Sample records for japan trench subduction

  1. Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.

    2015-12-01

    Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.

  2. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2017-07-01

    compressed above the upwelling flow. The reason for this is that the strong lateral mantle flow originating from the upwelling flow generates resistance drag force at the base of the overriding plates. This situation may apply to a case of East Asia, under which the typical morphology of sub-horizontal slabs can be seen by seismic tomography. The strong lateral velocity observed in the shallower mantle wedge in the present numerical simulation may account for both the compressional subduction tectonics and back arc compression in the Japan-Kuril-Kamchatka, Aleutian, and South Chile trenches, as well as for weak plate-slab coupling, strong seismic coupling, and the possibility of great earthquakes along these trenches.

  3. Heterogeneous structure of the incoming plate in the Japan Trench

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Fujie, G.; Yamaguchi, A.; Kodaira, S.; Miura, S.

    2017-12-01

    We have conducted seismic surveys in around the Japan Trench subduction zone, northeastern Japan, to investigate the structural features of the incoming Pacific plate and the frontal prism. Thickness of the hemiplegic sediments on the deposited on the incoming Pacific plate shows the variation along trench axis between 200 and 600 ms two-way travel time (TWT). This is remarkably thinner than other subduction zones with megathrust earthquakes like Sumatra subduction zone. Off Miyagi, central part of the Japan Trench which is the main ruptured region of 2011 Tohoku earthquake, has 200 - 300 ms TWT of the incoming sediments thickness. Off Iwate, northern part of the Japan Trench, has thicker incoming sediments 500 ms TWT, and Off Fukushima, southern part of the Japan Trench, has 300 - 400 ms TWT. We found at least three areas with anomalously thin sediments; Area I: 38N 145N, Area II: 39.5N 144.5E, Area III: 39N 144.5N. At the Area I, located on the outer rise off Miyagi, the receiver function analysis using Ocean Bottom Seismograph data revealed the existence of PS conversion surfaces below the interpreted basement on the seismic sections. This implies that the interface between sediments and the igneous basement is located below the interpreted basement reflections. Previous studies suggested the existence of the petit spots in this Area I. Area II shows apparently very thin sediments near the trench axis on seismic profiles, where the petit spot volcanism was observed. Shallow sediment sampling conducted in this area indicates no major surface erosion. These observations suggest that the petit spot volcanism, like sill intrusion, masked the original deeper basement reflections and caused the apparent thin sediments on seismic profiles. Area III also has thin sediments and rough basement topography, which has possibly been caused by another petit spot activity. Petit spot area with apparent very thin sediments in the trench axis (Area II) is located next to the

  4. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  5. The Japan Trench and its juncture with the Kuril Trench: cruise results of the Kaiko project, Leg 3

    USGS Publications Warehouse

    Cadet, J.-P.; Kobayashi, K.; Aubouin, J.; Boulegue, J.; Deplus, C.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V "Jean Charcot". The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65?? oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic

  6. Seismicity and state of stress near the Japan Trench axis off Miyagi, northeast Japan, after the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Nakamura, Y.; No, T.; Fujie, G.; Hino, R.; Shinohara, M.

    2013-12-01

    The 2011 Tohoku-Oki earthquake ruptured roughly 200 km wide and 500 km long megathrust along the Japan Trench. The rupture propagated to the trench axis with a maximum slip about 50 m near the trench axis. As a consequence of this large near-trench slip, earthquakes have been activated near the axis of the Japan Trench off Miyagi, northeast Japan. We have conducted ocean bottom seismograph (OBS) experiments in the Japan Trench axis area, surrounding area of the IODP JFAST drilling site, since the occurrence of the 2011 Tohoku-Oki earthquake. Although conventionally used OBS cannot be deployed at seafloor deeper than 6000 m water depth, we used newly developed ultra-deep OBS using ceramic sphere, which can be deployed at a depth of 9000 m, for the observations in the trench axis. The ultra-deep OBS has almost equivalent dimensions and weight with the conventionally used OBS, thus we can handle it in the same manner with the conventionally OBS without any special operation. As a result of a series of the OBS observations, we obtained accurate hypocenter locations and focal mechanisms in both seaward and landward of the trench axis. Earthquakes near the trench axis area were located within the overriding and incoming/subducting plates with very few on the plate interface below the inner trench slope landward of the trench axis. Most of the earthquakes both in the overriding and incoming/subducting plates having normal or strike-slip faulting focal mechanisms with T-axis normal to the trench axis. This indicates that tensional stress is dominant in the trench axis area. However, most seaward part of the seismicity within the overriding plate is characterized by a localized cluster of trench-normal compressional earthquakes, which may relate to spatial variation of the frictional behavior of the shallowest part of the megathrust. On the other hand, trench-normal extensional earthquakes in the incoming/subducting Pacific plate were located at depths shallower than about

  7. Seismic velocity structure of the incoming Pacific Plate subducting into the central part of the Japan Trench revealed by traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.

    2016-12-01

    Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.

  8. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro; Horiuchi, Daishi; Fujioka, Yukari; Okada, Chiaki

    2017-06-01

    The Ryukyu (Nansei-Shoto) island arc-trench system, southwest of Japan, is formed by the subduction of the Philippine Sea (PHS) plate. Among the subduction zones surrounding the Japan Islands, the Ryukyu arc-trench system is unique in that its backarc basin, the Okinawa Trough, is the area with current extensively active rifting. The length of the trench is around 1400 km, and the geological and geophysical characteristics vary significantly along the trench axis. We conducted multichannel seismic (MCS) reflection and wide-angle seismic surveys to elucidate the along-arc variation in seismic structures from the island arc to the trench regions, shooting seven seismic lines across the arc-trench system and two along-arc lines in the island arc and the forearc areas. The obtained P-wave velocity models of the Ryukyu arc crust were found to be heterogeneous (depending on the seismic lines), but they basically consist of upper, middle, and lower crusts, indicating a typical island arc structure. Beneath the bathymetric depressions cutting the island arc—for example, the Kerama Gap and the Miyako Saddle—the MCS record shows many across-arc normal faults, which indicates the presence of an extensional regime along the island arc. In the areas from the forearc to the trench, the subduction of the characteristic seafloor features on the PHS plate affects seismic structures; the subducted bathymetric high of the Amami Plateau is detected in the northern trench: the Luzon-Okinawa fracture zone beneath the middle and southern trenches. There are low-velocity (< 4.5 km/s) wedges along the forearc areas, except for off Miyako-jima Island. The characteristic high gravity anomaly at the forearc off Miyako-jima Island is caused not by a bathymetric high of a large-scale accretionary wedge but by shallower materials with a high P-wave velocity of 4.5 km/s.[Figure not available: see fulltext.

  9. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  10. Geologic Evidence of Tsunamigenic Earthquakes from the Southern Part of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Pilarczyk, J.; Sawai, Y.; Namegaya, Y.; Tamura, T.; Tanigawa, K.; Matsumoto, D.; Shinozaki, T.; Fujiwara, O.; Shishikura, M.; Shimada, Y.; Dura, T.; Horton, B.

    2017-12-01

    The northern and southern parts of the Japan Trench have generated earthquakes with moment magnitudes up to 8.0. Similarly, the middle part of the Japan Trench has historically generated tsunamigenic-earthquakes up to M 7.0. However, in 2011, the Tohoku-oki (M 9.0) event ruptured 500 km along the middle part of the Japan Trench and generated the largest known tsunami to have originated from this part of the subduction zone. Seismic models indicate that the Tohoku-oki earthquake may have transferred stress southwards down the fault to the potentially locked southern part of the Japan Trench. It is unknown if this transfer of stress could produce an earthquake and tsunami that would impact the metropolitan areas of east-central Japan in the near future that may be comparable in magnitude to the Tohoku-oki event. Here, we reconstruct the history of individual great earthquakes and accompanying tsunamis using geological records from the coastal zone adjacent to the southern part of the Japan Trench, providing an assessment of the seismic hazard for metropolitan areas in east-central Japan. In the Kujukuri strand plain, we found three anomalous marine sand layers intercalated within muddy peat, which can be traced 3.8 km inland and 50 km along the present Kujukuri coastline. Each sand layer has features consistent with tsunami deposits, such as a distinct erosional base, rip-up clasts, normal grading, and a mud drape. Preliminary radiocarbon dating suggests three tsunamis inundated the Kujukuri coastline over the last millennium.

  11. The Relationships of Upper Plate Ridge-Trench-Trench and Ridge-Trench-Transform Triple Junction Evolution to Arc Lengthening, Subduction Zone initiation and Ophiolitic Forearc Obduction

    NASA Astrophysics Data System (ADS)

    Casey, J.; Dewey, J. F.

    2013-12-01

    The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overriding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallel split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in an obduction-ready settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages

  12. Trench Advance By the Subduction of Buoyant Features - Application to the Izu-Bonin-Marianas Arc

    NASA Astrophysics Data System (ADS)

    Goes, S. D. B.; Fourel, L.; Morra, G.

    2014-12-01

    Most subduction trenches retreat, not only today but throughout the Cenozoic. However, a few trenches clearly advance during part of the evolution, including Izu-Bonin Marianas (IBM) and Kermadec. Trench retreat is well understood as a basic consequence of slab pull, but it is debated what causes trench advance. The IBM trench underwent a complex evolution: right after its initiation, it rotated clockwise, leading to very fast retreat in the north and slow retreat in the south. But since 10-15 Ma, IBM trench motions have switched to advance at the southern end, and since 5 Ma also the northern end is advancing. Based on 2-D subduction models, it has been proposed proposed that the change in age of the subducting plate at the IBM trench (from 40-70 m.y. at the initiation of the trench 45 m.y. ago to 100-140 m.y. lithosphere subducting at the trench today) and its effect on plate strength could explain the transition from trench retreat to trench advance, and that the age gradient (younger in the north and older in the south) could explain the rotation of the trench. However, with new 3-D coupled fluid-solid subduction model where we can include such lateral age gradients, we find that this does not yield the observed behaviour. Instead, we propose an alternative mechanism, involving the subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench and show that it can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  13. Depth-varying azimuthal anisotropy in the Tohoku subduction channel

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We determine a detailed 3-D model of azimuthal anisotropy tomography of the Tohoku subduction zone from the Japan Trench outer-rise to the back-arc near the Japan Sea coast, using a large number of high-quality P and S wave arrival-time data of local earthquakes recorded by the dense seismic network on the Japan Islands. Depth-varying seismic azimuthal anisotropy is revealed in the Tohoku subduction channel. The shallow portion of the Tohoku megathrust zone (<30 km depth) generally exhibits trench-normal fast-velocity directions (FVDs) except for the source area of the 2011 Tohoku-oki earthquake (Mw 9.0) where the FVD is nearly trench-parallel, whereas the deeper portion of the megathrust zone (at depths of ∼30-50 km) mainly exhibits trench-parallel FVDs. Trench-normal FVDs are revealed in the mantle wedge beneath the volcanic front and the back-arc. The Pacific plate mainly exhibits trench-parallel FVDs, except for the top portion of the subducting Pacific slab where visible trench-normal FVDs are revealed. A qualitative tectonic model is proposed to interpret such anisotropic features, suggesting transposition of earlier fabrics in the oceanic lithosphere into subduction-induced new structures in the subduction channel.

  14. Radial and Azimuthal Anisotropy Tomography of the NE Japan Subduction Zone: Implications for the Pacific Slab and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko

    2018-05-01

    We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.

  15. Subduction dynamics: From the trench to the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Kincaid, Chris

    1995-07-01

    Subduction occurs along convergent plate boundaries where one of the colliding lithospheric plates descends into the mantle. Subduction zones are recognized where plates converge at ˜2-15 cm/yr, although well developed trenches and volcanic arcs (e.g. the line of active volcanoes lying parallel to most ocean trenches, such as the Aleutian Islands in the North Pacific) occur when convergence rates are higher, 4-10 cm/yr. This report is meant to provide a brief review on the general topic of subduction dynamics. A recent spin on subduction studies is the growing realization that the need to understand this global Earth process may be argued not only on purely scientific grounds, but also in terms of societal relevance. While subducting slabs of oceanic lithosphere clearly provide the dominant driving force for mantle dynamics and plate tectonics, over half of the Earth's present 40,000 km of subduction zones are associated with continental margins where a large and rapidly increasing percentage of the Earth's population resides. Subductioninduced hazards along active continental margins include those associated with volcanic hazards (Blong, 1984; Tilling, 1989) such as lava flows, pyroclastic flows and ash fallout and tectonic processes, such as faulting, tsunamis and earthquakes. With regards to earthquake hazards, all of the great (magnitude >9) earthquakes in recorded history have occurred at subduction zones, with 50% of all energy released since 1900 being in four events (1964-Alaska; 1960-Chile; 1957- Aleutians; 1952-Kamchatka). Subduction zone hazards have significant impact on long time scales, such as contributions to global climate change (Robock, 1991; Simarski, 1992; Johnson, 1993; Bluth et al., 1993) and short time scales such as airline safety (Casadevall, 1992). Moreover, accretionary wedges are important in terms of resource potential and trenches have occasionally been suggested as nuclear waste disposal sites.

  16. Formation of Island Arc-Trench System due to Plate Subduction on the Basis of Elastic Dislocation Theory

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Matsu'ura, M.

    2015-12-01

    The most conspicuous cumulative deformation in subduction zones is the formation of island arc-trench system. A pair of anomalies in topography and free-air gravity, high in the arc and low around the trench, is observed without exceptions all over the world. Since the 1960s, elastic dislocation theory has been widely used to interpret coseismic crustal deformation. For the modeling of longer-term crustal deformation, it is necessary to consider viscoelastic properties of the asthenosphere. By simply applying elastic-viscoelastic dislocation theory to plate subduction, Matsu'ura and Sato (1989, GJI) have shown that some crustal deformation remains after the completion of one earthquake cycle, which means that crustal deformation accumulates with time in a long term due to plate subduction. In fact, by constructing a plate interface model in and around Japan, Hashimoto, Fukui and Matsu'ura (2004, PAGEOPH) have demonstrated that the computed vertical displacements due to steady plate subduction well explain the observed free-air gravity anomaly pattern. Recently, we got a lucid explanation of crustal deformation due to plate subduction. In subduction zones, oceanic plates bend and descend into the mantle. Because the bending of oceanic plates is usually not spontaneous, there exists kinematic interaction between the oceanic and overriding plates, which causes cumulative deformation of the overriding plate. This may be understood based on the law of action and reaction: one is bending of an oceanic plate and the other is deformation of the overriding plate. As a special case, it is useful to consider plate subduction along a part of true circle. In this case, crustal deformation due to steady subduction is solely caused by the effect of gravity, because dislocation along a circle does not cause any intrinsic internal deformation. When an oceanic plate is descending along an arcuate plate interface from the right-hand side, according to dislocation theory, the oceanic

  17. Trench-parallel variations in Pacific and Indo-Australian crustal velocity structure due to Louisville Ridge seamount subduction

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Knight, T. P.; Peirce, C.; Watts, A. B.; Grevemeyer, I.; Paulatto, M.; Bassett, D.; Hunter, J.; Kalnins, L. M.

    2012-12-01

    Variations in trench and forearc morphology, and lithospheric velocity structure are observed where the Louisville Ridge seamount chain subducts at the Tonga-Kermadec Trench. Subduction of these seamounts has affected arc and back-arc processes along the trench for the last 5 Myr. High subduction rates (80 mm/yr in the north, 55 mm/yr in the south), a fast southwards migrating collision zone (~180 km/myr), and the obliquity of the subducting plate and the seamount chain to the trench, make this an ideal location to study the effects of seamount subduction on lithospheric structure. The "before and after" subduction regions have been targeted by several large-scale geophysical projects in recent years; the most recent being the R/V Sonne cruise SO215 in 2011. The crust and upper mantle velocity structure observed in profiles along strike of the seamount chain and perpendicular to the trench from this study, are compared to a similar profile from SO195, recorded ~100 km to the north. The affects of the passage of the seamounts through the subduction system are indicated by velocity anomalies in the crust and mantle of the overriding plate. Preliminary results indicate that in the present collision zone, mantle velocities (Pn) are reduced by ~5%. Around 100 km to the north, where seamounts are inferred to have subducted ~1 Myr ago, a reduction of 7% in mantle P-wave velocity is observed. The width of the trench slope and elevation of the forearc also vary along strike. At the collision zone a >100 km wide collapse region of kilometre-scale block faults comprise the trench slope, while the forearc is elevated. The elevated forearc has a 5 km think upper crust with a Vp of 2.5-5.5 km/s and the collapse zone also has upper crustal velocities as low as 2.5 km/s. To the east in the Pacific Plate, lower P-wave velocities are also observed and attributed to serpentinization due to deep fracturing in the outer trench high. Large bending faults permeate the crust and the

  18. Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches

    NASA Astrophysics Data System (ADS)

    Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.

    2014-12-01

    There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than

  19. Structural changes and shallow geological structure of the isolated basins in the forearc slope of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Misawa, A.; Arai, K.; Fujiwara, T.; Sato, M.; Shin'ichiro, Y.; Hirata, K.; Kanamatsu, T.

    2017-12-01

    On the forearc slope of the Japan Trench is a typical subsidence region associated with the subduction erosion in the Japan Trench. Arai et al. (2014) reported the existence of the isolated basins with widths of up to several tens of kilometers using the seismic profiles that acquired before the 2011 Tohoku earthquake (Mw 9.0) in the forearc slope. The isolated basin probably formed due to subsidence accompanying the regional activity of normal fault systems in the forearc slope. Arai et al. (2014) suggested that the geological structures of the forearc slope along the Japan Trench are typical of those resulting from subduction erosion and proposed that the episodic subsidence accompanied by normal faulting is the most recent deformation. During the 2011 large earthquake, seafloor on the landward slope of the Japan Trench moved 50 m east-southeast toward trench (Fujiwara et al., 2011). In addition, aftershock activity after the 2011 large earthquake have predominated in the activity of the normal fault system. Therefore, there have a possibility that new isolated basin is formed after the 2011 large earthquake in the forearc slope of the Japan Trench. In order to capture the structural change in the isolated basins, we compared the seismic profiles acquired before (Multi-Channel Seismic (MCS) data acquired with KR07-05 cruise) and after (Single-Channel Seismic (SCS) data acquired with NT15-07 cruise) the 2011 large earthquake. However, the large-scale structural changes are not identified around the isolated basin. In order to capture the small-scale structural change in the shallow part of the isolated basins using high-resolution data, we make an attempt at the marine geological and geophysical survey in the offshore Tohoku region using R/V Shinsei-Maru of JAMSTEC (KS-17-8 cruise) in August 2017. In this cruise, we plan to carry out the following surveys; (1) swath bathymetric survey, (2) high-resolution parametric subbottom profiler (SBP) survey, (3) geomagnetic

  20. Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release.

    PubMed

    Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad C; Manea, Marina

    2017-12-04

    Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab.

  1. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  2. Constraints of subducted slab geometries on trench migration and subduction velocities: flat slabs and slab curtains in the mantle under Asia

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.

    2013-12-01

    The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab

  3. Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Kawakatsu, H.; Shiomi, K.

    2014-12-01

    Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013

  4. Fundamental structure model of island arcs and subducted plates in and around Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained

  5. Intra- and intertrench variations in flexural bending of the Manila, Mariana and global trenches: implications on plate weakening in controlling trench dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Jian; Zhou, Zhiyuan; Yang, Hongfeng; Zhan, Wenhuan

    2018-02-01

    We conducted detailed analyses of a global array of trenches, revealing systematic intra- and intertrench variations in plate bending characteristics. The intratrench variations of the Manila and Mariana Trenches were analysed in detail as end-member cases of the relatively young (16-36 Ma) and old (140-160 Ma) subducting plates, respectively. Meanwhile, the intertrench variability was investigated for a global array of additional trenches including the Philippine, Kuril, Japan, Izu-Bonin, Aleutian, Tonga-Kermadec, Middle America, Peru, Chile, Sumatra and Java Trenches. Results of the analysis show that the trench relief (W0) and width (X0) of all systems are controlled primarily by the faulting-reduced elastic thickness near the trench axis (Tem) and affected only slightly by the initial unfaulted thickness (TeM) of the incoming plate. The reduction in Te has caused significant deepening and narrowing of trench valleys. For the cases of relatively young or old plates, the plate age could be a dominant factor in controlling the trench bending shape, regardless the variations in axial loadings. Our calculations also show that the axial loading and stresses of old subducting plates can vary significantly along the trench axis. In contrast, the young subducting plates show much smaller values and variations in axial loading and stresses.

  6. Subduction erosion and implication for evolution model of the Yap trench: new evidence from the latest geophysical survey

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Dong, D.; Bai, Y.; Zhang, G.

    2017-12-01

    The subduction of oceanic plateau, including the ridge and seamount, with buoyant feature will lead to the occurrence of subduction erosion. Yap Trench is a unique structure related to the Caroline Ridge subduction, but with lower research degree. Previous studies lacked the investigation of crustal structure and subduction erosion model based on integrated geophysical data in Yap Trench. In 2015, Institute of Oceanology, Chinese Academy of Sciences acquired swath bathymetric, multi-channel seismic and gravity data by research vessel "Kexue" in the Yap Trench and its adjacent area, providing the chance to further explore this subduction system. For this research, we mainly used the latest data to analyze the topography and crustal structure in Yap subduction system, which is significant for the construction of subduction erosion model. We reveal that, (1) The mean value of arc-ward slope is 8° according with bathymetric slope features in erosive margins(>3°). The increasing trend to dip angles in arc-ward slope shows the control of subducting plate with different elevation from north to south; (2) The horst and graben structures and different scales of seamounts display the rough features in the subducting plate, facilitating the overlying Yap Arc erosion. In the front of the Yap Arc, collision scars identified on the bathymetric map indicates the seamount subducting; (3) The horst and graben structures, with thinner crust of 2-4 km thick, in subducting plate, possibly eroded the Yap Arc basement and made it thinner during subduction. The subducted seamounts with high topography underplated the Yap Arc, which uplifted and thickened the overlying plate crust. Therefore, it is suggested that. subduction erosion model is varied in Yap subduction sysytem which is affected by topography and crust structure of subducting plate. The two types of subduction erosion models in Yap Trench exhibit a good case to reveal the process and mode of plate subducting in subduction

  7. Slow slip near the trench at the Hikurangi subduction zone, New Zealand.

    PubMed

    Wallace, Laura M; Webb, Spahr C; Ito, Yoshihiro; Mochizuki, Kimihiro; Hino, Ryota; Henrys, Stuart; Schwartz, Susan Y; Sheehan, Anne F

    2016-05-06

    The range of fault slip behaviors near the trench at subduction plate boundaries is critical to know, as this is where the world's largest, most damaging tsunamis are generated. Our knowledge of these behaviors has remained largely incomplete, partially due to the challenging nature of crustal deformation measurements at offshore plate boundaries. Here we present detailed seafloor deformation observations made during an offshore slow-slip event (SSE) in September and October 2014, using a network of absolute pressure gauges deployed at the Hikurangi subduction margin offshore New Zealand. These data show the distribution of vertical seafloor deformation during the SSE and reveal direct evidence for SSEs occurring close to the trench (within 2 kilometers of the seafloor), where very low temperatures and pressures exist. Copyright © 2016, American Association for the Advancement of Science.

  8. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.

    PubMed

    Song, Teh-Ru Alex; Simons, Mark

    2003-08-01

    We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.

  9. Estimates of effective elastic thickness at subduction zones

    NASA Astrophysics Data System (ADS)

    Yang, An; Fu, Yongtao

    2018-06-01

    The effective elastic thickness (Te) is an important parameter that characterizes the long-term strength of the lithosphere. Estimates of Te at subduction zones have important tectonic and geodynamic implications, providing constraints for the strength of the oceanic lithosphere at a short-term scale. We estimated Te values in several subduction zones worldwide by using models including both surface and subsurface loads from the analysis of free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). Tests with synthetic gravity and bathymetry data show that this method is a reliable way to recover Te of oceanic lithosphere. Our results show that there is a noticeable reduction in the effective elastic thickness of the subducting plate from the outer rise to the trench axis for most studied subduction zones, suggesting plate weakening at the trench-outer rise of the subduction zones. These subduction zones have Te range of 6-60 km, corresponding to a wide range of isotherms from 200 to 800 °C. Different trenches show distinct patterns. The Caribbean, Kuril-Japan, Mariana and Tonga subduction zones show predominantly high Te. By contrast, the Middle America and Java subduction zones have a much lower Te. The Peru-Chile, Aleutian and Philippine subduction zones show considerable scatter. The large variation of the isotherm for different trenches does not show clear relationship with plate weakening at the outer rise.

  10. Coupling intensity and isostatic competition between subducting slab and overriding plate control trench motions and tectonics of the overriding plate

    NASA Astrophysics Data System (ADS)

    Wu, G.; Moresi, L. N.

    2017-12-01

    Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the

  11. Physical properties and Consolidation behavior of sediments from the N. Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Lauer, R. M.; Ikari, M.; Kitajima, H.; Saffer, D. M.

    2013-12-01

    Sediment hydraulic properties, consolidation state, and ambient pore pressure development are key parameters that affect fluid migration, deformation, and the slip behavior and mechanical strength of subduction zone megathrusts. In order to better understand the dynamics and mechanisms of large subduction earthquakes, Integrated Oceanic Drilling Program (IODP) Expedition 343, drilled into the toe of the Japan Trench subduction zone in a region of large shallow slip in the M 9.0 Tohoku earthquake, as part of the Japan Trench Fast Drilling Project (J-FAST). Here, we report on two constant rate of strain (CRS) uniaxial consolidation experiments and two triaxial deformation experiments on bedded claystone and clayey mudstone core samples collected from the frontal prism and subducted sediment section cored at Site C0019, 2.5 km landward of the Japan Trench, from depths of 697.18 and 831.45 mbsf. The goals of our experiments were: (1) to define the hydraulic and acoustic properties of sediments that host the subduction megathrust fault that slipped in the M 9.0 Tohoku earthquake; and (2) to constrain in-situ consolidation state and its implications for in-situ stress. The permeability-porosity trends are similar for the two samples, and both exhibit permeability that decreases systematically with increasing effective stress and decreasing porosity, and which varies log-linearly with porosity. Permeabilities of material from the frontal prism decrease from 5×10-18 m2 at 5 MPa effective stress, to 3.0×10-19 m2 at 70 MPa, and porosities decrease from 51% to 29%, while permeabilities of the subducted sediment sample decrease from 5×10-18 m2 at 5 MPa to 3.6×10-19 m2 at 90 MPa, and porosities decrease from 49% to 36%. In-situ permeabilities for the prism and underthrust sediment samples, estimated using laboratory defined permeability-porosity relationships, are 4.9×10-18 m2 and 3.7×10-18 m2, respectively. Elastic wavespeeds increase systematically with increasing

  12. Two-dimensional Numerical Models of Accretionary Wedges Deformation in Response to Subduction and Obduction: Evidence from the Middle Part of the Manila Trench

    NASA Astrophysics Data System (ADS)

    Ma, L.; Ding, W.; Chen, L.; Gerya, T.

    2016-12-01

    The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It was created by the subduction of the South China Sea Plate beneath the Philippine Sea Plate since the early Neogene, and also influenced by the northwestern movement of the Philippine Sea Plate. There is wide discussion whether the dual-subduction and widespread seamounts in the South China Sea would have play important roles in the 'S-shaped' geometry and the different diving angle along the Manila Trench. Multi-beam tectono-geomorphological studies on the accretionary wedges have suggested that: (1) the stress direction of the subduction along the middle part of the Manila Trench, between 17o and 18 o N, is NW55 o; (2) The Manila Trench is actually caused by obduction due to the northwestern movement of the Philippine Sea Plate. Although the NW 55 o stress direction has been supported by detailed analysis on the trend of the folds, thrust faults, extension fractures and large sea-floor canyon, its obduction-origin is purely based on regional structure. Here we use 2D numerical modeling experiments to investigate the deformation style of accretionary wedge in response to the seamounts subduction and obduction, and provide new insights into the mechanism responsible for the Luzon obduction along the Manila Trench. Our preliminary results show that: (1) the accretionary wedge is eroded faster in subduction model; (2) the velocity field direction of the slab differs in two models at the beginning of seamount subduction, which is vertical in obduction model, but oblique in subduction model; (3) both sides of the accretionary wedge deform strongly in subduction model, whereas in obduction model only the leading edge shows intensive deformation. Further modelling will focus on other parts of the Manila Trench with different slab age and subduction velocity to see their tectonic influences on the accretionary wedges.

  13. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  14. Seismic anisotropy and mantle flow in the Hellenic subduction zone: The possible effects of trench retreat and slab tear at both ends.

    NASA Astrophysics Data System (ADS)

    Evangelidis, Christos

    2017-04-01

    The upper mantle anisotropy pattern in the entire area of the Hellenic subduction zone have been analyzed for fast polarization directions and delay times to investigate the complex 3D pattern of mantle flow around the subducting slab. All previous studies do incorporate a significant number of measurements in the backarc area of the Aegean and in two cross-sections along the Hellenic subduction system. However, the transitional area from oceanic to continental subduction in the Western Hellenic trench has not been adequately sampled so far. Moreover, the eastern termination of the Hellenic subduction and the possible origin of a trench parallel anisotropy remains unclear. Here, I focus on the two possible ends of the high curvature Hellenic arc. I have now measured SKS splitting parameters from all broadband stations of the Hellenic Unified Seismic Network (HUSN), that they have not been measured before, specially concentrated in the transitional area from oceanic to continental subduction system. Complementary, using the Source-Side splitting technique to teleseismic S-wave records from intermediate depth earthquake in the Hellenic trench, the anisotropy measurements are increased in regions where no stations are installed. In western Greece, the Hellenic subduction system is separated by the Cephalonia Transform Fault (CTF), a dextral offset of 100 km, into the northern and southern segments, which are characterized by different convergence rates and slab composition. Recent seismic data show that north of CTF there is a subducted continental lithosphere in contrast to the region south of CTF where the on-going subduction is oceanic. The new measurements, combined with previously published observations, provide the most complete up-to-date spatial coverage for the area. Generally, the pronounced zonation of seismic anisotropy across the subduction zone, as inferred from other studies, is also observed here. Fast SKS splitting directions are trench-normal in the

  15. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Lin, J.

    2017-12-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending, normal fault characteristics, and geodynamic modeling. It was observed that most of the normal faults were initiated along the outer-rise region and grew toward the trench axis with strikes that are mostly subparallel to the local trend of the trench axis. The average trench relief is more than 5 km in the southern region while only about 2 km in the northern and central regions. Fault throws were measured to be significantly greater in the southern region (maximum 320 m) than the northern and central regions (maximum 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading along the trench axis. The "apparent" slab-pull dip angle of the subducting plate, calculated from the ratio of the inverted vertical loading versus horizontal tensional force, was significantly larger in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which is consistent with the seismologically determined dip angle within the shallow part of the subducting slab. This result suggests that the differences in the plate flexure and normal faulting characteristics along the Mariana Trench might be influenced, at least in part, by significant variations in the dip angle within the shallow part of the subducting plate. Normal faults were modeled to penetrate to a maximum depth of 15, 14, and 25 km in the upper mantle for the northern, central, and southern regions, respectively, which is consistent with the depths of available relocated normal faulting earthquakes in the central region. We calculated that the average reduction of the effective elastic plate thickness Te due to normal faulting is 31% in the southern region, which is almost twice that in both the northern and central regions ( 16%). Furthermore, model results revealed that the stress reduction associated

  16. Seismicity of the Earth 1900-2007, Japan and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley

    2010-01-01

    This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.

  17. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von Huene, Roland E.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  18. Structure and lithology of the Japan Trench subduction plate boundary fault

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James D.; Rowe, Christie D.; Ujiie, Kohtaro; Moore, J. Casey; Regalla, Christine; Remitti, Francesca; Toy, Virginia; Wolfson-Schwehr, Monica; Kameda, Jun; Bose, Santanu; Chester, Frederick M.

    2015-01-01

    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ˜7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ˜5-15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin.

  19. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiyuan; Lin, Jian

    2018-06-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.

  20. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia

    NASA Astrophysics Data System (ADS)

    Salze, Méline; Martinod, Joseph; Guillaume, Benjamin; Kermarrec, Jean-Jacques; Ghiglione, Matias C.; Sue, Christian

    2018-07-01

    A series of 3-D asthenospheric-scale analogue models have been conducted in the laboratory in order to simulate the arrival of a spreading ridge at the trench and understand its effect on plate kinematics, slab geometry, and on the deformation of the overriding plate. These models are made of a two-layered linearly viscous system simulating the lithosphere and asthenosphere. We reproduce the progressive decrease in thickness of the oceanic lithosphere at the trench. We measure plate kinematics, slab geometry and upper plate deformation. Our experiments reveal that the subduction of a thinning plate beneath a freely moving overriding continent favors a decrease of the subduction velocity and an increase of the oceanic slab dip. When the upper plate motion is imposed by lateral boundary conditions, the evolution of the subducting plate geometry largely differs depending on the velocity of the overriding plate: the larger its trenchward velocity, the smaller the superficial dip of the oceanic slab. A slab flattening episode may occur resulting from the combined effect of the subduction of an increasingly thinner plate and the trenchward motion of a fast overriding plate. Slab flattening would be marked by an increase of the distance between the trench and the volcanic arc in nature. This phenomenon may explain the reported Neogene eastward motion of the volcanic arc in the Southern Patagonia that occurred prior to the subduction of the Chile Ridge.

  1. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  2. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh

    2017-08-01

    This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.

  3. Backarc spreading and mantle wedge flow beneath the Japan Sea: insight from Rayleigh-wave anisotropic tomography

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2016-10-01

    We present the first high-resolution Rayleigh-wave phase-velocity azimuthal anisotropy tomography of the Japan subduction zone at periods of 20-150 s, which is determined using a large number of high-quality amplitude and phase data of teleseismic fundamental-mode Rayleigh waves. The obtained 2-D anisotropic phase-velocity models are then inverted for a 3-D shear-wave velocity azimuthal anisotropy tomography down to a depth of ˜300 km beneath Japan. The subducting Pacific slab is imaged as a dipping high-velocity zone with trench-parallel fast-velocity directions (FVDs) which may indicate the anisotropy arising from the normal faults produced at the outer-rise area near the Japan trench axis, overprinting the slab fossil fabric, whereas the mantle wedge generally exhibits lower velocities with trench-normal FVDs which reflect subduction-driven corner flow and anisotropy. Depth variations of azimuthal anisotropy are revealed in the big mantle wedge beneath the Japan Sea, which may reflect past deformations in the Eurasian lithosphere related to backarc spreading during 21 to 15 Ma and complex current convection in the asthenosphere induced by active subductions of both the Pacific and Philippine Sea plates.

  4. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  5. Constraints on Subduction Zone Coupling along the Philippine and Manila Trenches based on GPS and Seismological Data

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Johnson, K. M.; Nowicki, M. A. E.; Bacolcol, T. C.; Solidum, R., Jr.; Galgana, G.; Hsu, Y. J.; Yu, S. B.; Rau, R. J.; McCaffrey, R.

    2014-12-01

    We present results of two techniques to estimate the degree of coupling along the two major subduction zone boundaries that bound the Philippine Mobile Belt, the Philippine Trench and the Manila Trench. Convergence along these plate margins accommodates about 100 mm/yr of oblique plate motion between the Philippine Sea and Sundaland plates. The coupling estimates are based on a recently acquired set of geodetic data from a dense nationwide network of continuous and campaign GPS sites in the Philippines. First, we use a kinematic, elastic block model (tdefnode; McCaffrey, 2009) that combines existing fault geometries, GPS velocities and focal mechanism solutions to solve for block rotations, fault coupling, and intra-block deformation. Secondly, we use a plate-block kinematic model described in Johnson (2013) to simultaneously estimate long-term fault slip rates, block motions and interseismic coupling on block-bounding faults. The best-fit model represents the Philippine Mobile Belt by 14 independently moving rigid tectonic blocks, separated by active faults and subduction zones. The model predicts rapid convergence along the Manila Trench, decreasing progressively southwards, from > 100 mm/yr in the north to less than 20 mm/yr in the south at the Mindoro Island collision zone. Persistent areas of high coupling, interpreted to be asperities, are observed along the Manila Trench slab interface, in central Luzon (16-18°N) and near its southern and northern terminations. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with high coupling observed at its central and southern segments. We identify the range of allowable coupling distributions and corresponding moment accumulation rates on the two subduction zones by conducting a suite of inversions in which the total moment accumulation rate on a selected fault is fixed. In these constrained moment inversions we test the range of possible solutions that meet criteria for minimum, best-fit, and

  6. Limits on great earthquake size at subduction zones

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2012-12-01

    Subduction zones are where the world's greatest earthquakes occur due to the large fault area available to slip. Yet some subduction zones are thought to be immune from these massive events, where quake size is limited by some physical processes or properties. Accordingly, the size of the 2011 Tohoku-oki Mw 9.0 earthquake caught some in the earthquake research community by surprise. The expectations of these massive quakes have been driven in the past by reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake seismological history, and in some cases extended with geologic observations, relationships between maximum earthquake sizes and other properties of subduction zones are suggested, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. Empirical correlations of earthquake behavior with other subduction parameters can give false positive results when the data are incomplete or incorrect, of small numbers and numerous attributes are examined. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our relatively limited temporal observation span (in most places), I suggest that we cannot yet rule out great earthquakes at any subduction zones. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach indicates that a M > 9 off Java, with twice the population density as Honshu and much lower

  7. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio

    2018-05-01

    The importance of slab-slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present

  8. Crustal-Scale Seismic Structure From Trench to Forearc in the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Rathnayaka, Sampath; Gao, Haiying

    2017-09-01

    The (de)hydration process and the amount of hydrated sediment carried by the downgoing oceanic plate play a key role in the subduction dynamics. A high-resolution shear velocity model from the crust down to the uppermost mantle, extending from trench to forearc, is constructed in the northern Cascadia subduction zone to investigate seismic characteristics related to slab deformation and (de)hydration at the plate boundary. A total of 220 seismic stations are used, including the Cascadia Initiative Amphibious Array and inland broadband and short-period stations. The empirical Green's functions extracted from continuous ambient noise data from 2006 to 2014 provide high-quality Rayleigh wave signals at periods of 4-50 s. We simulate wave propagation using finite difference method to generate station Strain Green's Tensors and synthetic waveforms. The phase delays of Rayleigh waves between the observed and synthetic data are measured at multiple period ranges. We then invert for the velocity perturbations from the reference model and progressively improve the model resolution. Our tomographic imaging shows many regional- and local-scale low-velocity features, which are possibly related to slab (de)hydration from the oceanic plate to the overriding plate. Specifically, we observe (1) NW-SE oriented linear low-velocity features across the trench, indicating hydration of the oceanic plate induced by bending-related faultings; (2) W-E oriented fingerlike low-velocity structures off the continental margins due to dehydration of the Juan de Fuca plate; and (3) seismic lows atop the plate interface beneath the Washington forearc, indicating fluid-rich sediments subducted and overthrusted at the accretionary wedge.

  9. Subduction Initiation Existed Along the Ancient Continent Margins? Evidence of U-Pb ages of zircons from the Bonin Trench, Japan

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Pearce, J. A.; Ryan, J. G.; Li, X. H.; Haraguchi, S.; Iizuka, T.; Kon, Y.; Yamamoto, S.; Sawaki, Y.; Ishii, T.; Maruyama, S.

    2017-12-01

    Although it is not cleanly known when and where the subduction initiation began on the Paleo-Izu-Bonin-Mariana (IBM) Trench, Jurassic and Cretaceous plutonic rocks, such as gabbroic, granitic and metamorphic rocks had been sampled from the Amami Plateau-Daito Ridge-Okidaito Ridge (ADO) in the Philippine Sea Plate. Furthermore, Mesozonic to Paleozonic ages zircons were obtained from volcaniclastic sandstones collected from northern Izu-Bonin forarc (Tani et al., 2012). We present U-Pb ages, Hf-O isotopes and trace element compositions of zircon grains separated from sediment, volcanic rock, dolerite and gabbro, collected from Chichijima Island and Bonin forearc seafloor (KH03-3, KT04-28 cruise of the University of Tokyo, IODP Leg 352). In the zircon age histogram, several age groups were identified. The age peaks are 0-3 Ma and 13 Ma (Hahajima Seamount: soft mud and volcanic tuff); 38 Ma (Oomachi Seamount: sandstone); 45 Ma (Chichijima Island: volcanic rock); 40 Ma, 48 Ma and 52 Ma (Hahajima Seamount: dolerite and gabbro); 45 Ma and 164-165 Ma (IODP Leg 352: volcanic rock), respectively. Zircon U-Pb ages ranging 0-52 Ma correspond well to the multi-stages of magmatism in the IBM. However, 164-165 Ma maybe represent the ages of zircon xenocryst including in forearc volcanic rock , which pre-existing in ancient continent crustal materials (SE China Continent Crust?) as the basement of Paleo-IBM. It seems reasonable to suppose that the subduction initiation of IBM existed along the ancient SE China Continent margins. The initiation of subduction zone is a consequence of lateral compositional buoyancy contrast within the lithosphere, that advocated by Niu et al. (2003, 2016).

  10. Sediment Accretion During Horst and Graben Subduction associated with the Tohoku Oki M9 Earthquake, Northern Japan

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Chester, F. M.

    2015-12-01

    The stratigraphic sequence within the frontal accretionary prism of the Japan Trench, the site of large slip during the Tohoku earthquake, is unique due to horst and graben subduction. Boreholes at IODP Site C0019, penetrating the toe of the Tohoku accretionary prism, document a younger over older intraprism thrust contact with a 9 Ma age gap across the basal plate boundary fault. The anomalously young (Quaternary to Pliocene), fault-bounded sediment package is 130 m thick, of a total of 820 m of sediment above the plate boundary fault. In contrast, typical accretionary prism structure consists of stacked sediment packages on imbricate faults above the basal decollement resulting in an overall increase in age downward. Site C0019 penetrates the prism directly above a horst of the subducting Pacific oceanic crust. Here the plate-boundary fault consists of a thin, weak smectitic pelagic clay that is probably the principal slip surface of ~50 m offset in the 2011 Tohoku earthquake. The fault continues seaward deepening off the seaward edge of the horst and beneath the sediment fill of the adjacent graben, dying out at the landward base of the next incoming horst. The plate boundary fault and its splays in the graben form a narrow-taper protoprism and a small sedimentary basin of trench fill marking the seaward edge of the upper plate. The modern fault and sediment distributions within the graben are used to motivate a viable model for the presence of anomalously young sediments directly above the plate boundary fault. In this model sediments in the trench are thrust over the incoming horst by propagation of the plate boundary thrust up the landward-dipping fault of the incoming horst and along the smectitic clay layer to emplace Quaternary and Pliocene trench deposits directly on top of the incoming horst. These young deposits are in turn overlain by sediments 9 Ma or older that have been transported out of the graben along imbricate faults associated with the

  11. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  12. A Subducted Seamount Revealed: 2016, NOAA OER Deepwater Exploration of the Marianas

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Kelley, C.; Pomponi, S. A.; Glickson, D.; Amon, D.

    2017-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea

  13. Direct-path acoustic ranging across the Japan Trench axis, Adjacent to the Large Shallow Thrusting in the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.

    2014-12-01

    Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process.  To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for

  14. Arc magmatism and mineralization in North Luzon and its relationship to subduction at the East Luzon and North Manila Trenches

    NASA Astrophysics Data System (ADS)

    Wolfe, John A.

