Li, X.; Reeves, G. D.; Spence, H. E.

    2013-12-01

    In many ways, James A. Van Allen defined and "invented" modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.

  11. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  12. Sir James Lighthill

    NASA Astrophysics Data System (ADS)

    Crighton, D. G.

    1999-05-01

    James Lighthill died on 17 July 1998, at the end of a ten-hour swim round the Channel Island of Sark. He had earlier, at age 49, been the first person ever to do this, and he was carrying out the swim for the seventh time when the exertion revealed a mitral valve weakness which had never been diagnosed, and which led to his sudden death in the water. The swim was one of many long ‘adventure swims’ which Lighthill liked to take, all characterized by strong tidal currents and often heavy seas. And Lighthill took much pleasure through exercising his comprehensive understanding of fluid mechanics first in preparing for them through study of local conditions and then in adapting his performance when, as often, he found that in practice the currents were not as charted and, in fact, often more treacherous.

  13. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  14. Concept-Development of a Structure Supported Membrane for Deployable Space Applications - From Nature to Manufacture and Testing

    NASA Technical Reports Server (NTRS)

    Zander, Martin; Belvin, W. K.

    2012-01-01

    Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.

  15. Upgrades to Electronic Speckle Interferometer (ESPI) Operation and Data Analysis at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph; Blake, Peter; Jones, Joycelyn

    2008-01-01

    The authors report operational upgrades and streamlined data analysis of a commissioned electronic speckle interferometer (ESPI) in a permanent in-house facility at NASA's Goddard Space Flight Center. Our ESPI was commercially purchased for use by the James Webb Space Telescope (JWST) development team. We have quantified and reduced systematic error sources, improved the software operability with a user-friendly graphic interface, developed an instrument simulator, streamlined data analysis for long-duration testing, and implemented a turn-key approach to speckle interferometry. We also summarize results from a test of the JWST support structure (previously published), and present new results from several pieces of test hardware at various environmental conditions.

  16. Astronaut James Lovell walks to elevator on Pad 19 before Gemini 7 launch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, walks to the elevator at Pad 19 one hour and forty minutes before launch of the spacecraft. He is dressed in the new Gemini space suit.

  17. James E. Keeler Pioneer Astrophysicist.

    ERIC Educational Resources Information Center

    Osterbrock, Donald E.

    1979-01-01

    Gives a short biography of James E. Keeler, and describes some of his outstanding discoveries, and his pioneering work in observational research where he applied physical methods to the analysis of planets, stars and nebulae. (GA)

  18. Webb Telescope Snapshot: Cryo-Testing

    NASA Video Gallery

    The ISIM structure is inspected inside NASA’s Space Environment Simulator at the Goddard Space Flight Center after enduring weeks of temperatures less than minus 300 degrees Fahrenheit; the same ...

  19. Monitoring: a vital component of science at USGS WEBB sites

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Peters, N. E.; Campbell, D. H.; Clow, D. W.; Walker, J. F.; Hunt, R. J.

    2007-12-01

    The U.S. Geological Survey launched its Water, Energy, and Biogeochemical Budgets (WEBB) program in 1991 with the establishment of five long-term research watersheds. Monitoring of climate, hydrology, and chemistry is the cornerstone of WEBB scientific investigations. At Loch Vale, CO, long-term streamflow and climate monitoring indicated an increase rather than the expected decrease in the runoff:precipitation ratio during a drought in the early 2000s, indicating the melting of subsurface and glacial ice in the basin. At Luquillo Experimental Forest in Puerto Rico, monitoring of mercury in precipitation revealed the highest recorded mercury wet deposition rates in the USA, an unexpected finding given the lack of point sources. At Panola Mountain, GA, long-term monitoring of soil- and groundwater revealed step shifts in chemical compositions in response to wet and drought cycles, causing a corresponding shift in stream chemistry. At Sleepers River, VT, WEBB funding has extended a long- term (since 1960) weekly snow water equivalent dataset which is a valuable integrating signal of regional climate trends. At Trout Lake, WI, long-term monitoring of lakes, ground-water levels, streamflow and subsurface water chemistry has generated a rich dataset for calibrating a watershed model, and allowed for efficient design of an automated procedure for sampling mercury during runoff events. The 17-plus years of monitoring at the WEBB watersheds provides a foundation for generating new scientific hypotheses, a basis for trend detection, and context for anomalous observations that often drive new research.

  20. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  1. Astronaut James Lovell hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Astronaut Frank Borman, command pilot, waits in the raft to be hoisted aboard the helicopter.

  2. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, evaluates various tether devices to be used during the Hubble Space Telescope (HST) servicing mission scheduled for later this year. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  3. Astronaut James Wetherbee briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut James D. Wetherbee, STS-63 mission commander, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  4. NASA Astrophysics Education and Public Outreach: The Impact of the Space Telescope Science Institute Office of Public Outreach

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray; Green, Joel David

    2015-08-01

    As the science operations center for the Hubble Space Telescope and the James Webb Space Telescope, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity’s quest to understand fundamental questions about our universe and our place in it. This presentation will provide an overview of the impact of the STScI’s Office of Public Outreach’s efforts to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs.At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble’s scientific capabilities, majestic imagery, and our deep commitment to create effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  5. Timelapse: Webb's Ambient Optical Assembly Stand

    NASA Video Gallery

    The clean room at NASA's Goddard Space Flight Center in Greenbelt, Md., has received a giant structural steel frame called "AOAS," the Ambient Optical Assembly Stand that will be used to assemble t...

  6. John James Audubon & the Turkey

    ERIC Educational Resources Information Center

    Hinshaw, Craig

    2012-01-01

    In the first half of the 1800s, John James Audubon roamed the wilds of America attempting to draw all the birds in their natural habitat. He published his life-sized paintings in a huge book entitled "Birds of America." Audubon developed a unique system of depicting the birds in natural poses, such as flying. After shooting the bird, he would wire…

  7. James Frey: Feelings as Facts

    ERIC Educational Resources Information Center

    Travis, Trysh

    2006-01-01

    James Frey, author of the book "A Million Little Pieces" is accused of embellishing and/or fabricating elements of his story, a graphic but supposedly honest, depiction of his struggle with drugs and alcohol. More and more college students who are caught plagiarizing believe, as Frey seems to, that as long as one agrees with the authors one…

  8. STS-104 MS James Reilly inside Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist James F. Reilly checks out equipment inside Atlantis. He and other crew members are taking part in a simulated countdown exercise, which is part of Terminal Countdown Demonstration Test activities. The launch of Atlantis on mission STS-104 is scheduled July 12. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module and High Pressure Gas Assembly.

  9. Obituary: James Houck (1940 - 2015)

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Barry, Donald; Soifer, Thomas

    James R. Houck, the leading figure in developing infrared spectroscopy for astrophysics, died in Ithaca, NY, on September 18, 2015, at age 74 from complications of Alzheimer's Disease. He was born on October 5, 1940, in Mobile, Alabama, but lived much of his early life in Pittsburgh, Pennsylvania, where he received his undergraduate degree from Carnegie Institute of Technology. Jim spent his scientific career at Cornell University. He came to Cornell as a physics graduate student in 1962 and remained until his retirement as the Kenneth A. Wallace Professor of Astronomy in 2012. His only year away from Ithaca was as a Guggenheim Fellow at Caltech, and he declined job offers from other universities because of his opinion that Ithaca provided the best environment for raising his family. His passion for learning, doing, and teaching science by building instruments and understanding physics led to great benefits for his students and astronomy colleagues. After receiving his PhD in condensed matter physics, he changed fields to work in astronomy at Cornell. He first collaborated with colleague Martin Harwit to develop a rocket program at Cornell for infrared observations and made numerous treks to the White Sands Missile Range flying payloads on Aerobee sounding rockets. Jim emphasized building spectrographs and making pioneering observations with ground based, airborne, and rocket-borne infrared instrumentation. Jim flew on every airplane NASA provided for astronomy. Those were pioneering times. One of his survival stories was of the Learjet in which both engines flamed out over the Pacific when the pilot did a celebratory barrel role after successful completion of their observations. His observations with rockets and airplanes were primarily of a variety of Galactic objects, including planetary nebulae, HII regions, and stars. But the most notable was an observation on the Convair 990 that produced a prescient discovery paper in 1973 led by Jim which discovered bound

  10. Formation Flying: The Future of Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2004-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to little or no greater size than that of the Hubble Space Telescope, the largest aperture currently flying in space. Systems under formulation today, such as the James Webb Space Telescope will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by our ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This paper provides some basic definitions in the area of formation flying, describes some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  11. Reflecting on Space Benefits: A Shining Example

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA has long been known for having developed the thin, shiny reflective material used to insulate everything from the Hubble Space Telescope to hikers, from the Mars rovers to marathon runners, from computers to campers, from satellites to sun shields, and from rockets to residences. It is one of the simplest, yet most versatile spinoffs to come out of the Agency. The insulating material, a strong, plastic, vacuum-metallized film with a highly-efficient, infrared-reflective, vapor-deposited coating of aluminum, was created to be very lightweight in order to minimize weight impact on vehicle payload while also protecting spacecraft, equipment, and personnel from the extreme temperature fluctuations of space. It has been employed on virtually all manned and unmanned NASA missions. The shiny insulation which coated the base of the Apollo lunar landing vehicles is perhaps one of the most memorable early displays of this technology, and the bright, reflective honeycomb on the James Webb Space Telescope prototype is a testament to its lasting usefulness.

  12. Molecular conductance of a contact-free labyrinth seal used for the contamination control of a cryogenic space instrument

    NASA Astrophysics Data System (ADS)

    Glauser, Adrian M.; Langer, Ulrich; Zehnder, Alex

    2009-01-01

    This study presents the molecular conductance measurement of a labyrinth seal introduced for the Contamination Control Cover which is protecting the cryogenic optical surfaces of the mid-infrared instrument of the James Webb Space Telescope against molecular contaminants from the environment. The conductance has been measured in the molecular pressure regime between 10-7 and 10-3 mbar within a temperature range of 300 K and 10 K for several typical components of the expected residual gas such as H2O, NH3, CO2, H2, NO, alcohols and hydrocarbons as well as standard gases such as N2 and He. The measurements have been repeated with a thin orifice to verify the systematics. The results are well consistent with numerically derived values and demonstrate a robust understanding of the design and performance of the labyrinth seal.

  13. STS-109 Crew Interviews: James H. Newman

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-109 Mission Specialist James H. Newman is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, and his most memorable experiences. He gives details on the mission's goals and objectives, which focus on the refurbishing of the Hubble Space Telescope, and his role in the mission. He provides a brief background on the Hubble Space Telescope, and explains the plans for the rendezvous of the Columbia Orbiter with the Hubble Space Telescope. He provides details and timelines for each of the planned Extravehicular Activities (EVAs), which include replacing the solar arrays, changing the Power Control Unit, installing the Advanced Camera for Surveys (ACS), and installing a new Cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). He gives further explanation of each of these pieces of equipment. He also describes the break-out plan in place for these spacewalks. The interview ends with Newman explaining the details of a late addition to the mission's tasks, which is to replace a reaction wheel on the Hubble Space Telescope.

  14. JAMES RIVER FACE WILDERNESS, VIRGINIA.

    USGS Publications Warehouse

    Brown, C. Ervin; Gazdik, Gertrude C.