    The Tertiary tectonics of North Luzon are complicated by an early thermotectonic regime in the Eocene (40-50 Ma) and the second from 30 to 17 Ma in the Oligocene resulting from subduction in the East Luzon Trench. The second stage coincided with the opening of the South China Sea on the west side of the Philippines. Portions of the western Philippines were translated south from China by the opening of the South China Sea. This includes Mindoro Island, Palawan and the Reed Bank area. No one has presented any evidence that any oceanic crust existed between early Luzon and China prior to opening of the South China Sea. After spreading of the South China Sea ceased, China began to extrude eastward and coupled with the oceanic crust of the South China Sea initiated subduction in the North Manila trench under Luzon at about 17 Ma. Commencing at approximately 15 Ma a graben formed east of the Manila Trench, centered in Baguio City. It contained the volcanic arc which began to develop as the Agno batholith intruded the graben. The graben extends for at least 75 km on the southwest flank of the Cordillera with relayed extensions into the Cordillera. Porphyry copper mineralization developed within the graben from 10 to 8 Ma interrupted by the explosion of a caldera or volcano tectonic depression extending south of Baguio. This graben contains 22 porphyry copper bodies, some of them uneconomic. Described by Gervasio as a "crackle zone", the same zone was described by Fernandez and Damasco as the area most favorable for gold exploration. The second period of mineralization was imposed on the district from 4 to 3 Ma. Gold mineralization in the Baguio district constituted a third phase of mineralization in the Pleistocene. Absence of commercial mineralization in the Cordillera and Sierra Madre correlated with the Paleogene is one of the criteria for distinguishing between the subduction related to the South China Sea and that related to the Philippine Sea on the east. One of the

  15. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field

    NASA Astrophysics Data System (ADS)

    Iinuma, Takeshi

    2018-04-01

    A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi

  16. Near-trench slip potential of megaquakes evaluated from fault properties and conditions

    PubMed Central

    Hirono, Tetsuro; Tsuda, Kenichi; Tanikawa, Wataru; Ampuero, Jean-Paul; Shibazaki, Bunichiro; Kinoshita, Masataka; Mori, James J.

    2016-01-01

    Near-trench slip during large megathrust earthquakes (megaquakes) is an important factor in the generation of destructive tsunamis. We proposed a new approach to assessing the near-trench slip potential quantitatively by integrating laboratory-derived properties of fault materials and simulations of fault weakening and rupture propagation. Although the permeability of the sandy Nankai Trough materials are higher than that of the clayey materials from the Japan Trench, dynamic weakening by thermally pressurized fluid is greater at the Nankai Trough owing to higher friction, although initially overpressured fluid at the Nankai Trough restrains the fault weakening. Dynamic rupture simulations reproduced the large slip near the trench observed in the 2011 Tohoku-oki earthquake and predicted the possibility of a large slip of over 30 m for the impending megaquake at the Nankai Trough. Our integrative approach is applicable globally to subduction zones as a novel tool for the prediction of extreme tsunami-producing near-trench slip. PMID:27321861

  17. Estimation of internal friction angle of subduction zone in northeast of Japan by using seismic focal mechanisms

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Sato, K.; Otsubo, M.

    2017-12-01

    Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal

  18. Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution

    USGS Publications Warehouse

    Kusky, Timothy M.; Bradley, Dwight C.; Donely, D. Thomas; Rowley, David; Haeussler, Peter J.

    2003-01-01

    A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5–3.0 kbars (5.2–10.5 km) into a part of the accretionary wedge with an ambient temperature of 210–300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt.Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 mélanges, and an arrayof faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons

  19. Characterizing Mega-Earthquake Related Tsunami on Subduction Zones without Large Historical Events

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Lee, R.; Astill, S.; Farahani, R.; Wilson, P. S.; Mohammed, F.

    2014-12-01

    Due to recent large tsunami events (e.g., Chile 2010 and Japan 2011), the insurance industry is very aware of the importance of managing its exposure to tsunami risk. There are currently few tools available to help establish policies for managing and pricing tsunami risk globally. As a starting point and to help address this issue, Risk Management Solutions Inc. (RMS) is developing a global suite of tsunami inundation footprints. This dataset will include both representations of historical events as well as a series of M9 scenarios on subductions zones that have not historical generated mega earthquakes. The latter set is included to address concerns about the completeness of the historical record for mega earthquakes. This concern stems from the fact that the Tohoku Japan earthquake was considerably larger than had been observed in the historical record. Characterizing the source and rupture pattern for the subduction zones without historical events is a poorly constrained process. In many case, the subduction zones can be segmented based on changes in the characteristics of the subducting slab or major ridge systems. For this project, the unit sources from the NOAA propagation database are utilized to leverage the basin wide modeling included in this dataset. The length of the rupture is characterized based on subduction zone segmentation and the slip per unit source can be determined based on the event magnitude (i.e., M9) and moment balancing. As these events have not occurred historically, there is little to constrain the slip distribution. Sensitivity tests on the potential rupture pattern have been undertaken comparing uniform slip to higher shallow slip and tapered slip models. Subduction zones examined include the Makran Trench, the Lesser Antilles and the Hikurangi Trench. The ultimate goal is to create a series of tsunami footprints to help insurers understand their exposures at risk to tsunami inundation around the world.

  20. Hadal disturbance and radionuclide profiles at the deepest Japan Trench, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Oguri, Kazumasa; Kawamura, Kiichiro; Sakaguchi, Arito; Toyofuku, Takashi; Kasaya, Takafumi; Murayama, Masafumi; Glud, Ronnie; Fujikura, Katsunori; Kitazato, Hiroshi

    2013-04-01

    Four months after the 2011 Tohoku-Oki earthquake, we carried out a video survey and collected sediment core collection from the hadal region (~7,600 m water depth) of the Japan Trench using an autonomous instrument. Fine material remained suspended at ~50 m above the seabed presumably induced by turbidities released during the central earthquake and the following aftershocks. Elevated levels of Cs-137 (T1/2=30 y) and excess Pb-210 (T1/2=22.3 y) concentrations suggested that 30 cm thick sediment layer had accumulated at the trench base (7,553 m) after the mainshock. However, no Cs-134 (T1/2=2 y) fallout from the Fukushima Dai-ichi nuclear disaster was detected. In contract, inspection of a nearby sediment site (7,261 m) 4.9 km away from the central trench site revealed fewer disturbances as reflected by a recent deposition of only 4 cm sediment, but here we encountered recent Cs-134 fallouts from the top 0-1 cm depth. We propose that the apparent lack of Cs-134 in the central trench is coursed by settlement of turbidites containing Cs-137 from past atmospheric fallout and higher excess Pb-210. The fast transport of the Cs-134 to the hadal slope sediment is presumably induced by enhanced scavenging and the vertical transport associated to an intensified diatom blooming occurring just at the time of the Fukushima disaster.

  1. Subduction obliquity as a prime indicator for geotherm in subduction zone

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  2. Extreme event archived in the geological record of the Japan Trench: New results from R/V Sonne Cruise SO-251 towards establishing J-TRACK paleoseismology

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Kopf, Achim; Kanamatsu, Toshyia; Moernaut, Jasper; Ikehara, Ken; McHugh, Cecila

    2017-04-01

    Our perspective of subduction zonés earthquake magnitude and recurrence is limited by short historical records. Examining prehistoric extreme events preserved in the geological record is essential towards understanding large earthquakes and assessing the geohazard potential associated with such rare events. The research field of "subaquatic paleoseismology" is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in stratigraphic succession. However, at present we lack comprehensive data set that allow conclusive distinctions between quality and completeness of the paleoseismic archives as they may relate to different sediment transport, erosion and deposition processes vs. variability of intrinsic seismogenic behavior across different segments. Initially building on what sedimentary deposits were generated from the 2011 Magnitude 9 Tohoku-oki earthquake, the Japan Trench is a promising study area to investigate earthquake-triggered sediment remobilization processes and how they become embedded in the stratigraphic record. Here we present new results from the recent R/V Sonne expedition SO251 that acquired a complete high-resolution bathymetric map of the trench axis and nearly 2000 km of subbottom Parasound profiles, covering the entire along-strike extent of the Japan Trench from 36° to 40.3° N, and groundtruthed by several nearly 10m long piston cores retrieved from the very deep waters (7 to 8 km below sea level): Several smaller submarine landslide (up to several 100's m of lateral extent) can be identified along the trench axis in the new bathymetric data set. These features were either not yet present, or not resolved in the lower-resolution bathymetric dataset acquired before 2011. Sub-bottom acoustic reflection data reveals striking, up to several meter thick, acoustically transparent bodies interbedded in the otherwise parallel reflection pattern of the trench fill basins, providing a temporal and

  3. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  4. Estimates of effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads and effective elastic thickness of subduction zones

    NASA Astrophysics Data System (ADS)

    Yang, A.; Yongtao, F.

    2016-12-01

    The effective elastic thickness (Te) is an important parameter that characterizes the long term strength of the lithosphere, which has great significance on understanding the mechanical properties and evolution of the lithosphere. In contrast with many controversies regarding elastic thickness of continent lithosphere, the Te of oceanic lithosphere is thought to be in a simple way that is dependent on the age of the plate. However, rescent studies show that there is no simple relationship between Te and age at time of loading for both seamounts and subduction zones. As subsurface loading is very importand and has large influence in the estimate of Te for continent lithosphere, and many oceanic features such as subduction zones also have considerable subsurface loading. We introduce the method to estimate the effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads by using free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). We use the multitaper spectral estimation method to calculate the power spectral density. Through tests with synthetic subduction zone like bathymetry and gravity data show that the Te can be recovered in an accurance similar to that in the continent and there is also a trade-off between spatial resolution and variance for different window sizes. We estimate Te of many subduction zones (Peru-Chile trench, Middle America trench, Caribbean trench, Kuril-Japan trench, Mariana trench, Tonga trench, Java trench, Ryukyu-Philippine trench) with an age range of 0-160 Myr to reassess the relationship between elastic thickness and the age of the lithosphere at the time of loading. The results do not show a simple relationship between Te and age.

  5. Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.

    2012-12-01

    The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more

  6. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.

    PubMed

    Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine

    2017-05-16

    At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

  7. The geological and petrological studies of the subduction boundaries and suggestion for the geological future work in Japan - How to avoid ultra-mega-earthquakes -

    NASA Astrophysics Data System (ADS)

    Ishii, T.

    2015-12-01

    The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.

  8. The dynamics of double slab subduction

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L. H.; Becker, T. W.

    2017-04-01

    We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.

  9. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  10. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  11. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake

    PubMed Central

    Oguri, Kazumasa; Kawamura, Kiichiro; Sakaguchi, Arito; Toyofuku, Takashi; Kasaya, Takafumi; Murayama, Masafumi; Fujikura, Katsunori; Glud, Ronnie N.; Kitazato, Hiroshi

    2013-01-01

    In situ video observations and sediment core samplings were performed at two hadal sites in the Japan Trench on July, 2011, four months after the Tohoku–Oki earthquake. Video recordings documented dense nepheloid layers extending ~30–50 m above the sea bed. At the trench axis, benthic macrofauna was absent and dead organisms along with turbid downslope current were observed. The top 31 cm of sediment in the trench axis revealed three recent depositions events characterized by elevated 137Cs levels and alternating sediment densities. At 4.9 km seaward from the trench axis, little deposition was observed but the surface sediment contained 134Cs from the Fukushima Dai–ichi nuclear disaster. We argue that diatom blooms observed by remote sensing facilitated rapid deposition of 134Cs to hadal environment and the aftershocks induced successive sediment disturbances and maintained dense nepheloid layers in the trench even four months after the mainshock. PMID:23715086

  12. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The

  13. Geodynamic Modeling of the Subduction Zone around the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Honda, S.

    2017-06-01

    In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between

  14. Cenozoic Tectonic Evolution of Northeast China and Surrounding Areas Reproduced by Slab Subduction Models

    NASA Astrophysics Data System (ADS)

    Yang, T.; Moresi, L. N.; Zhao, D.; Sandiford, D.

    2017-12-01

    Northeast China lies at the continental margin of the western Pacific subduction zone where the Pacific Plate subducts beneath the Eurasia Plate along the Kuril-Japan trench during the Cenozoic, after the consumption of the Izanagi Plate. The Izanagi Plate and the Izanagi-Pacific mid-ocean ridge recycled to the mantle beneath Eurasia before the early Cenozoic. Plate reconstructions suggest that (1) age of the incoming Pacific Plate at the trench increases with time; (2) convergence rate between the Pacific and Eurasia Plates increased rapidly from the late Eocene to the early Miocene. Northeast China and surrounding areas suffered widespread extension and magmatism during the Cenozoic, culminating in the opening of the Japan Sea and the rifting of the Baikal Rift Zone. The Japan Sea opened during the early Miocene and kept spreading until the late Miocene, since when compression tectonics gradually prevailed. The Baikal Rift Zone underwent slow extension in the Cenozoic but its extension rate has increased rapidly since the late Miocene. We investigate the Cenozoic tectonic evolution of Northeast China and surrounding areas with geodynamic models. Our study suggests that the rapid aging of the incoming Pacific Plate at the subduction zone leads to the increase of plate convergence and trench motion rates, and explains the observed sequence of regional tectonic events. Our geodynamic model, which reproduces the Cenozoic regional tectonic events, predicts slab morphology and stress state consistent with seismic observations, including over 1000 km of slab stagnant in the transition zone, and the along-dip principal compressional stress direction. Our model requires a value of the 660 km phase transition Clapeyron slope of -2.5 MPa/K to reproduce the stagnant slab and tectonic events in the study region. This suggests that the Pacific slab is hydrated in the transition zone, explaining geochemical characteristics of some regional Cenozoic igneous rocks which were

  15. Dynamic Simulation of the 2011 M9.0 Tohoku Earthquake with Geometric Complexity on a Rate- and State-dependent Subduction Plane

    NASA Astrophysics Data System (ADS)

    Luo, B.; Duan, B.

    2015-12-01

    The Mw 9.0 Tohoku megathrust earthquake on 11 March 2011 is a great surprise to the scientific community due to its unexpected occurrence on the subduction zone of Japan Trench where earthquakes of magnitude ~7 to 8 are expected based on historical records. Slip distribution and kinematic slip history inverted from seismic data, GPS and tsunami recordings reveal two major aspects of this big event: a strong asperity near the hypocenter and large slip near the trench. To investigate physical conditions of these two aspects, we perform dynamic rupture simulations on a shallow-dipping rate- and state-dependent subduction plane with topographic relief. Although existence of a subducted seamount just up-dip of the hypocenter is still an open question, high Vp anomalies [Zhao et al., 2011] and low Vp/Vs anomalies [Yamamoto et al., 2014] there strongly suggest some kind of topographic relief exists there. We explicitly incorporate a subducted seamount on the subduction surface into our models. Our preliminary results show that the subducted seamount play a significant role in dynamic rupture propagation due to the alteration of the stress state around it. We find that a subducted seamount can act as a strong barrier to many earthquakes, but its ultimate failure after some earthquake cycles results in giant earthquakes. Its failure gives rise to large stress drop, resulting in a strong asperity in slip distribution as revealed in kinematic inversions. Our preliminary results also suggest that the rate- and state- friction law plays an important role in rupture propagation of geometrically complex faults. Although rate-strengthening behavior near the trench impedes rupture propagation, an energetic rupture can break such a barrier and manage to reach the trench, resulting in significant uplift at seafloor and hence devastating tsunami to human society.

  16. Plate tectonic reconstruction of the northeast Eurasian margin and Alaska since 50 Ma using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Chen, Y. W.

    2016-12-01

    Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault

  17. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Astrophysics Data System (ADS)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  18. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    PubMed

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  19. Permeability anisotropy in marine mudstones in the Nankai Trough, SW Japan: Implications for hypothesized lateral fluid flow and chemical transport outboard of the trench

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.; Skarbek, R. M.

    2008-12-01

    Characterizing dewatering pathways and chemical fluxes near and outboard of subduction trenches is important toward understanding early sediment dewatering and devolatilization. Quantifying fluid flow rates also constrains the hydraulic gradients driving flow, and thus ultimately hold implications for pore pressure distribution and fault mechanical strength. We focus on the well-studied Nankai Trough offshore SW Japan, where drilling has sampled the sedimentary section at several boreholes from ~11 km outboard of the trench to 3 km landward. At these drillsites, &δ37Cl data and correlation of distinct extrema in downhole chloride profiles have been interpreted to reflect substantial horizontal fluid flow to >10 km outboard of the trench within the ~400 m-thick, homogeneous Lower Shikoku Basin (LSB) facies mudstone. The estimated horizontal velocities are 13 ± 5 cm yr-1; the flow is presumably driven by loading during subduction, and mediated by either permeable conduits or strong anisotropy in permeability. However, the pressure gradients and sediment permeabilities necessary for such flow have not been quantified. Here, we address this problem by combining (1) laboratory measurement of horizontal and vertical sediment permeability from a combination of constant rate of strain (CRS) consolidation tests and flow-through measurements on core samples; and (2) numerical models of fluid flow within a cross section perpendicular to the trench. In our models, we assign hydrostatic pressure at the top and seaward edges, a no-flow condition at the base of the sediments, and pore pressures ranging from 40%-100% of lithostatic at the arcward model boundary. We assign sediment permeability on the basis of our laboratory measurements, and evaluate the possible role of thin permeable conduits as well as strong anisotropy in the incoming section. Our laboratory results define a systematic log-linear relationship between sediment permeability and porosity within the LSB

  20. Varying Structure and Physical Properties of the Lithosphere Subducting Beneath Indonesia, Consequences on the Subduction

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Dyment, J.

    2013-12-01

    We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in

  1. Lithospheric Subduction on Earth and Venus?

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Garcia, E.; Stegman, D. R.; Schubert, G.

    2016-12-01

    There are three mechanisms by which terrestrial planets can shed excess heat: conduction across a surface thermal boundary layer; advection of heat through volcanic pipes; and mobile plates/subduction. On the Earth about 30% is released by conduction and 70% by subduction. The dominant mode of heat transport on Venus is largely unknown. Plate flexure models rule out significant heat loss by conduction and the resurfacing from active volcanism is in discordance with a surface age of 600 Ma. There are 9000 km of trenches on Venus that may have been subduction sites but they do not appear active today and are only 25% of the length of the subduction zones on the Earth. Turcotte and others have proposed an episodic recycling model that has short bursts ( 150 Ma) of plate tectonic activity followed by long periods ( 450 Ma) of stagnant lid convection. This talk will review the arguments for and against subduction zones on Venus and discuss possible new satellite observations that could help resolve the subduction issue. Figure Caption. (a) Global mosaic of Magellan SAR imagery. (b) Zoom of area along the Artemis trench, which has similar topography and fracture patterns as the Aleutian subduction zone on Earth. Trench and outer rise lines were digitized from the matching topography image (not shown). The Magellan SAR imagery and topography, displayed on Google Earth, can be downloaded at http://topex.ucsd.edu/venus/index.html

  2. High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan

    NASA Astrophysics Data System (ADS)

    Padhy, S.; Furumura, T.

    2016-12-01

    Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our

  3. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  4. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and

  5. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Wen, Lianxing; Zheng, Tianyu

    2005-11-01

    The newly developed wave equation poststack depth migration method for receiver function imaging is applied to study the subsurface structures of the Japan subduction zone using the Fundamental Research on Earthquakes and Earth's Interior Anomalies (FREESIA) broadband data. Three profiles are chosen in the subsurface imaging, two in northeast (NE) Japan to study the subducting Pacific plate and one in southwest (SW) Japan to study the Philippine Sea plate. The descending Pacific plate in NE Japan is well imaged within a depth range of 50-150 km. The slab image exhibits a little more steeply dipping angle (˜32°) in the south than in the north (˜27°), although the general characteristics between the two profiles in NE Japan are similar. The imaged Philippine Sea plate in eastern SW Japan, in contrast, exhibits a much shallower subduction angle (˜19°) and is only identifiable at the uppermost depths of no more than 60 km. Synthetic tests indicate that the top 150 km of the migrated images of the Pacific plate is well resolved by our seismic data, but the resolution of deep part of the slab images becomes poor due to the limited data coverage. Synthetic tests also suggest that the breakdown of the Philippine Sea plate at shallow depths reflects the real structural features of the subduction zone, rather than caused by insufficient coverage of data. Comparative studies on both synthetics and real data images show the possibility of retrieval of fine-scale structures from high-frequency contributions if high-frequency noise can be effectively suppressed and a small bin size can be used in future studies. The derived slab geometry and image feature also appear to have relatively weak dependence on overlying velocity structure. The observed seismicity in the region confirms the geometries inferred from the migrated images for both subducting plates. Moreover, the deep extent of the Pacific plate image and the shallow breakdown of the Philippine Sea plate image are

  6. Subduction bottom-to-top: The northeast Caribbean

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.

    2017-12-01

    The Northeast Caribbean provides a prime example for the surficial expression of deep subduction processes and their combined effect on natural hazard. The subducting North American slab, recognized in tomography to depths of hundreds of kilometers, has been moving primarily westward at 2 cm/yr relative to the overlying Caribbean plate throughout most of the Cenozoic. A proposed tear in the slab northeast of Puerto Rico, separating a steeply-dipping slab to the west from less-steep slab to the east, is likely responsible for deep (<125 km) and frequent earthquake swarms. The tear is evidenced by the exceptional depth and low gravity of the trench, Puerto Rico's post-Miocene uplift and trenchward tilting and by the island's trenchward component of modern motion. This modern motion implies low seismic coupling on a mainly strike-slip component of the subduction zone. At Hispaniola, by contrast, large 20th century thrust earthquakes (e.g., in 1946) demonstrate seismic subduction, the trench there is shallow, and strain partitioning is expressed as strike-slip earthquakes onshore (e.g., Haiti in 2010). Slab geometry of the transition between these two subducting segments is unclear, as are the surficial effects of the westward "plowing" of the North American slab through the Caribbean mantle. East and south of the inferred tear, subduction accompanied by volcanism is taking place off the northern Lesser Antilles. Tectonic variability of subduction in the northeast Caribbean is likely responsible for faulting within the overlying plate that have generated large earthquakes and tsunamis in 1867 in the Virgin Islands, and in 1918 off the west coast of Puerto Rico. This variability, however, may limit to a few hundred kilometers, the maximum rupture length along the subduction zone. Extreme-wave deposits at Anegada, British Virgin Islands, may represent a large thrust earthquake east of the tear or a smaller normal earthquake on the trench outer wall. The deep trench

  7. Numerical simulations of water transport in subduction zone: Influences of serpentinized layer in oceanic slabs on subduction dynamics

    NASA Astrophysics Data System (ADS)

    Nakao, A.; Hikaru, I.; Nakakuki, T.; Suzuki, Y.; Nakamura, H.

    2017-12-01

    Water liberated from subducting oceanic slabs can affect the subduction dynamics such as mantle wedge flows and plate motion (e.g., Gerya & Meilick, 2011; Horiuchi & Iwamori, 2016; Nakao et al., 2016). However, how water liberated from the slabs, in particular a hydrated part within the oceanic lithosphere (e.g., Fujie et al., 2013), is transported and affects the subduction dynamics has not been fully understood. In order to clarify the roles of water in subduction dynamics, we conducted 2-D dynamical simulations of water transport and mantle convection without imposing the geometry and velocity of subducting slabs. Using the simulations with various thicknesses (0-20 km) of a partially serpentinized layer (hereafter referred to as "SL") underlaying the altered oceanic basalt crust (AOC) in the subducting oceanic lithosphere, we estimate the subduction rate, back-arc spreading, trench migration, and slab geometry. The simulations show that the plate motion significantly changes depending on the amount of liberated water. When the SL is absent (0 km thick), the AOC mostly dehydrates at shallow depths (< 70 km). In this case, the plate subducts slowly, the trench is stationary, and the slab penetrates the 660-km boundary. If the SL is 7.5 km in thickness, it dehydrates at a greater depth compared to AOC, and more water enters the mantle wedge and the back-arc region. The liberated water reduces the viscosity of mantle wedge, and consequently, the subduction rate increases, the trench migrates seaward, and the slab stagnates on the 660-km. If the SL is 20 km in thickness, the upper SL releases much water into the mantle wedge and the back-arc region, whereas the lower SL does not dehydrate because of water uptake by phase A and phase D. In this case, because buoyancy of the subducting slab increases, the subduction is slow, back-arc spreading is weakened, and the slab penetrates the 660-km. Our results imply that the observed variety of subducting slabs reflects

  8. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki

    2013-09-01

    Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu

  9. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, Uri S.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result

  10. P and S wave attenuation tomography of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Wang, Zewei; Zhao, Dapeng; Liu, Xin; Chen, Chuanxu; Li, Xibing

    2017-04-01

    We determine the first high-resolution P and S wave attenuation (Q) tomography beneath the entire Japan Islands using a large number of high-quality t∗ data collected from P and S wave velocity spectra of 4222 local shallow and intermediate-depth earthquakes. The suboceanic earthquakes used in this study are relocated precisely using sP depth phases. Significant landward dipping high-Q zones are revealed clearly, which reflect the subducting Pacific slab beneath Hokkaido and Tohoku, and the subducting Philippine Sea (PHS) slab beneath SW Japan. Prominent low-Q zones are visible in the crust and mantle wedge beneath the active arc volcanoes in Hokkaido, Tohoku, and Kyushu, which reflect source zones of arc magmatism caused by fluids from the slab dehydration and corner flow in the mantle wedge. Our results also show that nonvolcanic low-frequency earthquakes (LFEs) in SW Japan mainly occur in the transition zone between a narrow low-Q belt and its adjacent high-Q zones right above the flat segment of the PHS slab. This feature suggests that the nonvolcanic LFEs are caused by not only fluid-affected slab interface but also specific conditions such as high pore pressure which is influenced by the overriding plate.

  11. Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.

    2010-12-01

    The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures < 450 C. Above this temperature earthquakes occur more sporadically and have significantly reduced integrated seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the

  12. Trench-breaching afterslip following deeper coseismic slip of the 2012 Mw 7.6 Costa Rica earthquake constrained by near-trench pressure and land-based geodetic observations

    NASA Astrophysics Data System (ADS)

    Sun, Tianhaozhe; Davis, Earl E.; Wang, Kelin; Jiang, Yan

    2017-12-01

    Large rupture of the shallowest portion of subduction thrust faults (megathrusts), such as during the 2011 moment magnitude (Mw) 9.0 Tohoku-oki earthquake, can generate the most devastating tsunamis. However, it remains unclear whether such trench-breaching rupture is typical of other subduction earthquakes. The main difficulty in answering this question is the common lack of near-trench geodetic monitoring in subduction zones worldwide. Seafloor and sub-seafloor fluid pressure measurements at two closely located borehole observatories in the Middle America trench have provided clear evidence for the absence of trench-breaching rupture during the 2012 Mw 7.6 Costa Rica earthquake, and for the presence of substantial trench-breaching afterslip at slow rates after the rupture (Davis et al., 2015). In this study, we compare postseismic seafloor pressure change at the trench with coastal Global Navigation Satellite System (GNSS) displacements. The same temporal characteristics of the deformation at the trench and coastal sites indicate that both offshore and onshore deformation were the consequence of afterslip that occurred over a wide spatial range updip of the rupture. By determining the co- and post-seismic slip distributions and inferring the associated shear stress changes on the megathrust, we show that the mechanical behaviour varies in the dip direction. The slip behaviour of the shallow megathrust at Costa Rica is consistent with conventional conceptual models, and contrasts with the behaviour of the shallowest megathrust during the Tohoku-oki event.

  13. Geologic signature of early Tertiary ridge subduction in Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Goldfarb, Richard J.; Miller, Marti L.; Dumoulin, Julie A.; Nelson, Steven W.; Karl, Susan M.

    2003-01-01

    A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach–Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence.All of these events - but most especially those in the accretionary prism - can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after

  14. The 2000 Nemuro-Hanto-Oki earthquake, off eastern Hokkaido, Japan, and the high intraslab seismic activity in the southwestern Kuril Trench

    USGS Publications Warehouse

    Takahashi, H.; Hirata, K.

    2003-01-01

    The 2000 Nemuro-Hanto-Oki earthquake (Mw6.8) occurred in the southwestern part of the Kuril Trench. The hypocenter was located close to the aftershock region of the great 1994 Kuril earthquake (Mw8.3), named "the 1994 Hokkaido-Toho-Oki earthquake" by the Japan Meteorological Agency, for which the fault plane is still in debate. Analysis of the 2000 event provides a clue to resolve the fault plane issue for the 1994 event. The hypocenters of the 2000 main shock and aftershocks are determined using arrival times from a combination of nearby inland and submarine seismic networks with an improved azimuthal coverage. They clearly show that the 2000 event was an intraslab event occurring on a shallow-dipping fault plane between 55 and 65 km in depth. The well-focused aftershock distribution of the 2000 event, the relative location of the 1994 event with respect to the 2000 event, and the similarity between their focal mechanisms strongly suggest that the faulting of the great 1994 earthquake also occurred on a shallow-dipping fault plane in the subducting slab. The recent hypocenter distribution around the 1994 aftershock region also supports this result. Large intraslab earthquakes occuring to the southeast of Hokkaido may occur due to a strong coupling on the plate boundary, which generates relatively large stress field within the subducting Pacific plate.

  15. Upper Pleistocene uplifted shorelines as tracers of (local rather than global) subduction dynamics

    NASA Astrophysics Data System (ADS)

    Henry, Hadrien; Regard, Vincent; Pedoja, Kevin; Husson, Laurent; Martinod, Joseph; Witt, Cesar; Heuret, Arnauld

    2014-08-01

    Past studies have shown that high coastal uplift rates are restricted to active areas, especially in a subduction context. The origin of coastal uplift in subduction zones, however, has not yet been globally investigated. Quaternary shorelines correlated to the last interglacial maximum (MIS 5e) were defined as a global tectonic benchmark (Pedoja et al., 2011). In order to investigate the relationships between the vertical motion and the subduction dynamic parameters, we cross-linked this coastal uplift database with the “geodynamical” databases from Heuret (2005), Conrad and Husson (2009) and Müller et al. (2008). Our statistical study shows that: (1) the most intuitive parameters one can think responsible for coastal uplift (e.g., subduction obliquity, trench motion, oceanic crust age, interplate friction and force, convergence variation, dynamic topography, overriding and subducted plate velocity) are not related with the uplift (and its magnitude); (2) the only intuitive parameter is the distance to the trench which shows in specific areas a decrease from the trench up to a distance of ˜300 km; (3) the slab dip (especially the deep slab dip), the position along the trench and the overriding plate tectonic regime are correlated with the coastal uplift, probably reflecting transient changes in subduction parameters. Finally we conclude that the first order parameter explaining coastal uplift is small-scale heterogeneities of the subducting plate, as for instance subducting aseismic ridges. The influence of large-scale geodynamic setting of subduction zones is secondary.

  16. Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.

    2014-04-01

    Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.

  17. Heterogeneous distribution of pelagic sediments incoming the Japan Trench possibly controlling slip propagation on shallow plate boundary fault

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.

    2017-12-01

    Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated

  18. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench

    USGS Publications Warehouse

    Nanayama, F.; Satake, K.; Furukawa, R.; Shimokawa, K.; Atwater, B.F.; Shigeno, K.; Yamaki, S.

    2003-01-01

    The Pacific plate converges with northeastern Eurasia at a rate of 8-9 m per century along the Kamchatka, Kuril and Japan trenches. Along the southern Kuril trench, which faces the Japanese island of Hokkaido, this fast subduction has recurrently generated earthquakes with magnitudes of up to ???8 over the past two centuries. These historical events, on rupture segments 100-200 km long, have been considered characteristic of Hokkaido's plate-boundary earthquakes. But here we use deposits of prehistoric tsunamis to infer the infrequent occurrence of larger earthquakes generated from longer ruptures. Many of these tsunami deposits form sheets of sand that extend kilometres inland from the deposits of historical tsunamis. Stratigraphic series of extensive sand sheets, intercalated with dated volcanic-ash layers, show that such unusually large tsunamis occurred about every 500 years on average over the past 2,000-7,000 years, most recently ???350 years ago. Numerical simulations of these tsunamis are best explained by earthquakes that individually rupture multiple segments along the southern Kuril trench. We infer that such multi-segment earthquakes persistently recur among a larger number of single-segment events.

  19. The Effect of Semi-Brittle Rheology on the Seismicity at the Subduction Interface: Coseismic and Aseismic Events

    NASA Astrophysics Data System (ADS)

    Tong, X.; Lavier, L.

    2017-12-01

    Cold and warm subduction zones usually have different seismicity and tectonic structure. Aseismic events like episodic tremor and slip (ETS) and slow slip event (SSE) are often observed in warm and young slabs which typically have less megathrust seismicity and smaller seismogenic area (e.g. southwest Japan). On the other hand, cold and old slabs (e.g. Northeast Japan) have more megathrust events and larger seismogenic area and few aseismic events. Recent studies have try to model the differences in seismic behaviors with different approaches, includes rheological heterogeneity (e.g. frictional vs. viscous), petrological heterogeneity (e.g. hydration-dehydration process and mineral phase changes), and the frictional heterogeneity (e.g. rate-and-state dependent friction). Following previous works, we proposed a new model in which the subduction channel has a temperature dependent material assembly which composed of an explicit mixture of basalt/eclogite and mantle peridotite. Our model also take into account rate and state dependent friction and pore fluid pressure. Depending on the temperature, the basalt and peridotite mixture can behave either as an elastoplastic frictional or a Maxwell viscoelastic material. To model the mixture numerically, we use DynEarthSol3D (DES3D). DES3D is a robust, adaptive, multi-dimensional, finite element method solver which has a composite Elasto-Visco-Plastic rheology. We vary the temperature profile, the ratio of basalt vs. peridotite, the rheology of the mantle peridotites and the loading rate of the subduction interface. Over multiple earthquake cycles, our two end member experiments show that megathrust earthquakes are dominate the seismicity for cold condition (e.g. Japan trench) while both coseismic and aseismic events account for the seismicity for warm condition (e.g. Nankai trench).

  20. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  1. Vertical slab sinking and westward subduction offshore of Mesozoic North America

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Mihalynuk, Mitchell G.

    2013-04-01

    Subducted slabs in the mantle, as imaged by seismic tomography, preserve a record of ancient subduction zones. Ongoing debate concerns how direct this link is. How long ago did each parcel of slab subduct, and where was the trench located relative to the imaged slab position? Resolving these questions will benefit paleogeographic reconstructions, and restrict the range of plausible rheologies for mantle convection simulations. We investigate one of the largest and best-constrained Mesozoic slab complexes, the "Farallon" in the transition zone and lower mantle beneath North America. We quantitatively integrate observations from whole-mantle P-wave tomography, global plate reconstructions, and land geological evidence from the North American Cordillera. These three data sets permit us to test the simplest conceivable hypothesis for linking slabs to paleo-trenches: that each parcel of slab sank only vertically shortly after entering the trench That is, we test whether within the limits of tomographic resolution, all slab material lies directly below the location where it subducted beneath its corresponding arc. Crucially and in contrast to previous studies, we do not accept or impose an Andean-style west coast trench (Farallon-beneath-continent subduction) since Jurassic times, as this scenario is inconsistent with many geological observations. Slab geometry alone suggests that trenches started out as intra-oceanic because tomography images massive, linear slab "walls" in the lower mantle, extending almost vertically from about 800 km to 2000+ km depth. Such steep geometries would be expected from slabs sinking vertically beneath trenches that were quasi-stationary over many tens of millions of years. Intra-oceanic trenches west of Mesozoic North America could have been stationary, whereas a coastal Farallon trench could not, because the continent moved westward continuously as the Atlantic opened. Overlap of North American west-coast positions, as reconstructed in a

  2. Elastic Properties of Subduction Zone Materials in the Large Shallow Slip Environment for the Tohoku 2011 Earthquake: Laboratory data from JFAST Core Samples

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2014-12-01

    The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica

  3. Seismic anisotropy and mantle flow below subducting slabs

    NASA Astrophysics Data System (ADS)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  4. Mid-ocean ridge serpentinite in the Puerto Rico Trench: Accretion, alteration, and subduction of Cretaceous seafloor in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Klein, F.; Marschall, H.; Bowring, S. A.; Horning, G.

    2016-12-01

    Serpentinite is believed to be one of the main carriers of water and fluid mobile elements into subduction zones, but direct evidence for serpentinite subduction has been elusive. The Antilles island arc is one of only two subduction zones worldwide that recycles slow-spreading oceanic lithosphere where descending serpentinite is both exposed by faulting and directly accessible on the seafloor. Here we examined serpentinized peridotites dredged from the North Wall of the Puerto Rico Trench (NWPRT) to assess their formation and alteration history and discuss geological ramifications resulting from their emplacement and subduction. Lithospheric accretion and serpentinization occurred, as indicated by U-Pb geochronology of hydrothermally altered zircon, at the Cretaceous Mid-Atlantic Ridge (CMAR). In addition to lizardite-rich serpentinites with pseudomorphic textures after olivine and pyroxene typical for static serpentinization at slow spreading mid-ocean ridges, recovered samples include non-pseudomorphic antigorite-rich serpentinites that are otherwise typically associated with peridotite at convergent plate boundaries. Antigorite-serpentinites have considerably lower Fe(III)/Fetot and lower magnetic susceptibilities than lizardite-serpentinites with comparable Fetot contents. Rare earth element (REE) contents of lizardite-serpentinites decrease linearly with increasing Fe(III)/Fetot of whole rock samples, suggesting that oxidation during seafloor weathering of serpentinite releases REEs to seawater. Serpentinized peridotites recorded multifaceted igneous and high- to low-temperature hydrothermal processes that involved extensive chemical, physical, and mineralogical modifications of their peridotite precursors with strong implications for our understanding of the accretion, alteration, and subduction of slow-spreading oceanic lithosphere.

  5. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  6. A critical assessment of viscous models of trench topography and corner flow

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Hager, B. H.; Raefsky, A.

    1984-01-01

    Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.

  7. Mantle Flow Induced by Subduction Beneath Taurides Mountains

    NASA Astrophysics Data System (ADS)

    Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.

    2017-12-01

    GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.

  8. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    NASA Astrophysics Data System (ADS)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve

  9. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  10. Great (≥Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor

    USGS Publications Warehouse

    Scholl, David W.; Kirby, Stephe H.; von Huene, Roland E.; Ryan, Holly F.; Wells, Ray E.; Geist, Eric L.

    2015-01-01

    However, large Mw8.0–9.0 IPTs commonly (n = 23) nucleated at thin-sediment trenches. These earthquakes are associated with the subduction of low-relief ocean floor and where the debris of subduction erosion thickens the plate-separating subduction channel. The combination of low bathymetric relief and subduction erosion is inferred to also produce a smooth trench-parallel distribution of coupling posited to favor the characteristic lengthy rupturing of high-magnitude IPT earthquakes. In these areas subduction of a weak sedimentary sequence further enables rupture continuation.

  11. Structural deformation and detailed architecture of accretionary wedge in the northern Manila subduction zone

    NASA Astrophysics Data System (ADS)

    Gao, J.; Wu, S.; Yao, Y.; Chen, C.

    2017-12-01

    The South China Sea (SCS) which located at the southeast edge of the Eurasian plate, is heavily influenced by the Philippine Sea plate and the Indo-Australian plate. As eastern boundary of the SCS, Manila subduction zone was created by the northwestern movement of the Philippine Sea plate, recorded the key information on formation and evolution of the SCS and often triggered off earthquakes and tsunami in the East and South Asia. Using high resolution multi-channel seismic data across the northern Manila subduction zone, this study analyzed sedimentary characteristics of oceanic basin and trench, and fine described features of structural deformation and architecture of accretionary wedge and magmatism to discuss the time of subduction inception, thrust motion and influence of seamount subduction on the geometry of the Manila trench. Results show that lower slope of accretionary wedge mainly consist of imbricated thrusts with blind thrust as the frontal fault and structural wedge whereas upper slope was obscure for intensely structural deformation and magmatism. All the thrust faults merged into a detachment fault/surface which may root in Lower Miocene or even older strata, cut off the Miocene near buried seamount and extended the Pliocene upward, suggesting that this detachment fault was obviously influenced by buried seamount and basement high below the accretionary wedge. Magmatism began to be active from late Miocene and continued to be intense during Pliocene and Quaternary in the oceanic basin, trench and accretionary wedge. Based on characteristics of sedimentary and structural deformation, this study proposed that accretionary wedge of the northern Manila subduction zone formed before 16.5 Ma and propagated to the SCS through piggyback propagation thrusting when seafloor spreading of the SCS was still ongoing before 15 Ma. Subduction of extended continental crust in the northeastern SCS created a significantly concaving eastward to geometric shape of the

  12. Mantle flow influence on subduction evolution

    NASA Astrophysics Data System (ADS)

    Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard

    2018-05-01

    The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.

  13. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    NASA Astrophysics Data System (ADS)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  14. Investigating the 3-D Subduction Initiation Processes at Transform Faults and Passive Margins

    NASA Astrophysics Data System (ADS)

    Peng, H.; Leng, W.

    2017-12-01

    Studying the processes of subduction initiation is a key for understanding the Wilson cycle and improving the theory of plate tectonics. Previous studies investigated subduction initiation with geological synthesis and geodynamic modeling methods, discovering that subduction intends to initiate at the transform faults close to oceanic arcs, and that its evolutionary processes and surface volcanic expressions are controlled by plate strength. However, these studies are mainly conducted with 2-D models, which cannot deal with lateral heterogeneities of crustal thickness and strength along the plate interfaces. Here we extend the 2-D model to a 3-D parallel subduction model with high computational efficiency. With the new model, we study the dynamic controlling factors, morphology evolutionary processes and surface expressions for subduction initiation with lateral heterogeneities of material properties along transform faults and passive margins. We find that lateral lithospheric heterogeneities control the starting point of the subduction initiation along the newly formed trenches and the propagation speed for the trench formation. New subduction tends to firstly initiate at the property changing point along the transform faults or passive margins. Such finds may be applied to explain the formation process of the Izu-Bonin-Mariana (IBM) subduction zone in the western Pacific and the Scotia subduction zone at the south end of the South America. Our results enhance our understanding for the formation of new trenches and help to provide geodynamic modeling explanations for the observed remnant slabs in the upper mantle and the surface volcanic expressions.

  15. Neogene subduction beneath Java, Indonesia: Slab tearing and changes in magmatism

    NASA Astrophysics Data System (ADS)

    Cottam, Michael; Hall, Robert; Cross, Lanu; Clements, Benjamin; Spakman, Wim

    2010-05-01

    Java is a Neogene calc-alkaline volcanic island arc formed by the northwards subduction of the Indo-Australian Plate beneath Sundaland, the continental core of SE Asia. The island has a complex history of volcanism and displays unusual subduction characteristics. These characteristics are consistent with the subduction of a hole in the down going slab that was formed by the arrival of a buoyant oceanic plateau at the trench. Subduction beneath Java began in the Eocene. However, the position and character of the calc-alkaline arc has changed over time. An older Paleogene arc ceased activity in the Early Miocene. Volcanic activity resumed in the Late Miocene producing a younger arc to the north of the older arc, and continues to the present day. An episode of Late Miocene thrusting at about 7 Ma is observed throughout Java and appears to be linked to northward movement of the arc. Arc rocks display typical calc-alkaline characteristics and reflect melting of the mantle wedge and subducted sediments associated with high fluid fluxes. Between West Java and Bali the present arc-trench gap is unusually wide at about 300 km. Seismicity identifies subducted Indian Ocean lithosphere that dips north at about 20° between the trench and the arc and then dips more steeply at about 60-70° from 100 to 600 km depth. In East Java there is gap in seismicity between about 250 and 500 km. Seismic tomography shows that this gap is not an aseismic section of the subduction zone but a hole in the slab. East Java is also unusual in the presence of K-rich volcanoes, now inactive, to the north of the calc-alkaline volcanoes of the active arc. In contrast to the calc-alkaline volcanism of the main arc, these K-rich melts imply lower fluid fluxes and a different mantle source. We suggest that all these observations can be explained by the tearing of the subducting slab when a buoyant oceanic plateau arrived at the trench south of East Java at about 8 Ma. With the slab unable to subduct

  16. IODP Expedition 366 Reveals Widespread Seamount Subduction Effects in the Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Wheat, C. G.; Williams, T.