    1984-01-01

    A mineral survey concluded that the James River Face Wilderness, Virginia, had little promise for the occurrence of metallic mineral resources. Two major rock units in the area do contain large nonmetallic mineral resources of quartzite and shale that have been mined for silica products and for brick and expanded aggregate, respectively. Because large deposits of the same material are more easily available in nearby areas, demand for the deposits within the wilderness is highly unlikely. No energy resources were identified in the course of this study.

  15. STS-90 Payload Specialist James Pawelczyk arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Payload Specialist James Pawelczyk, Ph.D., tosses mission hats to his two children shortly after arrival at Kennedy Space Center's Shuttle Landing Facility. The crew of STS-90 arrived at KSC in preparation for their mission, scheduled for launch from KSC's Launch Pad 39B on April 16 at 2:19 p.m. EDT. The flight of Neurolab is scheduled to last nearly 17 days.

  16. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, checks Astronaut James A. Lovell Jr., Gemini 7 prime crew pilot, follwoing workout on exercise machine. Results will be compared with those obtained during space flight for evaluation (60602); Astronaut Frank Borman, Gemini 7 command pilot, sits as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness (60603).

  17. Astronaut James Lovell prior to entering Gemini Mission Simulator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut James A. Lovell Jr., prime crew command pilot of the Gemini 12 space flight, in Building 5, Mission Simulation and Training Facility, Houston, Texas. This photo was taken prior to his entering the Gemini Mission Simulator for flight training (45578); Astronaut Lovell (right) talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division (45579); Astronaut Lovell prepares to enter Gemini Mission Simulator (45580).

  18. STS-89 M.S. James F. Reilly suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist James Reilly, Ph.D., smiles as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. He holds a doctorate in geosciences. He and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station.

  19. An Evolvable Space Telescope for Future Astronomical Missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin; Dailey, Dean

    2015-01-01

    Astronomical flagship missions after the James Webb Space Telescope (JWST) will require lower cost space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures.Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance.Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8-m to 16-m telescopes that have been studied for the follow-on to JWST using similar development/assembly approaches without accounting for too large of a portion of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an 'Evolvable Space Telescope' that would be 3 to 4-m when placed on orbit and then periodically augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16-m space telescope.This paper reviews the technologies required for such a mission, identifies candidate architectures, and discusses different science measurement objectives for these architectures.

  20. Applications of MEMS in segmented mirror space telescopes

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij; Kubby, Joel

    2011-03-01

    Development of space telescopes, such as the Hubble Space Telescope and the James Webb Telescope has been very challenging in terms of cost, schedule, and performance. For several future space missions, larger aperture and lightweight deployable mirrors, in the range of 10-20 meters in diameter with high surface accuracy, are required. In order to achieve lightweight, reduce cost for development and provide performance robustness, actuated hybrid mirror (AHM) technology is under development. The Naval Postgraduate School (NPS) recently received a 3-meter diameter space telescope testbed with six segments that uses an AHM technology. This paper will discuss the work performed at NPS on the surface control of the primary mirror using adaptive optics. This paper will also discuss how we can use a MEMS deformable mirror to improve the performance of the NPS segmented mirror telescope. The high-stroke, high-order actuated MEMS deformable mirror will correct the residual alignment and surface errors that are not corrected by the actuators on the mirrors. The mirror will use electrostatic actuation to eliminate the need for power to hold its position and will be capable of open-loop, go-to positioning.

  1. James Hillman (1926-2011).

    PubMed

    Stern, E Mark

    2012-09-01

    Presents an obituary for James Hillman. James Hillman, the third child of Madeline and Julian Hillman, died of metastatic bone cancer at his home in Thompson, Connecticut, on October 27, 2011. The parent of "archetypal psychology," he was born on April 12, 1926, at the Breakers, a then-opulent hotel founded by his family that overlooked the boardwalk and beach in Atlantic City, New Jersey. With an extensive footing in the classics and classical humanism, Jim established the foundations for his emerging archetypal psychology. With archetypal psychology, he was to move away from a dependence on the concept of a personal ego in favor of larger sources that relied on his notion of variegated identity. He proposed a profusion of mythical images that emerge under the rubric of "soul." Soul stands as an appellation indicating a deepening of psychic events, such as when dreams, chaos, and "pathologizing" (the struggles of imagination) are most experienced. For Hillman, psychology could not be taken as a separate discipline isolated from mythology, literature, art, philosophy, politics, religion, natural science, and the ordinary affairs of individuals. Hillman envisioned archetypes as processes that bear evidence to personal suffering and, in so doing, prompt the expansion of compassion. In 1975, Jim was nominated for a Pulitzer Prize for his book Re-Visioning Psychology (Harper & Row). In addition to many other citations, Jim had the high honor in 2001 of receiving the Medal of the Presidency of the Italian Republic. PMID:22963419

  2. James Moffett's Legacy to "English Journal"

    ERIC Educational Resources Information Center

    Spalding, Elizabeth; Koshnick, Damian C.; Myers, Miles

    2012-01-01

    In this article, the authors look at James Moffett's influence on "English Journal". With the 1968 publication of his companion volumes--"Teaching the Universe of Discourse," which provided the theoretical underpinnings of his practice-oriented, and "A Student-Centered Language Arts Curriculum"--James Moffett (1929-96) became a major influence on…

  3. Pulkkinen receives James B. Macelwane Medal

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Pulkkinen, Tuija I.

    Tuija I. Pulkkinen was awarded the James B. Macelwane Medal at the AGU Spring Meeting Honors Ceremony, which was held on May 27, 1998, in Boston, Massachusetts. The James B. Macelwane Medal recognizes young scientists of outstanding ability who have made significant contributions to the geophysical sciences.

  4. Writing siblings: Alice James and her brothers.

    PubMed

    Hoffman, Anne Golomb

    2015-02-01

    This essay addresses the relationship of writing to embodiment, through representations of bodily sensation and fantasy in the journal of Alice James. It considers Alice James's writing in relation to her two writer brothers, William and Henry, and in light of their father's experiences of impairment and breakdown. PMID:25688678

  5. Henry James on the Art of Acting.

    ERIC Educational Resources Information Center

    Thompson, David W.

    Henry James, the nineteenth-century American novelist, also served on occasion as a theatre critic. Between 1875 and 1890 he reviewed several productions in Boston, New York, London, and Paris for "Atlantic Monthly" and other periodicals. The reviews are of interest because of James' high standards regarding acting and his often devasting comments…

  6. James Paget Henry--a retrospective.

    PubMed

    Meehan, J P; Meehan, W P

    1997-01-01

    James Paget Henry really began his productive research career at the outset of the second world war. His studies of acceleration and the anoxia of high altitude were supported by the development of then new techniques of measuring and recording critical physiologic parameters such as vascular pressures, respiratory functions and haemoglobin saturation. His inquisitive mind made productive use of the instruments that had to be made by skilled instrument makers working in university shops. Much of this instrumentation has now found its way into the clinical arena where it is now the main armamentarium of cardiac diagnostic and respiratory function laboratories. His work in the space program preceeded that of the Russians but did not get recognition until Sputnik awakened the world to the possibilities of space flight. His development of the concept of a cardiovascular basis for fluid volume control and the supportive investigative work undertaken constitute a milestone in the annals of experimental physiology. The chimpanzees used in Project Mercury were found to be hypertensive which was related to the method of capture used by the commercial suppliers. This lead Jim to study the effect of early experience on resting blood pressure, an effort that soon developed into provocative studies of the biological basis of the stress response. PMID:9401600

  7. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  8. Doctors, disease and James Joyce.

    PubMed

    Kaplan, Robert M

    2008-08-01

    The Irish author James Joyce is regarded as the greatest modernist writer of his time. His works, notably The Dead, A Portrait of the Artist as a Young Man, Ulysses and Finnegans Wake--are intensely autobiographic including meticulous descriptions of illness and states of health--no surprise in view of Joyce's medical history and hypochondria. The Dead revolves around the tragic love of a doomed tubercular youth. Ulysses has a graphic description of Mary Joyce-s death, a funeral and a birth; Stephen Dedalus, the character based on Joyce, attends a drinking session with medical students at the lying-in hospital just as Joyce had done as a student; references to syphilis, alcoholism and other illnesses abound. PMID:18704219

  9. STS-69 Mission Specialist James H. Newman suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Specialist James H. Newman dons his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Note that Newman's name tag reads Pluto. The STS-69 crew has dubbed itself the Dog Crew II, continuing a spirit of camaraderie that began on an earlier flight, STS-53, on which STS-69 astronauts James Voss and David Walker were crew members. Each of the STS-69 crew members adopted a dog-theme name, and the crew is even sporting a Dog Crew II patch along with the traditional mission emblem. After donning their launch/ entry suits, Newman and four fellow crewmembers will depart for Launch Pad 39A, where the Space Shuttle Endeavour awaits liftoff during a two and a half hour window opening at 11:09 a.m. EDT.

  10. Developing and Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi-Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H. The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  11. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  12. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  13. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  14. Green Summer and Icy Winter in James Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    One year ago, in late February 2000, MISR began acquiring Earth imagery. Its 'first light' images showed a frozen James Bay in the Ontario-Quebec region of Canada. These more recent nadir-camera views of the same area illuminate stark contrasts between summer and winter. The left-hand image was acquired on August 9, 2000 (Terra orbit 3427), and the right-hand image is from January 16, 2001 (Terra orbit 5757).

    James Bay lies at the southern end of Hudson Bay. It is named for the English explorer Thomas James, who first explored the area in 1631 while searching for the Northwest Passage. Visible in these images are some of the many rivers that flow into the bay; starting at the southern tip and moving clockwise on the western side are the Harricana, Moose, Albany, and Attawapiskat. The latter enters the bay just to the west of the large, crescent-shaped Akimiski Island.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  15. The Teaching Spirit of William James

    ERIC Educational Resources Information Center

    Korn, James H.

    2003-01-01

    William James provided not only practical advice to teachers but also wisdom concerning values in living. Statements from his students show his qualities as a teacher, although some of his statements convey his ambivalence about teaching.

  16. Pupil Alignment Considerations for Large, Deployable Space Telescopes

    NASA Technical Reports Server (NTRS)

    Bos, Brent J.; Ohl, Raymond G.; Kubalak, Daivd A.

    2011-01-01

    For many optical systems the properties and alignment of the internal apertures and pupils are not critical or controlled with high precision during optical system design, fabrication or assembly. In wide angle imaging systems, for instance, the entrance pupil position and orientation is typically unconstrained and varies over the system s field of view in order to optimize image quality. Aperture tolerances usually do not receive the same amount of scrutiny as optical surface aberrations or throughput characteristics because performance degradation is typically graceful with misalignment, generally only causing a slight reduction in system sensitivity due to vignetting. But for a large deployable space-based observatory like the James Webb Space Telescope (JWST), we have found that pupil alignment is a key parameter. For in addition to vignetting, JWST pupil errors cause uncertainty in the wavefront sensing process that is used to construct the observatory on-orbit. Furthermore they also open stray light paths that degrade the science return from some of the telescope s instrument channels. In response to these consequences, we have developed several pupil measurement techniques for the cryogenic vacuum test where JWST science instrument pupil alignment is verified. These approaches use pupil alignment references within the JWST science instruments; pupil imaging lenses in three science instrument channels; and unique pupil characterization features in the optical test equipment. This will allow us to verify and crosscheck the lateral pupil alignment of the JWST science instruments to approximately 1-2% of their pupil diameters.

  17. Breakthrough capability for UVOIR space astronomy: Reaching the darkest sky

    NASA Astrophysics Data System (ADS)

    Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.

    2015-02-01

    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission.

  18. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  19. Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffery W.; Oleson, Steven R.; Thronson, Harley A.

    2015-01-01

    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope.

  20. Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.

    2014-01-01

    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission.

  1. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  2. ABSOLUTE FLUX CALIBRATION OF THE IRAC INSTRUMENT ON THE SPITZER SPACE TELESCOPE USING HUBBLE SPACE TELESCOPE FLUX STANDARDS

    SciTech Connect

    Bohlin, R. C.; Gordon, K. D.; Deustua, S.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Rieke, G. H.; Engelbracht, C.; Su, K. Y. L.; Ardila, D.; Tremblay, P.-E.

    2011-05-15

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of {approx}2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 {mu}m band-4 fluxes of Rieke et al. are about 1.5% {+-} 2% higher than those of Reach et al. and are also in agreement with our 8 {mu}m result.

  3. THE MATERIALS ON INTERNATIONAL SPACE STATION EXPERIMENT (MISSE): FIRST RESULTS FROM MSFC INVESTIGATIONS

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    2006-01-01

    Marshall Space Flight Center worked with the Air Force Research Laboratory, Naval Research Laboratory, Langley Research Center, Glenn Research Center, the Jet Propulsion Laboratory, Johnson Space Center, Boeing, Lockheed Martin, TRW, the Aerospace Corporation, Triton Systems, AZ Technology, Alion (formerly IITRI), ENTECH, and L'Garde to bring together the first external materials exposure experiment on International Space Station (ISS). MISSE re-uses hardware from the MEEP flown on the Russian space station Mir. MISSE has returned a treasure trove of materials data that will be useful not only for ISS but also for programs as diverse as the new Crew Exploration Vehicle, the James Webb Telescope, the Lunar Surface Access Module, the Robotic Lunar Exploration Program, High Altitude Airships, and solar sails. MISSE-1 and -2 (Figure 1) were attached to the Quest airlock on ISS for 4 years and were retrieved during STS-114. MISSE-3 and -4 were bumped fr-om STS-114 and are currently slated for deployment during STS-121. MISSE-5 (Figure 2) was deployed during STS-114.

  4. St. James marine terminal facility description

    SciTech Connect

    Not Available

    1993-10-01

    The US Department of Energy (DOE) currently owns and operates a marine terminal on the west bank of the Mississippi River at St. James, Louisiana. The St. James facility was constructed by the Department to provide marine services associated with the fill and drawdown of the Strategic Petroleum Reserve (SPR) crude oil storage facilities located at Bayou Choctaw and Weeks Island, Louisiana. Although strategic to the mission of the SPR in the event of a national emergency, the St. James terminal is situated such that it has a high potential to also serve the commercial industry`s needs for crude oil terminalling and storage. The St. James terminal is located approximately 45 miles west of New Orleans and 30 miles southeast of Baton Rouge, and approximately 160 miles upstream from the mouth of the Mississippi River. Construction of the St. James terminal was initiated in 1978 and was completed in 1980. Since then, the terminal has received and transferred over 125 million barrels of crude oil to the SPR sites for storage. For crude oil distribution, the St. James terminal was connected to the neighboring LOCAP terminal by a 0.1 mile 36-inch pipeline in 1981 and to the Capline terminal by a 0.5 mile 30-inch pipeline in 1988. The terminal also has a 30-inch pipeline connection to the Koch oil terminal which was used for initial fill purposes; however, this pipeline has been disconnected and is currently inactive. A complete description of the St. James terminal facilities, operational capabilities, operational certifications, and future Government requirements are presented in Sections 2, 3, 4, and 5 respectively.

  5. NASA/BAE SYSTEMS SpaceWire Effort

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  6. NASA Astrophysics E/PO: A Quarter Century of Discovery and Inspiration with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Jirdeh, Hussein; Straughn, Amber; Smith, Denise Anne; Eisenhamer, Bonnie

    2015-08-01

    April 24, 2015 marked the 25th anniversary of the launch of the Hubble Space Telescope. In its quarter-century in orbit, the Hubble Space Telescope has transformed the way we understand the Universe, helped us find our place among the stars, and paved the way to incredible advancements in science and technology.In this presentation, we explain how NASA and ESA, including the Space Telescope Science Institute (STScI) and partners, is using the 25th anniversary of Hubble’s launch as a unique opportunity to communicate to students, educators, and the public the significance of the past quarter-century of discovery with the Hubble Space Telescope. We describe the various programs, resources, and experiences we are utilizing to enhancethe public understanding of Hubble’s many contributions to the scientific world. These include educator professional development opportunities, exhibits, events, traditional and social media, and resources for educators (formal k-12, informal, and higher education). We also highlight how we are capitalizing on Hubble’s cultural popularity to make the scientific connection to NASA’s next Great Observatory, the James Webb Space Telescope.This presentation highlights many of the opportunities by which students, educators, and the public are joining in the anniversary activities, both in-person and online. Find out more at hubble25th.org and follow #Hubble25 on social media.

  7. STS-83 Mission Commander James D. Halsell, Jr. suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-83 Mission Commander James D. Halsell, Jr., gives a thumbs-up after he is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Halsell is on his third space flight, having served as pilot of both STS-74 and STS-65. He is a lieutenant colonel in the Air Force and a former SR-71 Blackbird test pilot and holds master's degrees in management and space operations. Halsell will have responsibility for the success of the mission and will operate and maintain Columbia during the Red, or second shift. He will also assist with a materials science experiment and a protein crystal growth payload during the 16-day mission. Halsell and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 p.m. EST, April 4.

  8. William james, gustav fechner, and early psychophysics.

    PubMed

    Hawkins, Stephanie L

    2011-01-01

    American psychologist and philosopher William James devoted the entirety of his career to exploring the nature of volition, as expressed by such phenomena as will, attention, and belief. As part of that endeavor, James's unorthodox scientific pursuits, from his experiments with nitrous oxide and hallucinogenic drugs to his investigation of spiritualist mediums, represent his attempt to address the "hard problems" of consciousness for which his training in brain physiology and experimental psychology could not entirely account. As a student, James's reading in chemistry and physics had sparked his interest in the concepts of energy and force, terms that he later deployed in his writing about consciousness and in his arguments against philosophical monism and scientific materialism, as he developed his "radically empiricist" ideas privileging discontinuity and plurality. Despite James's long campaign against scientific materialism, he was, however, convinced of the existence of a naturalistic explanation for the more "wayward and fitful" aspects of mind, including transcendent experiences associated with hysteria, genius, and religious ecstasy. In this paper, I examine aspects of James's thought that are still important for contemporary debates in psychology and neuroscience: his "transmission theory" of consciousness, his ideas on the "knowing of things together," and, finally, the related concept of "the compounding of consciousness," which postulates the theoretical possibility for individual entities within a conscious system of thought to "know" the thoughts of others within the system. Taken together, these ideas suggest that James, in spite of, or perhaps because of, his forays into metaphysics, was working toward a naturalistic understanding of consciousness, what I will term a "distributive model," based on his understanding of consciousness as an "awareness" that interacts dynamically within, and in relation to, its environment. PMID:22016738

  9. NASA Astrophysics E/PO: The Impact of the Space Telescope Science Institute Office of Public Outreach

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray

    2015-01-01

    As the science operations center for Hubble and Webb, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity's quest to understand fundamental questions about our universe and our place in it. With the 25th anniversary of Hubble's launch and deployment approaching in April 2015, this presentation will provide an overview of the impact of the STScI's Office of Public Outreach's programs to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs. At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble's scientific capabilities and majestic imagery, together with a deep commitment to creating effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  10. Space astronomy and astrophysics program by CSA

    NASA Astrophysics Data System (ADS)

    Laurin, Denis; Ouellet, Alain; Dupuis, Jean; Chicoine, Ruth-Ann

    2014-07-01

    Canada became actively engaged in space astronomy in the 1990s by contributing two fine guidance sensors to the FUSE Far-UV mission (NASA 1999-2008). In the same period, Canada contributed to ODIN's infrared instrument (ESA 2001-2006) and correlators for VSOP (JAXA 1997-2005). In early 2000, Canada developed its own space telescope, Micro-variability and Observations of STars (MOST), a 15-cm telescope on a microsatellite, operating since 2003, and more recently contributed to the realization of the BRITE nanosatellites constellation. Canada also provided hardware to the European Space Agency's Herschel HIFI instrument and simulators to the SPIRE instrument and data analysis tools for Planck. More recently the Canadian Space Agency (CSA) delivered detector units for the UVIT instrument on board the Indian Space Research Organisation's (ISRO) ASTROSAT. The CSA's most important contribution to a space astronomy mission to date is the Fine Guidance Senor (FGS) and Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument to NASA's James Webb Space Telescope. The CSA is currently building the laser metrology system for JAXA's ASTRO-H hard X-ray telescope. Canadian astronomers contributed to several high profile stratospheric balloon projects investigating the CMB and the CSA recently established a balloon launch facility. As expressed in Canada's new Space Policy Framework announced in February 2014, Canada remains committed to future space exploration endeavors. The policy aims at ensure that Canada is a sought-after partner in the international space exploration missions that serve Canada's national interests; and continuing to invest in the development of Canadian contributions in the form of advanced systems and optical instruments. In the longer term, through consultations and in keeping the Canadian astronomical community's proposed Long Range Plan, the CSA is exploring possibilities to contributions to important missions such as WFIRST, SPICA and Athena

  11. William James, Philosophical Father of Experience-Based Education.

    ERIC Educational Resources Information Center

    Donaldson, George W.; Vinson, Richard

    1979-01-01

    The article briefly describes the life of William James, nineteenth-century philosopher and psychologist, noting the development of his pragmatist philosophy. The article uses James' work and ideas to support 11 principles of contemporary experience-based education. (SB)

  12. Speculation on Curriculum from the Perspective of William James.

    ERIC Educational Resources Information Center

    Shubert, William H; Zissis, Georgiana

    1988-01-01

    This article discusses the implications for curriculum theory, research, and practice of William James' thought. Also considered is the question of what curriculum theory and research might be like if James had garnered greater influence than Thorndike. (IAH)

  13. 76 FR 12295 - James Luehman; Denial of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... REGULATORY COMMISSION 10 CFR Part 50 James Luehman; Denial of Petition for Rulemaking AGENCY: Nuclear... Commission (NRC or the Commission) is denying a petition for rulemaking (PRM) submitted by James Luehman...

  14. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Display model of space station concept--Manned Orbiting Research Laboratory in Saturn S-IVB Orbit configuration. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995).

  15. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    USGS Publications Warehouse

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  16. Apollo 8 Astronaut James Lovell On Phone With President Johnson

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Apollo 8 Astronaut James Lovell, Command Module (CM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Lovell, along with astronauts William Anders, Lunar Module (LM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.

  17. James Bernard Russell: Scholar, collaborator, mentor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the time of his untimely death in 2009, ARS scientist Dr. James B. Russell had established himself as the premier rumen microbiologist of his generation. Dr. Russell’s many contributions to the field, including much of the early work on the Cornell Net Carbohydrate System model, were the product ...