    2017-12-01

    Numerous studies of the subduction of seamounts at accretionary convergent plate margins show considerable vertical tectonic deformation in the forearc region. This includes embayment of the trench axis, steepening of the inner trench slope, the creation of troughs in the wake of the seamount track beneath the forearc sediment wedge, but hypotheses regarding the seismogenic consequences of these processes are frequently at odds. In the nonaccretionary Mariana convergent plate margin, it is clear that ridges crosscut the entire forearc region in commensurate dimensions with thicker areas of subducting Pacific plate. Furthermore, to-date deep-sea drilling results on ODP Legs 125 and 195 and on IODP Expedition 366 recovered seamount materials from 5 serpentinite mud volcanoes over a 640 km along-strike distance, within 90 km west of the trench axis, and from 13 to 19 km depth to slab. The location of the serpentinite mud volcanoes is always associated with fault lineaments. The faulting creates the conduits for eruption of mixtures of fluids from the subduction channel and fault gouge from both the subduction channel and the forearc lithosphere. Cores from IODP 366 confirm that seamount subduction and deformation is a temporally and spatially pervasive process on the Mariana forearc. The new findings provide windows on a continuum of the evolution of plate and seamount subduction from the trench to nearly 20 km depth within the subduction channel. Cased boreholes were deployed at the summits of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts) during Expedition 366. These, plus the existing borehole observatory at ODP Site 1200C on the active summit of Conical Seamount provide a means to monitor processes of subduction related to serpentinite mud volcanism of the Mariana forearc. Such drilling results and borehole observations impact current paradigms of lithospheric deformation, mass cycling

  17. A Hybrid Tsunami Risk Model for Japan

    NASA Astrophysics Data System (ADS)

    Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.

    2014-12-01

    Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.

  18. Seismic Structure of Mantle Transition Zone beneath Northwest Pacific Subduction Zone and its Dynamic Implication

    NASA Astrophysics Data System (ADS)

    Li, J.; Guo, G.; WANG, X.; Chen, Q.

    2017-12-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we

  19. An Examination of Seismicity Linking the Solomon Islands and Vanuatu Subduction Zones

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Furlong, K. P.

    2015-12-01

    The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two segments: the South Solomon Trench and the Vanuatu Trench. The two subducting sections are offset by a 200 km long, transform fault - the San Cristobal Trough (SCT) - which acts as a Subduction-Transform Edge Propagator (STEP) fault. The subducting segments have experienced much more frequent and larger seismic events than the STEP fault. The northern Vanuatu trench hosted a M8.0 earthquake in 2013. In 2014, at the juncture of the western terminus of the SCT and the southern South Solomon Trench, two earthquakes (M7.4 and M7.6) occurred with disparate mechanisms (dominantly thrust and strike-slip respectively), which we interpret to indicate the tearing of the Australia plate as its northern section subducts and southern section translates along the SCT. During the 2013-2014 timeframe, little seismic activity occurred along the STEP fault. However, in May 2015, three M6.8-6.9 strike-slip events occurred in rapid succession as the STEP fault ruptured east to west. These recent events share similarities with a 1993 strike-slip STEP sequence on the SCT. Analysis of the 1993 and 2015 STEP earthquake sequences provides constraints on the plate boundary geometry of this major transform fault. Preliminary research suggests that plate motion along the STEP fault is partitioned between larger east-west oriented strike-slip events and smaller north-south thrust earthquakes. Additionally, the differences in seismic activity between the subducting slabs and the STEP fault can provide insights into how stress is transferred along the plate boundary and the mechanisms by which that stress is released.

  20. Studying Near-Trench Characteristics of the 2011 Tohoku-Oki Megathrust Rupture Using Differential Multi-Beam Bathymetry before and after the Earthquake

    NASA Astrophysics Data System (ADS)

    Sun, T.; Fujiwara, T.; Kodaira, S.; Wang, K.; He, J.

    2014-12-01

    Large coseismic motion (up to ~ 31 m) of seafloor GPS sites during the 2011 M 9 Tohoku earthquake suggests large rupture at shallow depths of the megathrust. However, compilation of all published rupture models, constrained by the near-field seafloor geodetic observation and also various other datasets, shows large uncertainties in the slip of the most near-trench (within ~ 50 km from the trench) part of the megathrust. Repeated multi-beam bathymetry surveys that cover the trench axis, carried out by Japan Agency for Marine-Earth Science and Technology, for the first time recorded coseismic deformation in a megathrust earthquake at the trench. In previous studies of the differential bathymetry (DB) before and after the earthquake to determine coseismic fault slip, only the rigid-body translation component of the upper plate deformation was considered. In this work, we construct Synthetic Differential Bathymetry (SDB) using an elastic deformation model and make comparisons with the observed DB. We use a 3-D elastic Finite Element model with actual fault geometry of the Japan trench subduction zone and allowing the rupture to breach the trench. The SDB can well predict short-wavelength variations in the observed DB. Our tests using different coseismic slip models show that the internal elastic deformation of the hanging wall plays an important role in generating DB. Comparing the SDB with the observed DB suggests that the largest slip is located within ~ 50 km from the trench. The SDB proves to be the most effective tool to evaluate the performance of different rupture models in predicting near-trench slip. Our SDB work will further explore the updip slip variation. The SDB may help to constrain the slip gradient in the updip direction and may help to determine whether the large shallow slip in the Tohoku earthquake plateaued at the trench or before reaching the trench. Resolving these issues will provide some of the key tests for various competing models that were

  1. Building a Subduction Zone Observatory

    USGS Publications Warehouse

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; González, Frank I.; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  2. The mineralogical and chronological evidences of subducted continent material in deep mantle: diamond, zircon and rutile separated from the Horoman peridotite of Japan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, J.; Nida, K.; Yamamoto, S.; Lin, Y.; Li, Q.; Tian, M.; Kon, Y.; Komiya, T.; Maruyama, S.

    2017-12-01

    The Horoman peridotite complex is an Alpine-type orogenic lherzolite massif of upper-mantle in the Hidaka metamorphic belt, Hokkaido, Japan. The peridotite complex is composed of dunite, harzburgite, spinel lherzolite and plagioclase lherzolite, exhibits a conspicuous layered structure, which is a product of a Cretaceous to early Paleogene arc-trench system formed by westward subduction of an oceanic plate between the paleo-Eurasian and paleo-North American Plates. Various combinations of diamond, corundum, moissanite, zircon, monazite, rutile, and kyanite have been separated from spinel harzburgite (700 kg) and lherzolite (500 kg), respectively. The carbon isotopes analyses of diamond grains by Nano-SIMS yielded significant light carbon isotopes feature as δ13 CPDB values ranging from -29.2 ‰ to -17.2 ‰, with an average of -22.8±0.32 ‰. Zircon grains occur as sub-angular to round in morphological characteristics, similar to zircons of crustal sedimentary rocks. Many zircons contain small inclusions, comprise of quartz, apatite, rutile and muscovite. The U-Pb age of zircon grains analyzed using LA-ICP-MS and SIMS gave a wide age range, from the Jurassic to Archean (ca 159 - 3131 Ma). In the zircon age histogram, four age groups were identified; the age peaks are 2385 Ma, 1890 Ma, 1618 Ma and 1212 Ma, respectively. On the other hand, U-Pb ages of rutile grains analyzed using SIMS gave a peak of 370 Ma in age histogram. The mineralogical and chronological evidences of numerous crustal minerals in peridotite of Horoman suggest that the ancient continent material was subducted in deep mantle and recycled through the upper mantle by multicycle subduction processes.

  3. In situ seismic anisotropy around deep earthquakes in Japan subduction slabs using Japan Meteorological Agency moment tensors

    NASA Astrophysics Data System (ADS)

    Li, J.; Zheng, Y.; Thomsen, L.

    2017-12-01

    Knowing the in situ seismic anisotropy around deep earthquakes in slabs is important in understanding deep-earthquake mechanism as it may provide critically needed information about the rock fabric where deep earthquakes occur. It has been recognized for about 50 years that many deep earthquakes are not double-couple (DC) events. Previously we showed that in situ anisotropy around deep earthquakes could explain such observed non-DC events. Traditionally, the shear wave splitting method has been used to infer such anisotropy around deep earthquakes but this is challenging because it will need many crossing ray paths for the method to localize the anisotropic region (Long 2013). In this abstract, we adopt the same procedure to obtain anisotropy in the Pacific slab under Japan using moment tensors provided by the Japan Meteorological Agency using the F-net data. We directly probe the in situ anisotropy within the subducting slabs using the radiation patterns (represented by the moment tensors) of deep earthquakes (with depth greater than 60 km). By assuming a group of shear dislocation events embedded in a common tilted transversely isotropic (TTI) medium, we used the moment tensors as our input data to invert for the anisotropy in Mariana-Japan-Kuril subducting zone. The TTI medium is characterized by the P and S wave velocities along the symmetry axis (described by two free angles) and three Thomsen parameters. We divided the deep earthquake events into 9 groups by their spatial proximity using the k-means clustering method (Hartigan and Wong 1979). These 9 groups include 2 intermediate-depth groups (depth from 60 km to 300 km) and 7 deep-focus groups (depth greater than 300 km). Our inversion results show that the inverted TTI symmetry axes are perpendicular to the slab interface for two intermediate-depth groups (consistent with dehydration metamorphic reactions) and parallel to the slab interface for 7 deep-focus group. The shear wave anisotropy is best resolved

  4. From subduction to collision: results of French POP2 program on Taiwan-Philippine festoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchet, R.; Stephan, J.F.; Rangin, C.

    1986-07-01

    A sea-beam, seismic, magnetic, and gravimetric survey was conducted with the R/V Jean-Charcot in three key regions off the Taiwan-Philippine festoon in the western Pacific: (1) Ryukyu active margin and its junction with Taiwan; (2) northern part of the Manila Trench and its junction with the Taiwan tectonic prism; and (3) southern termination of Manila Trench in front of Mindoro Island. Transitions between active subduction along the Manila Trench and collision of Taiwan and Mindoro, and relations between active subduction and extension in the Okinawa-Ryukyu and the northeastern Taiwan systems are particularly studied.

  5. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Moresi, Louis; Zhao, Dapeng; Sandiford, Dan; Whittaker, Joanne

    2018-06-01

    Northeast Asia underwent widespread rifting and magmatic events during the Cenozoic. The geodynamic origins of these tectonic events are often linked to Pacific plate subduction beneath Northeast Asia. However, the Japan Sea did not open until the late Oligocene, tens of millions of years after Pacific Plate subduction initiation in the Paleocene. Moreover, it is still not clear why the Baikal Rift Zone extension rate increased significantly after the late Miocene, while the Japan Sea opening ceased at the same time. Geodynamic models suggest these enigmatic events are related to the rapidly-aging Pacific Plate at the trench after Izanagi-Pacific spreading ridge subduction. Subduction of the young Pacific Plate delayed the Japan Sea opening during the Eocene while advection of the old Pacific Plate towards the trench increases seafloor age rapidly, allowing the Japan Sea to open after the early Miocene. The Japan Sea opening promotes fast trench retreat and slab stagnation, with subduction-induced wedge zone convection gradually increasing its extent during this process. The active rifting center associated with wedge zone convection upwelling also shifts inland-ward during slab stagnation, preventing further Japan Sea spreading while promoting the Baikal Rift Zone extension. Our geodynamic model provides a good explanation for the temporal-spatial patterns of the Cenozoic tectonic and magmatic events in Northeast Asia.

  6. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  7. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Though there is no plate tectonics per se on Venus, recent Magellan radar images and topographic profiles of the planet suggest the occurrence of the plate tectonic processes of lithospheric subduction and back-arc spreading. The perimeters of several large coronae (e.g., Latona, Artemis, and Eithinoha) resemble Earth subduction zones in both their planform and topographic profile. The planform of arcuate structures in Eastern Aphrodite were compared with subduction zones of the East Indies. The venusian structures have radii of curvature that are similar to those of terrestrial subduction zones. Moreover, the topography of the venusian ridge/trench structures is highly asymmetric with a ridge on the concave side and a trough on the convex side; Earth subduction zones generally display the same asymmetry.

  8. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a

  9. Using giant piston coring within IODP to track past earthquakes in the sedimentary record along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Strasser, Michael

    2017-04-01

    "Submarine paleoseismology" is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in stratigraphic succession. The concept of studying sedimentary event deposits for reconstructing past earthquake history and related impacts to the marine environment is increasingly being applied in various settings. However, at present we lack comprehensive data sets that allow conclusive distinctions between quality and completeness of the paleoseismic archives, as they may relate to different sediment transport, erosion and deposition processes vs. variability of intrinsic seismogenic behavior across different segments. Nevertheless, many recent studies, which are mostly based on conventional 10-m-long cores, demonstrate the potential of the research concept. With ECORD opening their mission specific platform approach to include giant piston coring within IODP, a new horizon has opened up for multi-coring expeditions fully dedicated to the rapidly growing field of submarine paleoseismology. IODP is uniquely positioned to address the complex feedback mechanisms between earthquake shaking and its manifestation in the marine archive, decipher related mass fluxes from the shallow to the deep see and to eventually provide longer records to constrain earthquake recurrence far beyond historical catalogues. Initially building on what sedimentary deposits were generated from the 2011 M9 Tohoku-oki earthquake, the Japan Trench is a promising study area to investigate earthquake-triggered sediment remobilization processes and how they become embedded in the stratigraphic record, and has thus been identified as a primary target for proposing giant piston coring within IODP. In this presentation we summarize recent results and available site survey data collected since the 2011 earthquake, comprising >50, 5-10m long piston and gravity cores from (i) trench-fill and graben-fill basin across the entire trench axis from 36° to 40.3° N (ii

  10. Temperature Models for the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Kostoglodov, V.; Currie, C.; Manea, M.; Wang, K.

    2002-12-01

    It is well known that the temperature is one of the major factors which controls the seismogenic zone. The Mexican subduction zone is characterized by a very shallow flat subducting interplate in its central part (Acapulco, Oaxaca), and deeper subduction slabs northern (Jalisco) and southern (Chiapas). It has been proposed that the seismogenic zone is controlled, among other factors, by a temperature. Therefore, we have developed four two-dimensional steady state thermal models for Jalisco, Guerrero, Oaxaca and Chiapas. The updip limit of the seismogenic zone is taken between 100 §C and 150 §C, while the downdip limit is thought to be at 350 §C because of the transition from stick-slip to stable-sliding. The shape of the subducting plate is inferred from gravity and seismicity. The convergence velocity between oceanic and continental lithospheric plates is taken as the following: 5 cm/yr for Jalisco profile, 5.5 for Guerrero profile, 5.8 for Oaxaca profile, and 7.8 for Chiapas profile. The age of the subducting plates, since they are young, and provides the primary control on the forearc thermal structure, are as the following: 11 My for Jalisco profile, 14.5 My for Guerrero profile, 15 My for Oaxaca profile, and 28 My for Chiapas profile. We also introduced in the models a small quantity of frictional heating (pore pressure ratio 0.98). The value of 0.98 for pore pressure ratio was obtained for the Guerrero profile, in order to fit the intersection between the 350 §C isotherm and the subducting plate at 200 Km from trench. The value of 200 km coupling zone from trench is inferred from GPS data for the steady interseismic period and also for the last slow aseismic slip that occurred in Guerrero in 2002. We have used this value of pore pressure ratio (0.98) for all the other profiles. For the others three profiles we obtained the following coupling extents: Jalisco - 100 km, Oaxaca - 170 km and Chiapas - 125 km (from the trench). Independent constrains of the

  11. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  12. Subduction zones: Not relevant to present-day problems of waste disposal

    USGS Publications Warehouse

    Silver, E.A.

    1972-01-01

    SUBDUCTION zones are considered to be sites of disposal for vast areas of the Earth's surface1, while new surface is generated simultaneously at rise crests2. Bostrom and Sherif3 suggest that the world's industrial and domestic waste be dumped into subduction zones at deep sea trenches to allow nature to complete the recycling process at geologically rapid rates of 5 to 10 cm/yr. They also point out that trenches are often sites of rapid rates of deposition and suggest that the dumped wastes would, speaking geologically, soon be buried. Francis4 suggests that canisters of toxic chemical and radioactive wastes could be dumped onto trench sediments and be expected to sink at rates of 20 m/yr, assuming that the mass of turbidites in the trench fill often spontaneously liquefies on shaking by earthquakes. The assumption is based on the supposed lack of evidence for deformed sediment in trenches. I will argue that the suggestion of Bostrom and Sherif3 is not useful for the next few dozen generations of human populations and will point out observational evidence to show that Francis's4 assumption is incorrectly founded. ?? 1972 Nature Publishing Group.

  13. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    PubMed

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  14. Discovery of dense aggregations of stalked crinoids in Izu-Ogasawara trench, Japan.

    PubMed

    Oji, Tatsuo; Ogawa, Yujiro; Hunter, Aaron W; Kitazawa, Kota

    2009-06-01

    Stalked crinoids are recognized as living fossils that typically inhabit modern deep-water environments exceeding 100 m. Previous records of stalked crinoids from hadal depths (exceeding 6000 m) are extremely rare, and no in-situ information has been available. We show here that stalked crinoids live densely on rocky substrates at depths over 9000 m in the Izu-Ogasawara Trench off the eastern coast of Japan, evidenced by underwater photos and videos taken by a remotely operated vehicle. This is the deepest in-situ observation of stalked crinoids and demonstrates that crinoid meadows can exist at hadal depths close to the deepest ocean floor, in a fashion quite similar to populations observed in shallower depths.

  15. Numerical modelling of lithospheric flexure in front of subduction zones in Japan and its role to initiate melt extraction from the LVZ.

    NASA Astrophysics Data System (ADS)

    Bessat, A.; Pilet, S.; Duretz, T.; Schmalholz, S. M.

    2017-12-01

    Petit-spot volcanoes were found fifteen years ago by Japanese researchers at the top of the subducting plate in Japan (Hirano 2006). This discovery is of great significance as it highlights the importance of tectonic processes for the initiation of intraplate volcanism. The location of these small lava flows is unusual and seems to be related to the plate flexure, which may facilitate the extraction of low degree melts from the base of the lithosphere, a hypothesis previously suggested to explain changes in electric and seismic properties at 70-90 km depth, i.e. within the low velocity zone (LVS) (Sifré 2014). A critical question is related to the process associated with the extraction of this low degree melts from the LVZ. First models suggested that extension associated to plate bending allows large cracks to propagate across the lithosphere and could promote the extraction of low degree melts at the base of the lithosphere (Hirano 2006 & Yamamoto 2014). However, the study of petit-spot mantle xenoliths from Japan (Pilet 2016) has demonstrated that low degree melts are not directly extracted to the surface but percolate, interact and metasomatize the oceanic lithosphere. In order to understand the melt extraction process in the region of plate bending, we performed 2D thermo-mechanical simulations of Japanese-type subduction. The numerical model considers viscoelastoplastic deformation. This allows the quantification of state of the stress, strain rates, and viscosities which will control the percolation of melt initially stocked at the base of the lithosphere. Initial results show that plate flexure changes the distribution of the deformation mechanism in the flexure zone, between 40 km to 80 km depth. A change of the dominant deformation mechanism from diffusion creep to dislocation creep and from there to Peierls creep was observed about 200 to 300 km from the trench. These changes are linked to the augmentation of the stresses in the flexure zone. At the

  16. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    NASA Astrophysics Data System (ADS)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  17. Quaternary Sediment Accumulation in the Aleutian Trench: Implications for Dehydration Reaction Progress and Pore Pressure Development Offshore Alaska

    NASA Astrophysics Data System (ADS)

    Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.

    2015-12-01

    Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.

  18. Subduction zone evolution and low viscosity wedges and channels

    NASA Astrophysics Data System (ADS)

    Manea, Vlad; Gurnis, Michael

    2007-12-01

    Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile

  19. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes

  20. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, O.; Crawford, W. C.; Koulakov, I.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2017-12-01

    The 1 400 km long Vanuatu subduction zone marks the subduction of the oceanic Australia plate beneath the North-Fijian microplate. Seismic and volcanic activity is high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Northern d'Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the forearc islands of Santo and Malekula. This subduction/collision coincides with a strongly decreased local convergence velocity rate at the trench (35 mm/yr compared to 120-160 mm/yr to the north and south) and significant uplift on the overriding plate. Two large forearc islands located 20-30 km from the subduction front Santo and Malekula to the trench allow excellent coverage of the megathrust seismogenic zone for a seismological study. We use data from the 10 months, 30-station amphibious ARC-VANUATU seismology network to construct a 3D velocity model and locate 11 617 earthquakes. The 3D model reveals low P and S velocities in the uppermost tens of kilometers in front of the Northern d'Entrecasteaux Ridge and the Bougainville Guyot. These anomalies may be due to heavy faulting of related subducted features, possibly including important water infiltration. We also identify a possible seamount entered into subduction beneath a smaller uplifted island between the two main islands. The spatial distribution of earthquakes is highly variable, as is the depth limit of the seismogenic zone, suggests a complex interaction of faults and stress zones related to high and highly variable stress that may be associated with the subducted features.

  1. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    PubMed

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  2. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    NASA Astrophysics Data System (ADS)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    We performed tsunami numerical simulations from various giant/great fault models along the Izu-Bonin trench in order to see the behavior of tsunamis originated in this region and to examine the recurrence pattern of great interplate earthquakes along the Nankai trough off southwest Japan. As a result, large tsunami heights are expected in the Ryukyu Islands and on the Pacific coasts of Kyushu, Shikoku and western Honshu. The computed large tsunami heights support the hypothesis that the 1605 Keicho Nankai earthquake was not a tsunami earthquake along the Nankai trough but a giant or great earthquake along the Izu-Bonin trench (Ishibashi and Harada, 2013, SSJ Fall Meeting abstract). The Izu-Bonin subduction zone has been regarded as so-called 'Mariana-type subduction zone' where M>7 interplate earthquakes do not occur inherently. However, since several M>7 outer-rise earthquakes have occurred in this region and the largest slip of the 2011 Tohoku earthquake (M9.0) took place on the shallow plate interface where the strain accumulation had considered to be a little, a possibility of M>8.5 earthquakes in this region may not be negligible. The latest M 7.4 outer-rise earthquake off the Bonin Islands on Dec. 22, 2010 produced small tsunamis on the Pacific coast of Japan except for the Tohoku and Hokkaido districts and a zone of abnormal seismic intensity in the Kanto and Tohoku districts. Ishibashi and Harada (2013) proposed a working hypothesis that the 1605 Keicho earthquake which is considered a great tsunami earthquake along the Nankai trough was a giant/great earthquake along the Izu-Bonin trench based on the similarity of the distributions of ground shaking and tsunami of this event and the 2010 Bonin earthquake. In this study, in order to examine the behavior of tsunamis from giant/great earthquakes along the Izu-Bonin trench and check the Ishibashi and Harada's hypothesis, we performed tsunami numerical simulations from fault models along the Izu-Bonin trench

  3. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Wakabayashi, John

    2017-12-01

    The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of

  4. Frictional behavior of carbonate-rich incoming sediment in the Hikurangi subduction zone

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B.; Ikari, M.; Collettini, C.

    2017-12-01

    In recent years, the traditional view of the seismogenic zone has been challenged by observations of a range of seismic behaviors both above and below the depths previously considered capable of nucleating earthquakes. The Hikurangi trench is one of the few subduction zones where this transitional seismic behavior has been observed at the shallowest portions of the subduction zone, providing an opportunity to investigate the mechanical controls on seismic behavior through measurements of directly sampled sediment. To this end, an IODP cruise (March-May, 2018; Exp. 375) will recover sample from the faults that participate in this shallow seismic behavior. In order to obtain preliminary frictional characterization of the sedimentary inputs to the Hikurangi Trench, we conducted deformation experiments on samples from an ocean drill core through the incoming sediments (ODP Site 1124). The sedimentary package subducting at Hikurangi contains carbonate-rich lithologies, which have been shown to be more frictionally unstable (velocity-weakening, high healing rates) than the clays that comprise the majority of the sedimentary inputs to global subduction zones. Such frictional properties could promote seismic behavior in the shallower reaches of the subduction zone. We focus on a section of ODP Site 1124 which has a carbonate content of 40 wt% to investigate the effect of this lithology. Samples were saturated with distilled water mixed with 35 g/l sea salt. Velocity-stepping and slide-hold-slide tests were performed in multiple biaxial and triaxial deformation apparatus to investigate a range of pressures, temperatures and velocities relevant to the shallow subduction zone (σeff = 1-150 MPa, sliding velocities of 1.7 nm/s-300 μm/s, hold times of 1-1000 s, and T = 20-100 ºC). We observe transitions from velocity-strengthening to velocity-weakening behavior over these conditions which could contribute to shallow seismic behavior in the Hikurangi trench.

  5. Dynamics of subduction, accretion, exhumation and slab roll-back: Mediterranean scenarios

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2010-12-01

    A dynamic orogen reveals various tectonic processes brought about by subduction: accretion of oceanic and continental crust, exhumation of UHP-HP rocks, and often, back-arc extension. In the Mediterranean, orogeny is strongly affected by slab retreat, as in the Aegean and Tyrrhenian Seas. In order to examine the different dynamic processes in a self-consistent manner, we perform a parametric study using the fully coupled thermo-mechanical numerical code PARAFLAM. The experiments reproduce a subduction zone in a slab pull mode, with accretion of one (the Tyrrhenian case) and two continental blocks (the Aegean case) that undergo, in sequence, thrusting, burial and exhumation. The modeling shows that despite differences in structure between the two cases, the deformation mechanisms are fundamentally similar and can be described as follows. The accretion of a continental block at the trench beneath the suture zone begins with its burial to UHP-HP conditions and thrusting. Then the continental block is delaminated from its subducting lithosphere. During the subduction-accretion process, the angle of the subducting slab increases due to the buoyancy of the continental block. When the oceanic subduction resumes, the angle of the slab decreases to reach a steady-state position. The Aegean and Tyrrhenian scenarios diverge at this stage, due naturally to the differences of their accretion history. When continental accretion is followed by oceanic subduction only, the continental block that has been accreted and detached stays at close to the trench and does not undergo further deformation, despite the continuing rollback. The extensional deformation is located further within the overriding plate, resulting in continental breakup and the development of an oceanic basin, as in the Tyrrhenian domain. When the continental accretion is followed first by oceanic subduction and then by accretion of another continental block, however, the evolution of the subduction zone is

  6. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Long, Maureen D.

    2015-06-01

    Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.

  7. New Seafloor Map of the Puerto Rico Trench Helps Assess Earthquake and Tsunami Hazards

    NASA Astrophysics Data System (ADS)

    ten Brink, Uri; Danforth, William; Polloni, Christopher; Andrews, Brian; Llanes, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-09-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure 1). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S. Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico, although their ages are unknown. The Puerto Rico Trench is atypical of oceanic trenches. Subduction is highly oblique (10°-20°) to the trench axis with a large component of left-lateral strike-slip motion. Similar convergence geometry is observed at the Challenger Deep in the Mariana Trench, the deepest point on Earth. In addition to its extremely deep seafloor, the Puerto Rico Trench is also characterized by the most negative free-air gravity anomaly on Earth, -380 mGal, located 50 km south of the trench, where water depth is 7950 m (Figure 2). A tilted carbonate platform provides evidence for extreme vertical tectonism in the region. This platform was horizontally deposited over Cretaceous to Paleocene arc rocks starting in the Late Oligocene. Then, at 3.5 Ma, the carbonate platform was tilted by 4° toward the trench over a time period of less than 40 kyr, such that its northern edge is at a depth of 4000 m and its reconstructed elevation on land in Puerto Rico is at +1300 m (Figures 1 and 2).

  8. Extensional Failure of "Pre-Stressed" Lithosphere Above a Subduction Zone May Have Contributed to the Size of the Tohoku-Oki Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Lavier, L. L.; Petersen, K. D.

    2015-12-01

    The Tohoku-oki earthquake was not only the costliest natural disaster in history it was the best monitored. The unprecedented data set showed that anomalously large lateral motion of the seafloor near the trench contributed to the size of the tsunami. Also, for the first time it was shown that a large subduction earthquake was followed by extensional aftershocks in a broad region of the upper plate (up to 250 km from the Japan Trench). Several observations suggest that the near-trench seafloor motion and the extensional aftershocks are linked. For example, a seismically imaged fault, just landward of the region of large seafloor motion, slipped in a normal sense during the earthquake. Also, inspired by the Tohoku data, researchers have searched for and found upper plate extensional aftershocks associated with several other subduction earthquakes that produced large tsunami. Extension of the upper plate can be driven by a reduction in the dip of a subducting slab. Such a dip change is suggested by the post-Miocene westward migration of the volcanic arc in Honshu. Numerical models show that a long-term reduction in slab dip can generate enough extensional stress to cause normal faulting over a broad region of the upper plate. The time step of the numerical model is then reduced to treat the inter-seismic time scale of 100-1000 years, when the subduction interface is locked. The interface dip continues to be reduced during the inter-seismic period, but extensional fault slip is suppressed by the relative compression of the upper plate caused by continued convergence. The relief of compressional stresses during dynamic weakening of the megathrust triggers a release of bending-related extensional strain energy. This extensional yielding can add significantly to the co-seismic radiated seismic energy and seafloor deformation. This mechanism is analogous to the breaking of a pre-stressed concrete beam supporting a bending moment when the compressional pre-stress is

  9. New constraints on subduction inputs and volatile outputs along the Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Fischer, T. P.; Plank, T. A.; Rizzo, A. L.; Rasmussen, D. J.; Cottrell, E.; Werner, C. A.; Kern, C.; Ilanko, T.; Buff, L.; Andrys, J.; Kelley, K. A.

    2017-12-01

    Volatile cycling drives volcanism in subduction zone settings. At arcs, volatiles can originate from the subducted slab, mantle wedge and/or crust. Each region has characteristic isotopic signatures, which can be used to fingerprint volatile provenance. We speculate that differences in subduction parameters, such as convergence angle, plate coupling and subducted sediment fluxes, may lead to differences in volatile provenance, which may in turn influence volcanic eruption style and frequency. Here we combine updated constraints on subduction inputs and volatile outputs to provide new insights into volatile cycling within the Aleutian Arc. The high proportion of organic carbon (80-100% to total carbon) in sediments subducting at the Aleutian trench stands out globally and predicts a light carbon isotopic composition of recycled volcanic fluids. We assess volatile outputs on volcanic timescales and along the arc by combining carbon (C), nitrogen (N) and helium (He) isotopic compositions of volcanic gases and new analyses of He and, where possible, C isotopes in olivine-hosted fluid inclusions. From our preliminary isotopic analyses of volcanic gases, we find a greater proportion of mantle-derived volatiles released from the Western segment of the Aleutian Arc (>40% mantle) compared with other volcanic arcs around the world (<30% mantle), where volatiles are sourced primarily from subducted or upper crustal carbonates. This trend may be due to the oblique convergence and low subducted sediment input in this region. The Aleutian Arc also exhibits among the lightest carbon isotope ratios of arcs worldwide (δ13C = -10 to -15‰), especially in the central part of the arc, where organic-bearing terrigneous sediment fills the trench and the convergence rate is high. New constraints on subduction inputs and outputs presented here will help discriminate between upper crustal and subducted carbon sources, and provide further insights into volatile cycling and subduction

  10. A Re-Os Study of Depleted Trench Peridotites from Northern Mariana

    NASA Astrophysics Data System (ADS)

    Ghosh, T.; Snow, J. E.; Heri, A. R.; Brandon, A. D.; Ishizuka, O.

    2017-12-01

    Trench peridotites provide information about the influence of subduction initiation on the extent of mantle wedge melting. They preserve melting records throughout subduction history, and as a result, likely experience multiple melt extraction events leading to successive depletion of melt/fluid mobile major and trace elements. To track melting histories of trench peridotites, Re-Os and PGEs can be used as reliable tracers to constrain early melt extraction or re-fertilization events. The Izu-Bonin-Mariana arc, being the largest intra-oceanic subduction system, provides an excellent area to study the formation of supra-subduction zone mantle and crust. Residual peridotite (harzburgite and dunite) samples were collected by dredging from the landward slope of the northern Mariana Trench. The samples are serpentinized to various extents (typical of abyssal peridotites), leaving behind relict grains of spinel, enstatite and olivine embedded within a serpentine matrix along with occasional interstitial diopside. Major element analyses of primary minerals reveal a wide range of variations in Cr# of spinels from 0.31-0.85 indicating 16-20% of melt fraction with dunites apparently experiencing the highest amount of partial melting. For Re-Os and PGE geochemistry, samples with high amounts of spinel (>4 vol %) and variable Cr# were chosen. Initial results show that bulk rock 187Os/188Os ratios range from 0.1113 to 0.1272. All of the samples are sub-chondritic, but in some cases, they are more radiogenic than average abyssal peridotites. Os abundances vary from 1-9 ppb. Sub-chondritic values can be attributed to the samples having evolved from a Re-depleted mantle source indicating a previous melt-extraction event. The cpx-harzburgites, having lower Cr# ( 0.4) are more radiogenic than ultra depleted dunites (Cr# 0.8), which might indicate preferential removal of Os during an apparent higher degree of partial melting experienced by dunites. The higher 187Os/188Os ratios of

  11. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a

  12. Seafloor Displacement after the 2011 Tohoku-oki Earthquake in the Northern Japan Trench Examined by Repeated Bathymetric Surveys

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; dos Santos Ferreira, C.; Bachmann, A. K.; Strasser, M.; Wefer, G.; Sun, T.; Kanamatsu, T.; Kodaira, S.

    2017-12-01

    Maximum tsunami height caused by the 11 March 2011 Tohoku-oki earthquake was observed at the coast of Sanriku, the northern Tohoku, Japan [The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011]. In order to explain the tsunami source, some papers have introduced additional large slip of the megathrust up to 36 m in the shallow part near the northern Japan Trench [e.g. Satake et al., BSSA 2013]. Alternatively, others preferred to put a large change in seafloor elevation, 90 m uplift and down-drop, associated with a submarine landslide along the lower trench slope [e.g. Tappin et al., Marine Geol. 2014]. We conducted repeated multibeam bathymetric surveys offshore Sanriku in 2016 and also 2012. We examined seafloor displacement for tsunami source by means of the difference in bathymetry before and after the earthquake. Acquired two bathymetric survey tracks are crossing the trench at 39.2°N and 39.5°N. These tracks overlap the Satake et al. [2013]'s slip area and also the Tappin et al. [2014]'s landslide area. The German research vessel Sonne performed the surveys along the same tracks (SO219A, SO251A cruises). Previous survey tracks had been obtained by the JAMSTEC R/V Kairei in 2007 and 2010 (KR07-08, KR10-12 cruises). Horizontal and vertical seafloor displacements were estimated by comparison of the bathymetry before and after the earthquake. Apparent offsets of the absolute values of depth soundings and the uncertainty of ship position were examined on the seaward side because the seaward was thought to have suffered little change from the earthquake. The horizontal displacement was estimated by calculating the offset distance to maximize cross-correlation of the bathymetry dataset. The seafloor displacements were less than 20 m in trenchward horizontal displacement and several meters in vertical displacement, these values are within the ranges of error of the analysis, and relatively small displacements are evaluated. Thus localized very large fault slip

  13. Subduction and vertical coastal motions in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  14. Tonga Trench gabbros and peridotites: A suit of temporal and spatial forearc materials

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Shinkai, Y.; Tani, K.; Uehara, S.; Harigane, Y.; Ishii, T.; Bloomer, S. H.

    2012-12-01

    The Tonga trench is one of the deepest oceanic regions in the world (10,866 m). Various types of rocks have been dredged and drilled at several localities on the landward slopes of the trench during Boomerang Leg8 in 1996. In particular, very pristine peridotites outcrop at the most deep landward trench slope. We show that the trench can be divided into two regions: southern region and northern region. The peridotites in the southern region have high-Cr# (0.46-0.83) which were typical of forearc peridotites, whereas the peridotites in the northern region have evidences of the reaction with magma during partial melting. Olivine fabrics are characterized by E-type and D-type. Although E-type and D-type are no clear relationship of mineral composition, grain size and equilibrium temperature, the only difference between E-type and D-type were fabric intensities: D-type has higher fabric intensity than that for E-type. Geochronological study revealed that the gabbros in the southern region have the oldest ages of ~52 Ma that are as old as the oldest rocks in the Izu-Bonin-Mariana arc recording the subduction infancy (e.g., Ishizuka et al., 2011 EPSL). We argue that the southern region preserves the oldest mantle fabrics that took place during the subduction infancy, where pristine and serpentinized peridotites have been deformed in the region where high strain field occurred due to the dragged flow. Eventually, they expose in a very neat condition (i.e. active tectonic erosion and fast ascent rate) resulting from an unique tectonic setting including fast subducting plate (24 cm/yr), fast spreading plate (15 cm/yr) and slab rollback.

  15. Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy

    NASA Astrophysics Data System (ADS)

    Ando, Masataka; Kitamura, Akihisa; Tu, Yoko; Ohashi, Yoko; Imai, Takafumi; Nakamura, Mamoru; Ikuta, Ryoya; Miyairi, Yosuke; Yokoyama, Yusuke; Shishikura, Masanobu

    2018-01-01

    Four paleotsunamis deposits are exposed in a trench on the coastal lowland north of the southern Ryukyu subduction zone trench. Radiocarbon ages on coral and bivalve shells show that the four deposits record tsunamis date from the last 2000 yrs., including a historical tsunami with a maximum run-up of 30 m in 1771, for an average recurrence interval of approximately 600 yrs. Ground fissures in a soil beneath the 1771 tsunami deposit may have been generated by stronger shaking than recorded by historical documents. The repeated occurrence of the paleotsunami deposits supports a tectonic source model on the plate boundary rather than a nontectonic source model, such as submarine landslides. Assuming a thrust model at the subduction zone, the seismic coupling ratio may be as low as 20%.

  16. The earliest mantle fabrics formed during subduction zone infancy

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Michibayashi, K.; Morishita, T.; Tani, K.; Dick, H. J.; Ishizuka, O.

    2013-12-01

    Harzburgites obtained from the oldest crust-mantle section in the Philippine Sea plate along the landward slope of the southern Izu-Ogasawara Trench in Izu-Bonin-Mariana arc, that explored by Dive 7K417 of the ROV Kaiko 7000II during R/V Kairei cruise KR08-07, and Dredge 31 of R/V Hakuho-Maru cruise KH07-02, operated by the Japan Agency for Marine-Earth Science and Technology. Harzburgites preserve mantle fabrics formed during the infancy of the subduction zone; that is during the initial stages of Pacific plate subduction beneath the Philippine Sea plate. The main constituent minerals of harzburgites are olivine (15.6%), orthopyroxene (Opx; 13.1%) and spinel (0.5%), along with serpentine (70.8%) as a secondary mineral. Microstructure shows inequigranular interlobate (or protogranular) textures. There is no secondary deformation such as porphyroclastic or fine-grained textures. The secondary serpentine shows undeformed mesh texture in the harzburgites. Harzburgites have crystal preferred orientation patterns in olivine (001)[100] and Opx (100)[001]. The mineral chemistry in harzburgites have high olivine forsterite (90.6-92.1 mol.%) and NiO (~0.4 wt%) contents, low Opx Al2O3 (<~1.5 wt%) and Na2O (<0.03 wt%), and high spinel Cr# (65-67). This has the characteristics of residual peridotites, whereas the dunites, obtained from the same location as the harzburgites, provide evidence for the earliest stages of arc volcanism during the inception of subduction. Therefore, we propose that the (001)[100] olivine patterns began forming in immature fore-arc mantle with an increase in slab-derived hydrous fluids during the initial stages of subduction in in situ oceanic island arc.

  17. Migration Imaging of the Java Subduction Zones

    NASA Astrophysics Data System (ADS)

    Dokht, Ramin M. H.; Gu, Yu Jeffrey; Sacchi, Mauricio D.

    2018-02-01

    Imaging of tectonically complex regions can greatly benefit from dense network data and resolution enhancement techniques. Conventional methods in the analysis of SS precursors stack the waveforms to obtain an average discontinuity depth, but smearing due to large Fresnel zones can degrade the fine-scale topography on the discontinuity. To provide a partial solution, we introduce a depth migration algorithm based on the common scattering point method while considering nonspecular diffractions from mantle transition zone discontinuities. Our analysis indicates that, beneath the Sunda arc, the depth of the 410 km discontinuity (the 410) is elevated by 30 km and the 660 km discontinuity (the 660) is depressed by 20-40 km; the region of the strongest anticorrelation is correlated with the morphology of the subducting Indo-Australian slab. In eastern Java, a "flat" 410 coincides with a documented slab gap, showing length scales greater than 400 km laterally and 200 km vertically. This observation could be explained by the arrival of a buoyant oceanic plateau at the Java trench at approximately 8 Ma ago, which may have caused a temporary cessation of subduction and formed a tear in the subducting slab. Our results highlight contrasting depths of the 410 and 660 along the shallow-dipping slab below the Banda trench. The 660, however, becomes significantly uplifted beneath the Banda Sea, which is accompanied by enhanced reflection amplitudes. We interpret these observations as evidence for a subslab low-velocity zone, possibly related to the lower mantle upwelling beneath the subducting slab.

  18. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.

    2017-12-01

    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc

  19. Propagation of back-arc extension in the arc of the southern New Hebrides Subduction Zone (South West Pacific) and possible relation to subduction initiation.

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Patriat, M.; Collot, J.; Danyushevsky, L. V.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M. J.; Fournier, M.

    2015-12-01

    Geophysical data acquired during three expeditions of the R/V Southern Surveyor allows us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone where it bends 90° eastward along the Hunter Ridge. As shown by GPS measurements and earthquake slip vectors systematically orthogonal to the trench, this 90° bend does not mark a transition from subduction to strike slip as usually observed at subduction termination. Here the convergence direction remains continuously orthogonal to the trench notwithstanding its bend. Multibeam bathymetric data acquired in the North Fiji Basin reveals active deformation and fragmentation of the upper plate. It shows the southward propagation of a N-S back-arc spreading ridge into the pre-existing volcanic arc, and the connection of the southern end of the spreading axis with an oblique active rift in the active arc. Ultimately the active arc lithosphere is sheared as spreading progressively supersedes rifting. Consequently to such incursion of back-arc basin extension into the arc, peeled off and drifted pieces of arc crust are progressively isolated into the back-arc basin. Another consequence is that the New Hebrides arc is split in two distinct microplates, which move independently relative to the lower plate, and thereby define two different subduction systems. We suggest arc fragmentation could be a consequence of the incipient collision of the Loyalty Ridge with the New Hebrides Arc. We further speculate that this kinematic change could have resulted, less than two million year ago, in the initiation of a new subduction orthogonal to the New Hebrides Subduction possibly along the paleo STEP fault. In this geodynamic setting, with an oceanic lithosphere subducting beneath a sheared volcanic arc, a particularly wide range of primitive subduction-related magmas have been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction

  20. On the role of subducting oceanic plateaus in the development of shallow flat subduction

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.

    2002-08-01

    Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.

  1. Past seismic slip-to-the-trench recorded in Central America megathrust

    NASA Astrophysics Data System (ADS)

    Vannucchi, Paola; Spagnuolo, Elena; Aretusini, Stefano; Di Toro, Giulio; Ujiie, Kohtaro; Tsutsumi, Akito; Nielsen, Stefan

    2017-12-01

    The 2011 Tōhoku-Oki earthquake revealed that co-seismic displacement along the plate boundary megathrust can propagate to the trench. Co-seismic slip to the trench amplifies hazards at subduction zones, so its historical occurrence should also be investigated globally. Here we combine structural and experimental analyses of core samples taken offshore from southeastern Costa Rica as part of the Integrated Ocean Drilling Program (IODP) Expedition 344, with three-dimensional seismic reflection images of the subduction zone. We document a geologic record of past co-seismic slip to the trench. The core passed through a less than 1.9-million-year-old megathrust frontal ramp that superimposes older Miocene biogenic oozes onto late Miocene-Pleistocene silty clays. This, together with our stratigraphic analyses and geophysical images, constrains the position of the basal decollement to lie within the biogenic oozes. Our friction experiments show that, when wet, silty clays and biogenic oozes are both slip-weakening at sub-seismic and seismic slip velocities. Oozes are stronger than silty clays at slip velocities of less than or equal to 0.01 m s-1, and wet oozes become as weak as silty clays only at a slip velocity of 1 m s-1. We therefore suggest that the geological structures found offshore from Costa Rica were deformed during seismic slip-to-the-trench events. During slower aseismic creep, deformation would have preferentially localized within the silty clays.