  18. The James Bay Project: Reaction or Action?

    ERIC Educational Resources Information Center

    Mackwood, Gae

    1991-01-01

    Discusses the plan to restructure northern Quebec's landscape through the James Bay hydroelectric project. Suggests that the project offers opportunities to study development versus preservation, federal versus provincial powers, and the conflict between business and Native communities. Explores the need to teach students to care about social…

  19. Astronaut James Buchli wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).

  20. James Joyce: steps towards a diagnosis.

    PubMed

    Lyons, J B

    2000-12-01

    Authors whose scholarship is in the golden realm of English literature have not hesitated to make pronouncements on James Joyce's health. A publication in this genre claims he had tabes dorsalis. One feels that an authoritative comment, accepting or rejecting a diagnosis of neurosyphilis, should be provided by the Journal of the History of the Neurosciences. PMID:11232371

  1. The Religion Journalism of James Gordon Bennett.

    ERIC Educational Resources Information Center

    Buddenbaum, Judith M.

    A study was conducted to examine the journalism work of James Gordon Bennett, who founded the "New York Herald" in the 1830s, and to determine the nature of his coverage of religion before, during, and after the "Moral War" waged in 1840 against Bennett's popular newspaper. In addition, the study analyzed what Bennett's religion coverage reveals…

  2. James Madison and the Constitutional Convention.

    ERIC Educational Resources Information Center

    Scanlon, Thomas M.

    1987-01-01

    Part 1 of this three-part article traces James Madison's life and focuses primarily on those events that prepared him for leadership in the U.S. Constitutional Convention of 1787. It describes his early love of learning, education, and public service efforts. Part 2 chronicles Madison's devotion to study and preparation prior to the Constitutional…

  3. William James Sidis, The Broken Twig

    ERIC Educational Resources Information Center

    Montour, Kathleen

    1977-01-01

    By presenting cases of prodigies who entered college as early as William James Bidis but who succeeded, this paper attempts to dissuade the public from its opposition to educational acceleration for precocious children, to which the "Sidis fallacy" has helped give rise. (Author)

  4. Low carbon dialysis for James Paget.

    PubMed

    2010-09-01

    ELGA Process Water explains how it provided a new water purification system for the renal dialysis unit at the James Paget University Hospital in Great Yarmouth that not only delivers the required water quality, and meets Renal Association guidelines on water treatment plants, but will also help reduce the acute healthcare facility's carbon footprint. PMID:20882912

  5. A Reflective Conversation with James H. Borland

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Moore, Tammy-Lynne; Borland, James H.

    2014-01-01

    James H. Borland, Ph.D. is Professor of Education in the Department of Curriculum and Teaching at Teachers College, Columbia University in New York City. In this reflective conversation, he reflects on his experiences in an urban environment and the current challenges in gifted education. He argues for ongoing diagnosis of learners' needs…

  6. 7. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. John and James Dobson Carpet Mill, East and West Parcels, May 17, 1926, (John and James Dobson, Inc. East Falls, Aero Service Corp., Neg. No. 5986, May 17, 1926, Free Library of Philadelphia, Print Collection). - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  7. 77 FR 25592 - Drawbridge Operation Regulations; James River, Hopewell, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; James River, Hopewell, VA AGENCY... Memorial Bridge, at mile 65.0, across the James River, at Hopewell, VA. This deviation is necessary to... schedule, the SR 156/Benjamin Harrison Memorial Bridge, at mile 65.0, across the James River, at...

  8. The Darwinian Center to the Vision of William James.

    ERIC Educational Resources Information Center

    Bredo, Eric

    The essence of William James's vision can sometimes be hard to discover due to emotional volatility and exploratory impulsiveness. On the other hand, beneath James's apparent inconsistency was a constancy of purpose that can be easily underestimated. This paper argues that the center of James's vision lay in an interpretation of Darwinism. By…

  9. Obituary: James Adolph Westphal, 1930-2004

    NASA Astrophysics Data System (ADS)

    Danielson, G. Edward

    2004-12-01

    James A. Westphal died September 8, 2004. He had battled a neurological disease related to Alzheimer's for the past year. He was 74. James A. Westphal was born in Dubuque, Iowa, on June 13, 1930. He was raised in Tulsa, Oklahoma, and in Little Rock, Arkansas. Westphal earned his bachelor's degree in physics from the University of Tulsa in 1954, a year after he went to work as geophysical research group leader at Sinclair Research Lab in Tulsa. Westphal first got into the business of scientific instrumentation right after high school, when he did well-logging in Texas and Gulf Coast oil fields. In fact, his work at Sinclair Research Labs involved devising unorthodox methods for oil discovery; one of his discoveries of a new way of processing seismic data first brought him to the attention of Caltech professor Hewitt Dix, who is often considered the father of exploration geophysics. Westphal arrived at Caltech initially on a four-month leave of absence to devise a data processor for Dix, but never left. He discovered that the academic freedom individual professors enjoy was amenable to his own predilections, so he soon began branching out to other areas of scientific investigation at Caltech. Before long, he had teamed up with Bruce Murray to do thermal infrared scans of the moon in order to see if humans could even walk on the lunar surface without sinking into the dusty soil. Westphal and Murray's work showed that rocky areas could be identified with the thermal imaging, which in turn led to the inference that the Apollo astronauts could safely walk on the soil without sinking. Westphal and Murray also teamed up to do the first infrared imaging of Venus and Jupiter. Other projects at Caltech led to Westphal's being hired on permanently by Bob Sharp, who at the time was the geology division chairman. In the following years, Westphal involved himself in novel ways of studying volcanism in Hawaii and Mount St. Helens. He invented a simple and very sensitive tilt meter

  10. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  11. Ka-Band High-Rate Telemetry System Upgrade for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    LaBelle, Remi; Bernardo, Abner; Bowen, James; Britcliffe, Michael; Bucknam, Neil; Link, Christopher; Long, Ezra; Manalo, Leslie; O'Dea, James A.; Rochblatt, David; Sosnowski, John; Veruttipong, Watt

    2009-01-01

    The NASA Deep Space Network (DSN) has a new requirement to support high-data-rate Category A (Cat A) missions (within 2 million kilometers of Earth) with simultaneous S-band uplink, S-band downlink and Ka-band downlink. The S-band links are required for traditional TT&C (Telemetry, Tracking, and Command) support to the spacecraft, while the Ka-band link is intended for high-data-rate science returns. The new Ka-band system combines the use of proven DSN cryogenic designs, for low system temperature, and high data rate capability using commercial telemetry receivers. The initial Cat A support is required for the James Webb Space Telescope (JWST) in 2013 and possibly other missions. The upgrade has been implemented into 3 different 34-meter Beam Waveguide (BWG) antennas in the DSN, one at each of the complexes in Canberra (Australia), Goldstone (California) and Madrid (Spain). System test data is presented to show that the requirements were met and the DSN is ready for Cat A Ka-band operational support.

  12. Ka-band high-rate telemetry system upgrade for the NASA deep space network

    NASA Astrophysics Data System (ADS)

    LaBelle, R.; Rochblatt, D.

    2012-01-01

    The NASA Deep Space Network (DSN) has a new requirement to support high-data-rate Category A (Cat A) missions (within 2 million kilometers of the Earth) with simultaneous S-band uplink, S-band downlink and Ka-band downlink. The S-band links are required for traditional telemetry, tracking & command (TT&C) support to the spacecraft, while the Ka-band link is intended for high-data-rate science returns. The new Ka-band system combines the use of proven DSN cryogenic designs, for low system temperature, and high-data-rate capability using commercial telemetry receivers. The initial Cat A support is required for the James Webb Space Telescope (JWST) in 2014 and possibly other missions. The upgrade has been implemented into 3 different 34-meter Beam Waveguide (BWG) antennas in the DSN, one at each of the complexes in Canberra (Australia), Goldstone (California) and Madrid (Spain). System test data are presented to show that the requirements were met and the DSN is ready for Cat A Ka-band operational support.

  13. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  14. God, James Watt, and the public's land

    SciTech Connect

    Wolf, R.

    1981-05-01

    The political career of James Watt, Secretary of the Interior, is chronicled. His current reputation as archenemy of the environmental movement is largely the outgrowth of three and a half years of activity on behalf of the Mountain States Legal Foundation. Since taking office in January 1981, Watt has moved swiftly to impose his individual standards on USDI. Various programs and agencies are being terminated, and public lands may soon be open for mineral and energy exploitation. (7 drawings, 1 photo)

  15. Obituary: James Adolph Westphal, 1930-2004

    NASA Astrophysics Data System (ADS)

    Danielson, G. Edward

    2004-12-01

    James A. Westphal died September 8, 2004. He had battled a neurological disease related to Alzheimer's for the past year. He was 74. James A. Westphal was born in Dubuque, Iowa, on June 13, 1930. He was raised in Tulsa, Oklahoma, and in Little Rock, Arkansas. Westphal earned his bachelor's degree in physics from the University of Tulsa in 1954, a year after he went to work as geophysical research group leader at Sinclair Research Lab in Tulsa. Westphal first got into the business of scientific instrumentation right after high school, when he did well-logging in Texas and Gulf Coast oil fields. In fact, his work at Sinclair Research Labs involved devising unorthodox methods for oil discovery; one of his discoveries of a new way of processing seismic data first brought him to the attention of Caltech professor Hewitt Dix, who is often considered the father of exploration geophysics. Westphal arrived at Caltech initially on a four-month leave of absence to devise a data processor for Dix, but never left. He discovered that the academic freedom individual professors enjoy was amenable to his own predilections, so he soon began branching out to other areas of scientific investigation at Caltech. Before long, he had teamed up with Bruce Murray to do thermal infrared scans of the moon in order to see if humans could even walk on the lunar surface without sinking into the dusty soil. Westphal and Murray's work showed that rocky areas could be identified with the thermal imaging, which in turn led to the inference that the Apollo astronauts could safely walk on the soil without sinking. Westphal and Murray also teamed up to do the first infrared imaging of Venus and Jupiter. Other projects at Caltech led to Westphal's being hired on permanently by Bob Sharp, who at the time was the geology division chairman. In the following years, Westphal involved himself in novel ways of studying volcanism in Hawaii and Mount St. Helens. He invented a simple and very sensitive tilt meter

  16. Movie Trailer: 'Back to the Beginning'

    NASA Video Gallery

    The James Webb Space Telescope, the last of NASA's Great Observatories, will take us farther back in time than even the Hubble Space Telescope. Set to launch in 2014, NASA's "Ultimate Time Machine"...

  17. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee (APS) of the NASA Advisory Council... the following topics: --Astrophysics Division Update --James Webb Space Telescope Update...

  18. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  19. Time-Lapse of Backplane of the JWST Being Moved Into Clean Room

    NASA Video Gallery

    This is a time-lapse video of the center section of the 'pathfinder' backplane for NASA's James Webb Space Telescope being moved into the clean room at NASA's Goddard Space Flight Center in Greenbe...

  20. JWST Secondary Mirror Deploy Timelapse

    NASA Video Gallery

    Setting up NASA's James Webb Space Telescope's secondary mirror in space will require special arms that resemble a tripod that was recently demonstrated in a NASA cleanroom. TRT: 1:25 / Credit: NAS...

  1. STS-88 Mission Specialist James Newman suits up before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-88 Mission Specialist James H. Newman takes part in a complete suit check before launch. Newman holds a toy dog, 'Pluto,' representing the crew nickname Dog Crew 3 and Newman's nickname, Pluto. Mission STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, landing at 10:17 p.m. EST on Dec. 14.

  2. Obituary: James Gilbert Baker, 1914-2005

    NASA Astrophysics Data System (ADS)

    Baker, Neal Kenton

    2005-12-01

    Dr. James Gilbert Baker, renowned astronomer and optical physicist, died 29 June 2005 at his home in Bedford, New Hampshire at the age of 90. Although his scientific interest was astronomy, his extraordinary ability in optical design led to the creation of hundreds of optical systems that supported astronomy, aerial reconnaissance, instant photography (Polaroid SX70 camera), and the US space programs. He was the recipient of numerous awards for his creative work. He was born in Louisville, Kentucky, on 11 November 1914, the fourth child of Jesse B. Baker and Hattie M. Stallard. After graduating from Louisville DuPont Manual High, he went on to attend the University of Louisville majoring in Mathematics. He became very close to an Astronomy Professor, Dr. Moore, and many times used his telescopes to do nightly observations. While at the university, he built mirrors for his own telescopes and helped form the Louisville Astronomical Society in 1933. At the University of Louisville, he also met his future wife, Elizabeth Katherine Breitenstein of Jefferson County, Kentucky. He received his BA in 1935 at the height of the Depression. He began his graduate work in astronomy at the Harvard College Observatory. After his MA (1936), he was appointed a Junior Fellow (1937-1943) in the Prestigious Harvard Society of Fellows. He received his PhD in 1942 from Harvard in rather an unusual fashion, which is worth retelling. During an Astronomy Department dinner, Dr. Harlow Shapley (the director) asked him to give a talk. According to the "Courier-Journal Magazine", "Dr. Shapley stood up and proclaimed an on-the-spot departmental meeting and asked for a vote on recommending Baker for a Ph.D. on the basis of the 'oral exam' he had just finished. The vote was unanimous." It was at Harvard College Observatory during this first stage of his career that he collaborated with Donald H. Menzel, Lawrence H. Aller, and George H. Shortley on a landmark set of papers on the physical processes

  3. STS-94 Commander James D. Halsell suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Commander James D. Halsell, Jr., puts his left glove on while he is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Halsell is on his fourth space flight, having served as commander of STS-83 and pilot of both STS-74 and STS-65. He is a lieutenant colonel in the Air Force and a former SR-71 Blackbird test pilot and holds masters degrees in management and space operations. Halsell will have uresponsibility for the success of the mission and will operate and maintain Columbia during the Red, or second shift. He will also assist with a materials science experiment and a protein crystal growth payload during the 16-day mission. Halsell and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 a.m. EDT, July opportunity to lift off before Florida summer rain showers reached the space center.

  4. The Scientific Papers of James Clerk Maxwell

    NASA Astrophysics Data System (ADS)

    Clerk Maxwell, James; Niven, W. D.

    2011-01-01

    27. On the viscosity or internal friction of air and other gases; 28. On the dynamical theory of gases; 29. On the theory of the maintenance of electric currents by mechanical work without the use of permanent magnets; 30. On the equilibrium of a spherical envelope; 31. On the best arrangement for producing a pure spectrum on a screen; 32. The construction of stereograms of surfaces; 33. On reciprocal diagrams in space and their relation to Airy's function of stress; 34. On governors; 35. Experiment in magneto-electric induction; 36. On a method of making a direct comparison of electrostatic with electromagnetic force; 37. On the cyclide; 38. On a bow seen on the surface of ice; 39. On reciprocal figures, frames, and diagrams of forces; 40. On the displacement in a case of fluid motion; 41. Address to the mathematical and physical sections of the British Association, 1870; 42. On colour-vision at different points of the retina; 43. On hills and dales; 44. Introductory lecture on experimental physics; 45. On the solution of electrical problems by the transformation of conjugate functions; 46. On the mathematical classification of physical quantities; 47. On colour vision; 48. On the geometrical mean distance of two figures on a plane; 49. On the induction of electric currents in an infinite plane sheet of uniform conductivity; 50. On the condition that, in the transformation of any figure by curvilinear co-ordinates in three dimensions, every angle in the new figure shall be equal to the corresponding angle in the original figure; 51. Reprint of Papers on electrostatics and magnetism. By Sir W. Thomson. (Review); 52. On the proof of the equations of motion of a connected system; 53. On a problem in the calculus of variations in which the solution is discontinuous; 54. On action at a distance; 55. Elements of natural philosophy. By Sir W. Thomson and P. G. Tait. (Review); 56. On the theory of a system of electrified conductors, and other physical theories involving

  5. Hubble Space Telescope (HST) Fine Guidance Sensor Performance Analysis with Respect to Guide Stars

    NASA Astrophysics Data System (ADS)

    Armstrong, Amber; Taylor, Denise; Reinhart, Merle

    2016-06-01

    The Fine Guidance Sensors (FGS) onboard HST include one of Hubble’s first-generation instruments still in operation today. After several servicing missions and even some refurbishment to the FGSs, the interferometers, although aged, perform at a level exceeding expectations. Since launch in April 1990, FGS3 has performed within operational standards while FGS1 & 2 underwent replacements or refurbishments during SM2, SM3A and SM4. Up until 1999 FGS3 was used for astrometry science when FGS1R took over that role. Currently FGS1R is the only FGS used as a primary science instrument. While very few observing programs request the FGS as their prime instrument nearly all GO observations executed onboard HST use the interferometers to lock onto guide stars. Most observations execute successfully onboard HST while 1.93% of all orbits executed onboard HST have an issue that requires repeating the observations. Of all failed visits, roughly 65% are due to a variation of suboptimal guide star options that test the boundaries of FGS capabilities. In this poster we present the limitations of the FGS interferometers regarding guide stars, their surprising capabilities, and suggest specific guidelines to astronomers who are faced with “shared risk” opportunities for their observations. We hope to share this knowledge with the HST community to improve guide star execution onboard Hubble and to make comparisons to the future James Webb Space Telescope FGS instrument, where astronomers will take part in guide star selection.

  6. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  7. Multi-Objective Multi-User Scheduling for Space Science Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2010-01-01

    We have developed an architecture called MUSE (Multi-User Scheduling Environment) to enable the integration of multi-objective evolutionary algorithms with existing domain planning and scheduling tools. Our approach is intended to make it possible to re-use existing software, while obtaining the advantages of multi-objective optimization algorithms. This approach enables multiple participants to actively engage in the optimization process, each representing one or more objectives in the optimization problem. As initial applications, we apply our approach to scheduling the James Webb Space Telescope, where three objectives are modeled: minimizing wasted time, minimizing the number of observations that miss their last planning opportunity in a year, and minimizing the (vector) build up of angular momentum that would necessitate the use of mission critical propellant to dump the momentum. As a second application area, we model aspects of the Cassini science planning process, including the trade-off between collecting data (subject to onboard recorder capacity) and transmitting saved data to Earth. A third mission application is that of scheduling the Cluster 4-spacecraft constellation plasma experiment. In this paper we describe our overall architecture and our adaptations for these different application domains. We also describe our plans for applying this approach to other science mission planning and scheduling problems in the future.

  8. 10. Historic American Buildings Survey James R. Dunlop, Inc., Photographer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Historic American Buildings Survey James R. Dunlop, Inc., Photographer, n.d. STABLES, INTERIOR DEMOLISHED - Larz Anderson House, 2118 Massachusetts Avenue Northwest, Washington, District of Columbia, DC

  9. 3. Historic American Buildings Survey James R. Dunlop, Inc., Photographer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey James R. Dunlop, Inc., Photographer, n.d. ARCHWAY TOWARD ENTRANCE - Larz Anderson House, 2118 Massachusetts Avenue Northwest, Washington, District of Columbia, DC

  10. Astronaut James Newman works with power ratchet tool in payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Discovery's cargo bay, astronaut James H. Newman works with the power ratchet tool (PRT). Astronaut Carl E. Walz, who joined Newman for the lengthy period of extravehicular activity (EVA), is partially visible in the background. The two mission specialists devoted part of their EVA to evaluating tools and equipment expected to be used in the Hubble Space Telescope servicing. A desert area in Africa forms the backdrop for the 70mm scene.

  11. [Nicolas Dobo and Pierre Jame about the army medical general Lucian Jame].

    PubMed

    Dobo, N; Jame, P

    1996-01-01

    Lucien Jame was born October the 20th 1891 at Gourdon (Lot). State Police Officer's son, he studied in Lyon at the Military Health School. Called up August the 6th 1914, he shined among many fights and wore a lot of medals. After the armistice he defended his thesis upon "Venereal diseases prophylaxis study". March the 9th 1921, medical Officer in South Algeria, he published some original articles regarding to leprosis, tuberculosis and malaria. After a competitive examination in France, Lucien Jame became a Medical Commanding Officer of Military Health Service in Toulouse where Nicolas Dobo was at his disposal. August the 6th 1943, in the same rank in Algier then in Rabat, Lucien Jame reached the top of his career as Chief Executive of Military Health Service. He planed First French army medical operations through Italy, France and Germany battles. "Grand-Officier de la Légion d'honneur", the Army Medical General Lucien Jame retired but kept on with works dedicated to hygiene and preventive medicine till he died, June the 16th, 1969. PMID:11624989

  12. The lymphocyte in immunology: from James B. Murphy to James L. Gowans.

    PubMed

    Silverstein, A M

    2001-07-01

    Between 1912 and 1921, James Murphy established conclusively the role of the lymphocyte in tissue and tumor graft rejection and in protection against infection. Contemporary mainstream immunology paid little attention to these findings, until the lymphocyte was "rediscovered" with the advent of modern cellular immunology after the mid-1950s. PMID:11429534

  13. James R. Wait (1924-1998)

    NASA Astrophysics Data System (ADS)

    Hill, David A.

    James (Jim) R.Wait, a pioneer in electromagnetic theory and applications to geophysical exploration, died of cancer in Tucson, Arizona, on October 1, 1998. At 74, he was still very active and innovative in electromagnetics as Regents Professor Emeritus, University of Arizona, and as a consultant in electrical geophysics. He is survived by his wife, Gertrude; his son, George; his daughter, Laura; and three grandchildren, James, Carolyn, and Connor.Jim was born in Ottawa, Ontario, Canada, on January 23, 1924. He obtained B.A.Sc.and M.A.Sc. degrees in 1948 and 1949, respectively and his Ph.D. degree in 1951, in electrical engineering, all from the University of Toronto. He obtained his “T” in skiing and remained an avid skier all his life. Jim stayed in great shape and always found time to work out despite his busy schedule. I still remember the business trip where Jim and I ran laps around the parking lot of a Holiday Inn for his daily workout.