  2. What controls interplate coupling? Implications from abrupt change in coupling on the Pacific plate across a border between two overlying plates in the southernmost extent of the NE Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Uchida, N.; Hasegawa, A.; Nakajima, J.; Matsuzawa, T.

    2008-12-01

    In the southernmost extent of the NE Japan subduction zone, the Pacific plate (PA) is subducting beneath two different tectonic plates - the North American plate (NA) to the north and the Philippine Sea plate (PH) to the south. The change of overlying plate for the PA provides a good opportunity to test the influence of the overlying plate on interplate coupling. In the present study, detailed location of the border between the PH and NA overlying the PA is estimated from slip vectors of the interplate events. Then we compared the interplate coupling coefficients between the two regions overlain by the two plates based on the small repeating earthquake data. Analysis of slip vectors of interplate events shows that the slip vectors abruptly change their slip angles off Kanto. This suggests that the location of the border between the two overlying plates is extending northwestward from the triple junction. The distribution of interplate coupling coefficient estimated from the cumulative slip of small repeating earthquakes reveals a distinct change from south (ca. 0.3) to north (ca. 0.7) across this border. This border corresponds to the southern limit of M > 7 earthquakes and intense seismicity along the Japan Trench, again indicating the stronger coupling to the north. We also investigated the structure of the overlying plates from seismic tomography using a large number of travel-time data obtained from the nationwide seismograph network. The results reveal a distinct low-velocity zone just above the PA in the region overlain by the PH, whereas there is no low-velocity zone in the region overlain by the NA. These observations imply that the overlying plate controls large-scale coupling at the plate interface. Acknowledgement: We used waveforms from the seismic networks of University of Tokyo in addition to the data from Tohoku University. Arrival time data for seismic tomography and earthquake relocation are provided by the Japan Metrological Agency.

  3. Ins and outs of a complex subduction zone: C cycling along the Sunda margin, Indonesia

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.

    2016-12-01

    Subduction of C in marine sediments and altered oceanic crust is the main mechanism for reintroducing C into the deep earth and removing it from communication with the ocean and atmosphere. However, detailed studies of individual margins - which are necessary to understanding global C cycling - are sparse. The thick, C-rich sediment column along the Sunda margin, Indonesia makes understanding this margin crucial for constructing global C cycling budgets. Furthermore it is an ideal location to compare cycling of organic and carbonate C due to the abrupt transition from carbonate-dominated sediments in the SE to sediments rich in organic C from the Nicobar Fan in the NW. To quantify and characterize C available for subduction, we analyzed samples from DSDP 211, 260, 261, and ODP 765, all outboard of the trench, as well as piston and gravity cores of locally-sourced terrigenous trench fill. We created a 3-D model of overall sediment thickness and the thicknesses of geochemically distinct sedimentary units using archived and published seismic profiles to infer unit thicknesses at and along the 2500 km trench. This model vastly improves estimates of the C available for subduction and also reveals that the Christmas Island Seamount Province serves as a barrier to turbidite flow, dividing the regions of the trench dominated by organic and inorganic C input. Incorporating best estimates for the depth of the decollement indicates that the terrigenous trench fill, with up to 1.5 wt % organic C, is entirely accreted as is the thick section of carbonate-rich turbidites that dominate the southeastern portion of the margin (DSDP 261/ODP 765). Organic C accounts for most of the C bypassing the accretionary complex NW of the Christmas Island Seamount Province, and C inputs to the trench are lower there than to the SE where carbonate units near the base of the sediment column are the dominant C source. Release of C from altered oceanic crust - a C reservoir up to 10 times greater

  4. Accretionary processes along the Middle America Trench off Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, T.H.; Stoffa, P.L.; McIntosh, K.

    1990-06-01

    The geometry of large-scale structures within modern accretionary prisms is known entirely from seismic reflection studies using single or grids of two-dimensional profiles. Off Costa Rica the authors collected a three-dimensional reflection data set covering a 9 km wide {times} 22 km long {times} 6 km thick volume of the accretionary prism just arcward of the Middle America Trench. The three-dimensional processing and ability to examine the prism as a volume has provided the means to map structures from a few hundred meters to kilometers in size with confidence. Reflections from within the prism define the gross structural features andmore » tectonic processes active along this particular portion of the Middle America Trench. So far in the analysis, these data illustrate the relationships between the basement, the prism shape, and overlying slope sedimentary deposits. For instance, the subducted basement relief (of several hundred meters amplitude) does seem to affect the larger scale through-going faults within the prism. Offscraping of the uppermost 45 m of sediments occurs within 4 km of the trench creating a small pile of sediments at the base of the trench. How this offscraped sediment is incorporated into the prism is still being investigated. Underplating of parts of the 400 m thick subducted section begin: at a very shallow structural level, 4 to 10 km arcward of the trench. Amplitude anomalies associated with some of the larger arcward dipping structures in the prism and surface mud volcanoes suggest that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region, a distance of 50 to 100 km.« less

  5. Seismic evidence for a slab tear at the Puerto Rico Trench

    NASA Astrophysics Data System (ADS)

    Meighan, Hallie E.; Pulliam, Jay; ten Brink, Uri; López-Venegas, Alberto M.

    2013-06-01

    fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50-150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50-100 km, while events at depths of 100-150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench-normal tensile stresses at shallower depths (50-100 km) and by trench-parallel tensile stresses at deeper depths (100-150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50-100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.

  6. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  7. Velocities of Subducted Sediments and Continents

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab

  8. Monitoring of seafloor crustal deformation using GPS/Acoustic technique along the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Fujii, C.; Matsuhiro, K.; Sayanagi, K.

    2014-12-01

    Seafloor crustal deformation is crucial for estimating the interplate locking at the shallow subduction zone and has been carried out at subduction margins in Japan, e.g., Japan Trench and Nankai Trough [Sato et al., 2011; Tadokoro et al., 2012]. Iinuma et al. [2012] derived slip distributions during the 2011 Tohoku-Oki earthquake using GPS/Acoustic data and on-land GPS data. The result showed that maximum slip is more than 85 m near the trench axis. The focal area along the Nankai trough extended to the trough axis affected this earthquake by cabinet office, government of Japan.  We monitored seafloor crustal deformation along the Nankai trough, Japan. Observation regions are at the eastern end of Nankai trough (named Suruga trough) and at the central Nankai trough. We established and monitored by two sites across the trough at each region. In the Suruga trough region, we repeatedly observed from 2005 to 2013. We observed 13 and 14 times at a foot wall side (SNE) and at a hanging wall side (SNW), respectively. We estimated the displacement velocities with relative to the Amurian plate from the result of repeated observation. The estimated displacement velocity vectors at SNE and SNW are 42±8 mm/y to N94±3˚W direction and 39±11 mm/y to N84±9˚W direction, respectively. The directions are the same as those measured at the on-land GPS stations. The magnitudes of velocity vector indicate significant shortening by approximately 4 mm/y between SNW and on-land GPS stations at hanging wall side of the Suruga Trough. This result shows that the plate interface at the northernmost Suruga trough is strongly locked. In the central Nankai trough region, we established new two stations across the central Nankai trough (Both stations are about 15km distance from trough) and observed only three times, August 2013, January 2014, and June 2014. We report the results of monitoring performed in this year.

  9. Present-day chaotic formations around the Japanese trenches: Comparison to the on land examples from the Shimanto and Miura-Boso, and from the Franciscan, Mineoka and Ankara

    NASA Astrophysics Data System (ADS)

    Ogawa, Yujiro; Kawamura, Kiichiro; Tsunogae, Toshiaki; Mori, Ryota; Chiba, Tae; Sasaki, Tomoyuki

    2010-05-01

    Four different types of chaotic formations were recognized by the submersible observation around the Japanese trenches, including the Nankai and Sagami troughs, Boso triple junction, Japan trench, and Izu-Bonin arc, and each type is summarized and discussed in view of comparison to the on land examples, such as from the Franciscan, Shimanto and Miura-Boso belts in the circum Pacifc margins, and the Ankara. The submarine geologies are present actual examples to give us a critical key to understanding the formation processes and emplacement mechanisms for the so-called mélange bodies, either sedimentary, tectonic or diapiric. Some are made of alternated beds of sandstone and mudstone that show broken or block-in-matrix fashion, in most cases in muddy matrix. These are commonly developed on the trench landward slope toe of the Nankai and Sagami troughs and Boso triple junction area as well as the Japan trench slope. One type is from the landward slope, but another type is from the oceanward slopes. The former type is in places calcareous cemented, probably caused by hydraulic fracturing by high pore pressure along the thrust fault and oxidized methane-made carbonate precipitation. They are seen on the feet of the thrust-dominated slope and to be compared to the so-called sedimentary mélanges due to the gravitational sliding, which occur because of tectonically induced steep slopes. Most of such thrusts are related to large subduction type earthquakes, and await for further critical consideration on to the relation to the asperity problem. Some of large scale gravitational collapses may be related to the seamount or ridge subduction to the trench, both in case of accretionary and non-accretionary type margins, the former is for the examples from the Nankai and Sagami troughs and the Boso triple junction, latter for the Japan trench. In all cases on land and under the sea in the trench landward slope, some calcareous breccias are associated with methane

  10. Small-scale spatial variation in near-surface turbidites around the JFAST site near the Japan Trench

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shuro; Kanamatsu, Toshiya; Kasaya, Takafumi

    2016-03-01

    This paper aims to improve our understanding of the depositional processes associated with turbidites related to recent earthquake events. A series of short sediment cores (ca. 20-30 cm long) were recovered from the landward slope of the Japan Trench around JFAST (Japan Trench Fast Drilling Project) site C0019 by a remotely operated vehicle, KAIKO 7000 II, and the sample sites were accurately located using an LBL (long base line) acoustic navigation system. The properties of the cores were analyzed using visual observations, soft X-ray radiographs, smear slides, measurement of anisotropy of magnetic susceptibility, and analysis of radioactive elements (134Cs, 137Cs, and excess 210Pb). For the first time, small-scale (ca. 200-1000 m) spatial variations in recent earthquake-triggered deep-sea turbidites, the formation of which was probably linked to the 2011 Tohoku-oki earthquake, are described. We also examine the submarine landslide that probably generated the sediment unit below the turbidites, which is thought to be an important process in the study area. The spatial distribution and characteristics of the near-surface seismoturbidite obtained immediately after the earthquake, presented here, will enable precise calibration of offshore evidence of recent earthquakes, and thus facilitate the use of the sedimentary archive for paleoseismic interpretations. Furthermore, although sampling for turbidite seismology on steep slopes has not been widely performed previously, our results suggest that the recent event deposits may be continuously tracked from the slope to the basin using a combination of the present sampling method and conventional large-scale investigation techniques.

  11. NOAA Deepwater Exploration of the Marianas 2016: Pacific Plate, Mariana Trench, and Mariana Forearc

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Glickson, D.; Kelley, C.; Drazen, J.; Stern, R. J.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 made 18 (ROV) dives exploring the following: 7 Cretaceous-age, Pacific Plate guyots east of the Trench; 1 small volcano on a Pacific Plate fracture; 3 areas of the inner trench slope; 2 forearc serpentinite mud volcanoes; and 5 forearc fault blocks. The Pacific Plate guyots are heavily manganese encrusted. Part of the rationale for those dives was to make baseline characterization of biota and habitats before potential mining. These guyots had striking diversity and abundance of fauna. Dives on 2 guyots examined high-relief scarps, formed when both down-going plate and edifices fractured outboard of the trench. The scarp on one had Cretaceous reef sequences, whereas the other exposed layers of volcanics. The dive on a small (1 km diameter, 141 m high) volcano on a plate fracture near the trench affirmed that it was relatively young, maybe like Petit-Spot volcanoes east of the Japan Trench. A dive in a canyon west of Guam transitioned from a steep slope of volcanic talus to a gentle sediment-covered slope. The inner trench slope opposite the subducting guyot that exposes reef deposits, revealed similar sequences, suggesting that the guyot is being incorporated into the Mariana forearc. The other inner slope dive traversed talus with fragments of serpentinized peridotite and lies near a chain of forearc serpentinite mud volcanoes. The 2 serpentinite mud volcanoes explored have sedimented, apparently inactive, surfaces, though we recovered a serpentinized peridotite sample from one of them. Dives on the forearc fault blocks attest to dynamic vertical tectonism. Three in the northern forearc show sediment sequences of varying types and textures, all dipping trenchward. Spectacular mid-forearc fault scarps strike east-west, stair-stepping down southward and were traversed on 2 dives. We saw many sequences of indurated sediments. Mapping on Legs 2 and 3 of the expedition showed that these fault scarps are mirrored to the south

  12. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related

  13. Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Gurnis, Michael; Zhan, Zhongwen

    2017-07-01

    The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.

  14. Melt Inclusion Evidence for Subduction-modified Mantle Beneath the Woodlark Spreading Center, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, J.; Turner, A.; Collins, E.

    2015-12-01

    The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.

  15. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  16. Water-rich bending faults at the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.

    2015-09-01

    The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.

  17. Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation

    NASA Astrophysics Data System (ADS)

    Ma, S.

    2011-12-01

    Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.

  18. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones

  19. Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia

    NASA Astrophysics Data System (ADS)

    Jacob, Jensen; Dyment, Jérôme; Yatheesh, V.

    2014-01-01

    the subduction processes along the Sunda Trench requires detailed constraints on the subducting lithosphere. We build a detailed tectonic map of the Wharton Basin based on reinterpretation of satellite-derived gravity anomalies and marine magnetic anomalies. The Wharton Basin is characterized by a fossil ridge, dated 36.5 Ma, offset by N-S fracture zones. Magnetic anomalies 18 to 34 (38-84 Ma) are identified on both flanks, although a large part of the basin has been subducted. We analyze the past plate kinematic evolution of the Wharton Basin by two-plate (India-Australia) and three-plate (India-Australia-Antarctica) reconstructions. Despite the diffuse plate boundaries within the Indo-Australian plate for the last 20 Ma, we obtain finite rotation parameters that we apply to reconstruct the subducted Wharton Basin and constrain the thickness, buoyancy, and rheology of the subducting plate. The lower subductability of younger lithosphere off Sumatra has important consequences on the morphology, with a shallower trench, forearc islands, and a significant inward deviation of the subduction system. This deviation decreases in the youngest area, where the Wharton fossil spreading center enters subduction: The discontinuous magmatic crust and serpentinized upper mantle, consequences of the slow spreading rates at which this area was formed, weaken the mechanical resistance to subduction and facilitate the restoration of the accretionary prism. Deeper effects include the possible creation of asthenospheric windows beneath the Andaman Sea, in relation to the long-offset fracture zones, and east of 105°E, as a result of subduction of the spreading center.

  20. Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi

    2018-01-01

    The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred 100 km north of Izu peninsula at depths of 40-90 km and discusses seismogenesis in the context of plate subduction. We picked P- and S-wave arrival times of earthquakes to produce a complete hypocenter catalogue, carried out double-difference event relocations, and then determined focal mechanism solutions of 7 earthquakes from P-wave polarity data. Based on the focal mechanism solution, the largest earthquake (M3.1) is interpreted as a thrust earthquake along the upper surface of the PHS Plate. Locations of other earthquakes relative to the largest event suggest that most earthquakes occur within the subducting PHS Plate. Our results suggest that the PHS Plate north of Izu peninsula has temperatures low enough to facilitate thrust and intraslab earthquakes at depths of 60-90 km. Earthquakes are likely to occur where pore pressures are locally high, which weakens pre-existing faults. The presence of the intermediate-depth seismic cluster indicates the continuous subduction of the PHS Plate toward the north of Izu peninsula without any disruption.[Figure not available: see fulltext.

  1. Seismic evidence for a slab tear at the Puerto Rico Trench

    USGS Publications Warehouse

    Meighan, Hallie E.; Pulliam, Jay; ten Brink, Uri S.; López-Venegas, Alberto M.

    2013-01-01

    The fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50–150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50–100 km, while events at depths of 100–150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench-normal tensile stresses at shallower depths (50–100 km) and by trench-parallel tensile stresses at deeper depths (100–150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50–100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.

  2. Frictional behavior of carbonate-rich sediments in subduction zones

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our

  3. Diffuse Extension of the Southern Mariana Margin: Implications for Subduction Zone Infancy and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Stern, R. J.; Kelley, K. A.; Ohara, Y.; Sleeper, J. D.; Ribeiro, J. M.; Brounce, M. N.

    2017-12-01

    Opening of the southern Mariana margin takes place in contrasting modes: Extension normal to the trench forms crust that is passively accreted to a rigid Philippine Sea plate and forms along focused and broad accretion axes. Extension also occurs parallel to the trench and has split apart an Eocene-Miocene forearc terrain accreting new crust diffusely over a 150-200 km wide zone forming a pervasive volcano-tectonic fabric oriented at high angles to the trench and the backarc spreading center. Earthquake seismicity indicates that the forearc extension is active over this broad area and basement samples date young although waning volcanic activity. Diffuse formation of new oceanic crust and lithosphere is unusual; in most oceanic settings extension rapidly focuses to narrow plate boundary zones—a defining feature of plate tectonics. Diffuse crustal accretion has been inferred to occur during subduction zone infancy, however. We hypothesize that, in a near-trench extensional setting, the continual addition of water from the subducting slab creates a weak overriding hydrous lithosphere that deforms broadly. This process counteracts mantle dehydration and strengthening proposed to occur at mid-ocean ridges that may help to focus deformation and melt delivery to narrow plate boundary zones. The observations from the southern Mariana margin suggest that where lithosphere is weakened by high water content narrow seafloor spreading centers cannot form. These conditions likely prevail during subduction zone infancy, explaining the diffuse contemporaneous volcanism inferred in this setting.

  4. Topography of the Overriding Plate During Progressive Subduction: A Dynamic Model to Explain Forearc Subsidence

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.; Strak, Vincent

    2017-10-01

    Overriding plate topography provides constraints on subduction zone geodynamics. We investigate its evolution using fully dynamic laboratory models of subduction with techniques of stereoscopic photogrammetry and particle image velocimetry. Model results show that the topography is characterized by an area of forearc dynamic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a local topographic high between the forearc subsided region and the trench. These topographic features rapidly develop during the slab free-sinking phase and gradually decrease during the steady state slab rollback phase. We propose that they result from the variation of the vertical component of the trench suction force along the subduction zone interface, which gradually increases with depth and results from the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in driving forearc subsidence.

  5. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    NASA Astrophysics Data System (ADS)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (<15°), which are consistent with the initial dip angles observed in seismic velocity-depth models across convergent margins worldwide. The predicted flexure for both methods are compared with observed bathymetric profiles across the Izu-Mariana trench, where the old and cold Pacific plate is characterized by a pronounced outer rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  6. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    USGS Publications Warehouse

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  7. P-wave Velocity Structure Across the Mariana Trench and Implications for Hydration

    NASA Astrophysics Data System (ADS)

    Eimer, M. O.; Wiens, D.; Lizarralde, D.; Cai, C.

    2017-12-01

    Estimates of the water flux at subduction zones remain uncertain, particularly the amount of water brought into the trench by the subducting plate. Normal faulting related to the bending of the incoming plate has been proposed to provide pathways for water to hydrate the crust and upper mantle. A passive and active source seismic experiment spanning both the incoming plate and forearc was conducted in 2012 in central Mariana to examine the role of hydration at subduction zones. The active-source component of the survey used the R/V M.G. Langsethairgun array and 68 short period sensors, including suspended hydrophones, deployed on 4 transects. This study at the Mariana trench offers a comparison to related studies of incoming plate hydration in Middle America, where differing thermal structures related to plate age predict different stability fields for hydrous minerals. The forearc structure is also of interest, since Mariana is characterized by large serpentine seamounts and may have a serpentinized mantle wedge. The velocity structure will also be important for the relocation of earthquakes in the incoming plate, since the seismicity can offer a constraint for the depth extent of these bending faults. We examine the P-wave velocity structure along a 400-km long wide-angle refraction transect perpendicular to the trench and spanning both the forearc and incoming plate. Preliminary results indicate a velocity reduction in the crust and uppermost mantle at the bending region of the incoming plate, relative to the plate's structure away from the trench. This reduction suggests that outer-rise faults extend into the upper mantle and may have promoted serpentinization of that material. Mantle Pn refraction phases are not observed in the forearc, consistent with the ambient noise tomography results that show upper-mantle velocities similar to that of the lower crust. The lack of contrast between the upper mantle and crustal velocities from the ambient noise has been

  8. Slab Roll-Back and Trench Retreat As Controlling Factor for Island-Arc Related Basin Evolution: A Case Study from Southern Central America

    NASA Astrophysics Data System (ADS)

    Brandes, C.; Winsemann, J.

    2014-12-01

    Slab roll-back and trench retreat are important factors for basin subsidence, magma generation and volcanism in arc-trench systems. From the sedimentary and tectonic record of the Central American island-arc it is evident that repeated slab roll-back and trench retreats occurred since the Late Cretaceous. These trench retreats were most probably related to the subduction of oceanic plateaus and seamounts. Evidence for trench retreats is given by pulses of uplift in the outer-arc area, followed by subsidence in both the fore-arc and back-arc basins. The first slab roll-back probably occurred during the Early Paleocene indicated by the collapse of carbonate platforms, and the re-deposition of large carbonate blocks into deep-water turbidites. At this time the island-arc was transformed from an incipient non-extensional stage into an extensional stage. A new pulse of uplift or decreased subsidence, respectively during the Late Eocene is attributed to subduction of rough crust, a subsequent slab detachment and the establishment of a new subduction zone further westward. Strong uplift especially affected the outer arc of the North Costa Rican arc segment. In the Sandino Fore-arc basin very coarse-grained deep-water channel-levee complexes were deposited. These deposits contain large well-rounded andesitic boulders and are rich in reworked shallow-water carbonates pointing to uplift of the inner fore-arc. Evidence for the subsequent trench retreat is given by an increased subsidence during the early Oligocene in the Sandino Fore-arc Basin and the collapse of the Barra Honda platform in North Costa Rica. Another trench retreat might have occurred in Miocene times. A phase of higher subsidence from 18 to 13 Ma is documented in the geohistory curve of the North Limon Back-arc Basin. After a short pulse of uplift the subsidence increased to approx. 300 m/myr.

  9. Drastic shift of lava geochemistry between pre- and post- Japan Sea opening in NE Japan subduction zone: constraints on source composition and slab surface melting processes

    NASA Astrophysics Data System (ADS)

    Okamura, S.; Inaba, M.; Igarashi, S.; Aizawa, M.; Shinjo, R.

    2017-12-01

    Isotopic and trace element data imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna, NE Japan arc from the Oligocene to the Pleistocene. Less radiogenic 176Hf/177Hf and 143Nd/144Nd, and high Zr/Hf characterize the Oligocene - Early Miocene volcanism in the northern Fossa Magna region. The mantle wedge in the Oligocene - Early Miocene consisted of enriched mantle source. We propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling results suggest breakdown of zircon in the slab surface sediments for the Oligocene - Early Miocene lavas in the northern Fossa Magna region. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. The Middle Miocene lavas characterized by most radiogenic Hf and Nd isotope ratios, have high Zr/Hf. An appropriate working petrogenetic model is that the Middle Miocene lavas were derived from asthenospheric depleted mantle, slightly (<1%) contaminated by slab melt accompanied by full dissolution of zircon. All the Late Miocene - Pleistocene samples are characterized by distinctly more radiogenic 176Hf/177Hf and 143Nd/144Nd, and are displaced toward lower Zr/Hf, which requires mixing between depleted mantle and a partial melt of subducted metasediment saturated with trace quantity of zircon. The Oligocene - Early Miocene volcanism in the northern Fossa Magna region may represent the early stage of continental margin magmatism associated with a back-arc rift. Here volcanism is dominated by sediment melts. Perhaps asthenospheric injection, triggering Japan Sea opening, allowed higher temperatures and more melting at the slab-mantle interface. The mantle wedge was gradually cooled during the Middle Miocene to the Pleistocene with back-arc opening ending in the Late Miocene. Slab surface

  10. Structural interpretation and physical property estimates based on COAST 2012 seismic reflection profiles offshore central Washington, Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Webb, S. I.; Tobin, H. J.; Everson, E. D.; Fortin, W.; Holbrook, W. S.; Kent, G.; Keranen, K. M.

    2014-12-01

    The Cascadia subduction zone has a history of large magnitude earthquakes, but a near-total lack of plate interface seismicity, making the updip limit of the seismogenic zone difficult to locate. In addition, the central Cascadia accretionary prism is characterized by an extremely low wedge taper angle, landward vergent initial thrusting, and a flat midslope terrace between the inner and outer wedges, unlike most other accretionary prisms (e.g. the Nankai Trough, Japan). The Cascadia Open Access Seismic Transect (COAST) lines were shot by R/V Marcus Langseth in July of 2012 off central Washington to image this subduction zone. Two trench-parallel and nine trench-perpendicular lines were collected. In this study, we present detailed seismic interpretation of both time- and depth-migrated stacked profiles, focused on elucidating the deposition and deformation of both pre- and syn-tectonic sediment in the trench and slope. Distribution and timing of sediments and their deformation is used to unravel the evolution of the wedge through time. Initially, interpretation of the time-sections is carried out to support the building of tomographic velocity models to aid in the pre-stack depth migration (PSDM) of selected lines. In turn, we use PSDM velocity models to estimate porosity and pore pressure conditions at the base of the wedge and across the basal plate interface décollement where possible, using established velocity-porosity transforms. Interpretation in this way incorporates both accurate structural relationships and robust porosity models to document wedge development and present-day stress state, in particular regions of potential overpressure. Results shed light on the origin and evolution of the mid-slope terrace and the low taper angle for the forearc wedge. This work may shed light ultimately on the position of the potential updip limit of the seismogenic zone beneath the wedge.

  11. Metamorphic Perspectives of Subduction Zone Volatiles Cycling

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.

    2008-12-01

    Field study of HP/UHP metamorphic rocks provides "ground-truthing" for experimental and theoretical petrologic studies estimating extents of deep volatiles subduction, and provides information regarding devolatilization and deep subduction-zone fluid flow that can be used to reconcile estimates of subduction inputs and arc volcanic outputs for volatiles such as H2O, N, and C. Considerable attention has been paid to H2O subduction in various bulk compositions, and, based on calculated phase assemblages, it is thought that a large fraction of the initially structurally bound H2O is subducted to, and beyond, subarc regions in most modern subduction zones (Hacker, 2008, G-cubed). Field studies of HP/UHP mafic and sedimentary rocks demonstrate the impressive retention of volatiles (and fluid-mobile elements) to depths approaching those beneath arcs. At the slab-mantle interface, high-variance lithologies containing hydrous phases such as mica, amphibole, talc, and chlorite could further stabilize H2O to great depth. Trench hydration in sub-crustal parts of oceanic lithosphere could profoundly increase subduction inputs of particularly H2O, and massive flux of H2O-rich fluids from these regions into the slab-mantle interface could lead to extensive metasomatism. Consideration of sedimentary N concentrations and δ15N at ODP Site 1039 (Li and Bebout, 2005, JGR), together with estimates of the N concentration of subducting altered oceanic crust (AOC), indicates that ~42% of the N subducting beneath Nicaragua is returned in the corresponding volcanic arc (Elkins et al., 2006, GCA). Study of N in HP/UHP sedimentary and basaltic rocks indicates that much of the N initially subducted in these lithologies would be retained to depths approaching 100 km and thus available for addition to arcs. The more altered upper part of subducting oceanic crust most likely to contribute to arcs has sediment-like δ15NAir (0 to +10 per mil; Li et al., 2007, GCA), and study of HP/UHP eclogites

  12. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.

    2012-12-01

    The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to

  13. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  14. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    NASA Astrophysics Data System (ADS)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  15. 3D Numerical modelling of topography development associated with curved subduction zones

    NASA Astrophysics Data System (ADS)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab

  16. Seismic and aseismic slip on the ``uncoupled'' Tonga subduction megathrust

    NASA Astrophysics Data System (ADS)

    Beavan, R. J.; Wang, X.; Bevis, M. G.; Kautoke, R'

    2010-12-01

    The Tonga subduction zone has been a type example of a weakly coupled subduction interface since soon after the birth of plate tectonics. Yet in the September 2009 double earthquake, the northern Tonga subduction interface failed in a great Mw 8 earthquake that was probably dynamically triggered by a Mw 8 extensional intraplate earthquake in the outer trench slope region of the incoming Pacific Plate. There are some discrepancies between models of the September 2009 doublet derived from seismic data and those derived from geodetic and DART tsunami data, in particular about which fault plane failed in the intraplate earthquake. In this presentation we explore how well the geodetic and tsunami data can be fit using the alternative fault plane. We also present new GPS data that show the subduction interface is continuing to slip faster than its 1996-2005 “long-term” rate, and we speculate on what this means for the mechanisms by which interplate slip is accommodated at the Tonga subduction zone.

  17. Subduction-Related Structure in the Mw 9.2, 1964 Megathrust Rupture Area Offshore Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; von Huene, R.; Klaeschen, D.; Miller, J. J.

    2016-12-01

    Some of the largest earthquakes worldwide, including the 1964 9.2 Mw megathrust earthquake, occurred in Alaskan subduction zones. To better understand rupture processes and their mechanisms, we relate seafloor morphology from multibeam and regional bathymetric compilations with sub-seafloor images and seismic P-wave velocity structures. We re-processed legacy multichannel seismic (MCS) data including shot- and intra-shotgather interpolation, multiple removal and Kirchhoff depth migration. These images even reveal the shallow structure of the subducting oceanic crust. Traveltime tomography of a coincident vintage (1994) wide angle dataset reveals the P-wave velocity distribution as well as the deep structure of the subducting plate to the ocean crust Moho. The subducting oceanic crust morphology is rough and partly hidden by a thick sediment cover that reaches 3 km depth at the trench axis. Bathymetry shows two major contrasting upper plate morphologies: the shallow dipping lower slope consists of trench-parallel ridges that form the accreted prism whereas the steep rough middle and upper slopes are composed of competent older rock.Thrust faults are distributed across the entire slope, some of which connect with the subducted plate interface. A subtle change in seafloor gradient from the lower to the middle slope coincides with a thrust fault zone marking the boundary between the margin framework and the frontal prism. It corresponds to the most prominent lateral increase in seismic P-wave velocities, 25 km landward of the trench axis.Major thrusts in several MCS-lines are correlated with bathymetric data, showing their > 100 km lateral extent, which might also be tsunamigenic paths of earthquake rupture from the seismogenic zone to the seafloor.

  18. K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation

    NASA Astrophysics Data System (ADS)

    Imaoka, T.; Kiminami, K.; Nishida, K.; Takemoto, M.; Ikawa, T.; Itaya, T.; Kagami, H.; Iizumi, S.

    2011-01-01

    Systematic K-Ar dating and geochemical analyses of Paleogene cauldrons in the Sanin Belt of SW Japan have been made to explore the relationship between the timing of their formation and the Paleogene subduction history of SW Japan documented in the Shimanto accretionary complex. We also examine the magma sources and tectonics beneath the backarc region of SW Japan at the eastern plate boundary of Eurasia. Fifty-eight new K-Ar ages and 19 previously reported radiometric age data show that the cauldrons formed during Middle Eocene to Early Oligocene time (43-30 Ma), following a period of magmatic hiatus from 52 to 43 Ma. The hiatus coincides with absence of an accretionary prism in the Shimanto Belt. Resumption of the magmatism that formed the cauldron cluster in the backarc was concurrent with voluminous influx of terrigenous detritus to the trench, as a common tectono-thermal event within a subduction system. The cauldrons are composed of medium-K calc-alkaline basalts to rhyolites and their plutonic equivalents. These rocks are characterized by lower concentrations of large ion lithophile elements (LILE) including K 2O, Ba, Rb, Th, U and Li, lower (La/Yb) n ratios, lower initial Sr isotopic ratios (0.7037-0.7052) and higher ɛNd( T) values (-0.5 to +3.5) relative to Late Cretaceous to Early Paleogene equivalents. There are clear trends from enriched to depleted signatures with decreasing age, from the Late Cretaceous to the Paleogene. The same isotopic shift is also confirmed in lower crust-derived xenoliths, and is interpreted as mobilization of pre-existing enriched lithospheric mantle by upwelling depleted asthenosphere. Relatively elevated geothermal gradients are presumed to have prevailed over wide areas of the backarc and forearc of the SW Japan arc-trench system during the Eocene to Oligocene. Newly identified Late Eocene low silica adakites and high-Mg andesites in the Sanin Belt and Early Eocene A-type granites in the SW Korea Peninsula probably formed

  19. Sediment Pathways Across Trench Slopes: Results From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.

    2015-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  20. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    USGS Publications Warehouse

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan

  1. Paleo-tsunami history along the northern Japan Trench: evidence from Noda Village, northern Sanriku coast, Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Taiga; Goto, Kazuhisa; Nishimura, Yuichi; Watanabe, Masashi; Iijima, Yasutaka; Sugawara, Daisuke

    2017-12-01

    Throughout history, large tsunamis have frequently affected the Sanriku area of the Pacific coast of the Tohoku region, Japan, which faces the Japan Trench. Although a few studies have examined paleo-tsunami deposits along the Sanriku coast, additional studies of paleo-earthquakes and tsunamis are needed to improve our knowledge of the timing, recurrence interval, and size of historical and pre-historic tsunamis. At Noda Village, in Iwate Prefecture on the northern Sanriku coast, we found at least four distinct gravelly sand layers based on correlation and chronological data. Sedimentary features such as grain size and thickness suggest that extreme waves from the sea formed these layers. Numerical modeling of storm waves further confirmed that even extremely large storm waves cannot account for the distribution of the gravelly sand layers, suggesting that these deposits are highly likely to have formed by tsunami waves. The numerical method of storm waves can be useful to identify sand layers as tsunami deposits if the deposits are observed far inland or at high elevations. The depositional age of the youngest tsunami deposit is consistent with the AD 869 Jogan earthquake tsunami, a possible predecessor of the AD 2011 Tohoku-oki tsunami. If this is the case, then the study site currently defines the possible northern extent of the AD 869 Jogan tsunami deposit, which is an important step in improving the tsunami source model of the AD 869 Jogan tsunami. Our results suggest that four large tsunamis struck the Noda site between 1100 and 2700 cal BP. The local tsunami sizes are comparable to the AD 2011 and AD 1896 Meiji Sanriku tsunamis, considering the landward extent of each tsunami deposit.

  2. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity

    NASA Astrophysics Data System (ADS)

    Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.

    2018-06-01

    This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity

  3. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  4. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  5. Topography of the overriding plate during progressive subduction: A dynamic model to explain forearc subsidence

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Schellart, W. P.; Duarte, J. C.; Strak, V.

    2017-12-01

    Topography that forms at the free top surface of the lithosphere contains important information about the dynamics of the tectonic plates and the sub-lithospheric mantle. Investigating topography around subduction zones can provide quantitative and conceptual insights into the interaction between the plates, the slabs, mantle flow, and the associated stresses. To achieve this, geodynamic modelling can be an effective tool. In this study, we used techniques of stereoscopic photogrammetry and Particle Image Velocimetry to monitor simultaneously the topography of the overriding plate and the velocity field of the subduction-induced mantle flow occurring in the mantle wedge. Model results show that the overriding plate topography is characterized by an area of forearc topographic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a transient local topographic high located between the forearc depression and the trench. These topographic features rapidly develop during the slab sinking phase and gradually decrease during the slab rollback phase. We propose that these topographic transient features predominantly result from the variation of the vertical component of the trench suction along the subduction zone interface, which is minimum near the trench and maximum near the tip of the mantle wedge and is caused by the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in the formation of the forearc subsidence. Our findings provide a new mechanism for the formation of forearc topographic subsidence, which has been commonly observed at natural subduction zones.

  6. 15 Years Of Ecuadorian-French Research Along The Ecuadorian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Charvis, P.

    2015-12-01

    The Ecuadorian segment of the Nazca/South America subduction zone is an outstanding laboratory to study the seismic cycle. Central Ecuador where the Carnegie ridge enters the subduction marks a transition between a highly coupled segment that hosted one of the largest seismic sequence during the 20thcentury and a ~1200-km long weakly coupled segment encompassing southern Ecuador and northern Peru. A shallow dipping subduction interface and a short trench-coast line distance ranging from 45 to 80 km, together with La Plata Island located only 33 km from the trench axis, allow to document subduction processes in the near field with an exceptional resolution. Since 2000, a close cooperation between the Institute of Geophysics (Quito), INOCAR (Oceanographic Institute of the Ecuadorian Navy) with French groups allowed us to conduct up to 6 marine geophysics cruises to survey the convergent margin and jointly develop dense GPS and seismological networks. This fruitful collaboration now takes place in the framework of an International Joint Laboratory "Earthquakes and Volcanoes in the Northern Andes" (LMI SVAN), which eases coordinating research projects and exchanges of Ecuadorian and French scientists and students. This long-term investigation has already provided a unique view on the structure of the margin, which exhibits a highly variable subduction channel along strike. It allowed us to evidence the contrast between creeping and coupled segments of subduction at various scale, and the existence of large continental slivers whose motion accommodates the obliquity of the Nazca/South America convergence. Finally, we could evidence the first Slow Slip Events (SSE) that oppositely to most SSE documented so far, are accompanied with intense micro-seismicity. The recent support of the French National Research Agency and the Ecuadorian Agency for Sciences and Technology (Senescyt) will enable us to integrate the already obtained results, in an attempt to develop an

  7. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    NASA Astrophysics Data System (ADS)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  8. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    NASA Astrophysics Data System (ADS)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (<20 mm/a) often show sparse OR/OTS seismicity. It is unclear if such low activity is a long-term feature of these systems or is a consequence of the long return times of great IPT earthquakes (e.g., the sparse OR/OTS seismicity before the 26 December 2004 M9.2 Sumatra earthquake and many subsequent OR/OTS events). (3) OR/OTS shocks are generally sparse or absent where incoming plates are very young (<20 Ma) (e.g., Cascadia, southern Mexico, Nankai, and South Shetlands). (4) Subducting plates of intermediate age (20 to about 65 Ma) display a diversity of focal mechanisms and seismicity patterns. In the Philippines, NE Indonesia, and Melanesia, bands of reverse faulting events occur at or near the trench and SNF earthquakes are restricted to OR/OTS sites further from the trench. (5) Clustering of OR/OTS events of all types commonly occurs where

  9. GPS determined eastward Sundaland motion with respect to Eurasia confirmed by earthquakes slip vectors at Sunda and Philippine trenches

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, N.; Le Pichon, X.

    1999-12-01

    GPS measurements acquired over Southeast Asia in 1994 and 1996 in the framework of the GEODYSSEA program revealed that a large piece of continental lithosphere comprising the Indochina Peninsula, Sunda shelf and part of Indonesia behaves as a rigid `Sundaland' platelet. A direct adjustment of velocity vectors obtained in a Eurasian frame of reference shows that Sundaland block is rotating clockwise with respect to Eurasia around a pole of rotation located south of Australia. We present here an additional check of Sundaland motion that uses earthquakes slip vectors at Sunda and Philippine trenches. Seven sites of the GEODYSSEA network are close to the trenches and not separated from them by large active faults (two at Sumatra Trench, three at Java Trench and two at the Philippine Trench). The difference between the vector at the station and the adjacent subducting plate vector defines the relative subduction motion and should thus be aligned with the subduction earthquake slip vectors. We first derive a frame-free solution that minimizes the upper plate (or Sundaland) motion. When corrected for Australia-Eurasia and Philippines-Eurasia NUVEL1-A motion, the misfit between GPS and slip vectors azimuths is significant at 95% confidence, indicating that the upper plate does not belong to Eurasia. We then examine the range of solutions compatible with the slip vectors azimuths and conclude that the minimum velocity of Sundaland is a uniform 7-10 mm/a eastward velocity. However, introducing the additional constraint of the fit of the GEODYSSEA sites with the Australian IGS reference ones, or tie with the NTUS Singapore station, leads to a much narrower range of solutions. We conclude that Sundaland has an eastward velocity of about 10 mm/a on its southern boundary increasing to 16-18 mm/a on its northern boundary.

  10. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  11. Unrevealing the History of Earthquakes and Tsunamis of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Castillo-Aja, M. D. R.; Cruz, S.; Corona, N.; Rangel Velarde, V.; Lagos, M.

    2014-12-01

    The great earthquakes and tsunamis of the last decades in Sumatra, Chile, and Japan remind us of the need for expanding the record of history of such catastrophic events. It can't be argued that even countries with extensive historical documents and tsunami sand deposits still have unsolved questions on the frequency of them, and the variables that control them along subduction zones. We present here preliminary results of a combined approach using historical archives and multiple proxies of the sedimentary record to unrevealing the history of possible great earthquakes and their tsunamis on the Mexican Subduction zone. The Mexican subduction zone extends over 1000 km long and little is known if the entire subduction zone along the Middle American Trench behaves as one enormous unit rather than in segments that rupture at different frequencies and with different strengths (as the short instrumental record shows). We searched on historical archives and earthquake databases to distinguish tsunamigenic events registered from the 16th century to now along the Jalisco-Colima and Guerrero-Oaxaca coastal stretches. The historical data referred are mostly from the 19th century on since the population on the coast was scarce before. We found 21 earthquakes with tsunamigenic potential, and of those 16 with doubtful to definitive accompanying tsunami on the Jalisco-Colima coast, and 31 tsunamigenic earthquakes on the Oaxaca-Guerrero coast. Evidence of great earthquakes and their tsunamis from the sedimentary record are scarce, perhaps due poor preservation of tsunami deposits in this tropical environment. Nevertheless, we have found evidence for a number of tsunamigenic events, both historical and prehistorical, 1932 and 1400 AD on Jalisco, and 3400 BP, 1789 AD, 1979 ad, and 1985 AD on Guerrero-Oaxaca. We continue working and a number of events are still to be dated. This work would aid in elucidating the history of earthquakes and tsunamis on the Mexican subduction zone.

  12. Modeling the role of back-arc spreading in controlling 3-D circulation and temperature patterns in subduction zones

    NASA Astrophysics Data System (ADS)

    Kincaid, C.

    2005-12-01

    Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs

  13. Numerical modeling of the deformations associated with large subduction earthquakes through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Fleitout, L.; Trubienko, O.; Garaud, J.; Vigny, C.; Cailletaud, G.; Simons, W. J.; Satirapod, C.; Shestakov, N.

    2012-12-01

    A 3D finite element code (Zebulon-Zset) is used to model deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes: Sumatra, Japan and Chile. The mesh featuring a broad spherical shell portion with a viscoelastic asthenosphere is refined close to the subduction zones. The model is constrained by 6 years of postseismic data in Sumatra area and over a year of data for Japan and Chile plus preseismic data in the three areas. The coseismic displacements on the subduction plane are inverted from the coseismic displacements using the finite element program and provide the initial stresses. The predicted horizontal postseismic displacements depend upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. Non-dimensionalized by the coseismic displacements, they present an almost uniform value between 500km and 1500km from the trench for elastic plates 80km thick. The time evolution of the velocities is function of the creep law (Maxwell, Burger or power-law creep). Moreover, the forward models predict a sizable far-field subsidence, also with a spatial distribution which varies with the geometry of the asthenosphere and lithosphere. Slip on the subduction interface does not induce such a subsidence. The observed horizontal velocities, divided by the coseismic displacement, present a similar pattern as function of time and distance from trench for the three areas, indicative of similar lithospheric and asthenospheric thicknesses and asthenospheric viscosity. This pattern cannot be fitted with power-law creep in the asthenosphere but indicates a lithosphere 60 to 90km thick and an asthenosphere of thickness of the order of 100km with a burger rheology represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μKelvin=μelastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The postseismic subsidence is

  14. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  15. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    USGS Publications Warehouse

    Kusky, Timothy M.

    1997-01-01

    The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the

  16. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang

    2018-01-01

    A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.

  17. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.

  18. An oceanic plateau subduction offshore Eastern Java

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.

    2010-12-01

    The area offshore Java represents one of a few places globally where the early stage of subduction of an oceanic plateau is observed. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia.Our study area is located south of eastern Java and covers the edge of the Roo Rise plateau, the Java trench and the entire forearc section. For the first time the detailed deep structure of the Roo Rise is studied, subduction of which has a significant effect on the forearc dynamics and evolution and the increase of the geohazards risks. The tsunamogenic earthquakes of 1994 and 2006 are associated with the oceanic plateau edge been subducted. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 along a corridor centered around 113°E and composed of a 340 km long N-S profile and a 130 km long E-W oriented profile. The composite structural models reveal the previously unresolved deep geometry of the collision zone and the structure of the oceanic plateau. The crustal thickness of the Roo Rise plateau is ranging from 18 to 12 km. The structure of the upper crust of the incoming oceanic plate shows the extreme degree of fracturing in its top section, and is associated with a plate bending. The forearc Moho has a depth range from 16 to 20 km. The gravity modeling requires a sharp crustal thickness increase below Java. Within our profiles we do not recover any direct evidence for the presence of the bathymetric features on the oceanic plate currently present below the accretionary prism, responsible for the tsunamogenic earthquake triggering. However vertical variations of the forearc basement edge are observed on the trench-parallel profile, which opens a discussion on the origin of such basement undulations, together with a localized patchy uplift character of the forearc high.The complex geometry of the backstop

  19. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  20. Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Rousset, Baptiste; Lasserre, Cécile; Cubas, Nadaya; Graham, Shannon; Radiguet, Mathilde; DeMets, Charles; Socquet, Anne; Campillo, Michel; Kostoglodov, Vladimir; Cabral-Cano, Enrique; Cotte, Nathalie; Walpersdorf, Andrea

    2016-10-01

    Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling <0.3). Coupling below the continent is typically strong (>0.7) and transitions to uncoupled, steady slip at a relatively uniform ˜ 175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional

  1. Megathrust Earthquakes and Sediment Input to the Subduction Channel

    NASA Astrophysics Data System (ADS)

    Scholl, David W.; Keranen, Katie; von Huene, Roland; Wells, Ray; Ryan, Holly; Kirby, Stephen

    2010-05-01

    HABITATS OF GREAT MEGATHRUST EARTHQUAKES: Great megathrust earthquakes (Mw8.5 or higher) most commonly (~65%) nucleate along subduction zones (SZ) bordered by laterally continuous (more than 500 km), sediment-flooded trenches. Examples include: south-central Chile (1922, Mw8.5; 1960, Mw9.5), eastern Alaska (1964, Mw9.2), Sumatra (2004, Mw9.1), Cascadia (1700, Mw9.0), Colombia (1906, Mw8.8), Sumatra (1883, Mw8.8), west-central Aleutian (1965, Mw8.7), central Aleutian (1986, Mw8.7), Sumatra (2005, Mw8.6), and Nankai (1707, Mw8.5). All known megathrust events greater than Mw9 ruptured at sediment-charged SZs (Alaska, S.C. Chile, Sumatra). Sediment entering high-seismicity SZs is typically a 1-3-km-thick wedge of trench-axis turbidite beds overlying a 0.3-2-km-thick sequence of hemipelagic or abyssal turbiditic deposits that accrued seaward of the trench. Most commonly, laterally-continuous turbidite wedges are built by down-axis flowing turbidity currents sourced from mountainous and/or glaciated drainages (e.g., SE Alaska, Cascadia, Southern Andes, Himalaya). Great rupture events also occur at SZs receiving little sediment, for example Kamchatka (1952, Mw9.0), Kuril Islands (1963, Mw8.5) and north Chile SZs (1868, Mw9.0). These SZs exhibit evidence of upper plate thinning, subsidence, and truncation effected by frontal and basal subduction erosion. They also have a SC filled with ~1 km or more of debris in transport toward the mantle. WORKINGS OF THE SUBDUCTION CHANNEL (SC): Beneath the submerged forearc, the SC functions to transport subducted ocean floor sediment and tectonically eroded forearc debris toward and ultimately into the mantle. The SC is the lowest structural unit containing upper plate crustal material and the seismogenic zone runs along the SC's upper boundary. It has long been conjectured (e.g., Ruff, 1989; PAGEOPH, v. 129. Nos 1/2) that a laterally uninterrupted, sediment- or debris-charged SC serves to smooth the surface of interplate slip to set

  2. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  3. Trench Parallel Bouguer Anomaly (TPBA): A robust measure for statically detecting asperities along the forearc of subduction zones

    NASA Astrophysics Data System (ADS)

    Raeesi, M.

    2009-05-01

    During 1970s some researchers noticed that large earthquakes occur repeatedly at the same locations. These observations led to the asperity hypothesis. At the same times some researchers noticed that there was a relationship between the location of great interplate earthquakes and the submarine structures, basins in particular, over the rupture area in the forearc regions. Despite these observations there was no comprehensive and reliable hypothesis explaining the relationship. There were numerous cons and pros to the various hypotheses given in this regard. In their pioneering study, Song and Simons (2003) approached the problem using gravity data. This was a turning point in seismology. Although their approach was correct, appropriate gravity anomaly had to be used in order to reveal the location and extent of the asperities. Following the method of Song and Simons (2003) but using the Bouguer gravity anomaly that we called "Trench Parallel Bouguer Anomaly", TPBA, we found strong, logical, and convincing relation between the TPBA-derived asperities and the slip distribution as well as earthquake distribution, foreshocks and aftershocks in particular. Various parameters with different levels of importance are known that affect the contact between the subducting and the overriding plates, We found that the TPBA can show which are the important factors. Because the TPBA-derived asperities are based on static physical properties (gravity and elevation), they do not suffer from instabilities due to the trade-offs, as it happens for asperities derived in dynamic studies such as waveform inversion. Comparison of the TPBA-derived asperities with rupture processes of the well-studied great earthquakes, reveals the high level of accuracy of the TPBA. This new measure opens a forensic viewpoint on the rupture process along the subduction zones. The TPBA reveals the reason behind 9+ earthquakes and it explains where and why they occur. The TPBA reveals the areas that can

  4. Coseismic seafloor deformation in the trench region during the Mw8.8 Maule megathrust earthquake.

    PubMed

    Maksymowicz, A; Chadwell, C D; Ruiz, J; Tréhu, A M; Contreras-Reyes, E; Weinrebe, W; Díaz-Naveas, J; Gibson, J C; Lonsdale, P; Tryon, M D

    2017-04-05

    The M w 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ~3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ~6 km of the deformation front. After the M w 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone.

  5. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  6. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  7. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra

    NASA Astrophysics Data System (ADS)

    Hüpers, Andre; Torres, Marta E.; Owari, Satoko; McNeill, Lisa C.; Dugan, Brandon; Henstock, Timothy J.; Milliken, Kitty L.; Petronotis, Katerina E.; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Jeppson, Tamara N.; Kachovich, Sarah; Kenigsberg, Abby R.; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L.; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi

    2017-05-01

    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.

  8. Subduction processes related to the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  9. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (≤ 0.1 m) released by slab dehydration evolve towards high-salinity (≥ 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt

  10. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    USGS Publications Warehouse

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  11. Frictional behavior of carbonate-rich sediments in subduction zones

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2015-12-01

    Carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of subduction zones. In order to investigate the effect of carbonate subduction, we conducted biaxial deformation experiments within a pressure vessel using the Brittle Rock deformAtion Versatile Apparatus (BRAVA) at INGV. We obtained input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of ~40/60 wt% and ~80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σN = 1-50 MPa with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. Frictional strength of Hikurangi gouge is 0.35-0.55 and Peru gouge is 0.55-0.65. Velocity-stepping tests show that the Hikurangi gouge is consistently velocity strengthening (friction rate parameter (a-b) > 0). The Peru gouge is mostly velocity strengthening but exhibits a minimum in a-b at the 3-10 μm/s velocity step (with velocity weakening behavior at 25 MPa, indicating the potential for earthquake nucleation). Slide-hold-slide tests show that the healing rate (β) of the Hikurangi gouge is 1x10-4-1x10-3 /decade which is comparable to that of clays (β~0.002 /decade) while the healing rate of Peru gouge (β~6x10-3-7x10-3 /decade) is closer to that of carbonate gouge (β~0.01 /decade). The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization. At 25 and 50 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our preliminary results indicate that carbonate/clay compositions could have a significant impact on the frictional behavior of subducting sediments.

  12. Earthquake Recurrence along the Kuril Trench: A New View from Paleoseismology

    NASA Astrophysics Data System (ADS)

    Satake, K.; Nanayama, F.

    2003-12-01

    Paleoseismological data along the Pacific coast of eastern Hokkaido indicate that unusual earthquakes have repeated at about 500 year interval with the most recent event in the 17th century. Along the Kuril trench, interplate earthquakes with rupture length of 100-200 km occurred in 1952 (Mw 8.1) and 1973 (Mw 7.8), as well as 1843 (M 8.0) and 1894 (M 7.9), which have been considered characteristics of this subduction zone. We review paleoseismological data, examine coastal deformation and tsunami inundation from fault models, and propose a model of earthquake recurrence in the Kuril subduction zone. Pleistocene marine terraces on the Pacific coast show slight net uplift, at an average of 0.1-0.4 mm/yr in the past several hundred thousand years, whereas tide-gauge data show gradual subsidence of 8-9 mm/yr since 1900. Infrequent unusual event (Armageddon) has been inferred (Ikeda, 1996) to resolve this conflict. Holocene stratigraphic and microfossil studies have indicated sea-level changes in the last 3 ka (e.g., Sawai, 2001). Each event is marked by an abrupt upward change from brackish bay deposits to freshwater peat. The youngest change has been dated in the 17th century with an estimated uplift amount of 0.5-1m (Atwater et al., 2003). Such evidence has been found along the 100 km long coast and recurred up to seven times in the last 2.5 ka (Kelsey et al., 2002). Extensive tsunami deposits indicate large prehistoric tsunamis (Nanayama et al., 2003). At Kiritappu, for instance, sand sheets extend 3 km inland, much further than historic tsunamis. Ten sheets of tsunami deposits indicate recurrence of such unusual tsunami with an average recurrence interval of about 500 years. The most recent event occurred in the 17th century. Historic documents in Honshu rules out unusual tsunamis that would cause damage along the Sanriku coast. Tsunami damage from the 1611 and 1677 earthquakes, both along the Japan trench, have been documented along the Sanriku coast. We modeled

  13. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under

  14. Very low frequency earthquakes along the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Ando, Masataka; Tu, Yoko; Kumagai, Hiroyuki; Yamanaka, Yoshiko; Lin, Cheng-Horng

    2012-02-01

    A total of 1314 very low frequency earthquakes (VLFEs) were identified along the Ryukyu trench from seismograms recorded at broadband networks in Japan (F-net) and Taiwan (BATS) in 2007. The spectra of typical VLFEs have peak frequencies between 0.02 to 0.1 Hz. Among those, waveforms from 120 VLFEs were inverted to obtain their centoroid moment tensor (CMT) solutions and locations using an examination grid to minimize a residual between the observed and synthetic waveforms within an area of 11° × 14° in latitude and longitude and at depths of 0 to 60 km. Most of the VLFEs occur on shallow thrust faults that are distributed along the Ryukyu trench, which are similar to those earthquakes found in Honshu and Hokkaido, Japan. The locations and mechanisms of VLFEs may be indicative of coupled regions within the accretionary prism or at the plate interface; this study highlights the need for further investigation of the Ryukyu trench to identify coupled regions within it.

  15. Arc-arc collision ongoing in the southernmost part of the Kuril trench region revealed from integrated analyses of the 1998-2000 Hokkaido Transect seismic data

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Tsumura, N.; Ito, T.; Sato, H.; Kurashimo, E.; Hirata, N.; Arita, K.; Noda, K.; Fujiwara, A.; Abe, S.; Kikuchi, S.; Suzuki, K.

    2014-12-01

    The oblique subduction of the Pacific plate beneath the southernmost part of the Kuril trench is generating a unique tectonic environment in the Hokkaido Island, Japan. In this area, the Kuril forearc sliver started to collide against Northeast (NE) Japan arc from the east at the time of middle Miocene to form the Hidaka collision zone (HCZ). This collision has been acting as a responsible factor for the westward obduction of the crustal rocks of the Kuril arc (the Hidaka metamorphic belt (HMB)) along the Hidaka main thrust (HMT) and the development of the thick foreland fold-and-thrust belt. A multi-disciplinary project of the 1998-2000 Hokkaido Transect, crossing the northern part of the HCZ in EW direction, collected high-quality seismic data on a 227-km seismic refraction/wide-angle reflection profile and three seismic reflection lines. Reprocessing/reinterpretation for this data set revealed detailed collision structure ongoing in the northern part of the HCZ. The westward obduction of the Kuril arc crust was clearly imaged along the HMT. This obduction starts at a depth of 27-30 km, much deeper than in the southern HCZ (23-25 km). In the west of the HMT, we recognize the gently eastward dipping structure, representing the fragments of Cretaceous subduction/arc complexes or deformation interfaces branched from the HMT. The most important finding from our reprocessing is a series of reflection events at a 30-45 km depth below the obducted Kuril arc crust, which probably correspond to the lower crust/Moho within the NE Japan arc descending down to the east under the collision zone. The wide-angle reflection data indicate that the subducted NE Japan arc meets the Kuril arc 30-40 km east of the HMT at a depth of 30 km. This structural geometry well explained a weak but coherent seismic phase observed at far offsets (120-180 km) on the wide-angle reflection line. The obtained structure shows the complicated collision style where the upper 30-km Kuril arc crust is

  16. Two-dimensional thermal modeling associated with subduction of the Philippine Sea plate in southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Yoshioka, Shoichi; Matsumoto, Takumi; Ji, Yingfeng

    2018-01-01

    In Hyuga-nada, southern Kyushu in southwest Japan, afterslip events were found in association with the two large interplate earthquakes, which occurred on October 19 and December 3, 1996. In Kyushu, low-frequency earthquakes (LFEs) and tectonic tremors are not common, but a considerable concentration of tectonic tremors is observed beneath the Pacific coast of the Miyazaki prefecture. To investigate the generation mechanisms of these seismic events, we performed 2-D box-type time-dependent thermal modeling in southern Kyushu. As a result, the temperature range of the upper surface of the subducting Philippine Sea (PHS) plate, where the afterslip occurred, reached approximately 300 to 350 °C. The temperatures where the tectonic tremors occurred ranged from 450 to 650 °C in the mantle wedge corner. We also estimated the spatial distribution of water content within the subducting PHS plate, using phase diagrams of hydrous mid-ocean ridge basalt (MORB) and ultramafic rock. Then, we found that no characteristic phase transformations accompany the dehydration of the subducting PHS plate in the afterslip region, but phase transformation from lawsonite blueschist to lawsonite eclogite is expected within the oceanic crust of the PHS plate just below the active region of the tectonic tremors. Our estimated water content distribution is consistent with the VP/VS ratio calculated from the seismic tomography. Therefore, we conclude that the occurrence of the afterslip is controlled by the temperature condition at the plate boundary, and occurs near the down-dip limit of the seismogenic zone. On the other hand, determining the major factors leading to the occurrence of the tectonic tremors is difficult, we estimated the temperature in the mantle wedge is ranging from 450 °C to 650 °C, and dehydration of 1.0 wt% would be expected from the subducting PHS plate near the active region of the tectonic tremors.

  17. Calcareous nannofossil biostratigraphy and geochronology of Neogene trench-slope cover sediments in the south Boso Peninsula, central Japan: Implications for the development of a shallow accretionary complex

    NASA Astrophysics Data System (ADS)

    Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu

    2017-07-01

    The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.

  18. Multiscale Architecture of a Subduction Complex and Insight into Large-scale Material Movement in Subduction Systems

    NASA Astrophysics Data System (ADS)

    Wakabayashi, J.

    2014-12-01

    The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and m

  19. Plume-induced subduction initiation at the Cretaceous India-Arabia transform plate boundary: paleomagnetic constraints from the Semail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Van Hinsbergen, D. J. J.; Maffione, M.; Koornneef, L.; Guilmette, C.

    2016-12-01

    The Neotethyan realm hosts a prominent belt of Cretaceous supra-subduction zone ophiolites from Turkey and Cyprus in the west, to Oman in the east. Associated crustal and metamorphic sole ages tightly cluster at 95-90 Ma, interpreted to shortly post-date subduction initiation in an intra-oceanic setting along transform faults or ridge segments (or ridge-parallel oceanic detachments). This subduction episode ended when the Arabian-African continental lithosphere arrived in the trench in the late Cretaceous and the leading edge of the overriding oceanic lithosphere obducted as ophiolites, including the famous Semail ophiolite of Oman. This catastrophic subduction initiation phase is assumed to be as response to some far-field trigger. Here, we analyzed whether the Semail ophiolite was generated at an E-W trending Neotethyan ridge or at a N-S trending transform. Therefore we paleomagnetically analyzed 10 localities in sheeted dyke sections of the Semail ophiolite that trend parallel to the obduction front of the ophiolite taken to reflect the paleo-trench. We demonstrate that the sheeted dyke sections, and thus also the trench, had an initial N-S strike, indicating that subduction below the Semail ophiolite probably initiated along a N-S striking transform plate boundary between the Indian and Arabian plate rather than at a Neotethyan mid-ocean ridge. Sometime before 83 Ma, India broke away from Madagascar, and underwent a counterclockwise rotation relative to Africa/Arabia around an Euler pole just north of Madagascar, likely triggered by the arrival of the Morondova mantle plume, the associated large igneous province formed since at least 91 Ma. Numerical models have shown that plume push was a likely driver for the inception of India-Madagascar spreading and associated Indian rotation. North of the associated Euler pole, E-W convergence India-Arabia must have occurred during India-Madagascar break-up. This has already been related to 96-90 Ma subduction initiation

  20. Review of subduction and its association with geothermal system in Sumatera-Java

    NASA Astrophysics Data System (ADS)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  1. Heterogeneous coupling along Makran subduction zone

    NASA Astrophysics Data System (ADS)

    Zarifi, Z.; Raeesi, M.

    2010-12-01

    The Makran subduction zone, located in the southeast of Iran and southern Pakistan, extends for almost 900 km along the Eurasian-Arabian plate boundary. The seismic activities in the eastern and western Makran exhibit very different patterns. The eastern Makran characterized by infrequent large earthquakes and low level of seismicity. The only large instrumentally recorded earthquake in the eastern Makran, the 27 Nov. 1945 (Mw=8.1) earthquake, was followed by tsunami waves with the maximum run-up height of 13 m and disastrous effects in Pakistan, India, Iran and Oman. The western Makran, however, is apparently quiescent without strong evidence on occurrence of large earthquakes in historical times, which makes it difficult to ascertain whether the slab subducts aseismically or experiences large earthquakes separated by long periods exceeding the historical records. We used seismicity and Trench Parallel Free air and Bouguer Anomalies (TPGA and TPBA) to study the variation in coupling in the slab interface. Using a 3D mechanical Finite Element (FE) model, we show how heterogeneous coupling can influence the rate of deformation in the overriding lithosphere and the state of stress in the outer rise, overriding, and subducting plates within the shortest expected cycle of earthquake. We test the results of FE model against the observed focal mechanism of earthquakes and available GPS measurements in Makran subduction zone.

  2. Slab roll-back and trench retreat as controlling factor for basin subsidence in southern Central America

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Winsemann, Jutta

    2015-04-01

    Slab roll-back and trench retreat are important factors for basin subsidence, magma generation and volcanism in arc-trench systems. Based on the sedimentary and tectonic record of the southern Central American island-arc we conclude that repeated phases of slab roll-back and trench retreats occurred the arc-trench system since the Late Cretaceous. These trench retreats were most probably related to the subduction of oceanic plateaus and seamounts and effected both the fore-arc and back-arc evolution. We used numerical basin modelling techniques to analyse the burial history of fore-arc and back-arc basins in Central America and combined the results with field data of the sedimentological evolution of the basin-fills. From the basin models, geohistory curves were extracted for the fore-arc and back-arc basins to derive the subsidence evolution. The Sandino Fore-arc Basin is characterized by low subsidence during the first 40 Myr. Since the Late Cretaceous the basin has a linear moderate subsidence with a phase of accelerated subsidence in the Oligocene. In the North and South Limón Back-arc Basin, subsidence started at approximately the same time as in the Sandino Fore-arc Basin. The North and South Limón Basins show a linear subsidence trend in the Paleocene and Eocene. Evidence for trench retreats is given by pulses of uplift in the outer-arc area, followed by subsidence in both the fore-arc and back-arc basins. The first slab roll-back probably occurred during the Early Paleocene. This is indicated by the collapse of carbonate platforms, and the re-deposition of large carbonate blocks into deep-water turbidites. A new pulse of uplift or decreased subsidence, respectively during the Late Eocene is attributed to subduction of rough crust. A subsequent slab detachment and the establishment of a new subduction zone further westward was described by Walther et al. (2000). Strong uplift affected the entire fore-arc area, which led to the deposition of very coarse

  3. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  4. A tale of two arcs? Plate tectonics of the Izu-Bonin-Mariana (IBM) arc using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Kanda, R. V. S.

    2014-12-01

    Published plate reconstructions typically show the Izu-Bonin Marianas arc (IBM) forming as a result of long-lived ~50 Ma Pacific subduction beneath the Philippine Sea. These reconstructions rely on the critical assumption that the Philippine Sea was continuously coupled to the Pacific during the lifetime of the IBM arc. Because of this assumption, significant (up to 1500 km) Pacific trench retreat is required to accommodate the 2000 km of Philippine Sea/IBM northward motion since the Eocene that is constrained by paleomagnetic data. In this study, we have mapped subducted slabs of mantle lithosphere from MITP08 global seismic tomography (Li et al., 2008) and restored them to a model Earth surface to constrain plate tectonic reconstructions. Here we present two subducted slab constraints that call into question current IBM arc reconstructions: 1) The northern and central Marianas slabs form a sub-vertical 'slab wall' down to maximum 1500 km depths in the lower mantle. This slab geometry is best explained by a near-stationary Marianas trench that has remained +/- 250 km E-W of its present-day position since ~45 Ma, and does not support any significant Pacific slab retreat. 2) A vanished ocean is revealed by an extensive swath of sub-horizontal slabs at 700 to 1000 km depths in the lower mantle below present-day Philippine Sea to Papua New Guinea. We call this vanished ocean the 'East Asian Sea'. When placed in an Eocene plate reconstruction, the East Asian Sea fits west of the reconstructed Marianas Pacific trench position and north of the Philippine Sea plate. This implies that the Philippine Sea and Pacific were not adjacent at IBM initiation, but were in fact separated by a lost ocean. Here we propose a new IBM arc reconstruction constrained by subducted slabs mapped under East Asia. At ~50 Ma, the present-day IBM arc initiated at equatorial latitudes from East Asian Sea subduction below the Philippine Sea. A separate arc was formed from Pacific subduction below

  5. Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Takahashi, Tsutomu; Kaiho, Yuka; Obana, Koichiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2017-03-01

    We conduct seismic tomography to model subsurface seismicity between 2010 and 2012 and structural heterogeneity off the Kii Peninsula, southwestern Japan, and to investigate their relationships with segmentation of the Nankai and Tonankai seismogenic zones of the Nankai Trough. In order to constrain both the shallow and deep structure of the offshore seismogenic segments, we use both active- and passive-source data recorded by both ocean-bottom seismometers and land seismic stations. The relocated microearthquakes indicate a lack of seismic activity in the Tonankai seismogenic segment off Kumano, whereas there was active intraslab seismicity in the Kii Channel area of the Nankai seismogenic segment. Based on comparisons among the distribution of seismicity, age, and spreading rate of the subducting Philippine Sea plate, and the slip-deficit distribution, we conclude that seismicity in the subducting slab under the Kii Channel region nucleated from structures in the Philippine Sea slab that pre-date subduction and that fluids released by dehydration are related to decreased interplate coupling of these intraslab earthquakes. Our velocity model clearly shows the areal extent of two key structures reported in previous 2-D active-source surveys: a high-velocity zone beneath Cape Shionomisaki and a subducted seamount off Cape Muroto, both of which are roughly circular and of 15-20 km radius. The epicenters of the 1944 Tonankai and 1946 Nankai earthquakes are near the edge of the high-velocity body beneath Cape Shionomisaki, suggesting that this anomalous structure is related to the nucleation of these two earthquakes. We identify several other high- and low-velocity zones immediately above the plate boundary in the Tonankai and Nankai seismogenic segments. In comparison with the slip-deficit model, some of the low-velocity zones appear to correspond to an area of strong coupling. Our observations suggest that, unlike the Japan Trench subduction zone, in our study area

  6. Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Faccenna, Claudio

    2018-05-01

    The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.

  7. Heterogeneous subduction structure within the Pacific plate beneath the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Xing, Junhui; Jiang, Xiaodian

    2018-05-01

    The Izu-Bonin subduction zone is a subduction system formed in early Eocene. The structure of the subduction zone becomes complicated with the evolution of the surrounding plate motion, and many aspects are still unkown or ambiguous. The geodynamic implications are further investigated in related to published seismic observations and geochemical characters of the Izu-Bonin subduction zone. As indicated by seismic tomography and epicentral distributions, the dip angle of the plate beneath the segment to the south of 29°-30°N (the southern Izu-Bonin) is much steeper than the northern one (the northern Izu-Bonin). Deep focus events in the southern segment extend to the depth of ∼600 km, whereas in the northern section deep events just terminate at 420-450 km. Particularly, tomographic images show an obvious boundary between the northern and southern Izu-Bonin at depths of 150-600 km neglected in the previous studies. The northern and southern segments are even separated by a wide range of low-velocity anomaly in P and S wave tomography at 380 km and 450 km depths. In this depth range, three events near 30°N are characterized by strike-slip mechanisms with slab parallel σ1 and horizontally north-south trending σ3, which differ with the typical down-dip compression mechanisms for neighboring events. These events could be attributed to an abrupt change of the morphology and movement of the slab in the transition segment between the northern and southern Izu-Bonin. Indicated by the focal mechanisms, the northern and southern Izu-Bonin exhibits an inhomogeneous stress field, which is closely related to age differences of the downgoing slab. Because of the reheating process, the thermal age of the Pacific plate entering the Izu-Bonin trench in the past 10 Ma, is only 60-90 ± 20 Ma, along with the younger plate subducting in the northern segment. The seismic anisotropy implies that mantle wedge flow orientation is between the motion direction of the Pacific plate and

  8. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  9. Self-Sustained Mode-3 Tear Controls Dynamics of Narrow Retreating Subduction Zones

    NASA Astrophysics Data System (ADS)

    Munch, J.; Gerya, T.; Ueda, K.

    2017-12-01

    The Caribbean oroclinal basin exhibits several narrow retreating slabs in an oceanic domain. The slabs show a curved shape associated to a bent topography (trench). We propose that the curvature of the topography depends on slab retreat mechanisms following mode-3 tearing at the edges of the slab (out of the plane fracture propagation). While first-order characteristics have been principally reproduced in self-sustained subduction initiation models (Gerya et al., 2015, Nature, 527, 221-225), the relevant observations have not been quantified and the exact mechanism is not understood. In this work, we study the long-term 3D evolution of narrowing oceanic subduction zones during retreat, and investigate the link between mode-3 tear and orocline formation. Numerical experiments are carried out with a thermo-mechanical 3D finite-difference code. To allow the observation of developing topography, the precise location of the internal surface and its evolution by material diffusion is tracked. Retreating subduction is facilitated via a strong age contrast between a young lithosphere window enclosed by shear zones and the surrounding lithosphere. By varying the length and thickness of the shear zones and location of the age transition, the influence of these parameters on the tearing process and the development of topography is assessed. Experiments trigger subduction initiation and slab retreat via fracture zone collapse and spontaneous paired mode-3 tear propagation within the oceanic plate interior. Narrow retreating subducting slabs form as a natural result of the spontaneous paired tearing process. A curved trench forms along with slab retreat. Topography evolution and tearing trajectory appear to be dependent on the initial shear zones and young window dimensions. We also note a strong narrowing of the slab during the retreat (several tens of kilometers over 800 km of retreat). Overall, results indicate that narrowing of retreating slabs is a self

  10. Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause

    USGS Publications Warehouse

    ten Brink, Uri S.

    2005-01-01

    The Puerto Rico trench exhibits great water depth, an extremely low gravity anomaly, and a tilted carbonate platform between (reconstructed) elevations of +1300 m and -4000 m. I argue that these features are manifestations of large vertical movements of a segment of the Puerto Rico trench, its forearc, and the island of Puerto Rico that took place 3.3 m.y. ago over a time period as short as 14-40 kyr. I explain these vertical movements by a sudden increase in the slab's descent angle that caused the trench to subside and the island to rise. The increased dip could have been caused by shearing or even by a complete tear of the descending North American slab, although the exact nature of this deformation is unknown. The rapid (14-40 kyr) and uniform tilt along a 250 km long section of the trench is compatible with scales of mantle flow and plate bending. The proposed shear zone or tear is inferred from seismic, morphological, and gravity observations to start at the trench at 64.5??W and trend southwestwardly toward eastern Puerto Rico. The tensile stresses necessary to deform or tear the slab could have been generated by increased curvature of the trench following a counterclockwise rotation of the upper plate and by the subduction of a large seamount.

  11. A new database on subduction seismicity at the global scale

    NASA Astrophysics Data System (ADS)

    Presti, D.; Heuret, A.; Funiciello, F.; Piromallo, C.

    2012-04-01

    In the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', a global collection of recent intraslab seismicity has been performed. Based on EHB hypocenter and CMT Harvard catalogues, the hypocenters, nodal planes and seismic moments of worldwide subduction-related earthquakes were extracted for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw ≥ 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the intermediate and deep depth seismicity. The upper limit of the intermediate depth seismicity is generally fixed at 70 km depth in order to avoid possible mixing with interplate seismicity. The ranking of intermediate depth and deep seismicity was in most of cases referred to earthquakes with focal depth between 70-300 km and with depth exceeding 300 km, respectively. Outer-rise seismicity was also selected. Following Heuret et al. (2011), the 505 transects were merged into 62 larger

  12. Dynamic topography in subduction zones: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    The topography in subduction zones can exhibit very complex patterns due to the variety of forces operating this setting. If we can deduce the theoretical isostatic value from density structure of the lithosphere, the effect of flexural bending and the dynamic component of topography are difficult to quantify. In this work, we attempt to measure and analyze the topography of the overriding plate during subduction compared to a pure shortening setting. We use analog models where the lithospheres are modeled by thin-sheet layers of silicone putty lying on low-viscosity syrup (asthenosphere). The model is shorten by a piston pushing an oceanic plate while a continental plate including a weak zone to localize the deformation is fixed. In one type of experiments, the oceanic plate bends and subducts underneath the continental one; in a second type the two plates are in contact without any trench, and thus simply shorten. The topography evolution is monitored with a laser-scanner. In the shortening model, the elevation increases progressively, especially in the weak zone, and is consistent with expected isostatic values. In the subduction model, the topography is characterized, from the piston to the back-wall, by a low elevation of the dense oceanic plate, a flexural bulge, the trench forming a deep depression, the highly elevated weak zone, and the continental upper plate of intermediate elevation. The topography of the upper plate is consistent with isostatic values for very early stages, but exhibits lower elevations than expected for later stages. For a same amount of shortening of the continental plate, the thickening is the same and the plate should have the same elevation in both types of models. However, comparing the topography at 20, 29 and 39% of shortening, we found that the weak zone is 0.4 to 0.6 mm lower when there is an active subduction. Theses values correspond to 2.6 to 4 km in nature. Although theses values are high, there are of the same order as

  13. Boundary conditions traps when modeling interseismic deformation at subduction zones

    NASA Astrophysics Data System (ADS)

    Contreras, Marcelo; Gerbault, Muriel; Tassara, Andres; Bataille, Klaus; Araya, Rodolfo

    2017-04-01

    In order to gain insight on the controling factors for elastic strain build-up in subduction zones, such as those triggering the Mw 8. 2010 Maule earthquake, we published a modeling study to test the influence of the subducting plate thickness, variations in the updip and downdip limit of a 100% locked interplate zone, elastic parameters, and velocity reduction at the base of the subducted slab (Contreras et al., Andean Geology 43(3), 2016). When comparing our modeled predictions with interseismic GPS observations, our results indicated little influence of the subducting plate thickness, but a necessity to reduce the velocity at the corner-base of the subducted slab below the trench region, to 10% of the far-field convergence rate. Complementary numerical models allowed us to link this velocity reduction at the base of subducting slab with a long-term high flexural stress resulting from the mechanical interaction of the slab with the underlying mantle. This study discusses that even if only a small amount of these high deviatoric stresses transfer energy towards the upper portion of the slab, it may participate in triggering large earthquakes such as the Mw8.8 Maule event. The definition of initial and boundary conditions between short-term to long-term models evidence the mechanical inconsistencies that may appear when considering pre-flexed subducting slabs and unloaded underlying asthenosphere, potentially creating mis-balanced large stress discontinuities.

  14. A test of present-day plate geometries for northeast Asia and Japan

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1992-01-01

    Alternative geometries for the present-day configuration of plate boundaries in northeast Asia and Japan are tested using NUVEL-1 and 256 horizontal earthquake slip vectors from the Japan and northern Kuril trenches. Statistical analysis of the slip vectors is used to determine whether the North American, Eurasian, or Okhotsk plate overlies the trench. Along the northern Kuril trench, slip vectors are well-fit by the NUVEL-1 Pacific-North America Euler pole, but are poorly fit by the Pacific-Eurasia Euler pole. Results for the Japan trench are less conclusive, but suggest that much of Honshu and Hokkaido are also part of the North American plate. The simplest geometry consistent with the trench slip vectors is a geometry in which the North American plate extends south to 41 deg N, and possibly includes northern Honshu and southern Hokkaido. Although these results imply that the diffuse seismicity that connects the Lena River delta to Sakhalin Island and the eastern Sea of Japan records motion between Eurasia and North America, onshore geologic and seismic data define an additional belt of seismicity in Siberia that cannot be explained with this geometry. Assuming that these two seismic belts constitute evidence for an Okhotsk block, two published kinematic models for motion of the Okhotsk block are tested. The first model, which predicts motion of up to 15 mm/yr relative to North America, is rejected because Kuril and Japan trench slip vectors are fit more poorly than for the simpler geometry described above. The second model gives a good fit to the trench slip vectors, but only if Okhotsk-North America motion is slower than 5 mm/yr.

  15. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin

    2017-04-01

    Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.

  16. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.

    2017-01-01

    Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.

  17. Modeling Slab-Slab Interactions: Dynamics of Outward Dipping Double-Sided Subduction Systems

    NASA Astrophysics Data System (ADS)

    Király, Ágnes; Holt, Adam F.; Funiciello, Francesca; Faccenna, Claudio; Capitanio, Fabio A.

    2018-03-01

    Slab-slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double-sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double-sided subduction exhibits more time-dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double-sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs ("geometric" asymmetry), and with variable buoyancy within the subducting plate ("mechanical" asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab-slab interaction is most effective when the two trenches are closer than 10-8 cm in the laboratory, which is 600-480 km when scaled to the Earth.

  18. Tectono-sedimentary features in the Yap subduction zone, Western Pacific: constraints from latest integrated geophysical survey

    NASA Astrophysics Data System (ADS)

    Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.

    2017-12-01

    The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy

  19. Shallow velocity structure of the Alaska Peninsula subduction zone and implications for controls on seismic behavior

    NASA Astrophysics Data System (ADS)

    Li, J.; Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike variations in the seismic behavior of subduction zone megathrust faults are thought to be strongly controlled by changes in the material properties along the plate boundary. Roughness and hydration of the incoming plate, fluid pressure and lithology in the subducting sediment channel are likely to control the distribution of shallower rupture. Here, we focus on the subduction zone offshore of the Alaska Peninsula. In 2011, the ALEUT program acquired deep penetration multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data across the apparently freely sliding Shumagin Gap, the locked Semidi segment that last ruptured in 1938 M8.2 earthquake, and the locked western Kodiak asperity, which ruptured in the 1964 M9.2 earthquake. Seismic reflection data from the ALEUT cruise reveal significant variability in the thickness of sediment on the incoming plate and entering the trench, and the roughness and degree of hydration of the incoming plate. Oceanic crust entering the trench in the Shumagin gap is rugged with extensive faults and only a thin layer of sediment (<0.5 km thick). Farther east in the Semidi segment, the subducting plate has a smoother surface with thicker sediments (~1 km thick) and less faulting/hydration. To better constrain the properties of the accretionary prism and shallow part of the plate boundary, we are undertaking travel time tomography using reflection/refraction phases in OBS and MCS data, and constraints on the interface geometry from MCS images to estimate the detailed shallow velocity structure, with particular focus on properties within the shallow subduction channel. We observe refractions and reflections in OBS data from the shallow part of the subduction zone in both the Shumagin Gap and Semidi segment, including reflections off the top and base of what appears to be a layer of subducting sediment, which can be used for this work. We plan to present initial models of the shallow part of the

  20. Magmatic tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model

    NASA Astrophysics Data System (ADS)

    Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé

    2000-11-01

    High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies

  1. The damage is done: Low fault friction recorded in the damage zone of the shallow Japan Trench décollement

    NASA Astrophysics Data System (ADS)

    Keren, Tucker T.; Kirkpatrick, James D.

    2016-05-01

    Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.

  2. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  3. Proto-South China Sea plate tectonics using subducted slab constraints from tomography

    NASA Astrophysics Data System (ADS)

    Wu, J.; Suppe, J.

    2017-12-01

    The geology of the South China Sea and surrounding margins is intimately tied to the subduction of its predecessor, the proto-South China Sea. However, published plate reconstructions have shown highly variable sizes and locations for the proto-South China Sea. Despite these differences, most studies agree that the proto-South China Sea was subducted southwards under north Borneo in the Cenozoic. Here we present new details on proto-South China Sea paleogeography using mapped and unfolded slabs from seismic tomography following Wu et al. (2016). We show that most of the proto-South China Sea lithosphere lies directly under the South China Sea and is represented by an extensive (>1000 km N-S) swath of detached, sub-horizontal slab at 450 to 700 km depth, here called the `northern Proto-South China Sea'. Furthermore, slab unfolding shows that prior to subduction at the Manila Trench, the eastern limit of the South China Sea, lay directly above the edge of the `northern Proto-South China Sea', both extending 400 to 500 km to the east of the present Manila trench. These observations show that the South China Sea opened directly above a northward-subducting `northern Proto-South China Sea', which runs counter to most proto-South China Sea plate models. We present a slab-constrained plate reconstruction that shows the proto-South China Sea was consumed by double-sided subduction to both the north and south, as follows: [1] The `northern proto-South China Sea' subducted in the Oligocene-Miocene under the Dangerous Grounds and southward expanding South China Sea by in-place 'self subduction' similar to the western Mediterranean basins. [2] Limited southward subduction of the proto-South China Sea under Borneo occurred pre-Oligocene, represented by the 'southern Proto-South China Sea' slab at 800 to 900 km depths. Our plate reconstruction implies the southern South China Sea was an active margin during South China Sea opening and had a south-facing arc and a north

  4. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.

  5. Subduction hinge migration: The backwards component of plate tectonics

    NASA Astrophysics Data System (ADS)

    Stegman, D.; Freeman, J.; Schellart, W.; Moresi, L.; May, D.

    2005-12-01

    There are approximately 50 distinct segments of subduction zones in the world, of which 40% have oceanic lithosphere subducting under oceanic lithosphere. All of these ocean-ocean systems are currently experiencing hinge-rollback, with the exception of 2 (Mariana and Kermadec). In hinge-rollback, the surface trace of the suduction zone (trench) is moving in the opposite direction as the plate is moving (i.e. backwards). Coincidentally, the fastest moving plate boundary in the world is actually the Tonga trench at an estimated 17 cm/yr (backwards). Although this quite important process was recognized soon after the birth of plate tectonic theory (Elsasser, 1971), it has received only a limited amount of attention (Garfunkel, 1986; Kincaid and Olson, 1987) until recently. Laboratory models have shown that having a three dimensional experiment is essential in order to build a correct understanding of subduction. We have developed a numerical model with the neccessary 3-D geometry capable of investigating some fundamental questions of plate tectonics: How does hinge-rollback feedback into surface tectonics and mantle flow? What can we learn about the forces that drive plate tectonics by studying hinge-rollback? We will present a quantatitive analysis of the effect of the lateral width of subduction zones, the key aspect to understanding the nature of hinge-rollback. Additionally, particular emphasis has been put on gaining intuition through the use of movies (a 3-D rendering of the numerical models), illustrating the time evolution of slab interactions with the lower mantle as seen in such fields as velocity magnitude, strain rate, viscosity, as well as the toroidal and poloidal components of induced flow. This investigation is well-suited to developing direct comparisons with geological and geophysical observations such as geodetically determined hinge retreat rates, geochemical and petrological observations of arc volcanics and back-arc ridge basalts, timing and

  6. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Juan; Chen, Qi-Fu

    2017-02-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Due to the sparse distribution of seismic stations in the sea, previous studies mostly focus on mantle transition zone (MTZ) structures beneath continents or island arcs, leaving the vast area of the Japan Sea and Okhotsk Sea untouched. In this study, we analyzed multiple-ScS reverberation waves, and a common-reflection-point stacking technique was applied to enhance consistent signals beneath reflection points. A topographic image of the 410 km and 660 km discontinuities is obtained beneath the Japan Sea and adjacent regions. One-dimensional and 3-D velocity models are adapted to obtain the "apparent" and "true" depth. We observe a systematic pattern of depression ( 10-20 km) and elevation ( 5-10 km) of the 660, with the topography being roughly consistent with the shift of the olivine-phase transition boundary caused by the subducting Pacific plate. The behavior of the 410 is more complex. It is generally 5-15 km shallower at the location where the slab penetrates and deepened by 5-10 km oceanward of the slab where a low-velocity anomaly is observed in tomography images. Moreover, we observe a wide distribution of depressed 410 beneath the southern Okhotsk Sea and western Japan Sea. The hydrous wadsleyite boundary caused by the high water content at the top of the MTZ could explain the depression. The long-history trench rollback motion of Pacific slab might be responsible for the widely distributed depression of the 410 ranging upward and landward from the slab.

  7. Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Sánchez, Osvaldo

    1996-01-01

    Studies of locally recorded microearthquakes and the centroidal depths of the largest earthquakes analyzed using teleseismic data show that the maximum depth of thrust faulting along the Mexican subduction zone is anomalously shallow. This observed maximum depth of about 25 ± 5 km is about half of that observed in most subduction zones of the world. A leveling line that crosses the rupture zone of the 19 September 1985 Michoacan event was revisited after the earthquake and it shows anomalously low deformation during the earthquake. The comparison between the observed coseismic uplift and dislocation models of the seismogenic interplate contact that extend to depths ranging from 20 to 40 km shows that the maximum depth at which seismic slip took place is about 20 km. This unusually shallow and narrow zone of seismogenic coupling apparently results in the occurrence of thrust events along the Mexican subduction zone that are smaller than would be expected for a trench where a relatively young slab subducts at a rapid rate of relative motion. A comparison with the Chilean subduction zone shows that the plate interface in Mexico is half that in Chile, not only in the down-dip extent of the seismogenic zone of plate contact, but also in the distance of the trench from the coast and in the thickness of the upper continental plate. It appears that the narrow plate contact produced by this particular plate geometry in Mexico is the controlling variable defining the size of the largest characteristic earthquakes in the Mexican subduction zone.

  8. Control of paleoshorelines by trench forebulge uplift, Loyalty Islands

    NASA Astrophysics Data System (ADS)

    Dickinson, William R.

    2013-07-01

    Unlike most tropical Pacific islands, which lie along island arcs or hotspot chains, the Loyalty Islands between New Caledonia and Vanuatu owe their existence and morphology to the uplift of pre-existing atolls on the flexural forebulge of the New Hebrides Trench. The configuration and topography of each island is a function of distance from the crest of the uplifted forebulge. Both Maré and Lifou are fully emergent paleoatolls upon which ancient barrier reefs form highstanding annular ridges that enclose interior plateaus representing paleolagoon floors, whereas the partially emergent Ouvea paleoatoll rim flanks a drowned remnant lagoon. Emergent paleoshoreline features exposed by island uplift include paleoreef flats constructed as ancient fringing reefs built to past low tide levels and emergent tidal notches incised at past high tide levels. Present paleoshoreline elevations record uplift rates of the islands since last-interglacial and mid-Holocene highstands in global and regional sea levels, respectively, and paleoreef stratigraphy reflects net Quaternary island emergence. The empirical uplift rates vary in harmony with theoretical uplift rates inferred from the different positions of the islands in transit across the trench forebulge at the trench subduction rate. The Loyalty Islands provide a case study of island environments controlled primarily by neotectonics.