  14. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  15. 1. Historic American Buildings Survey James F. and Jean B. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey James F. and Jean B. O'Gorman, Photographers October 1963 EXTERIOR FROM THE SOUTHEAST Gift of James F. and Jean B. O'Gorman - Stephen Higginson Jr. House, 7 Kirkland Street, Cambridge, Middlesex County, MA

  16. 2. Historic American Buildings Survey James F. and Jean B. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey James F. and Jean B. O'Gorman, Photographers October 1963 EXTERIOR FROM THE SOUTHWEST Gift of James F. and Jean B. O'Gorman - Stephen Higginson Jr. House, 7 Kirkland Street, Cambridge, Middlesex County, MA

  17. 5. Historic American Buildings Survey James F. and Jean B. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey James F. and Jean B. O'Gorman, Photographers October 1963 MID-19th-CENTURY MANTELPIECE IN EAST CHAMBER, SECOND FLOOR Gift of James F. and Jean B. O'Gorman - Stephen Higginson Jr. House, 7 Kirkland Street, Cambridge, Middlesex County, MA

  18. 4. Historic American Buildings Survey James F. and Jean B. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey James F. and Jean B. O'Gorman, Photographers October 1963 LATE 19th-CENTURY MANTELPIECE IN FIRST FLOOR ROOM Gift of James F. and Jean B. O'Gorman - Stephen Higginson Jr. House, 7 Kirkland Street, Cambridge, Middlesex County, MA

  19. 3. Historic American Buildings Survey James F. and Jean B. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey James F. and Jean B. O'Gorman, Photographers October 1963 ORIGINAL MANTELPIECE AND WINDOW SHUTTERS, FIRST FLOOR Gift of James F. and Jean B. O'Gorman - Stephen Higginson Jr. House, 7 Kirkland Street, Cambridge, Middlesex County, MA

  20. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power Plant...

  1. 3. Photocopy of Plate #13, 'Interior of St. James, Thirtyeighth ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of Plate #13, 'Interior of St. James, Thirty-eighth and Chestnut Sts.', in Architectural Album of Edwin F. Durang and Son, 1200. Chestnut St., Philadelphia (a privately bound volume). Exact date not noted. - St. James Roman Catholic Church, 3728 Chestnut Street, Philadelphia, Philadelphia County, PA

  2. 2. Photocopy of Plate #12, 'St. James Church, Thirtyeighth and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of Plate #12, 'St. James Church, Thirty-eighth and Chestnut Sts.', in Architectural Album of Edwin F. Durang and Son, 1200 Chestnut St., Philadelphia (a privately bound volume). Exact date not noted. - St. James Roman Catholic Church, 3728 Chestnut Street, Philadelphia, Philadelphia County, PA

  3. 1. VIEW OF JAMES H. LANE BARN (HEREAFTER LANE BARN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF JAMES H. LANE BARN (HEREAFTER LANE BARN) FROM L.D.S. CHURCH GROUNDS ON IDAHO HIGHWAY 26, APPROXIMATELY 1/4 MILE EAST OF THE MAIN INTERSECTION OF RICHFIELD, IDAHO. CAMERA IS POINTING SOUTH. - James H. Lane Ranch, Barn, One Mile South of Richfield on Highway 26, Richfield, Lincoln County, ID

  4. Metacognition and Self-Regulation in James, Piaget, and Vygotsky

    ERIC Educational Resources Information Center

    Fox, Emily; Riconscente, Michelle

    2008-01-01

    This article investigates the intertwined constructs of metacognition and self-regulation as they emerge in the works and theories of James, Piaget, and Vygotsky. To coordinate this exploration, we use an interpretive framework based on the relation of subject and object. In this framework, James's perspective on metacognition and self-regulation…

  5. 18. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. John and James Dobson Carpet Mill, East and West parcels, site plan-lower left, and surrounding environs, 1925. Bromley, George Washington and Bromley, Walter Scott. Atlas of the City of Philadelphia (North Philadelphia), Philadelphia, Pennsylvania: George W. and Walter S. Bromley, 1925, p. 106. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  6. 17. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. John and James Dobson Carpet Mill, East and West Parcels, site plan, revised through 1914. Hexamer, Ernest and Son. Insurance Maps of the City of Philadelphia, Vol. 21., Philadelphia, Pennsylvania: E. Hexamer and Son, 1893. Revisions, 1914, p. 446. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  7. 14. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. John and James Dobson Carpet Mill, East and West parcels, site plan, revised through 1895. Hexamer, Ernest and Son. Insurance Maps of the City of Philadelphia, Vol. 21., Philadelphia, Pennsylvania: E. Hexamer and Son, 1893. Revisions, 1895, p. 446. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  8. 16. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. John and James Dobson Carpet Mill, East and West parcels, site plan-right, and western environs, 1908. Smith, Elvino Victor. Atlas of the 38th and Part of the 37th Ward of the City of Philadelphia, Philadelphia, Pennsylvania: Elvino V. Smith, 1908, Plate 24. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  9. 11. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. John and James Dobson Carpet Mill, East and West parcels, site plan-upper left, elevation-lower left, and survey-right, 1877. Hexamer, Ernest and Son. Hexamer General Surveys, 1867-1895, Philadelphia, Pennsylvania: E. Hexamer and Son, 1877, pp. 1095-1096. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  10. 19. John and James Dobson Carpet Mills, West parcel, topographical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. John and James Dobson Carpet Mills, West parcel, topographical plan, 1986. Barton and Martin, Engineers. 'Topographical Plan for Dobson Mills.' Prepared for Rouse Urban Housing, Inc., Philadelphia, Pennsylvania, 1986. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  11. The National Writing Project: A Best Idea from James Gray.

    ERIC Educational Resources Information Center

    Jago, Carol

    2003-01-01

    Discusses how James Gray, founder of the Bay Area Writing Project and later the National Writing Project, began with a simple idea--successful teachers are the best teachers of teachers. Describes how James Gray laid a foundation for what has become a national network with 175 sites across the nation, providing a professional home for thousands of…

  12. 10. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. John and James Dobson Carpet Mill, East and West parcels, site plan-lower right, and surrounding environs, 1875. Hopkins, Griffith Morgan. City Atlas of Philadelphia by Wards, 7 vols., Philadelphia, Pennsylvania: G. M. Hopkins and Co., 1875, pp. 46-47. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  13. 9. John and James Dobson Carpet Mill, portion of West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. John and James Dobson Carpet Mill, portion of West parcel, site plan-left, elevation-upper right, and survey-lower right, 1873. Hexamer, Ernest and Son. Hexamer General Surveys 1867-1895, Philadelphia, Pennsylvania: E. Hexamer and Son, 1873, pp. 670-671. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  14. 13. John and James Dobson Carpet Mill, East and West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. John and James Dobson Carpet Mill, East and West parcels, site plan-upper left, elevation-upper right, and survey-below, 1885. Hexamer, Ernest and Son. Hexamer General Surveys, 1867-1895, Philadelphia, Pennsylvania: E. Hexamer and Son, 1885, pp. 1890-1891. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  15. Cosmic Reionization and Early Star-forming Galaxies: A Joint Analysis of New Constraints from Planck and the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Robertson, Brant E.; Ellis, Richard S.; Furlanetto, Steven R.; Dunlop, James S.

    2015-04-01

    We discuss new constraints on the epoch of cosmic reionization and test the assumption that most of the ionizing photons responsible arose from high-redshift star-forming galaxies. Good progress has been made in charting the end of reionization through spectroscopic studies of z ≃ 6-8 QSOs, gamma-ray bursts, and galaxies expected to host Lyα emission. However, the most stringent constraints on its duration have come from the integrated optical depth, τ, of Thomson scattering to the cosmic microwave background. Using the latest data on the abundance and luminosity distribution of distant galaxies from Hubble Space Telescope imaging, we simultaneously match the reduced value τ =0.066+/- 0.012 recently reported by the Planck collaboration and the evolving neutrality of the intergalactic medium with a reionization history within 6≲ z≲ 10, thereby reducing the requirement for a significant population of very high redshift (z\\gg 10) galaxies. Our analysis strengthens the conclusion that star-forming galaxies dominated the reionization process and has important implications for upcoming 21 cm experiments and searches for early galaxies with the James Webb Space Telescope.

  16. Obituary: James Gilbert Baker, 1914-2005

    NASA Astrophysics Data System (ADS)

    Baker, Neal Kenton

    2005-12-01

    Dr. James Gilbert Baker, renowned astronomer and optical physicist, died 29 June 2005 at his home in Bedford, New Hampshire at the age of 90. Although his scientific interest was astronomy, his extraordinary ability in optical design led to the creation of hundreds of optical systems that supported astronomy, aerial reconnaissance, instant photography (Polaroid SX70 camera), and the US space programs. He was the recipient of numerous awards for his creative work. He was born in Louisville, Kentucky, on 11 November 1914, the fourth child of Jesse B. Baker and Hattie M. Stallard. After graduating from Louisville DuPont Manual High, he went on to attend the University of Louisville majoring in Mathematics. He became very close to an Astronomy Professor, Dr. Moore, and many times used his telescopes to do nightly observations. While at the university, he built mirrors for his own telescopes and helped form the Louisville Astronomical Society in 1933. At the University of Louisville, he also met his future wife, Elizabeth Katherine Breitenstein of Jefferson County, Kentucky. He received his BA in 1935 at the height of the Depression. He began his graduate work in astronomy at the Harvard College Observatory. After his MA (1936), he was appointed a Junior Fellow (1937-1943) in the Prestigious Harvard Society of Fellows. He received his PhD in 1942 from Harvard in rather an unusual fashion, which is worth retelling. During an Astronomy Department dinner, Dr. Harlow Shapley (the director) asked him to give a talk. According to the "Courier-Journal Magazine", "Dr. Shapley stood up and proclaimed an on-the-spot departmental meeting and asked for a vote on recommending Baker for a Ph.D. on the basis of the 'oral exam' he had just finished. The vote was unanimous." It was at Harvard College Observatory during this first stage of his career that he collaborated with Donald H. Menzel, Lawrence H. Aller, and George H. Shortley on a landmark set of papers on the physical processes

  17. NES Live Video Chat: Dr. John C. Mather

    NASA Video Gallery

    NES welcomed Nobel Prize winner Dr. John C. Mather for a video webchat on May 17, 2011. He spoke about the James Webb Space Telescope and how it gives us a look into the past to see how galaxies ha...

  18. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb...

  19. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb...

  20. Dr. Wernher Von Braun leads a tour of the S-IC checkout area.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Eberhard Rees, Charles Schultze, James Webb, Elmer Staats, Comptroller General of the United States, and Dr. Wernher Von Braun tour the S-IC checkout area in the Marshall Space Flight Center quality lab.

  1. Current Progress on the Design and Analysis of the JWST ISIM Bonded Joints for survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Kaprelion, Charles; Kunt, Cengiz; Proebstle, Joel; Rodini, Ben; Young, Daniel; Bartoszyk, Andrew

    2005-01-01

    Viewgraphs on the material characterization and design of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) metal/composite bonded joints for its survivability at cryogenic temperatures is presented.

  2. JWST Full Scale Model Being Built

    NASA Video Gallery

    : The full-scale model of the James Webb Space Telescope is constructed for the 2010 World Science Festival in Battery Park, NY. The model takes about five days to construct. This video contains a ...