  9. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  10. Preliminary Results From the Serpentinite, Extension and Regional Porosity Experiment Across the Nicaraguan Trench (SERPENT)

    NASA Astrophysics Data System (ADS)

    Key, K. W.; Constable, S.; Evans, R. L.; Naif, S.; Matsuno, T.; Lizarralde, D.

    2010-12-01

    Water plays an important role in the volcanic processes occurring at convergent margins, as the release of water from the downgoing slab affects the rheology of the mantle, increases melting by lowering the solidus temperature, and alters the chemistry of arc-lavas. Yet, one of the major uncertainties in terms of fluid inputs into the subduction factory concerns the extent of serpentinization of the oceanic upper mantle and the volumes of water that are being carried into the subduction system through this route. In April 2010 we conducted a large-scale marine electromagnetic experiment along a 300 km profile offshore Nicaragua in a region that shows evidence for substantial fault related fluid circulation in the crust and possibly upper mantle, and high Ba/La ratios and water contents in adjacent onshore volcanics that suggest a strong slab fluid input into the arc-melting. Our project is the largest combined controlled-source electromagnetic (CSEM) and magnetotelluric (MT) data set ever collected on an active subduction zone. During the single 28 day research cruise aboard the R/V Melville we collected 54 stations of broadband marine magnetotelluric (MT) data and deep-towed nearly 800 km of controlled-source electromagnetic (CSEM) data. Robust multiple-station array processing of the MT data yields high quality MT responses from 10 to 20,000 s period. The MT responses are fairly 1D over the abyssal plain, showing the effects of a thin veneer of conductive sediments overlying a resistive lithosphere and a deeper conductive mantle. The responses become strongly 2D on the trench outer rise and exhibit large 3D distortions at the bottom of the trench, likely due to a combination of effects from severe topography and seafloor conductivity variations. Two circular CSEM tows of 30 km radius were measured by special long-wire EM (LEM) sensors on the abyssal plain and the outer rise. The LEM data reveals a distinct pattern of electromagnetic polarization that is

  11. Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Toru; Nanayama, Futoshi

    2018-03-01

    The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual

  12. Trench curvature initiation: Upper plate strain pattern and volcanism Insights from the Lesser Antilles arc, St Barthélemy Island, FWI.

    NASA Astrophysics Data System (ADS)

    Philippon, M. M.; Legendre, L.; Münch, P.; Léticée, J. L.; Lebrun, J. F.; Maincent, G.; Mazabraud, Y.

    2017-12-01

    Upper plate deformation pattern reflect the mechanical behavior of subduction zones. In this study, we focus on the consequence of the entrance of a buoyant plateau within the Caribbean subduction zone during Eocene by studying the oldest cropping out rocks of the Lesser Antilles volcanic arc. Based on novel geochronological ages and available bio-stratigraphic data we show that St Barthélemy Island was built during three successive volcanic events over the Mid- Eocene to Oligo-Miocene time span. We show that magmatism is mainly Oligocene, not Eocene. Moreover, we demonstrate that tholeitic and calc-alkaline magmatism co-existed all along the arc activity. And ultimately we evidence a westward migration of the volcanism at the island scale. Furthermore, We demonstrate that during 21 Ma, the built of theses volcanoes, the stress regime evolves from pure to radial extension with a sub-horizontal σ3 showing N30° mean trend. To conclude, our novel results invalidate the chronological, geochemical and spatial evolution of the island arc magmatism formerly proposed in the early eighties. Indeed, arc magmatism in St Barthélemy was mainly related to the West-dipping Lesser Antilles subduction zone and not to the South-dipping Greater Antilles subduction and upper plate deformation evolution observed at local scale reflects large scale mechanical behavior of the Lesser Antilles subduction zone. A two steps restoration of the regional deformation shows that the switch from pure parallel to the trench extension to radial extension within the Caribbean upper plate reflects trench curvature that followed the entrance of the Bahamas bank in the Greater Antilles subduction zone and its collision.

  13. Megathrust Slip and the Care and Feeding of the Subduction Channel Through which the Seismogenic Zone Runs

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.; Kirby, S. H.; Keranen, K. M.; Wells, R. E.; Blakely, R. J.; Michael, F.; von Huene, R.

    2007-12-01

    HABITATS OF GREAT OFFSHORE EARTHQUAKES: High-magnitude earthquakes (Mw = or >8.5) and trans- oceanic tsunamis commonly nucleate along subduction zones (SZ) bordered by laterally continuous, sediment- flooded trenches. Examples include: south-central Chile (1960 Mw=9.5), eastern Alaska (1964 Mw=9.2), Sumatra (2004, Mw=9.1), Cascadia (historic 1700 Mw=9.0), Colombia (1906 Mw=8.8), Sumatra (historic 1883, Mw=8.8), west-central Aleutian (1965 Mw=8.7), central Aleutian (1986, Mw=8.7), Sumatra (2005 Mw=8.6), and Nankai (historic 1707, Mw=8.5). In thickness, sediment entering these SZ ranges from 2 to 3 km and the column is axially continuous for more than 800 km. The depositional pile is typically the clastic beds of a trench-axis turbidite wedge and underlying fan and abyssal plain deposits that accrued seaward of the trench axis. Great rupture events also occur at subduction zones receiving little sediment, for example the Kamchatka (1952, Mw=9.0) and the north Chile SZs (historic 1868 Mw=8.9). Both SZs are areas of rapid upper plate thinning, subsidence, and truncation effected by subduction erosion. WORKINGS OF THE SUBDUCTION CHANNEL (SC): Beneath the submerged forearc, the SC functions to transport subducted ocean floor sediment and tectonically eroded forearc debris toward and into the mantle. The SC is the lowest structural unit containing upper plate crustal material. It hosts the seismogenic zone, which probably runs along the SC's upper boundary commonly referred to as the interplate decollement. A thick, laterally continuous SC structurally smoothes or simplifies the surface of the interplate decollement and sets up conditions for lengthy, high moment-release ruptures. Maximum slip is commonly concentrated beneath the thinned crust underlying forearc basins. These structures, in positive feed-back, are likely deepened co- seismically by high-slip-rate enhanced basal subduction erosion. The detached material lowers the effective stress on the decollement and

  14. New approach to analysis of strongest earthquakes with upper-value magnitude in subduction zones and induced by them catastrophic tsunamis on examples of catastrophic events in 21 century

    NASA Astrophysics Data System (ADS)

    Garagash, I. A.; Lobkovsky, L. I.; Mazova, R. Kh.

    2012-04-01

    The study of generation of strongest earthquakes with upper-value magnitude (near above 9) and induced by them catastrophic tsunamis, is performed by authors on the basis of new approach to the generation process, occurring in subduction zones under earthquake. The necessity of performing of such studies is connected with recent 11 March 2011 catastrophic underwater earthquake close to north-east Japan coastline and following it catastrophic tsunami which had led to vast victims and colossal damage for Japan. The essential importance in this study is determined by unexpected for all specialists the strength of earthquake occurred (determined by magnitude M = 9), inducing strongest tsunami with wave height runup on the beach up to 10 meters. The elaborated by us model of interaction of ocean lithosphere with island-arc blocks in subduction zones, with taking into account of incomplete stress discharge at realization of seismic process and further accumulation of elastic energy, permits to explain arising of strongest mega-earthquakes, such as catastrophic earthquake with source in Japan deep-sea trench in March, 2011. In our model, the wide possibility for numerical simulation of dynamical behaviour of underwater seismic source is provided by kinematical model of seismic source as well as by elaborated by authors numerical program for calculation of tsunami wave generation by dynamical and kinematical seismic sources. The method obtained permits take into account the contribution of residual tectonic stress in lithosphere plates, leading to increase of earthquake energy, which is usually not taken into account up to date.

  15. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    NASA Astrophysics Data System (ADS)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    Based on the Centennial earthquake catalog, the revised 1964-2007 EHB hypocenters catalog and the 1976-2007 CMT Harvard catalog, we have extracted the hypocenters, nodal planes and seismic moments of worldwide subduction earthquakes for the 1900-2007 period. For the 1976-2007 period, we combine the focal solutions provided by Harvard and the revised hypocenters from Engdahl et al. (1998). Older events are extracted from the Centennial catalogue (Engdahl and Villasenor, 2002) and they are used to estimate the cumulated seismic moment only. The selection criteria for the subduction earthquakes are similar to those used by Mc Caffrey (1994), i.e., we test if the focal mechanisms are consistent with 1/ shallow thrust events (depth > 70 km, positive slips, and at least one nodal plane gets dip < 45°), and, 2/ the plate interface local geometry and orientation (one nodal plane is oriented toward the volcanic arc, the azimuth of this nodal plane ranges between ± 45° with respect to the trench one, its dip ranges between ± 20° with respect to the slab one and the epicentre is located seaward of the volcanic arc). Our study concerns segments of subduction zones that fit with estimated paleoruptures associated with major events (M > 8). We assume that the seismogenic zone coincides with the distribution of 5.5 < M < 7 subduction earthquakes. We provide a map of the interplate seismogenic zones for 80% of the trench systems including dip, length, downdip and updip limits, we revisit the statistical study done by Pacheco et al. (1993) and test some empirical laws obtained for example by Ruff and Kanamori (1980) in light of a more complete, detailed, accurate and uniform description of the subduction interplate seismogenic zone. Since subduction earthquakes result from stress accumulation along the interplate and stress depends on plates kinematics, subduction zone geometry, thermal state and seismic coupling, we aim to isolate some correlations between parameters. The

  16. Chemical Characteristics of Seawater and Sediment in the Yap Trench

    NASA Astrophysics Data System (ADS)

    Ding, H.; Sun, C.; Yang, G.

    2017-12-01

    In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of

  17. ­­New Finite-Frequency Teleseismic P-wave Tomography of the Anatolian Sub-continent and the Fate of the Subducted Cyprean Slab

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Biryol, C. B.; Delph, J. R.; Beck, S. L.; Zandt, G.; Özacar, A.; Sandvol, E. A.; Turkelli, N.

    2016-12-01

    The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, particularly in central Anatolia, has been limited, thus making detailed delineations of the subducted slab segments difficult. To improve resolution, we combine two years of seismic data from the recent Continental Dynamics - Central Anatolia Tectonics (CD-CAT) seismic deployment and Turkey's national seismic network ( 33,000 residuals) to 33,000 travel time residuals from Biryol et al. (2011, GJI) in a new finite-frequency teleseismic P-wave tomographic inversion. Our new images reveal with detail a complicated geometry of fast velocity anomalies associated with subducted Tethyan lithosphere. At shallow depths, slow velocities separate the fast anomalies connected to the Aegean and Cyprean trenches. The fast anomaly connected to the Cyprean trench has an arcuate shape in map view, following the trace of the Central Taurus Mountains. This anomaly is separated from a high-amplitude block to the north that appears to dip sub-vertically throughout the upper mantle (200-660 km depth). Other blocks of fast material that may represent subducted Tethyan lithosphere appear down-dip of the vertical block. Additionally, our images indicate that some of the fast velocity anomalies previously seen to flatten in the mantle transition zone may continue into the lower mantle. Thus, our new images provide a more detailed picture of the fate of the Cyprean slab and suggest that some of the fast anomalies associated with the slab continue into the lower mantle, bringing to

  18. Subduction of Young Oceanic Lithosphere and Extensional Orogeny in Southwestern North America during Mid-Tertiary Time

    NASA Astrophysics Data System (ADS)

    Elston, Wolfgang E.

    1984-04-01

    approach zero. Even prior to ridge-trench collision, overridden oceanic lithosphere may have become underplated beneath the continental lithosphere and ruptured by rising mantle diapirs. Subducted oceanic lithosphere no longer acted as a heat sink, which could partly account for the great width of the affected zone and the anomalous thermal gradients required for partial melting, extension, and metamorphism. Had these processes not died down, after ridge-trench collision, the western segment of the Cordillera might have separated from North America to form a Japanlike archipelago, while the Basin and Range province foundered into an analog to the Sea of Japan. Instead of rupturing completely, the Basin and Range province fractured into fault blocks.

  19. Effects of subduction and slab gaps on mantle flow beneath the Lesser Antilles based on observations of seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule

    2016-04-01

    Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati

  20. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less

  1. Rollback of an intraoceanic subduction system and termination against a continental margin

    NASA Astrophysics Data System (ADS)

    Campbell, S. M.; Simmons, N. A.; Moucha, R.

    2017-12-01

    The Southeast Indian Slab (SEIS) seismic anomaly has been suggested to represent a Tethyan intraoceanic subduction system which operated during the Jurassic until its termination at or near the margin of East Gondwana (Simmons et al., 2015). As plate reconstructions suggest the downgoing plate remained coupled to the continental margin, this long-lived system likely experienced a significant amount of slab rollback and trench migration (up to 6000 km). Using a 2D thermomechanical numerical code that includes the effects of phase transitions, we test this interpretation by modeling the long-term subduction, transition zone stagnation, and rollback of an intraoceanic subduction system in which the downgoing plate remains coupled to a continental margin. In addition, we also investigate the termination style of such a system, with a particular focus on the potential for some continental subduction beneath an overriding oceanic plate. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-735738

  2. Observations of Displacement-driven Maturation along a Subduction-Transform Edge Propagator Fault

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Furlong, K. P.

    2016-12-01

    The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two parts - the Solomon Trench and the Vanuatu Trench - with the two segments separated by a transform fault produced by a tear in the approaching Australia plate. As a result of the Australia plate tearing, the two subducting sections are offset by the 280 km long San Cristobal Trough (SCT) transform fault, which acts as a Subduction-Transform Edge Propagator (STEP) fault. The formation of this transform fault provides an opportunity to study the evolution of a newly created transform plate boundary. As distance from the tear increases, both the magnitude and frequency of earthquakes along the transform increase reflecting the coalescence of fault segments into a through-going structure. Over the past few decades, there have been several instances of larger magnitude earthquakes migrating westward along the STEP through a rapid succession of events. A recent May 2015 sequence of MW 6.8, MW 6.9, and MW 6.8 earthquakes followed this pattern, with an east to west migration over three days. However, neither this 2015 sequence, nor a previous 1993 progression, ruptured into or nucleated a large earthquake within the region near the tear. SCT sequence termination outside the region of the newly formed fault occurs even though Coulomb Failure Stress analyses reveal that the tear end of the SCT is positively loaded for failure by the earthquake sequence. Changing seismicity patterns along the SCT are also mapped by b-value variations that correspond to the rupture patterns of these propagating sequences. These seismicity pattern changes along the SCT reveal a fault maturation process with strain localization driven by cumulative slip corresponding to approximately 80-100 km of displacement.

  3. Areas of slip of recent earthquakes in the Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Hjorleifsdottir, V.; Sánchez-Reyes, H. S.; Singh, S.; Ji, C.; Iglesias, A.; Perez-Campos, X.

    2012-12-01

    The Mexican subduction zone is unusual: the width of the seismogenic zone is relatively narrow and a large portion of the co-seismic slip generally occurs below the coast, ~ 45 to 80 km from the trench. The earthquake recurrence interval is relatively short and almost the entire length of the zone has experienced a large (Mw≥7.4) earthquake in the last 100 years (Singh et al., 1981). In this study we present detailed analysis of the areas of significant slip during several recent (last 20 years) large earthquakes in the Mexican subduction zone. The most recent earthquake of 20 March 2012 (Mw7.4) occurred near the Guerrero/Oaxaca border. The slip was concentrated on the plate interface below land and the epicentral PGAs ranged between 0.2 and 0.7g. The updip portion of the plate interface had previously broken during the 25 Feb 1996 earthquake (Mw7.1), which was a slow earthquake and produced anomalously low PGAs (Iglesias et al., 2003). This indicates that in this region the area close to the trench is at least partially locked, with some earthquakes breaking the down-dip portion of the interface and others rupturing the up-dip portion. The Jalisco/Colima segment of the subduction zone seems to behave in a similar fashion. The 9 October 1995 (Mw 8.0) earthquake generated small accelerations relative to its size. The energy to moment ratio, E0/M0, is 4.2e-6 (Pérez-Campos, Singh and Beroza, 2003), a value similar to the Feb, 1996 earthquake. This value is low compared to other thrust events in the region. The earthquake also had the largest (Ms-Mw) disparity along the Mexican subduction zone, 7.4 vs 8.0. The event produced relatively large tsunami. On the contrary, the 3 June 1932 earthquake (Ms8.2, Mw8.0), that is believed to have broken the same segment of the subduction zone, appears to be "normal." Based on the available evidence, it may be concluded that the 1932 event broke a deeper patch of the plate interface relative to the 1995 event. The mode of rupture

  4. Role of H2O in Generating Subduction Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.

    2017-03-01

    A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

  5. Insights Into the Causes of Arc Rifting From 2-D Dynamic Models of Subduction

    NASA Astrophysics Data System (ADS)

    Billen, Magali I.

    2017-11-01

    Back-arc spreading centers initiate as fore-arc or arc rifting events when extensional forces localize within lithosphere weakened by hydrous fluids or melting. Two models have been proposed for triggering fore-arc/arc rifting: rollback of the subducting plate causing trench retreat or motion of the overriding plate away from the subduction zone. This paper demonstrates that there is a third mechanism caused by an in situ instability that occurs when the thin high-viscosity boundary, which separates the weak fore arc from the hot buoyant mantle wedge, is removed. Buoyant upwelling mantle causes arc rifting, drives the overriding plate away from the subducting plate, and there is sufficient heating of the subducting plate crust and overriding plate lithosphere to form adakite or boninite volcanism. For spontaneous fore-arc/arc rifting to occur a broad region of weak material must be present and one of the plates must be free to respond to the upwelling forces.

  6. Absolute Plate Motion Control Since the Triassic from the Cocos Slab and its Associated Subduction Record in Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.

    2017-12-01

    A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.

  7. The Geoid: Effect of compensated topography and uncompensated oceanic trenches

    USGS Publications Warehouse

    Chase, C.G.; McNutt, Marcia K.

    1982-01-01

    The geoid is becoming increasingly important in interpretation of global tectonics. Most of the topography of the earth is isostatically compensated, so removal of its effect from the geoid is appropriate before tectonic modeling. The oceanic trenches, however, are dynamically depressed features and cannot be isostatically compensated in the classical way. Continental topography compensated at 35 km gives intracontinental geoidal undulations of up to 15 m over mountain ranges in a spherical harmonic expansion to order and degree 22. Oceanic topography compensated at 40 km, reasonable for the thermally supported long wavelengths, matches the +10 m difference between old continents and old oceans in a detailed NASA/GSFC geoid. Removing the assumed compensation for the oceanic trenches leaves negative anomalies of up to 9 m amplitude caused by their uncompensated mass deficit. This mass deficit acts as a partial "regional compensation" for the excess mass of the subducting slabs, and partly explains why geoidal (and gravity) anomalies over the cold slabs are less than thermal models predict.

  8. Spontaneous subduction at transform faults: common process or outlier?

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Abecassis, S.; Arcay, D.; Garel, F.

    2017-12-01

    Spontaneous subduction is argued to occur mainly at transform faults, as a result of gravitational instability of the older plate in the absence of convergence, leading to subduction. Spontaneous subduction has been suggested for the initiation of the Izu-Bonin-Mariana subduction zone, based on the occurrence of a specific magmatic sequence including forearc basalts and boninites. Some thermo-mechanical models have been designed to focus on gravitational instability but only of the colder plate present at the transform fault, restricting the study of conditions yielding spontaneous subduction. We perform a more general 2D parameteric study, by combining pseudo-brittle and ductile rheologies. We test the influence of the two plate ages but also the role and the rheological properties of the transform fault, assumed to be made of a weak layer (crust in our case). This crustal layer may also be present (or not) on top of plates. Slip is free on all sides of the simulation box. We observe three different behaviors depending on experimental set-up: overall static conductive cooling, spontaneous subduction of the colder plate, and spontaneous subduction of the younger lithosphere. Our results suggest that spontaneous subduction of the colder plate can occur only for a limited range of lithosphere age pairs and if the brittle strength of the oceanic crust is low enough. In any cases, this mode of subduction initiation yields an instantaneous slab rollback associated with an extremely fast trench retreat, resulting in upper plate extension and asthenosphere upwelling along the slab top up to the surface. Our first conclusion is that the set of conditions necessary to trigger spontaneous subduction is (extremely) rare in nature, so that this process appears as an outlier. The second conclusion is that, when it occurs, spontaneous subduction initiation is close to catastrophic. This implies that the typical magmatic sequence including boninites should erupt within a limited

  9. Bending-related faulting and mantle serpentinization at the Middle America trench.

    PubMed

    Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C

    2003-09-25

    The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.

  10. Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: Comparison with northern Barbados and Nankai

    NASA Astrophysics Data System (ADS)

    Saffer, Demian M.

    2003-05-01

    At subduction zones, pore pressure affects fault strength, deformation style, structural development, and potentially the updip limit of seismogenic faulting behavior through its control on effective stress and consolidation state. Despite its importance for a wide range of subduction zone processes, few detailed measurements or estimates of pore pressure at subduction zones exist. In this paper, I combine logging-while-drilling (LWD) data, downhole physical properties data, and laboratory consolidation tests from the Costa Rican, Nankai, and Barbados subduction zones, to document the development and downsection variability of effective stress and pore pressure within underthrust sediments as they are progressively loaded by subduction. At Costa Rica, my results suggest that the lower portion of the underthrust section remains nearly undrained, whereas the upper portion is partially drained. An inferred minimum in effective stress developed within the section ˜1.5 km landward of the trench is consistent with core and seismic observations of faulting, and illustrates the important effects of heterogeneous drainage on structural development. Inferred pore pressures at the Nankai and northern Barbados subduction zones indicate nearly undrained conditions throughout the studied intervals, and are consistent with existing direct measurements and consolidation test results. Slower dewatering at Nankai and Barbados than at Costa Rica can be attributed to higher permeability and larger compressibility of near-surface sediments underthrust at Costa Rica. Results for the three margins indicate that the pore pressure ratio (λ) in poorly drained underthrust sediments should increase systematically with distance landward of the trench, and may vary with depth.

  11. Seamount subduction and serpentinite mud volcanisms in the Mariana convergent margin system: time constraints from micropaleontological studies (IODP Expedition 366)

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Micheuz, P.; Grunert, P.; Auer, G.; Reuter, M.

    2017-12-01

    IODP Expedition 366 recovered core from three serpentinite mud volcanoes at increasing distances from the Mariana trench subduction zone along a south-to-north transect: Yinazao (Blue Moon), Fantangisña (Celestial), and Asùt Tesoru (Big Blue). Cores consist of serpentinite mud containing lithic clasts and minerals derived from the underlying forearc lithosphere, and from the subducting Pacific Plate. A preliminary screening for micro- and nannofossils from Asùt Tesoru revealed assemblages of planktic and benthic foraminifera and calcareous nannoplankton containing biostratigraphic marker species (e.g., Globigerinella calida, Globorotalia flexuosa, Gr. truncatulinoides Gr. tumida, Sphaeroidinella dehiscens amongst planktic foraminifera; Gephyrocapsa spp., Pseudoemiliania lacunosa, Reticulosfenestra asanoi amongst calcareous nannoplankton). This provides a robust stratigraphic framework and age assessment (from ca. 0.2 to 8.0 Ma from top to bottom) of distinct sediment and serpentinite mud flow layers. Recycled materials from the subducted slab include fault rocks, metamorphosed pelagic sediments, diagenetic shallow water reef assemblages, and metavolcanic rocks. The recycled materials are found at all three mud volcanoes and are interpreted to be parts of subducted Pacific plate seamounts, presumably Cretaceous in age. Core U1491C (Yinazao) recovered a Miogypsina rudstone cobble that could have derived from more than 10 km beneath the forearc sea floor, with lithoclasts and coralline, red-algal grainstone matrix, altogether showing diagenetic overprint. Although parts of subducted Pacific plate seamounts are assumed be Cretaceous in age, the presence of Miogypsina suggests a Miocene age, thus may represent the latest, uppermost part of a Pacific Plate seamount. The assemblage represents a shallow water (photic zone) environment. Assuming a Pacific plate velocity of 5 cm per year the hypothetical Guyot was several hundred kilometers east of the trench at Late

  12. The global distribution of magnitude 9 earthquakes

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2011-12-01

    The 2011 Tohoku M9 earthquake once again caught some in the earthquake community by surprise. The expectation of these massive quakes has been driven in the past by the over-reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake history, seismologists have promoted relationships between maximum earthquake sizes and other properties of subduction zones, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. The 2004 Andaman Mw = 9.2 earthquake, that occurred where there is slow subduction of old crust and a history of only moderate-sized earthquakes, seriously undermined such ideas. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our very limited observation span, I suggest that we cannot yet make such determinations. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach portends a M > 9 for Java, with twice the population density as Honshu and much lower building standards. The Java Trench, and others where old crust subducts (Hikurangi, Marianas, Tonga, Kermadec), require increased awareness of the possibility for a great earthquake.

  13. Slab stagnation and buckling in the mantle transition zone: Rheology, phase transition, trench migration, and seismic structure

    NASA Astrophysics Data System (ADS)

    Bina, Craig; Cizkova, Hana

    2014-05-01

    Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit

  14. Interplate locking derived from seafloor geodetic measurement at the shallow subduction zone of the northernmost Suruga Trough, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Nagai, S.; Sayanagi, K.

    2013-12-01

    Observation of seafloor crustal deformation is crucial for megathrust earthquake because most of the focal areas are located below seafloor. Seafloor crustal deformation can be observed GPS/Acoustic technique, and this technique has been carried out at subduction margins in Japan, e.g., Japan Trench, Suruga Trough, and Nankai Trough. At the present, the accuracy of seafloor positioning is one to several centimeters for each epoch. Velocity vectors at seafloor site are estimated through repeated observations. Co- and post- seismic slip distribution and interseismic deformation are estimated from results of seafloor geodetic measurement (e.g., Iinuma et al., 2012; Tadokoro et al., 2012). We repeatedly observed seafloor crustal deformations at two sites across the Suruga Trough from 2005 to investigate interplate locking condition at the focal area of the anticipated megathrust, Tokai, earthquake. We observed 12 and 16 times at an east site of the Suruga Trough (SNE) and at an west site of the Suruga Trough (SNW), respectively. We reinstalled seafloor benchmarks at both sites because of run out of batteries in 2012. We calculated and removed the bias between the old and new seafloor benchmarks. Furthermore, we evaluated two type of analysis. One is Fixed triangular configuration Analysis (FTA). When we determine the seafloor benchmark position, we fix the triangular configuration of seafloor units averaging all the measurements to improve trade-off relation between seafloor benchmark position and sound speed structure. Sound speed structure is assumed to be horizontal layered structure. The other one is Fixed Triangle and Gradient structure of sound speed structure (FTGA). We fixed triangular configuration same as FTA. Sound speed structure is assumed to have gradient structure. Comparing FTA with FTGA, the RMS of horizontal position analyzed through FTA is smaller than that through FTGA at SNE site. On the other hand, the RMS of horizontal position analyzed through

  15. Recent Results of Hadal Investigations in the Southern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Hellebrand, E.; Sharma, S. K.; Acosta-Maeda, T.; Jicha, B. R.; Cameron, J.

    2014-12-01

    The deepest parts of the southern Mariana Trench have variously been interpreted to 1) indicate strike-slip motion along the trench, 2) contain a series of 3 sediment ponds at greater than 10,900 m depth separated from one another by fault-controlled ridges on the subducting plate, and 3) have an even deeper feature in the western-most pond (Vitiaz Deep). Recent lander deployments in all three ponds and the Deepsea Challenger submersible dive by J. Cameron in 2012 showed that the deepest ponds within the Challenger Deep area have nearly unbroken, flat surfaces. One point explored showed veined serpentinite at a depth of 10,800+ m. The potential for active serpentinite-hosted seeps and vent communities was demonstrated for the Shinkai Vent Field at 5,800m depth. Rocks collected using the Wood Hole Oceanographic Institution's hybrid remotely operated vehicle, Nereus, in 2009 from deep (10,879 m) on the incoming plate south of the Challenger Deep, were recovered from the base of a fault scarp where large, columnar-jointed blocks are draped with sediment. Optical microscopy, electron-microprobe and Raman analysis show that they are partially altered massive diabase with altered interstitial glass and containing microbial tubules in vug-filling secondary phases. The chain of seamounts striking NNW, colinear with the Lyra Trough, has been interpreted as a boundary between the Pacific Plate and the seafloor north of the Caroline Ridge. Sediments, drilled from above postulated basement north of the Caroline Ridge are no older that Oligocene. Ar/Ar age dates completed for one rock collected by Nereus in 2009 give a weighted mean plateau age, based on two experiments, of 24.6 +/- 3.2 Ma. Thus, the igneous basement of the subducting plate south of the Challenger Deep is, far younger than the Jurassic Pacific Plate subducting further east. This represents a previously unidentified tectonic plate. With new vehicles and technologies the future for hadal exploration is ripe.

  16. Stress Drops for Oceanic Crust and Mantle Intraplate Earthquakes in the Subduction Zone of Northeastern Japan Inferred from the Spectral Inversion Analysis

    NASA Astrophysics Data System (ADS)

    Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.

    2017-12-01

    Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the

  17. 2D/3D Numerical Models of the Taiwan Orogen: Oblique Arc-Continent Collision overlying Orthogonal Subduction Systems

    NASA Astrophysics Data System (ADS)

    Kanda, R. V.; Suppe, J.; Wu, J. E.

    2013-12-01

    Recent plate-tectonic reconstructions based on mapping of subducted slabs imaged by state-of-the-art tomographic models, and constrained by paleomagnetic data demonstrate that the Philippine Sea Plate (PSP) was originally part of the Sunda Plate (SP). These reconstructions show that the PSP has moved northward with Australia across 25° of latitude since the early Eocene (~ 43 Ma). Most of this motion of the PSP was accommodated on the north and east by overriding a southward subducting East Asian Sea (EAS) ocean basin that was contiguous with the present-day Eurasian Plate (EP). On the western margin of the PSP, this northward advance was accommodated by a N-S transform system. Ages of the Luzon volcanic arc suggest that by early Miocene (~ 15-20 Ma), the EP seafloor west of this transform started subducting eastwards, and highly obliquely, underneath a NNW moving PSP that was detached from the SP. Further, by late Miocene (~10 Ma), northward subduction of the PSP along the present Ryukyu Trench began as a result of arc-continent collision of the PSP along the Eurasian continental margin and flipping of subduction polarity due to slab break-off of the south-subducting EAS. A significant rotation of the PSP-EP convergence to the present more northwesterly direction occurred only over the last ~2 Ma. This present-day juxtaposition of orthogonal subduction polarities beneath Taiwan can be understood in terms of a margin-parallel lithospheric STEP fault, that accomplishes the progressive SW extension of the Ryukyu Trench (RT), and also marks the northern limit of the EP subduction. The torn edge of the Eurasian lithosphere is imaged tomographically. Further support for this tearing comes from our newly developed multi-resolution stress maps based on focal-mechanism inversions and the seismicity distribution. Our inferred stress orientations indicate orthogonal contact between the subducting PSP and the Eurasian lithospheres, resulting in present-day E-W strike

  18. The Cascadia Subduction Zone and related subduction systems: seismic structure, intraslab earthquakes and processes, and earthquake hazards

    USGS Publications Warehouse

    Kirby, Stephen H.; Wang, Kelin; Dunlop, Susan

    2002-01-01

    The following report is the principal product of an international workshop titled “Intraslab Earthquakes in the Cascadia Subduction System: Science and Hazards” and was sponsored by the U.S. Geological Survey, the Geological Survey of Canada and the University of Victoria. This meeting was held at the University of Victoria’s Dunsmuir Lodge, Vancouver Island, British Columbia, Canada on September 18–21, 2000 and brought 46 participants from the U.S., Canada, Latin America and Japan. This gathering was organized to bring together active research investigators in the science of subduction and intraslab earthquake hazards. Special emphasis was given to “warm-slab” subduction systems, i.e., those systems involving young oceanic lithosphere subducting at moderate to slow rates, such as the Cascadia system in the U.S. and Canada, and the Nankai system in Japan. All the speakers and poster presenters provided abstracts of their presentations that were a made available in an abstract volume at the workshop. Most of the authors subsequently provided full articles or extended abstracts for this volume on the topics that they discussed at the workshop. Where updated versions were not provided, the original workshop abstracts have been included. By organizing this workshop and assembling this volume, our aim is to provide a global perspective on the science of warm-slab subduction, to thereby advance our understanding of internal slab processes and to use this understanding to improve appraisals of the hazards associated with large intraslab earthquakes in the Cascadia system. These events have been the most frequent and damaging earthquakes in western Washington State over the last century. As if to underscore this fact, just six months after this workshop was held, the magnitude 6.8 Nisqually earthquake occurred on February 28th, 2001 at a depth of about 55 km in the Juan de Fuca slab beneath the southern Puget Sound region of western Washington. The Governor

  19. Plate interaction in the NE Caribbean subduction zone from continuous GPS observations

    USGS Publications Warehouse

    ten Brink, Uri S.; Lopez-Vegas, Alberto M.

    2012-01-01

    Kinematic similarities between the Sumatra and Puerto Rico Trenches highlight the potential for a mega-earthquake along the Puerto Rico Trench and the generation of local and trans-Atlantic tsunamis. We used the horizontal components of continuous GPS (cGPS) measurements from 10 sites on NE Caribbean islands to evaluate strain accumulation along the North American (NA) - Caribbean (CA) plate boundary. These sites move westward and slightly northward relative to CA interior at rates ≤2.5 mm/y. Provided this motion originates in the subduction interface, the northward motion suggests little or no trench-perpendicular thrust accumulation and may in fact indicate divergence north of Puerto Rico, where abnormal subsidence, bathymetry, and gravity are observed. The Puerto Rico Trench, thus, appears unable to generate mega-earthquakes, but damaging smaller earthquakes cannot be discounted. The westward motion, characterized by decreasing rate with distance from the trench, is probably due to eastward motion of CA plate impeded at the plate boundary by the Bahamas platform. Two additional cGPS sites in Mona Passage and SW Puerto Rico move to the SW similar to Hispaniola and unlike the other 10 sites. That motion relative to the rest of Puerto Rico may have given rise to seismicity and normal faults in Mona Rift, Mona Passage, and SW Puerto Rico.

  20. Plate interaction in the NE Caribbean subduction zone from continuous GPS observations

    NASA Astrophysics Data System (ADS)

    ten Brink, Uri S.; López-Venegas, Alberto M.

    2012-05-01

    Kinematic similarities between the Sumatra and Puerto Rico Trenches highlight the potential for a mega-earthquake along the Puerto Rico Trench and the generation of local and trans-Atlantic tsunamis. We used the horizontal components of continuous GPS (cGPS) measurements from 10 sites on NE Caribbean islands to evaluate strain accumulation along the North American (NA) - Caribbean (CA) plate boundary. These sites move westward and slightly northward relative to CA interior at rates ≤2.5 mm/y. Provided this motion originates in the subduction interface, the northward motion suggests little or no trench-perpendicular thrust accumulation and may in fact indicate divergence north of Puerto Rico, where abnormal subsidence, bathymetry, and gravity are observed. The Puerto Rico Trench, thus, appears unable to generate mega-earthquakes, but damaging smaller earthquakes cannot be discounted. The westward motion, characterized by decreasing rate with distance from the trench, is probably due to eastward motion of CA plate impeded at the plate boundary by the Bahamas platform. Two additional cGPS sites in Mona Passage and SW Puerto Rico move to the SW similar to Hispaniola and unlike the other 10 sites. That motion relative to the rest of Puerto Rico may have given rise to seismicity and normal faults in Mona Rift, Mona Passage, and SW Puerto Rico.

  1. Aseismic deep subduction of the Philippine Sea plate and slab window

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Zhao, Dapeng; Hasegawa, Akira; Umino, Norihito; Park, Jung-Ho; Kang, Ik-Bum

    2013-10-01

    We have made great efforts to collect and combine a large number of high-quality data from local earthquakes and teleseismic events recorded by the dense seismic networks in both South Korea and West Japan. This is the first time that a large number of Korean and Japanese seismic data sets are analyzed jointly. As a result, a high-resolution 3-D P-wave velocity model down to 700-km depth is determined, which clearly shows that the Philippine Sea (PHS) plate has subducted aseismically down to ˜460 km depth under the Japan Sea, Tsushima Strait and East China Sea. The aseismic PHS slab is visible in two areas: one is under the Japan Sea off western Honshu, and the other is under East China Sea off western Kyushu. However, the aseismic PHS slab is not visible between the two areas, where a slab window has formed. The slab window is located beneath the center of the present study region where many teleseismic rays crisscross. Detailed synthetic tests were conducted, which indicate that both the aseismic PHS slab and the slab window are robust features. Using the teleseismic data recorded by the Japanese stations alone, the aseismic PHS slab and the slab window were also revealed (Zhao et al., 2012), though the ray paths in the Japanese data set crisscross less well offshore. The slab window may be caused by the subducted Kyushu-Palau Ridge and Kinan Seamount Chain where the PHS slab may be segmented. Hot mantle upwelling is revealed in the big mantle wedge above the Pacific slab under the present study region, which may have facilitated the formation of the PHS slab window. These novel findings may shed new light on the subduction history of the PHS plate and the dynamic evolution of the Japan subduction zone.

  2. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  3. An oceanic plateau subduction: A case study offshore Eastern Java.

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Kopp, Heidrun; Mueller, Christian; Planert, Lars; Lueschen, Ewald; Flueh, Ernst; Djajadihardja, Yusuf

    2010-05-01

    The area offshore Java represents one of a few places globally where the early stage of subduction of an oceanic plateau is observed. Our study area is located south of eastern Java and covers the edge of the Roo Rise plateau, the Java trench and the entire forearc section. For the first time the detailed deep structure of the Roo Rise is studied, subduction of which has a significant effect on the forearc dynamics and evolution and the increase of the geohazards risks. The tsunamogenic earthquakes of 1994 and 2006 are associated with the oceanic plateau edge been subducted. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 along a corridor centered around 113°E and composed of a 340 km long N-S profile and a 130 km long E-W oriented profile. The composite structural models reveal the previously unresolved deep geometry of the collision zone and the structure of the oceanic plateau. The crustal thickness of the Roo Rise plateau is ranging from 18 to 12 km. The structure of the upper crust of the incoming oceanic plate shows the extreme degree of fracturing in its top section, and is associated with a plate bending. The forearc Moho has a depth range from 16 to 20 km. The gravity modeling requires a sharp crustal thickness increase below Java. Within our profiles we do not recover any direct evidence for the presence of the bathymetric features on the oceanic plate currently present below the accretionary prism, responsible for the tsunamogenic earthquake triggering. However vertical variations of the forearc basement edge are observed on the trench-parallel profile, which opens a discussion on the origin of such basement undulations, together with a localized patchy uplift character of the forearc high.

  4. Initiation of the Andean orogeny by lower mantle subduction

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Oncken, Onno; Holt, Adam F.; Becker, Thorsten W.

    2017-04-01

    The Cordillera of the Andes is a double-vergent orogenic belt built up by thickening of South American plate crust. Several models provide plausible explanations for the evolution of the Andes, but the reason why shortening started at ∼50 Ma is still unclear. We explore the evolution of the subduction zone through time by restoring the position of the Nazca trench in an absolute reference frame, comparing its position with seismic tomography models and balancing the evolution of the subducting slab. Reconstructions show that the slab enters into the lower mantle at ∼ 50 ± 10 Ma, and then progressed, moving horizontally at shallow lower mantle depth while thickening and folding in the transition zone. We test this evolutionary scenario by numerical models, which illustrate that compression in the upper plate intensifies once the slab is anchored in the lower mantle. We conclude that onset of significant shortening and crustal thickening in the Andes and its sustained action over tens of million years is related to the penetration of the slab into the lower mantle, producing a slowdown of lateral slab migration, and dragging the upper plate against the subduction zone by large-scale return flow.

  5. Initiation of the Andean orogeny by lower mantle subduction

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Oncken, Onno; Holt, Adam; Becker, Thorsten

    2017-04-01

    The Cordillera of the Andes is a double-vergent orogenic belt built up by thickening of South American plate crust. Several models provide plausible explanations for the evolution of the Andes, but the reason why shortening started at 50 Ma is still unclear. We explore the evolution of the subduction zone through time by restoring the position of the Nazca trench in an absolute reference frame, comparing its position with seismic tomography models and balancing the evolution of the subducting slab. Reconstructions show that the slab enters into the lower mantle at 50+10 Ma, and then progressed, moving horizontally at shallow lower mantle depth while thickening and folding in the transition zone. We test this evolutionary scenario by numerical models, which illustrate that compression in the upper plate emerges once the slab is anchored in the lower mantle. We conclude that onset of significant shortening and crustal thickening in the Andes and its sustained action over tens of million years is related to the penetration of the slab into the lower mantle, producing a slowdown of lateral slab migration, and dragging the upper plate against the subduction zone by large-scale return flow.

  6. Initiation of the Andean orogeny by lower mantle subduction

    NASA Astrophysics Data System (ADS)

    Faccenna, C.; Oncken, O.; Holt, A.; Becker, T. W.

    2017-12-01

    The Cordillera of the Andes is a double-vergent orogenic belt built up by thickening of South American plate crust. Several models provide plausible explanations for the evolution of the Andes, but the reason why shortening started at 50 Ma is still unclear. We explore the evolution of the subduction zone through time by restoring the position of the Nazca trench in an absolute reference frame, comparing its position with seismic tomography models and balancing the evolution of the subducting slab. Reconstructions show that the slab enters into the lower mantle at 50+10 Ma, and then progressed, moving horizontally at shallow lower mantle depth while thickening and folding in the transition zone. We test this evolutionary scenario by numerical models, which illustrate that compression in the upper plate emerges once the slab is anchored in the lower mantle. We conclude that onset of significant shortening and crustal thickening in the Andes and its sustained action over tens of million years is related to the penetration of the slab into the lower mantle, producing a slowdown of lateral slab migration, and dragging the upper plate against the subduction zone by large-scale return flow.

  7. New seafloor map of the Puerto Rico trench helps assess earthquake and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Brink, Uri ten; Danforth, William; Polloni, Christopher; Andrews, Brian; Llanes, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-09-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.

  8. New seafloor map of the Puerto Rico Trench helps assess earthquake and tsunami hazards

    USGS Publications Warehouse

    ten Brink, Uri S.; Danforth, William; Polloni, Christopher; Andrews, Brian D.; Llanes Estrada, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-01-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.

  9. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  10. Barium isotope geochemistry of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  11. Core-log integration for rock mechanics using borehole breakouts and rock strength experiments: Recent results from plate subduction margins

    NASA Astrophysics Data System (ADS)

    Saito, S.; Lin, W.

    2014-12-01

    Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.

  12. Rupture process of large earthquakes in the northern Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Ruff, Larry J.; Miller, Angus D.

    1994-03-01

    The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event ( M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event ( M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event ( M s 7.3) in the middle of the Michoacan “gap”; the Sept. 19, 1985 Michoacan mainshock ( M s 8.1); and the Sept. 21, 1985 Michoacan aftershock ( M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines the Moment Tensor Rate Functions; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes the Moment Tensor Rate Functions methodology in detail. The systematic bias between global and regional determinations of epicentral locations in Mexico must be resolved to enable plotting of asperities with aftershocks and geographic features. We have spatially “shifted” all of our results to regional determinations of epicenters. The best point source depths for the five earthquakes are all above 30 km, consistent with the idea that the down-dip edge of the seismogenic plate interface in Mexico is shallow compared to other subduction zones. Consideration of uncertainties in

  13. Life and death of the resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time

    USGS Publications Warehouse

    Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.