  3. James Astor in conversation with Warren Colman.

    PubMed

    Astor, James

    2013-11-01

    In this interview with Warren Colman, James Astor speaks about his development as a Jungian analyst from his own experience of personal analysis in the 1960s to his recent retirement from clinical practice. The discussion covers his long association with Michael Fordham, the child analytic training at the SAP, the infant observation seminars with Fordham and Gianna Henry through which Fordham was able to make new discoveries about infant development, his experience of supervision with Donald Meltzer and the development of his own thinking through a series of papers on the analytic process, supervision and the relation between language and truth. The interview concludes with reflections about the legacy of Michael Fordham and the future of analytic work. PMID:24237210

  4. Remembering James Alan Bassham (1922-2012).

    PubMed

    Govindjee; Bassham, Helen; Bassham, Susan

    2016-04-01

    James Alan Bassham, known to many as Al, was born on November 26, 1922, in Sacramento, California (CA), USA. He died on November 19, 2012, in El Cerrito, CA. To celebrate his life at his 3rd death anniversary, we present here a brief biography, comments on his discoveries, but most importantly, remembrances from family and friends; we remember this wonderful and modest person who had played a major pivotal role in the discoveries that led to what he would like to call the P(hotosynthetic) C(arbon) R(eduction) cycle, known to many as the Calvin Cycle, the Calvin-Benson Cycle, or the Calvin-Benson-Bassham Cycle. Based on a personal request by Bassham himself to one of us (Govindjee), we refrain from including his name in the cycle-in recognition of his many students and associates he would have liked to honor. PMID:26582593

  5. William James, Gustav Fechner, and Early Psychophysics

    PubMed Central

    Hawkins, Stephanie L.

    2011-01-01

    American psychologist and philosopher William James devoted the entirety of his career to exploring the nature of volition, as expressed by such phenomena as will, attention, and belief. As part of that endeavor, James’s unorthodox scientific pursuits, from his experiments with nitrous oxide and hallucinogenic drugs to his investigation of spiritualist mediums, represent his attempt to address the “hard problems” of consciousness for which his training in brain physiology and experimental psychology could not entirely account. As a student, James’s reading in chemistry and physics had sparked his interest in the concepts of energy and force, terms that he later deployed in his writing about consciousness and in his arguments against philosophical monism and scientific materialism, as he developed his “radically empiricist” ideas privileging discontinuity and plurality. Despite James’s long campaign against scientific materialism, he was, however, convinced of the existence of a naturalistic explanation for the more “wayward and fitful” aspects of mind, including transcendent experiences associated with hysteria, genius, and religious ecstasy. In this paper, I examine aspects of James’s thought that are still important for contemporary debates in psychology and neuroscience: his “transmission theory” of consciousness, his ideas on the “knowing of things together,” and, finally, the related concept of “the compounding of consciousness,” which postulates the theoretical possibility for individual entities within a conscious system of thought to “know” the thoughts of others within the system. Taken together, these ideas suggest that James, in spite of, or perhaps because of, his forays into metaphysics, was working toward a naturalistic understanding of consciousness, what I will term a “distributive model,” based on his understanding of consciousness as an “awareness” that interacts dynamically within, and in relation to

  6. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  7. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Mock-up of Manned Space Laboratory. 'Two Langley engineers test an experimental air lock between an arriving spacecraft and a space station portal in January 1964.' : Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 299.

  8. Astronaut James A. McDivitt has blood pressure checked during preflight exam.

    NASA Technical Reports Server (NTRS)

    1965-01-01

    S65-19524 (1 June 1965) --- Dr. Charles A. Berry, Chief of Center Medical Programs, Manned Spacecraft Center (MSC), Houston, prepares to check the blood pressure of astronaut James A. McDivitt, command pilot for the Gemini-Titan 4 space flight. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, where he and Astronaut Edward H. White II, GT-4 pilot, underwent pre-flight physicals in preparation for the 4-day, 62 revolution space flight. The two astronauts were declared in top physical condition. In the background is Dr. Gordon Benson, NASA physician at Cape Kennedy.

  9. STS-90 Payload Specialist James Pawelczyk is suited up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Payload Specialist James Pawelczyk, Ph.D., stands ready for launch during suitup activities in the Operations and Checkout Building. Pawelczyk and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Pawelczyk is participating in this life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  10. NASA/BAE Systems SpaceWire Efforts

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments using Spacewire. NASA has developed intellectual property that implements Spacewire in Register Transfer Level VHDL for a Spacewire link and router. This design has been extensively verified using directed tests from the Spacewire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for some spaceflight qualified FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented in their 0.25 micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS driver/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed Spacewire transport layer. The need to provide a reliable transport mechanism for Spacewire has been identified by both NASA and ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach. The Transport layer needs to be implemented in hardware-to prevent bottlenecks.

  11. GISMO, an ELT in space: a giant (30-m) far-infrared and submillimeter space observatory

    NASA Astrophysics Data System (ADS)

    Hawarden, Timothy G.; Johnstone, Callum; Johnstone, Graeme

    2004-07-01

    We describe GISMO, a concept for a 30-m class achromatic diffractive Fesnel space telescope operating in the far-IR and submillimeter from ~20 μm to ~700 μm. The concept is based on the precepts of Hyde (1999). It involves two units, the Lens and Instrument spacecraft, 3 km apart in a halo orbit around the Earth-Sun L2 point. The primary lens, L1, is a 30.1-m, 32-zone f/100 Fresnel lens, fabricated from ultra-high molecular-weight polyethylene (UHMW-PE). It is 1.0 to 3.4 mm thick (the features are 2.4 mm high for a "design wavelength" of 1.2 mm) and made in 5 strips linked by fabric hinges. It is stowed for launch by folding and rolling. It is deployed warm, unrolled by pneumatic or mechanical means, unfolded by carbon-fiber struts with Shape Memory Alloy hinges and stiffened until cold by a peripheral inflatable ring. Re-oriented edgeways-on to the Sun behind a 5-layer sunshade, L1 will then cool by radiation to space, approaching ~10K after 200 - 300 days. The low equilibrium temperature occurs because the lens is very thin and has a huge view factor to space but a small one to the sunshade. The Instrument spacecraft resembles a smaller, colder (~4K) version of the James Webb Space Telescope and shares features of a concept for the SAFIR mission. A near-field Ritchey-Chretien telescope with a 3-segment off-axis 6m x 3m primary acts as field lens, re-imaging L1 on a 30-cm f/1 Fresnel Corrector lens of equal and opposite dispersion, producing an achromatic beam which is directed to a focal plane equipped with imaging and spectroscopic instruments. The "design wavelength" of the telescope is 1.2 mm and it is employed at its second and higher harmonics. The shortest wavelength, ~20μm, is set by the transmission properties of the lens material (illustrated here) and determines the design tolerances of the optical system. The overall mass is estimated at ~5 tonnes and the stowed length around 14 m. Technical challenges and areas of uncertainty for the design concept

  12. The Impact of Traffic Prioritization on Deep Space Network Mission Traffic

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Segui, John; Gao, Jay; Clare, Loren; Abraham, Douglas

    2011-01-01

    A select number of missions supported by NASA's Deep Space Network (DSN) are demanding very high data rates. For example, the Kepler Mission was launched March 7, 2009 and at that time required the highest data rate of any NASA mission, with maximum rates of 4.33 Mb/s being provided via Ka band downlinks. The James Webb Space Telescope will require a maximum 28 Mb/s science downlink data rate also using Ka band links; as of this writing the launch is scheduled for a June 2014 launch. The Lunar Reconnaissance Orbiter, launched June 18, 2009, has demonstrated data rates at 100 Mb/s at lunar-Earth distances using NASA's Near Earth Network (NEN) and K-band. As further advances are made in high data rate space telecommunications, particularly with emerging optical systems, it is expected that large surges in demand on the supporting ground systems will ensue. A performance analysis of the impact of high variance in demand has been conducted using our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) simulation tool. A comparison is made regarding the incorporation of Quality of Service (QoS) mechanisms and the resulting ground-to-ground Wide Area Network (WAN) bandwidth necessary to meet latency requirements across different user missions. It is shown that substantial reduction in WAN bandwidth may be realized through QoS techniques when low data rate users with low-latency needs are mixed with high data rate users having delay-tolerant traffic.

  13. FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE

    SciTech Connect

    Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent; Choquet, Élodie; Chen, Christine; Golimowski, David A.; Brendan Hagan, J.; Moerchen, Margaret; N'Diaye, Mamadou; Wolff, Schuyler; Debes, John; Hines, Dean C.; Mittal, Tushar; Rajan, Abhijith; Schneider, Glenn

    2014-05-10

    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.

  14. Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Webb Consolidated Independent School District in Bruni, TX - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at the Webb Consolidated Independent School District (Webb CISD) in Bruni, TX. The main objective of the project was to evaluate the effect...

  15. Astronaut James van Hoften working with Syncom IV-3 satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James D. van Hoften gives a shove to the previously troubled Syncom IV-3 communications satellite. Dr. van Hoften stands on a foot restraint/extension to the remote manipulator system (RMS) arm.

  16. NCGE Special Award Presented to James A. Michener.

    ERIC Educational Resources Information Center

    Boehm, Richard G.; de Souza, Anthony R.

    1985-01-01

    In 1984 the National Council for Geographic Education presented James Michener with a special award for his "Outstanding Contributions to Geographic Education through the American Novel." Michener's acceptance speech is presented. (RM)

  17. 5. Historic American Buildings Survey James Rainey, Photographer May 16, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey James Rainey, Photographer May 16, 1936 LIVING? (MUSIC) ROOM FIREPLACE (LOOKING NORTH? SOUTH) - Thaddeus Burr Homestead, 491 Old Post Road, Fairfield, Fairfield County, CT

  18. 4. Historic American Buildings Survey James C. Massey, Photographer 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey James C. Massey, Photographer 1964 MAIN (SOUTH) ENTRANCE (4x5' b&w film copy neg. from 35mm slide) - Albert F. Madlener House, 4 West Burton Place, Chicago, Cook County, IL

  19. 5. Historic American Buildings Survey James C. Massey, Photographer 1964 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey James C. Massey, Photographer 1964 MAIN (SOUTH) ENTRANCE DETAIL (4x5' b&w film copy neg. from 35mm slide) - Albert F. Madlener House, 4 West Burton Place, Chicago, Cook County, IL

  20. Astronaut James Newman with latch hook for tether device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, shows off a latch hook for a tether device used during the STS-51 extravehicular activity (EVA) on September 16, 1993. Newman, on Discovery's middeck, appears surrounded by sleep restraints.

  1. Plan of the entresol (third floor) of James H. Windrim ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plan of the entresol (third floor) of James H. Windrim and George Summers’s competition design for the New Masonic Temple, Philadelphia, 1867 - Masonic Temple, 1 North Broad Street, Philadelphia, Philadelphia County, PA

  2. Young James Madison: His Character and Civic Values.

    ERIC Educational Resources Information Center

    Bennett, William J.

    1987-01-01

    Examines the life of James Madison, Founding Father and "theoretic statesman." Focuses specifically on Madison's education and character, his friendship with Thomas Jefferson, and his civic legacy: a selfless devotion to republican government and union. (JDH)

  3. 82. REGENTS' ROOM WEST WALL, WITH ORIGINAL CHAIRS BY JAMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. REGENTS' ROOM WEST WALL, WITH ORIGINAL CHAIRS BY JAMES RENWICK, JR. MANTELPIECE AND MIRROR ARE NOT ORIGINAL TO THE ROOM. - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. Astronaut James D. van Hoften examines student experiment on Challenger

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut James D. van Hoften, 41-C mission specialist, holds an aluminum box full of honeybees. The experiment in earth orbit is duplicated with another colony of the bees on earth. This is an experiment submitted by student researchers.

  5. 6. Watchman Robert 'Jerry' Jones at Camp Dyer. Photographer James ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Watchman Robert 'Jerry' Jones at Camp Dyer. Photographer James Dix Schuyler, 1903. Source: Schuyler report. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 5. Historic American Buildings Survey James Rainey, Photographer May 10, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey James Rainey, Photographer May 10, 1936 GRINDING PLATFORM, VIEW OF INTERIOR LOOKING WEST - Old Town Mill, Mill Brook, near Mill Street, New London, New London County, CT

  7. 2. Historic American Buildings Survey, James I. Campbell, Photographer February ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, James I. Campbell, Photographer February 20, 1934 FRONT PORCH FROM EAST. - Nichols-Rice-Cherry House, Sam Houston Park (moved from San Jacinto Street), Houston, Harris County, TX

  8. 3. Historic American Buildings Survey, James I. Campbell, Photographer February ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, James I. Campbell, Photographer February 20, 1934 SOUTH ELEVATION (FRONT). - Nichols-Rice-Cherry House, Sam Houston Park (moved from San Jacinto Street), Houston, Harris County, TX

  9. 5. Historic American Buildings Survey, James I. Campbell, Photographer February ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey, James I. Campbell, Photographer February 20, 1934 CLOSE-UP OF FRONT ENTRANCE. - Nichols-Rice-Cherry House, Sam Houston Park (moved from San Jacinto Street), Houston, Harris County, TX

  10. 4. Historic American Buildings Survey, James I. Campbell, Photographer February ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey, James I. Campbell, Photographer February 20, 1934 DETAIL OF FRONT ENTRANCE. - Nichols-Rice-Cherry House, Sam Houston Park (moved from San Jacinto Street), Houston, Harris County, TX

  11. 1. Historic American Buildings Survey, James I. Campbell, Photographer February ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, James I. Campbell, Photographer February 20, 1934 VIEW FROM SOUTHEAST. - Nichols-Rice-Cherry House, Sam Houston Park (moved from San Jacinto Street), Houston, Harris County, TX

  12. 5. William Beardsley standing along canal section. Photographer James Dix ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. William Beardsley standing along canal section. Photographer James Dix Schuyler, 1903. Source: Schuyler report. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. 1. Historic American Buildings Survey James O. Milmoe, Photographer Winter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey James O. Milmoe, Photographer Winter 1979 GENERAL VIEW OF PLYMOUTH PLACE WITH CAPTIOL IN BACKGROUND - Plymouth Place, 1560-1572 Broadway, Denver, Denver County, CO

  14. James J. Jenkins (1923-2012).

    PubMed

    Foss, Donald J; Overmier, J Bruce

    2013-01-01

    Presents an obituary for James J. Jenkins. Jim Jenkins, fondly known as "J-cubed," was born on July 29, 1923, in St. Louis, Missouri. He attended William Jewell College but enlisted in the Army in 1942. He received a bachelor's degree in physics from the University of Chicago in 1944 as part of his training as a meteorologist. After serving in the South Pacific, he returned to William Jewell College, obtaining a bachelor's degree in psychology in 1947. Jenkins received a master's degree (1948) and a doctorate (1950) from the University of Minnesota under a giant in industrial psychology, Donald G. Paterson. He joined the Minnesota Psychology Department faculty upon graduation (turning down an offer from General Motors at triple the salary). Jenkins helped lead psychology's "cognitive revolution" from the second half of the 20th century into the present one. His work advanced multiple research areas: learning and memory, sentence processing, aphasia, speech perception, and perceptual organization. His remarkable combination of abilities led to nearly 200 scholarly publications and 500 conference and meeting presentations; multiple leadership positions, teaching awards, and professional accolades; and intense devotion from generations of students. PMID:23895612

  15. James Moores Ball: Ophthalmologist, medical historian, bibliophile.

    PubMed

    Feibel, Robert M

    2016-08-01

    James Moores Ball (1862-1929) was an ophthalmologist in St. Louis, Missouri, who excelled as a medical historian and collector of rare and historic books about the history of anatomy. During his lifetime, he was best known as the author of a comprehensive, authoritative, and popular textbook titled Modern Ophthalmology First published in 1904, there were five further editions. Ball was very interested in the history of anatomy and wrote two books on this subject, the first being a biography of Andreas Vesalius, one of the earliest in English, and the second a history of the resurrection men or grave robbers who sold corpses to professors of anatomy and surgery for teaching purposes. His legacy today is the 470 volumes of his personal library, which are now in the Archives and Rare Books department of the Becker Medical Library of the Washington University School of Medicine. These texts are one of their major collections, concentrating on the history of anatomy, beginning with a first edition of Vesalius's De Humani Corporis Fabrica and holding many important and beautiful landmark volumes of anatomical atlases. PMID:27316691

  16. James L. Outtz (1947-2016).

    PubMed

    Zedeck, Sheldon; Cascio, Wayne

    2016-09-01

    This article memorializes James L. Outtz, who passed away March 26, 2016. For more than 40 years, Outtz was a leading researcher, practitioner, and consultant in the areas of hiring and promotion, employment discrimination, selection-test design and implementation, and legal issues pertaining to employment. He worked tirelessly to enhance opportunities for workforce diversity through greater inclusion of minorities and women. Another important focus was on strategies to minimize adverse impact through alternative approaches to selection. His work significantly influenced best practices in equal employment opportunity, and he was a highly sought-after legal-compliance consultant and testifying expert, advisor to courts, and participant on consent decrees with experts and lawyers from all sides of an issue. His efforts involved some of the most prominent corporations in America and most visible public-sector jurisdictions. In his final 2 years, he became president-elect of the Society for Industrial and Organizational Psychology (SIOP). (PsycINFO Database Record PMID:27571534

  17. A Conversation with James J. Morgan

    NASA Astrophysics Data System (ADS)

    Morgan, James J.; Newman, Dianne K.

    2015-05-01

    In conversation with professor Dianne Newman, Caltech geobiologist, James "Jim" J. Morgan recalls his early days in Ireland and New York City, education in parochial and public schools, and introduction to science in Cardinal Hayes High School, Bronx. In 1950, Jim entered Manhattan College, where he elected study of civil engineering, in particular water quality. Donald O'Connor motivated Jim's future study of O2 in rivers at Michigan, where in his MS work he learned to model O2 dynamics of rivers. As an engineering instructor at Illinois, Jim worked on rivers polluted by synthetic detergents. He chose to focus on chemical studies, seeing it as crucial for the environment. Jim enrolled for PhD studies with Werner Stumm at Harvard, who mentored his research in chemistry of particle coagulation and oxidation processes of Mn(II) and (IV). In succeeding decades, until retirement in 2000, Jim's teaching and research centered on aquatic chemistry; major themes comprised rates of abiotic manganese oxidation on particle surfaces and flocculation of natural water particles, and chemical speciation proved the key.

  18. James F. T. Bugental (1915-2008).

    PubMed

    Schneider, Kirk J; Greening, Tom

    2009-01-01

    James F. T. Bugental died peacefully at age 92 at his Petaluma, California, home on September 18, 2008. Jim was a leading psychotherapist and a founding father, with Abraham Maslow and others, of humanistic psychology, or the "third force" (in contrast to psychoanalysis and behaviorism). Jim was also the creator, along with Rollo May, of existential-humanistic psychotherapy. Jim was born in Fort Wayne, Indiana, on Christmas Day in 1915. Jim earned his doctorate in 1948 from Ohio State University, where he was influenced by Victor Raimy and George Kelly. After a brief time on the University of California, Los Angeles (UCLA) faculty in psychology, Jim resigned in 1953 to found the first group practice of psychotherapy, Psychological Service Associates, with Alvin Lasko. With Abraham Maslow and others, Jim was a cofounder of the Journal of Humanistic Psychology (JHP) and the Association for Humanistic Psychology in 1961. Jim also wrote many books on the topic of psychotherapy during his lifetime. Jim was a great and bold spirit--his many writings and teachings are cherished today widely, and the field of psychology is much richer for his efforts. PMID:19203148

  19. Obituary: James Alfred Van Allen, 1914-2006

    NASA Astrophysics Data System (ADS)

    Ludwig, George H.; McIlwain, Carl Edwin

    2006-12-01

    James Alfred Van Allen, world-renowned space scientist, died 9 August 2006 at the age of ninety-one. He succumbed to heart failure after a ten-week period of declining health. Van Allen served for his entire sixty-seven-year professional career as an amazingly productive researcher, space science spokesman, inspired teacher, and valued colleague. The realization by him and his associates that charged particles are trapped by the Earth's magnetic field began a whole new field of research, magnetospheric physics. Following that initial discovery, he and his associates quickly extended their observations, first to the inner planets, and then to the rest of the planets and beyond. During his tenure at Iowa, he and his group flew instruments on more than sixty successful Earth satellites and planetary spacecraft, including the first missions to the planets Venus, Mars, Jupiter, Saturn, Uranus, and Neptune. Van Allen's lifetime publication list numbers more than 275, of which many are widely-cited, seminal papers. He was the sole author of more than 125 of those papers. Beyond the research laboratory, Van Allen worked energetically throughout his career in establishing space research as a new branch of human inquiry. He was among the most sought-after as a committee member and adviser, working at the highest levels of government, including the White House and Congress, and at all levels of the national and international research establishments. Many presentations in the non-scientific arena helped to bring the exciting discoveries and challenges of space research to the attention of the general public. James Van Allen (Van to his many friends and colleagues) was born on 7 September 1914 on a small farm near Mount Pleasant, Iowa, the second of four sons of Alfred Morris Van Allen and Alma Olney Van Allen. After high school in Mount Pleasant, he entered Iowa Wesleyan College, majoring in physics and graduating summa cum laude. While there, he was introduced to geophysics

  20. [James Parkinson (1755-1824) revisited].

    PubMed

    Poirier, Jacques

    2013-03-01

    The name of Parkinson is universally famous because of the eponymous disease. But as a man, James Parkinson (1755-1824), is poorly known. He was born, married and passed away in his St-Leonard parish in Shoreditch (London). After having studied Latin, Greek, natural philosophy, and stenography (shorthand), which he considered as the basic tools of any doctor, he studied for six months at the London Hospital Medical College, and served his apprenticeship as an apothecary-surgeon with his father for six years. Then he was qualified as a surgeon in 1784 at the age of 29 years. His activity has been deployed in three areas: 1) medicine, 2) political activism and social reformism, 3) paleontology and oryctology. As a physician, Parkinson has published several books, the most important concerned paralysis agitans (future Parkinson's disease), gout, complications of lightning (future Lichtenberg figures and keraunoparalysis), acute appendicitis (with his son John Parkinson) and hernias (diagnosis, development, dangers of hernia ruptures, and design of a simple truss). Its ideological and political commitment was manifested by joining two secret societies and publishing numerous pamphlets, many of which are signed by the pseudonym Old Hubert; he campaigned for a better representation of the people in Parliament, for greater social justice, for the defense and recognition of the rights of the poor, the insane, the children, and against children abuse. He published a small compendium of chemistry, he was one of the thirteen members who create the British Geological Society and is recognized as one of the founders of paleontology; as was Georges Cuvier (1769-1832), he remained a strong supporter of creationism and catastrophism. Distinguished oryctologist, he gave his name to several fossils, mainly molluscs. PMID:23508322