    2003-01-01

    Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade

  14. Early Paleozoic subduction initiation volcanism of the Iwatsubodani Formation, Hida Gaien belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuhiro; Yamamoto, Koshi; Gantumur, Onon; Nuramkhaan, Manchuk

    2017-06-01

    In placing Japanese tectonics in an Asian context, variation in the Paleozoic geological environment is a significant issue. This paper investigates the geochemistry of the lower Paleozoic basalt formation (Iwatsubodani Formation) in the Hida Gaien belt, Japan, to consider its tectonic setting. This formation includes the following two types of rock in ascending order: basalt A with sub-ophitic texture and basalt B with porphyritic texture. Basalt A has a high and uniform FeO*/MgO ratio, moderate TiO2, high V, and low Ti/V. The HFSE and REE are nearly the same as those in MORB, and all the data points to basalt A being the "MORB-like fore-arc tholeiitic basalt (FAB)" reported, for example, from the Izu-Bonin-Mariana arc. By contrast, basalt B has a low FeO*/MgO ratio, low TiO2, and low V and Ti/V. It has an LREE-enriched trend and a distinct negative Nb anomaly in the MORB-normalized multi-element pattern and a moderately high LREE/HREE. All these factors suggest that basalt B is calc-alkaline basalt. It is known that FAB is erupted at the earliest stage of arc formation—namely, subduction initiation—and that boninitic/tholeiitic/calc-alkaline volcanism follows at the supra-subduction zone (SSZ). Thus, the occurrence of basalts A (FAB) and B (calc-alkaline rock) is strong evidence of early Paleozoic arc-formation initiation at an SSZ. Evidence for an early Paleozoic SSZ arc is also recognized from the Oeyama, Hayachine-Miyamori, and Sergeevka ophiolites. Hence, both these ophiolites and the Iwatsubodani Formation probably coexisted in a primitive SSZ system in the early Paleozoic.

  15. Earthquake-driven fluid flow rates inferred from borehole temperature measurements within the Japan Trench plate boundary fault zone

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2016-12-01

    Using borehole sub-seafloor temperature measurements, we have recently identified signatures suggestive of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone during a major aftershock sequence. Here we use numerical models to show that these signatures are consistent with time-varying fluid flow rates out of permeable zones within the formation into the borehole annulus. In addition, we also identify an apparent time-varying sensitivity of whether suspected fluid pulses occur in response to earthquakes of a given magnitude and distance. The results suggest a damage and healing process and therefore provides a mechanism to allow for a disproportionate amount of heat and chemical transport in the short time frame after an earthquake. Our observations come from an observatory installed across the main plate boundary fault as part of IODP's Japan Trench Fast Drilling Project (JFAST) following the March 2011 Mw 9.0 Tohoku-oki earthquake. It operated from July 2012 - April 2013 during which a Mw 7.3 earthquake and numerous aftershocks occurred. High-resolution temperature time series data reveal spatially correlated transients in response to earthquakes with distinct patterns interpreted to reflect advection by transient pulses of fluid flow from permeable zones into the borehole annulus. Typical transients involve perturbations over 12 m with increases of 10 mK that build over 0.1 days at shallower depths and decreases at deeper depths. They are consistently centered around 792.5 m below seafloor (mbsf) where a secondary fault and permeable zone have been independently identified within the damage zone above the main plate boundary fault at 820 mbsf . Model simulations suggest transient flow rates of up to 10-3m/s from the formation that quickly decrease. Comparison of characteristics of earthquakes identified in nearby ocean bottom pressure measurements suggest there is not a clear relationship between fluid pulses and static strain. There

  16. Structural controls on the megathrust segmentation of the Middle America Trench from multiple geophysical observations

    NASA Astrophysics Data System (ADS)

    Naif, S.; Bassett, D.

    2016-12-01

    Subduction zone megathrusts display complex seismogenic behaviors that vary at intra- and inter-margin scales. Many different physical properties have been proposed to be primarily responsible for this behavior, such as the composition of subducted sediments, the hydration state of the incoming oceanic plate, and the pore-fluid pressure at the plate interface. Here, we focus on the northern Middle America Trench and show that subducting plate structures control megathrust segmentation. We analyze multiple types of seafloor geophysical observations and compare them to the distinct behavioral and spatial characteristics of the 1992 Nicaragua (Mw7.6), 2012 El Salvador (Mw7.3), 2012 Guatemala (Mw7.4), and 2012 Costa Rica (Mw7.6) events. The residual topography, residual gravity, and magnetic anomaly structure of the incoming oceanic plate and forearc seafloor are correlated. The forearc is composed of multiple unique segments that are bounded by subducting fracture zones. These boundaries correlate with foreshock and aftershock seismicity and also coincide with the hypocenter of all four earthquakes. The relationship between observed structures, earthquake slip inversions, and radiated energy of the four large events will be discussed.

  17. Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature

    NASA Astrophysics Data System (ADS)

    Sladen, Anthony; Trevisan, Jenny

    2018-02-01

    For some megathrust earthquakes, the rupture extends to the solid Earth's surface, at the ocean floor. This unexpected behaviour holds strong implications for the tsunami potential of subduction zones and for the physical conditions governing earthquakes, but such ruptures occur in underwater areas which are hard to observe, even with current instrumentation and imaging techniques. Here, we evidence that aftershocks occurring ocean-ward from the trench are conditioned by near-surface rupture of the megathrust fault. Comparison to well constrained earthquake slip models further reveals that for each event the number of aftershocks is proportional to the amount of shallow slip, a link likely related to static stress transfer. Hence, the spatial distribution of these specific aftershock sequences could provide independent constrains on the coseismic shallow slip of future events. It also offers the prospect to be able to reassess the rupture of many large subduction earthquakes back to the beginning of the instrumental era.

  18. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  19. Resolution Study of Marine CSEM Imaging of Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gustafson, C.; Key, K.

    2016-12-01

    Marine controlled source electromagnetic (CSEM) data allow us to image seafloor electrical resistivity from which we can constrain the porosity and fluid content of the subsurface. In subduction zones, CSEM data can be used to constrain geologic structure, hydrogeology and fluid-tectonic processes. The scales of features we are interested in recovering with CSEM data range from large-scale features such as the incoming tectonic plate and subducting slab, to the narrow dipping plate boundary interface where slip occurs, to thin faults that cut the overriding forearc crust and shallow fluid seeps and mounds on the seafloor. Thus electrical structure is expected to vary on scales ranging from scales of meters to tens of kilometers. CSEM data collected by Scripps at the Middle America Trench in 2010 is the first and to-date the only application of the method for studying a subduction zone. The results from this pioneering data set highlight the types of new discoveries that are possible with CSEM data, such as imaging conductive bending faults and a water-rich channel of subducting sediments. In this work we explore the magnitude and scale of 2D resistivity structures that can be resolved with CSEM data through a suite of synthetic inversion studies. We build resistivity models that are representative of various known and hypothesized subduction zone plate boundary structures. We generate synthetic noisy data for these models and invert them using the freely available MARE2DEM inversion code. We compare the recovered models to the original models in order to determine which resistivity structures may be successfully identified using CSEM. We explore the potential effects of receiver spacing, frequency bandwidth and system noise levels on the ability of CSEM to recover these different subduction zone structures.

  20. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes

    NASA Astrophysics Data System (ADS)

    Trubienko, Olga; Fleitout, Luce; Garaud, Jean-Didier; Vigny, Christophe

    2013-03-01

    The deformations of the overriding and subducting plates during the seismic cycle associated with large subduction earthquakes are modelled using 2D and 3D finite element techniques. A particular emphasis is put on the interseismic velocities and on the impact of the rheology of the asthenosphere. The distance over which the seismic cycle perturbs significantly the velocities depends upon the ratio of the viscosity in the asthenosphere to the period of the seismic cycle and can reach several thousand km for rheological parameters deduced from the first years of deformation after the Aceh earthquake. For a same early postseismic velocity, a Burger rheology of the asthenosphere implies a smaller duration of the postseismic phase and thus smaller interseismic velocities than a Maxwell rheology. A low viscosity wedge (LVW) modifies very significantly the predicted horizontal and vertical motions in the near and middle fields. In particular, with a LVW, the peak in vertical velocity at the end of the cycle is predicted to be no longer above the deep end of the locked section of the fault but further away, above the continentward limit of the LVW. The lateral viscosity variations linked to the presence at depth of the subducting slab affect substantially the results. The north-south interseismic compression predicted by this preliminary 2D model over more than 1500 km within the Sunda block is in good agreement with the pre-2004 velocities with respect to South-China inferred from GPS observations in Thailand, Malaysia and Indonesia. In Japan, before the Tohoku earthquake, the eastern part of northern Honshu was subsiding while the western part was uplifting. This transition from subsidence to uplift so far away from the trench is well fitted by the predictions from our models involving a LVW. Most of the results obtained here in a 2D geometry are shown to provide a good estimate of the displacements for fault segments of finite lateral extent, with a 3D spherical

  1. Evidence for shallow dehydration of the subducting plate beneath the Mariana forearc: New insights into the water cycle at subduction zones

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Stern, R. J.; Kelley, K. A.; Shaw, A. M.; Martinez, F.; Ohara, Y.

    2014-12-01

    Water is efficiently recycled at subduction zones. It is fluxed from the surface into the mantle by the subducted plate and back to the surface or crust through explosive arc volcanism and degassing. Fluids released from dehydrating the subducting plate are transfer agents of water. Geophysical modeling [1] and the geochemistry of arc glasses [2] suggest that at cold-slab subduction zones, such as the Mariana convergent margin, the downgoing plate mostly dehydrates beneath the volcanic arc front (≥ ~ 80 -100 km depth to slab) to trigger volcanism. However, there is a gap in our understanding of the water fluxes released beneath forearcs, as examples of forearc magmatism are extremely rare. Here, we investigate the Southernmost Mariana Forearc Rift (SEMFR), where MORB-like spreading occurred unusually close to the trench, sampling slab-derived aqueous fluids released at ~ 30 to 100 km depth from the subducted plate. Examining the trace element and water contents of olivine-hosted melt inclusions and glassy rinds from the young (2 - 4 Ma) and fresh SEMFR pillowed basalts provide new insights into the global water cycle. SEMFR lavas contain ~2 wt % H2O, and the olivine-hosted melt inclusions have the highest subduction-related H2O/Ce ratios (H2O/Ce = 6000 - 19000) ever recorded in arc magmas (H2O/Ce < 10600 and global averaged H2O/Ce < 3000). Our findings show that (i) slab-derived fluids released beneath forearcs are water-rich compared to the deeper fluids released beneath the arc system; and (ii) cold downgoing plates lose most of their water at shallow depths (~ 70 - 80 km slab depth), suggesting that water is efficiently recycled beneath the forearc (≥ 90%). 1. Van Keken, P.E., et al., Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 2011. 116(B1): p. B01401, DOI: 10.1029/2010jb007922. 2. Ruscitto, D.M., et al., Global variations in H2O/Ce: 2. Relationships to arc magma

  2. Constraints on Pore Pressure in Subduction Zones From Geotechnical Tests and Physical Properties Data

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; McKiernan, A. W.

    2005-12-01

    At subduction zones, as incoming sediments are either offscraped or underthrust at the trench, elevated pore pressures result from the combination of rapid loading and low permeability. Pore pressure within underthrust sediment is especially important for the mechanical strength of the plate boundary fault system, because the main décollement localizes immediately above this sediment, and at many subduction zones steps downward into it. Because the underthrust sediment undergoes progressive uniaxial (vertical) strain, quantitative estimates of in situ pore pressure can be obtained by several methods, including: (1) maximum past burial stress ( Pv'}) from laboratory consolidation tests on core samples, and (2) observed compaction trends in boreholes. These methods allow a detailed view of pore pressure and its variability down-section, providing insight into dewatering processes and the evolution of shear strength relevant to early development of the décollement. Geotechnical tests also provide independent measurement of the coefficient of consolidation ( Cv), compressibility ( mv), and permeability (k) of sediment samples, which can be used to parameterize forward models of pressure generation. Here, I discuss pore pressure estimates derived from (1) consolidation tests on core samples, and (2) observed porosity profiles, along transects where ODP drilling has sampled sediment at the Nankai, N. Barbados, and Costa Rican subduction zones. At all three margins, the two independent methods yield consistent results, and indicate development of significant overpressures that increase systematically with distance from the trench. The values are in good agreement with direct measurements in 2 instrumented boreholes at Barbados, maximum and minimum bounds from the known loading rate, and results of 2-D numerical models of fluid flow. Inferred pressures document nearly undrained conditions at the base of the section (excess pressures equal to the load emplaced by

  3. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  4. Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Carminati, Eugenio

    2016-01-01

    3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.

  5. Opal-CT in chert beneath the toe of the Tohoku margin and its influence on the seismic aseismic transition in subduction zones

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Okamoto, Atsushi; Sato, Kiminori; Fujimoto, Koichiro; Yamaguchi, Asuka; Kimura, Gaku

    2017-01-01

    Thick accumulation of chert is a ubiquitous feature of old oceanic plates at convergent margins. In this study, we investigate chert fragments recovered by the Integrated Ocean Drilling Program expedition 343 at the Japan Trench where the 2011 Tohoku-Oki earthquake (Mw 9.0) occurred. This sample provides a unique opportunity to investigate in situ chert diagenesis at an active subduction margin and its influence on the kinematics of megathrust faulting. Our mineralogical analyses revealed that the chert is characterized by hydrous opal-CT and may therefore be highly deformable via pressure solution creep and readily accommodate shear strain between the converging plates at driving stresses of kilopascal order. As chert diagenesis advances, any further deformation requires stresses of >100 MPa, given the increasing transport distances for solutes as represented in cherts on land. The chert diagenesis is thus related to the mechanical transition from a weakly to strongly coupled plate interface at this margin.

  6. Hiding earthquakes from scrupulous monitoring eyes of dense local seismic networks

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Kiser, E.

    2012-12-01

    Accurate and complete cataloguing of aftershocks is essential for a variety of purposes, including the estimation of the mainshock rupture area, the identification of seismic gaps, and seismic hazard assessment. However, immediately following large earthquakes, the seismograms recorded by local networks are noisy, with energy arriving from hundreds of aftershocks, in addition to different seismic phases interfering with one another. This causes deterioration in the performance of detection and location of earthquakes using conventional methods such as the S-P approach. This is demonstrated by results of back-projection analysis of teleseismic data showing that a significant number of events are undetected by the Japan Meteorological Agency, within the first twenty-four hours after the Mw9.0 Tohoku-oki, Japan earthquake. The spatial distribution of the hidden events is not arbitrary. Most of these earthquakes are located close to the trench, while some are located at the outer rise. Furthermore, there is a relatively sharp trench-parallel boundary separating the detected and undetected events. We investigate the cause of these hidden earthquakes using forward modeling. The calculation of raypaths for various source locations and takeoff angles with the "shooting" method suggests that this phenomenon is a consequence of the complexities associated with subducting slab. Laterally varying velocity structure defocuses the seismic energy from shallow earthquakes located near the trench and makes the observation of P and S arrivals difficult at stations situated on mainland Japan. Full waveform simulations confirm these results. Our forward calculations also show that the probability of detection is sensitive to the depth of the event. Shallower events near the trench are more difficult to detect than deeper earthquakes that are located inside the subducting plate for which the shadow-zone effect diminishes. The modeling effort is expanded to include three

  7. Subduction Initiation under Unfavorable Conditions and New Fault Formation

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gurnis, M.; May, D.

    2017-12-01

    How subduction initiates with unfavorable dipping lithospheric heterogeneities is an important and rarely studied topic. We build a geodynamic model starting with a vertical weak zone for the Puysegur incipient subduction zone (PISZ). A true free surface is tracked in pTatin3D, based on the Arbitrary Lagrangian Eulerian (ALE) finite element method, and is used to follow the dynamic mantle-surface interaction and topographic evolution. A simplified surface process, based on linear topography diffusion, is implemented. Density and free water content for different phase assemblages are gained by referring to precalculated 4D (temperature, pressure, rock type and total water content) phase maps using Perplex. Darcy's law is used to migrate free water, and a linear water weakening is applied to the mantle material. A new visco-elastic formulation called Elastic Viscous Stress Splitting (EVSS) method is also included. Our predictions fit the morphology of the Puysegur Trench and Ridge and the deformation history on the overriding plate. We show a new thrust fault forms and evolves into a smooth subduction interface, and the preexisting weak zone becomes a vertical fault inboard of the thrust fault during subduction initiation, which explains the two-fault system at PISZ. Our model suggests that the PISZ may not yet be self-sustaining. We propose that the Snares Trough is caused by plate coupling differences between shallower and deeper parts, the tectonic sliver between two faults experiences strong rotation, and low density materials accumulate beneath the Snares trough. Extended models show that with favorable dipping heterogeneities, no new fault forms, and subduction initiates with smaller resisting forces.

  8. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion

    NASA Astrophysics Data System (ADS)

    Handy, Mark R.; Ustaszewski, Kamil; Kissling, Eduard

    2015-01-01

    Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the Alps and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust-mantle decoupling during Adria-Europe collision. In particular, the switch from south-directed European subduction to north-directed "wrong-way" Adriatic subduction beneath the Eastern Alps was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench-trench transfer fault connecting the Alps and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern Alps and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central Alps. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the Alps-Dinarides transfer fault which was filled with upwelling asthenosphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust-mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern Alps while opening a second slab gap, still present between the Eastern and Central Alps, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of

  9. Foreland uplift during flat subduction: Insights from the Peruvian Andes and Fitzcarrald Arch

    NASA Astrophysics Data System (ADS)

    Bishop, Brandon T.; Beck, Susan L.; Zandt, George; Wagner, Lara S.; Long, Maureen D.; Tavera, Hernando

    2018-04-01

    Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of >4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.

  10. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  11. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  12. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  13. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future

  14. Morphology and Role of the Investigator Fracture Zone on the Sumatra Subduction Zone Process using High-resolution Bathymetry and Seismic Data

    NASA Astrophysics Data System (ADS)

    Villanueva-Robles, F.; Singh, S. C.; Bradley, K. E.; Hananto, N.; Leclerc, F.; Qin, Y.; Wei, S.; Carton, H. D.; Tapponnier, P.; Sieh, K.; Permana, H.; Avianto, P.

    2016-12-01

    The Sumatran subduction zone is one of the most seismically active areas on Earth. Within the last decade, it has produced three great earthquakes plus one earthquake that produced a much larger tsunami than predicted from the magnitude alone. However, the physical factors that limit the lateral extent of these ruptures as well as ancient earthquakes evidenced by paleogeodesy remain poorly understood. It has been suggested that subducted bathymetric features, such as seamounts and fracture zones, may be define many segment boundaries. Offshore of Central Sumatra, the Investigator Fracture Zone (IFZ) impinges on the trench and has been subducted to great depth beneath the overriding accretionary wedge. Where it is still exposed as a bathymetric feature, this fracture zone is 2000 km long and more than 100 km wide, and is composed of four individual ridges that exhibit up to 3.7 km of original relief. In order to study the role of the IFZ on subduction processes, we simultaneously acquired multibeam bathymetry and eight 35-km-long high-resolution seismic reflection profiles across the subduction front during the 2015 MegaTera experiment. We find that subduction of the IFZ ridges significantly deforms the morphology of the overriding accretionary wedge. The steep eastern slope of subducting ridges allowed the development of a long lived frontal thrust that reaches the surface at the trench and is associated with a very large frontal anticline and a flat portion of the accretionary wedge. Extensional deformation of the forearc and transverse basin formation occurs along the trailing edge of the ridges. We suggest that the subducted IFZ defines a segment boundary between the southern limit of coseismic slip of the Mw = 8.7, 2005 Simeulue-Nias earthquake and the northern limit of coseismic slip limit of a major 1797 earthquake recorded by coral paleogeodesy. The presence of four distinct ridges and an intervening 35-km-wide area of normal oceanic crust within the 105-km

  15. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate

  16. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    USGS Publications Warehouse

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  17. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated

  18. Paleogeodetic records of seismic and aseismic subduction from central Sumatran microatolls, Indonesia

    USGS Publications Warehouse

    Natawidjaja, D.H.; Sieh, K.; Ward, S.N.; Cheng, H.; Edwards, R. Lawrence; Galetzka, J.; Suwargadi, B.W.

    2004-01-01

    We utilize coral microatolls in western Sumatra to document vertical deformation associated with subduction. Microatolls are very sensitive to fluctuations in sea level and thus act as natural tide gauges. They record not only the magnitude of vertical deformation associated with earthquakes (paleoseismic data), but also continuously track the long-term aseismic deformation that occurs during the intervals between earthquakes (paleogeodetic data). This paper focuses on the twentieth century paleogeodetic history of the equatorial region. Our coral paleogeodetic record of the 1935 event reveals a classical example of deformations produced by seismic rupture of a shallow subduction interface. The site closest to the trench rose 90 cm, whereas sites further east sank by as much as 35 cm. Our model reproduces these paleogeodetic data with a 2.3 m slip event on the interface 88 to 125 km from the trench axis. Our coral paleogeodetic data reveal slow submergence during the decades before and after the event in the areas of coseismic emergence. Likewise, interseismic emergence occurred before and after the 1935 event in areas of coseismic submergence. Among the interesting phenomenon we have discovered in the coral record is evidence of a large aseismic slip or "silent even" in 1962, 27 years after the 1935 event. Paleogeodetic deformation rates in the decades before, after, and between the 1935 and 1962 events have varied both temporally and spatially. During the 25 years following the 1935 event, submergence rates were dramatically greater than in prior decades. During the past four decades, however, rates have been lower than in the preceding decades, but are still higher than they were prior to 1935. These paleogeodetic records enable us to model the kinematics of the subduction interface throughout the twentieth century. Copyright 2004 by the American Geophysical Union.

  19. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  20. Deformation of island-arc lithosphere due to steady plate subduction

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2016-02-01

    Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction

  1. Three-Dimensional Variation of the Slab Geometry Along Strike and Along Dip in the Cascadia Subduction

    NASA Astrophysics Data System (ADS)

    Gao, H.

    2017-12-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade arc, is imaged with full-wave propagation simulation and ambient noise tomography. To retrieve Rayleigh-wave Empirical Green's Functions between station pairs, we process the vertical component of continuous seismic data recorded between 2004 and 2015 by about 800 stations, including three offshore seismic networks (the Cascadia Initiative Amphibious Array, the Blanco Transform OBS experiment, and the Gorda Deformation Zone OBS experiment) and all available broadband inland stations. The spreading centers have anomalously low shear-wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The tomographic imaging reveals great details of the seismic feature of the oceanic lithosphere prior to and after subduction, which varies significantly along strike and along dip. On average, the thickness of the oceanic lithosphere is about 30-45 km. The Juan de Fuca lithosphere appears to be relatively thin around the ridge, especially beneath the Cobb axial seamount, and then gradually thickens with increasing distance from the ridge. The thickness of the Gorda plate appears to be constant, which is probably due to the small size of the subduction system from formation to subduction. It is noteworthy that the oceanic plate is imaged relatively weaker beneath the trench compared to other parts of the plate. We suggest that in addition to the possible hydration of the oceanic mantle lithosphere, other mechanisms must be considered to explain the observed seismic feature around the trench. Further landward, very low velocity anomalies are observed above the plate interface along the Cascade forearc, indicative of subducted sediments.

  2. A seismological constraint on the age of a subducting slab: the Huatung basin offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Kuo, B.

    2010-12-01

    At the northwestern corner of the Philippine basin, collision and subduction are taking place simultaneously as the Philippine Sea plate is obliquely subducting beneath the Ryukyu trench and NE Taiwan. What is engaging in these processes is the Huatung basin (HB) lithosphere, a small piece of oceanic lithosphere which, unlike the rest of the Philippine Sea plate, is controversial in its age and structure. Because certain ages of lithosphere correspond to certain overall velocity structures, we examine how old the subducting slab of the HB has to be to satisfy seismological observations. We select from broadband seismic networks on Taiwan a rough linear array that points to the events in the Kuril trench region, rendering a slab dipping towards the upcoming P wave field. The slab thus defocuses seismic energy and produces an amplitude low along the array with magnitude and spread controlled by the age of the slab. We employ a 2D finite-difference waveform technique and experimented with 2 types of slab models with various ages: a simplistic conduction model and a high-resolution slab-wedge convection model. The older and thicker the slab, the more widely the predicted amplitude low spreads. Comparison with the observations indicates that the best slab ages fall into 20-50 Ma. This is at odds with the 125 Ma Ar-Ar dating model. Now the issue is not how to make the chronologically old lithosphere seismologically young, but why those basaltic rock samples dated to be old are located on the HB.

  3. 3D absolute hypocentral determination - 13 years of seismicity in Ecuadorian subduction zone

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Theunissen, Thomas

    2010-05-01

    of azimuthal coverage, record frequency and signal quality. Then, we define 5 domains: Offshore/coast, North-Andean margin, Volcanic chain, Southern Ecuador, and a domain deeper than 50 km. We process earthquake location only if at least 3 proximal stations exist in the event's domain. This data selection allows providing consistent quality location. The third step consists in improving the 3D MAXI technique that is well adapted to perform absolute earthquake location in velocity model presenting strong lateral Vp heterogeneities. The resulting catalogue allows specifying the deformation in the subduction system. All seismicity previously detected before trench occurs indeed between the trench and the coastal range. South of 0°, facing the subducting Carnegie Ridge, the seismicity aligns along the interplate seismogenic zone between an updip limit shallower than ~8 km and a downdip limit that reaches up to 50 km depth. The active seismogenic zone is interrupted by a gap that extends right beneath the coastal range. At these latitudes, a diffuse intraplate deformation also affects the subducting plate, probably induced by the locally thickened lithosphere flexure. Between the trench and the coast, earthquake distribution clearly defines a gap, which size is comparable to the 1942 M7.9 asperity (ellipse of axes ~55/35 km). A slab is clearly defines and dips around 25 to 30°. The slab seismicity is systematically interrupted between 100-170 km, approximately beneath the volcanic chain. North of 0°, i.e. in the megathrust earthquake domain, the interseismic activity is clearly reduced. The interplate distribution seems to gather along alignments perpendicular to the trench attesting probably of the margin segmentation. The North Andean overriding margin is undergoing active deformation, especially at the location where the Andean Chain strike changes of direction. At these latitudes, no earthquake occurs deeper than 100 km depth.

  4. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

    USGS Publications Warehouse

    Blakely, R.J.; Brocher, T.M.; Wells, R.E.

    2005-01-01

    Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.

  5. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  6. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The first indisputable observation of a large expanse of intact seamount exposed in the inner slope of any convergent plate margin was in June 2016. The only other potential evidence for an exposed subducted seamount was observations from a series of Nautile submersible dives in the 1980's. On these dives, brecciated boulders of Cretaceous reefal debris lay on the deepest 30 m of the inner slope of the Japan Trench near Daiichi-Kashima Seamount. Because the subducting plate within 60 to 120 km outboard of a trench is usually heavily faulted, it has been suggested that seamounts impinging on a forearc region should be heavily deformed. This is not what we observed in the inner Mariana Trench during the third leg of the NOAA ship Okeanos Explorer's expedition to the Mariana subduction region. In June 2016 we recorded 275 m of exposed reef on Dive 4 (at 20.5°N) with the NOAA "Deep Discoverer" remotely operated vehicle (D-2 ROV), starting at 5,995 m on the inner slope of the Mariana Trench. The deposits are morphologically identical to observations on Dive 16 on a summit escarpment of the Cretaceous Fryer Guyot ( 20.5°N) just east of the trench. We interpret the inner trench slope exposure to be part of a Cretaceous reef complex of a seamount partially subducted beneath the overriding plate edge. Large-scale differences in the two exposures are the prevalence of vertical debris chutes between steep ridges seen in Dive 4 versus smoother, steeper slopes on Dive 16. The reefal sequences on Dive 16 show numerous fossils including bivalves in place, and layers with rudist morphology (S. Stanley, 2017, pers. comm.) in alternating tan and white bands. Similar sequences were observed on Dive 4. Slump scars observed on Dive 4 indicate mass wasting, but there is no indication of shearing or large-scale deformation. Thus, we interpret the exposure to reveal a large section of the reef complex that is partially subducted and largely intact beneath the overriding Philippine Sea

  7. Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars

    2018-04-01

    The Western Hellenic Subduction Zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches depths of 100 km to 190 km, while the northern continental portion rarely exhibits deep earthquakes. Our study investigates how this oceanic-continental transition affects fluid release and related seismicity along strike. We present results from local earthquake tomography and double-difference relocation in conjunction with published images based on scattered teleseismic waves. Our tomographic images recover both subducting oceanic and continental crusts as low-velocity layers on top of high-velocity mantle. Although the northern and southern trenches are offset along the Kephalonia Transform Fault, continental and oceanic subducting crusts appear to align at depth. This suggests a smooth transition between slab retreat in the south and slab convergence in the north. Relocated hypocenters outline a single-planed Wadati-Benioff Zone with significant along-strike variability in the south. Seismicity terminates abruptly north of the Kephalonia Transform Fault, likely reflecting the transition from oceanic to continental subducted crust. Near 90 km depth, the low-velocity signature of the subducting crust fades out and the Wadati-Benioff Zone thins and steepens, marking the outline of the basalt-eclogite transition. Subarc melting of the mantle is only observed in the southernmost sector of the oceanic subduction, below the volcanic part of the arc. Beneath the nonvolcanic part, the overriding crust appears to have undergone large-scale silica enrichment. This enrichment is observed as an anomalously low Vp/Vs ratio and requires massive transport of dehydration-derived fluids updip through the subducting crust.

  8. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.

  9. Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback

    NASA Astrophysics Data System (ADS)

    Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert

    2017-04-01

    The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406

  10. Deformation fabrics of blueschist facies phengite-rich, epidote-glaucophane schists from Ring Mountain, California and implications for seismic anisotropy in subduction zone

    NASA Astrophysics Data System (ADS)

    Jung, H.; HA, Y.; Raymond, L. A.

    2016-12-01

    In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction

  11. Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion

    USGS Publications Warehouse

    Hirata, K.; Geist, E.; Satake, K.; Tanioka, Y.; Yamaki, S.

    2003-01-01

    We inverted 13 tsunami waveforms recorded in Japan to estimate the slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1), which occurred southeast off Hokkaido along the southern Kuril subduction zone. The previously estimated source area determined from tsunami travel times [Hatori, 1973] did not coincide with the observed aftershock distribution. Our results show that a large amount of slip occurred in the aftershock area east of Hatori's tsunami source area, suggesting that a portion of the interplate thrust near the trench was ruptured by the main shock. We also found more than 5 m of slip along the deeper part of the seismogenic interface, just below the central part of Hatori's tsunami source area. This region, which also has the largest stress drop during the main shock, had few aftershocks. Large tsunami heights on the eastern Hokkaido coast are better explained by the heterogeneous slip model than previous uniform-slip fault models. The total seismic moment is estimated to be 1.87 ?? 1021 N m, giving a moment magnitude of Mw = 8.1. The revised tsunami source area is estimated to be 25.2 ?? 103 km2, ???3 times larger than the previous tsunami source area. Out of four large earthquakes with M ??? 7 that subsequently occurred in and around the rupture area of the 1952 event, three were at the edges of regions with relatively small amount of slip. We also found that a subducted seamount near the edge of the rupture area possibly impeded slip along the plate interface.

  12. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit

  13. Detrital zircon U-Pb reconnaissance of the Franciscan subduction complex in northwestern California

    USGS Publications Warehouse

    Dimitru, Trevor; Ernst, W. Gary; Hourigan, Jeremy K.; McLaughlin, Robert J.

    2015-01-01

    In northwestern California, the Franciscan subduction complex has been subdivided into seven major tectonostratigraphic units. We report U-Pb ages of ≈2400 detrital zircon grains from 26 sandstone samples from 5 of these units. Here, we tabulate each unit's interpreted predominant sediment source areas and depositional age range, ordered from the oldest to the youngest unit. (1) Yolla Bolly terrane: nearby Sierra Nevada batholith (SNB); ca. 118 to 98 Ma. Rare fossils had indicated that this unit was mostly 151-137 Ma, but it is mostly much younger. (2) Central Belt: SND; ca. 103 too 53 Ma (but poorly constrained), again mostly younger than previously thought. (3) Yager terrane: distant Idaho batholith (IB); ca. 52 to 50 Ma. Much of the Yager's detritus was shed during major core complex extension and erosion in Idaho that started 53 Ma. An eocene Princeton River-Princeton submarine canyon system transported this detritus to the Great Valley forearc basin and thence to the Franciscan trench. (4) Coastal terrane: mostly IB, ±SNB, ±nearby Cascade arc, ±Nevada Cenozoic ignimbrite belt; 52 to <32 Ma. (5) King Range terrane: dominated by IB and SNB zircons; parts 16-14 Ma based on microfossils. Overall, some Franciscan units are younger than previously thought, making them more compatible with models for the growth of subduction complexes by positive accretion. From ca. 118 to 70 Ma, Franciscan sediments were sourced mainly from the nearby Sierra Nevada region and were isolated from southwestern US and Mexican sources. From 53 to 49 Ma, the Franciscan was sourced from both Idaho and the Sierra Nevada. By 37-32 Ma, input from Idaho had ceased. The influx from Idaho probably reflects major tectonism in Idaho, Oregon, and Washington, plus development of a through-going Princeton River to California, rather than radical changes in the subduction system at the Franciscan trench itself.

  14. Long-Term Seismic Quiescences and Great Earthquakes in and Around the Japan Subduction Zone Between 1975 and 2012

    NASA Astrophysics Data System (ADS)

    Katsumata, Kei

    2017-06-01

    An earthquake catalog created by the International Seismological Center (ISC) was analyzed, including 3898 earthquakes located in and around Japan between January 1964 and June 2012 shallower than 60 km with the body wave magnitude of 5.0 or larger. Clustered events such as earthquake swarms and aftershocks were removed from the ISC catalog by using a stochastic declustering method based on Epidemic-Type Aftershock Sequence (ETAS) model. A detailed analysis of the earthquake catalog using a simple scanning technique (ZMAP) shows that the long-term seismic quiescences lasting more than 9 years were recognized ten times along the subduction zone in and around Japan. The three seismic quiescences among them were followed by three great earthquakes: the 1994 Hokkaido-toho-oki earthquake ( M w 8.3), the 2003 Tokachi-oki earthquake ( M w 8.3), and the 2011 Tohoku earthquake ( M w 9.0). The remaining seven seismic quiescences were followed by no earthquake with the seismic moment M 0 ≥ 3.0 × 1021 Nm ( M w 8.25), which are candidates of the false alarm. The 2006 Kurile Islands earthquake ( M w 8.3) was not preceded by the significant seismic quiescence, which is a case of the surprise occurrence. As a result, when limited to earthquakes with the seismic moment of M 0 ≥ 3.0 × 1021 Nm, four earthquakes occurred between 1976 and 2012 in and around Japan, and three of them were preceded by the long-term seismic quiescence lasting more than 9 years.

  15. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  16. The geochemical characteristics and sedimentary environment of abyss and hadal sediments of Yap-trench

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, M.; Sun, C.; Yang, G.; Ding, H.

    2017-12-01

    Based on ICP-ES analysis, concentrations of 6 constant elements and 9 trace elements in five sediment columnar samples collected from Yap-trench by the Jiaolong Submersiblein June, 2016, were determined. According to the distribution of elements, the sources of sediment and the implications on sedimentary environment were investigated through the correlation of elements and the ratios between special elements. The results showed that the carbonate compensation depthwas between 4500m and 5000m, and the depth of 5000m should be an ideal condition for the formation of iron and manganese nodules. Based on the ratios of Fe/Al and Ti/Al, and the correlation of elements, we inferred that Yap-trench sediments were mainly derived from biogenic, terrestrial, volcanic and autogenic source. The values of Ni/Co and V/Cr indicated that the depositional environment belongs to the oxidative environment and might have inflow of the Antarctic bottom oxygen-rich water. The high content of Ca in the 371-Yap-S02 station below 4cm indicated that this area should be no large-scale volcanic eruption, and volcanic material in the sediment may come from the Mariana volcanic arc. The Caroline ridge located in the east of Yap-trench keep sinking due to plate subduction.

  17. Numerical simulation of faulting in the Sunda Trench shows that seamounts may generate megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Chan, C. H.; Tapponnier, P.

    2017-12-01

    The role of seamounts in generating earthquakes has been debated, with some studies suggesting that seamounts could be truncated to generate megathrust events, while other studies indicate that the maximum size of megathrust earthquakes could be reduced as subducting seamounts could lead to segmentation. The debate is highly relevant for the seamounts discovered along the Mentawai patch of the Sunda Trench, where previous studies have suggested that a megathrust earthquake will likely occur within decades. In order to model the dynamic behavior of the Mentawai patch, we simulated forearc faulting caused by seamount subducting using the Discrete Element Method. Our models show that rupture behavior in the subduction system is dominated by stiffness of the overriding plate. When stiffness is low, a seamount can be a barrier to rupture propagation, resulting in several smaller (M≤8.0) events. If, however, stiffness is high, a seamount can cause a megathrust earthquake (M8 class). In addition, we show that a splay fault in the subduction environment could only develop when a seamount is present, and a larger offset along a splay fault is expected when stiffness of the overriding plate is higher. Our dynamic models are not only consistent with previous findings from seismic profiles and earthquake activities, but the models also better constrain the rupture behavior of the Mentawai patch, thus contributing to subsequent seismic hazard assessment.

  18. Plume-induced roll back subduction around Venus large coronae

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2016-12-01

    On Venus, possible subduction trenches are mainly associated with large coronae, eventhough the latter are thought to be produced by hot mantle plumes. The mechanism of assocation between subduction and plume has long remained elusive. However, we recently observe the same association in laboratory experiments on thermal convection in colloidal aqueous dispersions of silica nanoparticles, which deform in the Newtonian regime at low solid particle fraction φp, and transition to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. Hence, a dense skin akin to a planetary lithosphere grows on the surface when the system is dried from above. When a hot plume rises under the skin, the latter undergoes a flexural deformation which puts it under tension. Cracks then develop, sometimes using pre-existing weaknesses. Plume material (being more buoyant that the laboratory lithosphere) upwells through the cracks and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the conjugate action of its own weight and the plume gravity current. The brittle character of the top experimental lithosphere forbids it to deform viscously to accomodate the sinking motions. Instead, the plate continues to tear as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Scalings derived from the experiments suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. We identified two candidates on Venus. At Artemis and Quetzelpetlatl Coronae, the radar image observations and subsurface density variations inferred from modeling the gravity and topography agree with the predictions from

  19. Subduction structure beneath the eastern part of the Kii Peninsula, southwestern Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Tsumura, N.; Iwasaki, T.

    2016-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. In recent years, various slip motions with a different time scale, including episodic tremors and very low-frequency earthquakes have been recognized at or near the updip and downdip limits of seismogenic zone [e.g., Obara, 2002; Ito and Obara, 2006]. Revealing structural factors that control the fault slip behavior is important to understand the earthquake rupture dynamics. In 2006, active-source seismic experiment was conducted to obtain the subduction structure beneath the eastern part of the Kii Peninsula [Iwasaki et al., 2008]. Iwasaki et al. (2008) provided the geometry of the subducting PHS and the overlying crustal structure. However, little is known about the deeper part of the plate boundary, especially Vp/Vs structure in and around the source region of the tremor. Previous studies indicate the fluid pressure on a plate interface is one of the key factors to understand the fault slip process [e.g., Saffer and Tobin, 2011]. Seismic velocity variation provides important information on the fluid-related heterogeneous structure. Passive seismic data is useful to obtain a deep image including the S-wave velocity. Therefore, we conducted passive seismic experiment in the eastern part of the Kii Peninsula. Ninety 3-component portable seismographs were installed on a 90-km-long line nearly parallel to the direction of the subduction of the PHS. Waveforms were continuously recorded during a six-month period from May, 2015. Seismic data from 116 permanent stations around the survey line were also incorporated into our analysis to obtain a high-resolution velocity model. Arrival times of 356 local earthquakes were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures. Velocity structures are resolved down to 50 km depth. Clustered tremors are located in and around the low Vp and

  20. Subduction of aseismic ridges beneath the Caribbean Plate: Implications for the tectonics and seismic potential of the northeastern Caribbean

    NASA Astrophysics Data System (ADS)

    McCann, William R.; Sykes, Lynn R.

    1984-06-01

    Normal seafloor entering the Puerto Rico and northern Lesser Antillean trenches in the northeastern Caribbean is interrupted by a series of aseismic ridges on the North and South American plates. These topographic features lie close to the expected trend of fracture zones created about 80-110 m.y. ago when this seafloor was formed at the Mid-Atlantic Ridge. The northernmost of the ridges that interact with the Lesser Antillean subduction zone, the Barracuda Ridge, intersects the arc in a region of high seismic activity. Some of this seismicity including a large shock in 1974, occurs within the overthrust plate and may be related to the deformation of the Caribbean plate as it overrides the ridge. A large bathymetric high, the Main Ridge, is oriented obliquely to the Puerto Rico trench and intersects the subduction zone north of the Virgin Islands in another cluster of seismic activity along the inner wall of the trench. Data from a seismic network in the northeastern Caribbean indicate that this intersection is also characterized by both interpolate and intraplate seismic activity. Magnetic anomalies, bathymetric trends, and the pattern of deformed sediments on the inner wall of the trench strongly suggest that the Main and Barracuda ridges are parts of a formerly continuous aseismic ridge, a segment of which has recently been overridden by the Caribbean plate. Reconstruction of mid-Miocene to Recent plate motions also suggest that at least two aseismic ridges, and possibly fragments of the Bahama Platform, have interacted with the subduction zone in the northeastern Caribbean. The introduction of these narrow segments of anomalous seafloor into the subduction zone has segmented the arc into elements about 200 km long. These ridges may act as tectonic barriers or asperities during the rupture processes involved in large earthquakes. They also leave a geologic imprint on segments of the arc with which they have interacted. A 50-km landward jump of the locus of

  1. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

    PubMed

    Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L

    2010-07-16

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.

  2. Subduction and dehydration of slow-spread oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.

    2016-12-01

    Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo

  3. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, Oceane; Crawford, Wayne; Pelletier, Bernard; Regnier, Marc; Garaebiti, Esline; Koulakov, Ivan

    2017-04-01

    The 1400-km long Vanuatu subduction zone results from subduction of the oceanic Australian plate (OAP) beneath the North-Fijian microplate (NFM). Seismic and volcanic activity are both high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the large forearc islands of Santo and Malekula. This collision coincides with a strongly decreased local convergence velocity rate - 35 mm/yr compared to 120-160 mm/yr to the north and south - and significant uplift on the overriding plate, indicating a high degree of deformation. The close proximity of large uplifted forearc islands to the trench provides excellent coverage of the megathrust seismogenic zone for a seismological study. We used 10 months of seismological data collected using the 30-instrument land and sea ARC-VANUATU seismology network to construct a 3D velocity model — using the LOTOS joint location/model inversion software — and locate 11655 earthquakes using the NonLinLoc software suite. The 3-D model reveals low P and S velocities in the first tens of kilometers beneath both islands, probably due to water infiltration in the heavily faulted upper plate. The model also suggests the presence of a subducted seamount beneath south Santo. The earthquake locations reveal a complex interaction of faults and stress zones related to high and highly variable deformation. Both brittle deformation and the seismogenic zone depth limits vary along-slab and earthquake clusters are identified beneath central and south Santo, at about 10-30 km of depth, and southwest of Malekula island between 10-20 km depth.

  4. Constraining Sources of Subducted and Recycled Carbon Along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.; Rodriguez, B.; Plank, T. A.

    2014-12-01

    From sediment subduction rates and C contents at ODP/DSDP sites 765 and 211, we estimate the rate of C subduction along ~2000 km of the East Sunda Arc to be ~0.4 Tg C yr-1, representing a significant source of subducted volatiles [1]. However volatile recycling efficiency and the provenance of recycled volatiles in this region remain poorly understood. With new δ13C measurements of both carbonate and organic carbon from sites 211 and 765, we present the most detailed study yet of the spatial variability of subducted C and recycled CO2 provenance along the strike of the arc. Furthermore we demonstrate the importance of oceanic crustal carbonate as a C source in a subduction zone that is otherwise carbonate starved. Carbonate content throughout the sediment column decreases dramatically between site 765, approximately 250 km from the Australian continental margin, and site 211, approximately 300 km southwest of the trench and outboard of the Sunda Strait between Sumatra and Java. Continental and shelf carbonate input from the Australian margin dominates shallow deposits at site 765, but underlying pelagic sediments are thought to contribute the majority of inorganic C to the arc. The paucity of carbonate in sediments at site 211 suggests that along this segment essentially all carbonate subducted is derived from altered ocean crust, presenting an opportunity to study the effects of crustal carbonate input. While previous C provenance studies relied on globally-averaged δ13C values for organic and inorganic C in subducted sediments, we present new estimates based on measured δ13CVPDB of carbonate (average of ~2‰ in subducted sediments) and organic carbon (-22.5 to -23‰ average) along with previously published efflux data [2]. These estimates suggest that the arc-averaged ratio of carbonate to organic C subducted along the East Sunda Arc is nearly identical to the inorganic to organic C ratio represented in volcanic and hydrothermal CO2 output, suggesting that

  5. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model

  6. Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench

    PubMed Central

    Arai, Ryuta; Takahashi, Tsutomu; Kodaira, Shuichi; Kaiho, Yuka; Nakanishi, Ayako; Fujie, Gou; Nakamura, Yasuyuki; Yamamoto, Yojiro; Ishihara, Yasushi; Miura, Seiichi; Kaneda, Yoshiyuki

    2016-01-01

    It has been recognized that even weakly coupled subduction zones may cause large interplate earthquakes leading to destructive tsunamis. The Ryukyu Trench is one of the best fields to study this phenomenon, since various slow earthquakes and tsunamis have occurred; yet the fault structure and seismic activity there are poorly constrained. Here we present seismological evidence from marine observation for megathrust faults and low-frequency earthquakes (LFEs). On the basis of passive observation we find LFEs occur at 15–18 km depths along the plate interface and their distribution seems to bridge the gap between the shallow tsunamigenic zone and the deep slow slip region. This suggests that the southern Ryukyu Trench is dominated by slow earthquakes at any depths and lacks a typical locked zone. The plate interface is overlaid by a low-velocity wedge and is accompanied by polarity reversals of seismic reflections, indicating fluids exist at various depths along the plate interface. PMID:27447546

  7. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene

  8. GPS measurement of relative motion of the Cocos and Caribbean Plates and strain accumulation across the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Dixon, Timothy H.

    1993-10-01

    Global Positioning System (GPS) measurements in 1988 and 1991 on Cocos Island (Cocos plate), San Andres Island (Caribbean plate), and Liberia (Caribbean plate, mainland Costa Rica) provide an estimate of relative motion between the Cocos and Caribbean plates. The data for Cocos and San Andres Islands, both located more than 400 km from the Middle America Trench, define a velocity that is equivalent within two standard errors (7 mm/yr rate, 5 degrees azimuth) to the NUVEL-1 plate motion model. The data for Liberia, 120 km from the trench, define a velocity that is similar in azimuth but substantially different in rate from NUVEL-1. The discrepancy can be explained with a simple model of elastic strain accumulation with a subduction zone that is locked to a relatively shallow (20±5 km) depth.

  9. Imaging shear strength along subduction faults

    USGS Publications Warehouse

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  10. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2013-05-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (<6.5 km) low-velocity layer (shear wave velocity of ~3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North American plate. The observed low-velocity megathrust layer (with P-to-S velocity ratio (Vp/Vs) exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-12 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at 25-30 km depth in the central Kenai along the megathrust, aligns with the western end of the

  11. How does Subduction Interface Roughness influence Megathrust Earthquakes: Insights from Natural Data and Analogue Models

    NASA Astrophysics Data System (ADS)

    van Rijsingen, E.; Lallemand, S.; Peyret, M.; Corbi, F.; Funiciello, F.; Arcay, D.; Heuret, A.

    2017-12-01

    The role of subducting oceanic features on the seismogenic behavior of subduction zones has been increasingly addressed over the past years, although their exact relationship remains unclear. Do features like seamounts, fracture zones or submarine ridges act as barriers, prohibiting ruptures to propagate, or do they initiate megathrust earthquakes instead? With this question in mind, we aim to better understand the influence of subduction interface roughness on the location of an earthquake's hypocenter, rupture area and seismic asperity. Following the work on compiling a dual-wavelength subduction interface roughness (SubRough) database, we used this roughness proxy for a global comparison with large subduction earthquakes (MW > 7.5), which occurred since 1900 (SubQuake, new catalogue). We made a quantitative comparison between the earthquake data on the landward side of the trench and the roughness proxy on the seaward side, taking into account the most appropriate direction of roughness extrapolation. Main results show that areas with low roughness at long wavelengths (i.e. 80-100 km) are more prone to host large- to mega-earthquakes. In addition to this natural data study, we perform analogue experiments, which allow us to investigate the role subducting oceanic features play over the course of multiple seismic cycles. The experimental setup consists of a gelatin wedge and an underthrusting rigid aluminum plate (i.e. the analogues of the overriding and downgoing plates, respectively). By adding scaled 3D-printed topographic features (e.g. seamounts) on the downgoing plate, we are able to accurately monitor the initiation and propagation of ruptures with respect to the subducting features. Here we show the results of our natural data study, some preliminary results of the analogue models and our first conclusions on how the subduction interface roughness may influence the seismogenic potential of an area.

  12. Arc-arc Collision Structure in the Southernmost Part of the Kuril Trench Region -Results from Integrated Analyses of the 1998-2000 Hokkaido Transect Seismic Data-

    NASA Astrophysics Data System (ADS)

    Iwasaki, Takaya; Tsumura, Noriko; Ito, Tanio; Sato, Hiroshi; Kurashimo, Eiji; Hirata, Naoshi; Arita, Kazunori; Noda, Katsuya; Fujiwara, Akira; Abe, Susumu; Kikkuchi, Shunsuke; Suzuki, Kazuko

    2015-04-01

    The Hokkaido Island, located in the southernmost part of the Kuril trench region, has been under a unique tectonic environment of arc-arc collision. Due to the oblique subduction of the Pacific (PAC) plate, the Kuril forearc sliver started to collide against Northeast (NE) Japan arc from the east at the time of middle Miocene to form complicated structures in the Hidaka collision zone (HCZ), as characterized by the westward obduction of the crustal rocks of the Kuril arc (the Hidaka metamorphic belt (HMB)) along the Hidaka main thrust (HMT) and a thick foreland fold-and-thrust belt. In and around the HCZ, a series of seismic reflection/refraction experiments were undertaken from 1994 to 2000, which provided important structural features including crustal delamination in the southern HCZ and a thick fold-and-thrust belt with velocity reversals (low velocity layers) in the northern HCZ. Reprocessing/reinterpretation for these data sets, which started in 2012, is aimed to construct a more detailed collision model through new processing and interpretation techniques. A multi-disciplinary project of the 1998-2000 Hokkaido Transect, crossing the northern part of the HCZ in EW direction, collected high-quality seismic data on a 227-km seismic refraction/wide-angle reflection profile and three seismic reflection lines. Our reanalyses revealed interesting collision structure ongoing in the northern part of the HCZ. The westward obduction of the Kuril arc crust was clearly imaged along the HMT. This obduction occurs at a depth of 27-30 km, much deeper than in the southern HCZ (23-25 km). The CRS/MDRS processing to the reflection data firstly succeeded in imaging clear reflection events at a 30-45 km depth below the obducted Kuril arc crust. These events show an eastward dip, probably corresponding to the lower crust/Moho within the NE Japan arc descending down to the east under the collision zone. Gently eastward dipping structures above these events (in a depth range of 5

  13. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  14. Flexural models of trench/outer rise topography of coronae on Venus with axisymmetric spherical shell elastic plates

    NASA Technical Reports Server (NTRS)

    Moore, W.; Schubert, Gerald; Sandwell, David T.

    1992-01-01

    Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.

  15. Continental Evolution Involving Subduction Underplating and Synchronous Foreland Thrusting: Evidence from the Trans-Alaska Crustal Transect

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.

    2010-12-01

    We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle

  16. Seismicity near a Highly-Coupled Patch in the Central Ecuador Subduction Zone

    NASA Astrophysics Data System (ADS)

    Regnier, M. M.; Segovia, M.; Font, Y.; Charvis, P.; Galve, A.; Jarrin, P.; Hello, Y.; Ruiz, M. C.; Pazmino, A.

    2017-12-01

    The temporary onshore-offshore seismic network deployed during the 2-years period of the OSISEC project provides an unprecedented, detailed and well-focused image of the seismicity for magnitudes as low as 2.0 in the Central Ecuadorian subduction zone. Facing the southern border of the Carnegie Ridge, a shallow and discrete highly-coupled patch is correlated to the subduction of a large oceanic relief. No large earthquake is known in this area that is experiencing recurrent seismic swarms and slow slip events. The shallow and locked subduction interface shows no evidence of background seismicity that instead occurred down dip of the coupled patch where it is possibly controlled by structural features of the overriding plate. We show a clear spatial correlation between the background microseismicity, the down dip extension of the locked patch at 20 km depth and the geology of the upper plate. The dip angle of the interplate contact zone, defined by a smooth interpolation through the hypocenters of thrust events, is consistent with a progressive increase from 6° to 25° from the trench to 20 km depth. Offshore, a seismic swarm, concomitant with a slow slip event rupturing the locked area, highlights the reactivation of secondary active faults that developed within the thickened crust of the subducting Carnegie Ridge, at the leading edge of a large oceanic seamount. No seismicity was detected near the plate interface suggesting that stress still accumulates at small and isolated asperities

  17. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could

  18. Thermal structure of the Kanto region, Japan

    NASA Astrophysics Data System (ADS)

    Wada, Ikuko; He, Jiangheng

    2017-07-01

    Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.

  19. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  20. Testing Spatial Correlation of Subduction Interplate Coupling and Forearc Morpho-Tectonics

    NASA Technical Reports Server (NTRS)

    Goldfinger, Chris; Meigs, Andrew; Meigs, Andrew; Kaye, Grant D.; VanLaningham, Sam

    2005-01-01

    Subduction zones that are capable of generating great (Mw greater than 8) earthquakes appear to have a common assemblage of forearc morphologic elements. Although details vary, each have (from the trench landward), an accretionary prism, outer arc high, outer forearc basin, an inner forean: basin, and volcanic arc. This pattern is common in spite of great variation in forearc architecture. Because interseismic strain is known to be associated with a locked seismogenic plate interface, we infer that this common forearc morphology is related, in an unknown way, to the process of interseismic Strain accumulation and release in great earthquakes. To date, however, no clear relationship between the subduction process and the common elements of upper plate form has emerged. Whereas certain elements of the system, i.e. the outer arc high, are reasonably well- understood in a structural context, there is little understanding of the structural or topographic evolution of the other key elements like the inner arc and inner forearc basin, particularly with respect to the coupled zone of earthquake generation. This project developed a model of the seismologic, topographic, and uplift/denudation linkages between forearc topography and the subduction system by: 1) comparing geophysical, geodetic, and topographic data from subduction margins that generate large earthquakes; 2) using existing GPS, seismicity, and other data to model the relationship between seismic cycles involving a locked interface and upper-plate topographic development; and 3) using new GPS data and a range-scale topographic, uplift, and denudation analysis of the presently aseismic Cascadia margin to constrain topographic/plate coupling relationships at this poorly understood margin.

  1. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.

    2017-12-01

    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust

  2. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench

    USGS Publications Warehouse

    Blakely, Richard J.

    1981-01-01

    Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.

  3. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2012-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (3-6.5 km) low-velocity layer (shear wave velocity less than 3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with Vp/Vs ratio exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-15 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. Subduction of this buoyant crust could explain the shallow dip of the thrust zone beneath southern Alaska. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at

  4. Dynamics of double-polarity subduction: application to the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Peral, M.; Zlotnik, S.; Fernandez, M.; Verges, J.; Jiménez-Munt, I.; Torne, M.

    2015-12-01

    The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model proposed by Vergés and Fernàndez (2012) suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model of double-polarity subduction is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle and the problem is driven by Rayleigh-Taylor instability. The main factors to be studied are the interaction between the two plates, the poloidal and toroidal mantle fluxes, the velocity variations of slabs, the stress distribution and the variations in the trench morphology.

  5. Seismic and thermal evidences for subduction of exhumed mantle oceanic crust beneath the seismically quiet Antigua-St Martin Margin segment in the Northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has

  6. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  7. Depth variations of P-wave azimuthal anisotropy beneath East Asia

    NASA Astrophysics Data System (ADS)

    Wei, W.; Zhao, D.; Xu, J.

    2017-12-01

    We present a new P-wave anisotropic tomographic model beneath East Asia by inverting a total of 1,488,531 P wave arrival-time data recorded by the regional seismic networks in East Asia and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducting Indian, Pacific and Philippine Sea plates and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. The FVD in the subducting Philippine Sea plate beneath the Ryukyu arc is NE-SW(trench parallel), which is consistent with the spreading direction of the West Philippine Basin during its initial opening stage, suggesting that it may reflect the fossil anisotropy. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China. We suggest that it reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. We find a striking variation of the FVD with depth in the subducting Pacific slab beneath the Northeast Japan arc. It may be caused by slab dehydration that changed elastic properties of the slab with depth. The FVD in the mantle wedge beneath the Northeast Japan and Ryukyu arcs is trench normal, which reflects subduction-induced convection. Beneath the Kuril and Izu-Bonin arcs where oblique subduction occurs, the FVD in the mantle wedge is nearly normal to the moving direction of the downgoing Pacific plate, suggesting that the oblique subduction together with the complex slab morphology have disturbed the mantle flow.

  8. From transpressional to transtensional tectonics in Northern Central America controlled by Cocos - Caribbean subduction coupling change

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, Jorge; Alvarez-Gomez, José Antonio; Jesús Martinez-Diaz, José

    2017-04-01

    The Central American Volcanic Arc (CAVA) is located at the western margin of the Caribbean plate, over the Chortís Block, spanning from Guatemala to Costa Rica. The CAVA is associated to the subduction of the Cocos plate under the Caribbean plate at the Middle America Trench. Our study is focused in the Salvadorian CAVA segment, which is tectonically characterized by the presence of the El Salvador Fault Zone (ESFZ), part of the western boundary of a major block forming the Caribbean plate (the Chortis Block). The structural evolution of the western boundary of the Chortis Block, particularly in the CAVA crossing El Salvador remains unknown. We have done a kinematic analysis from seismic and fault slip data and combined our results with a review of regional previous studies. This approach allowed us to constrain the tectonic evolution and the forces that control the deformation in northern Central America. Along the active volcanic arc we identified active transtensional deformation. On the other hand, we have identified two deformation phases in the back arc region: A first one of transpressional wrenching close to simple shearing (Miocene); and a second one characterized by almost E-W extension. Our results reveal a change from transpressional to transtensional shearing coeval with a migration of the volcanism towards the trench in Late Miocene times. This strain change could be related with a coupled to decoupled transition on the Cocos - Caribbean subduction interface, which could be related to a slab roll-back of the Cocos Plate beneath the Chortis Block. The combination of different degrees of coupling on the subduction interface, together with a constant relative eastward drift of the Caribbean Plate, control the deformation style along the western boundary of the Chortis Block.

  9. Subduction erosion off central Java: transition from accretion to erosion manifested by wide-angle seismic studies

    NASA Astrophysics Data System (ADS)

    Wittwer, A.; Flueh, E.; Rabbel, W.; Wagner, D.

    2006-12-01

    In this study, offshore wide-angle data acquired by ocean bottom instruments of a combined onshore- offshore investigation of the tectonic framework of central Java will be presented. The joint interdisciplinary project MERAMEX (Merapi Amphibious Experiment) was carried out in order to characterize the subduction of the Indo-Australian plate beneath Eurasia. The interpretation of three wide-angle data profiles, modelled with forward raytracing, indicates that the subduction of the Roo Rise with its thickened oceanic crust strongly influences the subduction zone. The dip angle of the downgoing oceanic plate is 10° and its crustal thickness increases to the east from 8 km to 9 km between both dip profiles off central Java. Large scale forearc uplift is manifested in isolated forearc highs, reaching water depths of only 1000 m compared to 2000 m water depth off western Java, and results from oceanic basement relief subduction. A broad band of seamounts trends E-W at approximately 10°S. Its incipient subduction off central Java causes frontal erosion of the margin here and leads to mass wasting due to oversteepening of the upper trench wall. A suite of wide-angle profiles off southern Sumatra to central Java indicates a clear change in the tectonic environment between longitude 108°E and 109°E. The well-developed accretionary wedge off southern Sumatra and western Java changes into a small frontal prism with steep slope angles of the upper plate off central Java.

  10. Plume-induced subduction and accretion on present-day Venus and Archean Earth

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Sibrant, A.; Mittelstaedt, E. L.

    2017-12-01

    Plate tectonics is responsible for the majority of Earth's heat loss, cycling of volatiles between the atmosphere and interior, recycling in the mantle of most of the surface plates, and possibly even for maintaining habitability. Despite its similarity in size and bulk density to Earth, Venus lacks plate tectonics today, and its mode of operation remains debated. Using laboratory experiments in colloidal dispersion which brittle viscosity-elasto-plastic rheology, we recently showed that plume-induced subduction could be operating nowadays on Venus. The experimental fluids were heated from below to produce upwelling plumes, which in turn produced tensile fractures in the lithosphere-like skin that formed on the upper surface. Plume material upwelling through the fractures then spread above the skin, analogous to volcanic flooding, and lead to bending and eventual subduction of the skin along arcuate segments. These segments are analogous to the semi-circular trenches seen on large coronae. Scaling analysis suggests that this regime with limited, plume-induced subduction is favored by a hot lithosphere, such as that found on early Earth or present-day Venus. Moreover, in this regime, subduction proceeds primarily by roll-back and the coronae expands through time at velocity that could reach 10 cm/yr. A second set of experiments focusing on accretion processes suggests that accretion dynamics depends on the strength of the lithosphere, as well as the spreading velocity. Venus hot surface temperature would act to decrease the lithosphere strength, and therefore weaken the ridge axis, that would become highly unstable, showing large sinuosity and producing a number of micro-plates. These plume, subduction, and accretion characteristics explain well the features seen in Artemis coronae, the largest coronae on Venus.

  11. A real-time cabled observatory on the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Delaney, J. R.; Toomey, D. R.; Bodin, P.; Roland, E. C.; Wilcock, W. S. D.; Houston, H.; Schmidt, D. A.; Allen, R. M.

    2015-12-01

    Subduction zones are replete with mystery and rife with hazard. Along most of the Pacific Northwest margin, the traditional methods of monitoring offshore geophysical activity use onshore sensors or involve conducting infrequent oceanographic expeditions. This results in a limited capacity for detecting and monitoring subduction processes offshore. We propose that the next step in geophysical observations of Cascadia should include real-time data delivered by a seafloor cable with seismic, geodetic, and pressure-sensing instruments. Along the Cascadia subduction zone, we need to monitor deformation, earthquakes, and fluid fluxes on short time scales. High-quality long-term time series are needed to establish baseline observations and evaluate secular changes in the subduction environment. Currently we lack a basic knowledge of the plate convergence rate, direction and its variations along strike and of how convergence is accommodated across the plate boundary. We also would like to seek cycles of microseismicity, how far locking extends up-dip, and the transient processes (i.e., fluid pulsing, tremor, and slow slip) that occur near the trench. For reducing risk to society, real-time monitoring has great benefit for immediate and accurate assessment through earthquake early warning systems. Specifically, the improvement to early warning would be in assessing the location, geometry, and progression of ongoing faulting and obtaining an accurate tsunami warning, as well as simply speeding up the early warning. It would also be valuable to detect strain transients and map the locked portion of the megathrust, and detect changes in locking over the earthquake cycle. Development of the US portion of a real-time cabled seismic and geodetic observatory should build upon the Ocean Observatories Initiative's cabled array, which was recently completed and is currently delivering continuous seismic and pressure data from the seafloor. Its implementation would require

  12. Imaging hydration and dehydration across the Cascadia subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Van Keken, P. E.; Hacker, B. R.; Mann, M. E.; Crosbie, K.; Creager, K.

    2017-12-01

    Arc volcanoes and exhumed forearc metamorphic rocks show clear evidence for upward transport of slab-derived fluids, but geophysical measurements rarely image features that could constrain the mode of this fluid transport. The hottest subduction zones such as Cascadia pose a particular challenge, as the depths where hydrous minerals are stable seaward of trenches is limited, and much of the water is expected to depart the slab before reaching sub-arc depths. Here we improve our understanding of this problem by developing a new thermal model for central Cascadia, leveraging new results several onshore and offshore geophysical investigations, notably the iMUSH project (Imaging Magma Under mount St. Helens), to evaluate constraints on the fluid flux. Offshore onshore heat flow measurements require a cold forearc and preclude detectable shear heating. Several puzzles emerge. The first is that Mount St. Helens overlies a continuous subducting plate which has an upper surface only 65-70 km deep beneath the volcano, imaged by migrated scattered P coda. This location, together with heat flow observations and inferences from the strength of the upper plate Moho, place the volcano over a cold forearc mantle wedge that is substantially hydrated. It is unclear how the wide range of magmas at Mount St. Helens could emerge in this setting since many have mantle origin. A second puzzle is that a large velocity step, about 10% in Vs, is seen along the slab Moho to depths exceeding 90 km where thermal models predict the subducting crust is in eclogite facies; eclogite and peridotite should have nearly indistinguishable Vs. Possibly a gabbroic oceanic crust persists metastably well below the arc, or perhaps the interface represents a deeper hydration front rather than petrologic Moho. A third puzzle is the persistent indication of H2O in arc magmas here despite almost certain dehydration of subducting sediments and upper oceanic crust. This indicates substantial H2O delivered by

  13. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific

    PubMed Central

    Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian

    2016-01-01

    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. PMID:26829888

  14. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    NASA Astrophysics Data System (ADS)

    Fischer, T.

    2001-05-01

    5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.

  15. Some fundamental questions about the evolution of the Sea of Japan back-arc

    NASA Astrophysics Data System (ADS)

    Van Horne, A.; Sato, H.; Ishiyama, T.

    2016-12-01

    The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving

  16. Nationwide tsunami hazard assessment project in Japan

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2014-12-01

    In 2012, we began a project of nationwide Probabilistic Tsunami Hazard Assessment (PTHA) in Japan to support various measures (Fujiwara et al., 2013, JpGU; Hirata et al., 2014, AOGS). The most important strategy in the nationwide PTHA is predominance of aleatory uncertainty in the assessment but use of epistemic uncertainty is limited to the minimum, because the number of all possible combinations among epistemic uncertainties diverges quickly when the number of epistemic uncertainties in the assessment increases ; we consider only a type of earthquake occurrence probability distribution as epistemic uncertainty. We briefly show outlines of the nationwide PTHA as follows; (i) we consider all possible earthquakes in the future, including those that the Headquarters for Earthquake Research Promotion (HERP) of Japanese Government, already assessed. (ii) We construct a set of simplified earthquake fault models, called "Characterized Earthquake Fault Models (CEFMs)", for all of the earthquakes by following prescribed rules (Toyama et al., 2014, JpGU; Korenaga et al., 2014, JpGU). (iii) For all of initial water surface distributions caused by a number of the CEFMs, we calculate tsunamis by solving a nonlinear long wave equation, using FDM, including runup calculation, over a nesting grid system with a minimum grid size of 50 meters. (iv) Finally, we integrate information about the tsunamis calculated from the numerous CEFMs to get nationwide tsunami hazard assessments. One of the most popular representations of the integrated information is a tsunami hazard curve for coastal tsunami heights, incorporating uncertainties inherent in tsunami simulation and earthquake fault slip heterogeneity (Abe et al., 2014, JpGU). We will show a PTHA along the eastern coast of Honshu, Japan, based on approximately 1,800 tsunami sources located within the subduction zone along the Japan Trench, as a prototype of the nationwide PTHA. This study is supported by part of the research

  17. Are diamond-bearing Cretaceous kimberlites related to shallow-angle subduction beneath western North America?

    NASA Astrophysics Data System (ADS)

    Currie, C. A.; Beaumont, C.

    2009-05-01

    The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (<25° dip). Thermal-mechanical numerical models demonstrate that rapid Cretaceous plate convergence rates and enhanced westward velocity of North America result in shallow-angle subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature

  18. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones

    USGS Publications Warehouse

    Vannucchi, P.; Ranero, C.R.; Galeotti, S.; Straub, S.M.; Scholl, D. W.; McDougall-Ried, K.

    2003-01-01

    At least since the middle Miocene (???16 Ma), subduction erosion has been the dominant process controlling the tectonic evolution of the Pacific margin of Costa Rica. Ocean Drilling Program Site 1042 recovered 16.5 Ma nearshore sediment at ???3.9 km depth, ???7 km landward of the trench axis. The overlying Miocene to Quaternary sediment contains benthic foraminifera documenting margin subsidence from upper bathyal (???200 m) to abyssal (???2000 m) depth. The rate of subsidence was low during the early to middle Miocene but increased sharply in the late Miocene-early Pliocene (5-6.5 Ma) and at the Pliocene-Pleistocene boundary (2.4 Ma). Foraminifera data, bedding dip, and the geometry of slope sediment indicate that tilting of the forearc occurred coincident with the onset of rapid late Miocene subsidence. Seismic images show that normal faulting is widespread across the continental slope; however, extension by faulting only accounts for a minor amount of the post-6.5 Ma subsidence. Basal tectonic erosion is invoked to explain the subsidence. The short-term rate of removal of rock from the forearc is about 107-123 km3 Myr-1 km-1. Mass removal is a nonsteady state process affecting the chemical balance of the arc: the ocean sediment input, with the short-term erosion rate, is a factor of 10 smaller than the eroded mass input. The low 10Be concentration in the volcanic arc of Costa Rica could be explained by dilution with eroded material. The late Miocene onset of rapid subsidence is coeval with the arrival of the Cocos Ridge at the subduction zone. The underthrusting of thick and thermally younger ocean crust decreased the subduction angle of the slab along a large segment of the margin and changed the dynamic equilibrium of the margin taper. This process may have induced the increase in the rate of subduction erosion and thus the recycling of crustal material to the mantle. Copyright 2003 by the American Geophysical Union.

  19. Tsunami Modeling of Hikurangi Trench M9 Events: Case Study for Napier, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Nyst, M.; Farahani, R.; Bryngelson, J.; Lee, R.; Molas, G.

    2015-12-01

    RMS has developed a tsunami model for New Zealand for the insurance industry to price and to manage their tsunami risks. A key tsunamigenic source for New Zealand is the Hikurangi Trench that lies offshore on the eastside of the North Island. The trench is the result of the subduction of the Pacific Plate beneath the North Island at a rate of 40-45 mm/yr. Though there have been no M9 historical events on the Hikurangi Trench, events in this magnitude range are considered in the latest version of the National Seismic Hazard Maps for New Zealand (Stirling et al., 2012). The RMS modeling approaches the tsunami lifecycle in three stages: event generation, ocean wave propagation, and coastal inundation. The tsunami event generation is modeled based on seafloor deformation resulting from an event rupture model. The ocean wave propagation and coastal inundation are modeled using a RMS-developed numerical solver, implemented on graphic processing units using a finite-volume approach to approximate two-dimensional, shallow-water wave equations over the ocean and complex topography. As the tsunami waves enter shallow water and approach the coast, the RMS model calculates the propagation of the waves along the wet-dry interface considering variable land friction. The initiation and characteristics of the tsunami are based on the event rupture model. As there have been no historical M9 events on the Hikurangi Trench, this rupture characterization posed unique challenges. This study examined the impacts of a suite of event rupture models to understand the key drivers in the variations in the tsunami inundation footprints. The goal was to develop a suite of tsunamigenic event characterizations that represent a range of potential tsunami outcomes for M9 events on the Hikurangi Trench. The focus of this case study is the Napier region as it represents an important exposure concentration in the region and has experience tsunami inundations in the past including during the 1931 Ms7

  20. Splay Fault Branching from the Hikurangi Subduction Shear Zone: Implications for Slow Slip and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.

    2016-12-01

    Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.

  1. Seafloor Deformation and Localized Source Mechanisms of the 2011 M9 Tohoku Earthquake and Tsunami.

    NASA Astrophysics Data System (ADS)

    Masterlark, T.; Grilli, S. T.; Tappin, D. R.; Kirby, J. T.

    2012-12-01

    The 2011 M9 Tohoku Earthquake (TE) ruptured the interface separating the Pacific and Okhotsk Plates. This rupture was about hundred kilometers in the along-strike direction and 200 kilometers in the down-dip direction. The TE was primarily thrust having substantial slip along the up-dip portion of the rupture, near the Japan Trench. The regional-scale seafloor deformation from the TE triggered a tsunami with run-ups of a few tens of meters that caused extensive damage along the east coast of Tohoku, Japan. We construct finite element models (FEMs) to simulate the deformation caused by a distribution of coseismic slip along the curved rupture surface of the TE. The FEMs include a distribution of material properties that accounts for the subduction zone structure -a weak forearc, volcanic arc, and backarc basin of the overriding Okhotsk Plate overriding the relatively strong subducting slab that is capped by basaltic oceanic crust. The coseismic rupture is simulated as a distribution of elastic dislocations along the interface separating the forearc of the overriding plate and the oceanic crust of the subducting slab. The slip distribution is calibrated to both onshore and offshore geodetic data, using linear least-squares inverse methods with FEM-generated Greens Functions and second order regularization. The regularization is imposed with a conductance matrix, constructed using Galerkin's Method to account for the curvilinear relationships among the dislocating node pairs. The estimated slip distribution is generally characterized as a few tens of meters of slip over the entire rupture, with greater slip magnitudes (>50 meters) concentrated up-dip and near the Japan Trench. The offshore geodetic data provide critical constraints for the location of the polarity reversal of predicted seafloor vertical deformation. Wave models excited by the predicted regional-scale seafloor deformation generally well predict observed tsunami run-ups and the vertical displacement

  2. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2017-12-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de

  3. Thermal structure and geodynamics of subduction zones

    NASA Astrophysics Data System (ADS)

    Wada, Ikuko

    for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.

  4. Tectonic control on sediment accretion and subduction off south central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Contreras-Reyes, Eduardo; Flueh, Ernst R.; Grevemeyer, Ingo

    2010-12-01

    Based on a compilation of published and new seismic refraction and multichannel seismic reflection data along the south central Chile margin (33°-46°S), we study the processes of sediment accretion and subduction and their implications on megathrust seismicity. In terms of the frontal accretionary prism (FAP) size, the marine south central Chile fore arc can be divided in two main segments: (1) the Maule segment (south of the Juan Fernández Ridge and north of the Mocha block) characterized by a relative large FAP (20-40 km wide) and (2) the Chiloé segment (south of the Mocha block and north of the Nazca-Antarctic-South America plates junction) characterized by a small FAP (≤10 km wide). In addition, the Maule and Chiloé segments correlate with a thin (<1 km thick) and thick (˜1.5 km thick) subduction channel, respectively. The Mocha block lies between ˜37.5° and 40°S and is configured by the Chile trench, Mocha and Valdivia fracture zones. This region separates young (0-25 Ma) oceanic lithosphere in the south from old (30-35 Ma) oceanic lithosphere in the north, and it represents a fundamental tectonic boundary separating two different styles of sediment accretion and subduction, respectively. A process responsible for this segmentation could be related to differences in initial angles of subduction which in turn depend on the amplitude of the down-deflected oceanic lithosphere under trench sediment loading. On the other hand, a small FAP along the Chiloé segment is coincident with the rupture area of the trans-Pacific tsunamigenic 1960 earthquake (Mw = 9.5), while a relatively large FAP along the Maule segment is coincident with the rupture area of the 2010 earthquake (Mw = 8.8). Differences in earthquake and tsunami magnitudes between these events can be explained in terms of the FAP size along the Chiloé and Maule segments that control the location of the updip limit of the seismogenic zone. The rupture area of the 1960 event also correlates with a

  5. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  6. Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.

    2016-12-01

    Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.

  7. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling

    NASA Astrophysics Data System (ADS)

    Cubas, Nadaya

    2017-04-01

    The surge of great subduction earthquakes during the last fifteen years provided numerous observations requiring revisiting our understanding of large seismic events mechanics. For instance, we now have clear evidence that a significant part of the upper plate deformation is permanently acquired. The link between great earthquakes and long-term deformation offers a new perspective for the relief construction understanding. In addition, a better understanding of these relations could provide us with new constraints on earthquake mechanics. It is also of fundamental importance for seismic risk assessment. In this presentation, I will compile recent results obtained from mechanical modelling linking megathrust ruptures with upper-plate permanent deformation and discuss their impact. We will first show that, in good accordance with lab experiments, aseismic zones are characterized by frictions larger or equal to 0.1 whereas seismic asperities have dynamic frictions lower than 0.05. This difference will control the long-term upper-plate morphology. The larger values along aseismic zones allow the wedge to reach the critical state, and will lead to active thrust systems forming a relief. On the contrary, low dynamic friction along seismic asperities will place the taper in the sub-critical domain impeding any internal deformation. This will lead to the formation of forearc basins inducing negative gravity anomalies. Since aseismic zones have higher friction and larger taper, fully creeping segments will tend to develop peninsulas. On the contrary, fully locked segments with low dynamic friction and very low taper will favor subsiding coasts. The taper variation due to megathrust friction is also expressed through a correlation between coast-to-trench distance and forearc coupling (e.g., Mexican and South-American subduction zones). We will then discuss how variations of frictional properties along the megathrust can induce splay fault activation. For instance, we can

  8. The Fairway-Aotea Basin and the New Caledonia Trough, witnesses of the Pacific-Australian plate boundary evolution : from mid-Cretaceous cessation of subduction to Eocene subduction renewal

    NASA Astrophysics Data System (ADS)

    Collot, J.; Geli, L. B.; Lafoy, Y.; Sutherland, R.; Herzer, R. H.; Roest, W. R.

    2009-12-01

    The geodynamical history of the SW Pacific is controlled since the Mesozoic by the evolution of peri-Pacific subduction zones, in a trench retreat by slab roll-back process, which successively occurred along the Eastern Gondwana margin. In this context, most basins which formed after 45 Ma reached a stage of seafloor spreading, have recorded the inversions of the earth's magnetic field and present typical oceanic crust morphologies. By contrast, the New Caledonia and Fairway basins, which are narrower and present thick sedimentary covers have a less known and more controversial origin. Based on a regional geological synthesis and on interpretation of multichannel seismic reflection and refraction data, combined with drill hole data off New Zealand and a compilation of regional potential data, we distinguish 2 phases of the evolution of the Fairway-Aotea Basin (FAB) and the New Caledonia Trough (NCT), which reflect the evolution of the Gondwana-Pacific plate boundary: Phase 1: Mid Cretaceous formation of the FAB in a continental intra- or back- arc position of the Pacific-Gondwana subduction system. The formation of this shallow basin reflects the onset of continental breakup of the Eastern Gondwana margin during Cenomanian which was most probably caused by a dynamic change of the subduction zone through a « verticalization » of the slab. This event may be the result of the 99 Ma kinematic plate reorganization which probably led to subduction cessation along the Gondwana-Pacific plate boundary. A tectonic escape mechanism, in relation with the locking of the subduction zone by the Hikurangi Plateau, could also be responsible of the trench retreat leading to backarc extension. Phase 2: Regional Eocene-Oligocene uplift followed by rapid subsidence (3-4 km) of the system « Lord Howe Rise - FAB - Norfolk Ridge ». The structural style of this deformation leads us to suggest that detachment of the lower crust is the cause of subsidence. We therefore propose a model in

  9. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  10. Monochromatic body waves excited by great subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Ihmlé, Pierre F.; Madariaga, Raúl

    Large quasi-monochromatic body waves were excited by the 1995 Chile Mw=8.1 and by the 1994 Kurile Mw=8.3 events. They are observed on vertical/radial component seismograms following the direct P and Pdiff arrivals, at all azimuths. We devise a slant stack algorithm to characterize the source of the oscillations. This technique aims at locating near-source isotropic scatterers using broadband data from global networks. For both events, we find that the oscillations emanate from the trench. We show that these monochromatic waves are due to localized oscillations of the water column. Their period corresponds to the gravest ID mode of a water layer for vertically traveling compressional waves. We suggest that these monochromatic body waves may yield additional constraints on the source process of great subduction zone earthquakes.

  11. Tomographic images of subducted oceans matched to the accretionary records of orogens - Case study of North America and relevance to Central Asia

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Mihalynuk, Mitchell G.; Hosseini, Kasra

    2016-04-01

    Accretionary orogens are the surface record of subduction on the 100-million-year timescale; they aggregate buoyant crustal welts that resisted subduction. The other record of subduction is found in the deep subsurface: oceanic lithosphere preserved in the mantle that records ocean basin closure between successive generations of arcs. Seismic tomography maps out these crumpled paleo-oceans down to the core-mantle boundary, where slab accumulates. One such accumulation of enormous scale is under Eastern Asia, recording the assembly of the Central Asian Orogenic Belt (CAOB). Deep CAOB slab has hardly been explored because tomographic image resolution in the lowermost mantle is limited, but this is rapidly improving. We present new images of the CAOB slabs from our P-wave tomography that includes core-diffracted waves as a technical novelty. The previous slab blur sharpens into the type of elongated geometries expected to trace paleo-trench lines. Since the North American Cordillera is younger than the CAOB (mostly <200 m.y. versus ~650-250 m.y.), its slabs have descended only to mid-mantle depths (<2000 km), where tomographic resolution is much better. Hence we can make a detailed, spatiotemporal match between 3-D slab geometries and the accretion history of the Cordillera - a blueprint for continental-scale investigations in other accretionary orogens, including what may become possible for the CAOB. Lower-mantle slabs beneath North America reveal evolving configurations of arc-trench positions back to the breakup of Pangea. These can be combined with quantitative plate reconstructions to show where and when the westward-drifting continent overrode pre-existing, intra-oceanic subduction zones, and accreted their associated arcs and basement terranes in Jurassic and Cretaceous times. Tectonic predictions from this "tomographic time machine" can be checked against the geological record. To demonstrate, we propose a resolution to the longstanding debate of how and when

  12. Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench

    NASA Astrophysics Data System (ADS)

    Meffre, Sebastian; Falloon, Trevor J.; Crawford, Tony J.; Hoernle, Kaj; Hauff, Folkmar; Duncan, Robert A.; Bloomer, Sherman H.; Wright, Dawn J.

    2012-12-01

    A wide variety of different rock types were dredged from the Tonga fore arc and trench between 8000 and 3000 m water depths by the 1996 Boomerang voyage. 40Ar-39Ar whole rock and U-Pb zircon dating suggest that these fore arc rocks were erupted episodically from the Cretaceous to the Pliocene (102 to 2 Ma). The geochemistry suggests that MOR-type basalts and dolerites were erupted in the Cretaceous, that island arc tholeiites were erupted in the Eocene and that back arc basin and island arc tholeiite and boninite were erupted episodically after this time. The ages generally become younger northward suggesting that fore arc crust was created in the south at around 48-52 Ma and was extended northward between 35 and 28 Ma, between 9 and 15 Ma and continuing to the present-day. The episodic formation of the fore arc crust suggested by this data is very different to existing models for fore arc formation based on the Bonin-Marianas arc. The Bonin-Marianas based models postulate that the basaltic fore arc rocks were created between 52 and 49 Ma at the beginning of subduction above a rapidly foundering west-dipping slab. Instead a model where the 52 Ma basalts that are presently in a fore arc position were created in the arc-back arc transition behind the 57-35 Ma Loyalty-Three Kings arc and placed into a fore arc setting after arc reversal following the start of collision with New Caledonia is proposed for the oldest rocks in Tonga. This is followed by growth of the fore arc northward with continued eruption of back arc and boninitic magmas after that time.

  13. Plate tectonic constraints on the cessation of subduction beneath the Baja California peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2007-05-01

    I review published models, existing global plate tectonic data and published marine geophysical observations west of Baja California to assess the timing and conditions under which subduction ceased along the W margin of Baja California. The relative motion of the Farallon microplate fragments can be reconstructed using Pacific- North America global plate motions (from the Pacific-Antarctica-Nubia-North America plate circuit) added to the local velocities of the microplates with respect to the Pacific plate. Because the Pacific plate was moving obliquely away from North America, the time at which subduction stopped has often been taken to be the time at which the microplates joined the Pacific plate (the ages of dead spreading centers preserved west of North America on the Pacific plate). The timing of cessation of subduction west of what is now northern Baja California is not recorded by a dead ridge offshore but is inferred to be coincident with extension and rotation in the continental borderland (early-middle Miocene). The Arguello microplate stopped spreading relative to the Pacific plate at about 13 Ma, providing a younger age limit on the cessation of subduction in the sector N of the Shirley transform fault. The time of cessation of spreading of the Magdalena-Pacific (M-P) ridge has been proposed by Michaud et al. (2006 Geology) to be as young as 8 Ma. However, the clockwise rotation of the M-P ridge before it ceased, and its inferred slow spreading rate away from the Pacific plate implies transcurrent motion with virtually no convergence between the Magdalena microplate and the North America plate during the last stages of activity of the M-P ridge. Subduction can occur by motion of forearc fragments without any convergence of the major bounding plates (e.g., the modern South Shetland Trench), but this may be ruled out for Baja California due to the small spatial scale of the microplates compared to the scale of the stable Baja California peninsula block

  14. Stress geomechanical model application: Stress tensor evaluation in recent Nankai subduction zone, SW Japan

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Chan, C. H.

    2016-12-01

    Nowadays, IODP keeps investigating the scientific drilling in Nakai of southwest Japan from 2006. During this decade, we collected the massive logging data and core samples in this area for determining the stress evolution in this interseimic period after 1944 Tonakai earthquake. One of key assumption in Nankai seismogenic zone is the stress accumulation on the plate boundary should be the thrust-fault stress regime (SHmax>Shmin> Sv). In this research, the slip-deficit model is used to determine the wide scale stress field. The drilled IODP well sites are designed to be the fine control points. Based on the multiple ICDP expeditions near the Nankai trough (C0002A, F, and P) in different depths, the three dimensional stress estimation can be confirmed with the lateral boreholes loggings. Even the recently drilling did not reach the subduction zone, our model provides the considerable results by the reliable boundary conditions. This model simulated the stress orientation and magnitude generated by the slip-deficit model, area seismicity, and borehole loggings. Our results indicated that the stress state keeps in normal-faulting stress regime in our research area, even near the Nankai trough. Although the stress magnitude is increasing with the depth, one of horizontal principal stresses (Shmin) is hardly greater than the vertical stress (over-burden weight) in the reachable depth (>10km). This result implies the pore-pressure anomaly would happen during the slip and the stress state would be varied in different stages when event occurred

  15. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward

  16. Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Tackley, Paul

    2014-05-01

    The work presented aims at a better understanding of plate tectonics, a crucial dynamical feature within the global framework of mantle convection. Special focus is given to the interaction of subduction-related mantle flow and surface topography. Thereby, the application of a numerical model with two key functional requirements is essential: an evolution over a long time period to naturally model mantle flow and a physically correct topography calculation. The global mantle convection model presented in Crameri et al. (2012a) satisfies both of these requirements. First, it is efficiently calculated by the finite-volume code Stag-YY (e.g., Tackley 2008) using a multi-grid method on a fully staggered grid. Second, it applies the sticky-air method (Matsumoto and Tomoda 1983; Schmeling et al, 2008) and thus approximates a free surface when the sticky-air parameters are chosen carefully (Crameri et al., 2012b). This leads to dynamically self-consistent mantle convection with realistic, single-sided subduction. New insights are thus gained into the interplay of obliquely sinking plates, toroidal mantle flow and the arcuate shape of slabs and trenches. Numerous two-dimensional experiments provide optimal parameter setups that are applied to three-dimensional models in Cartesian and fully spherical geometries. Features observed and characterised in the latter experiments give important insight into the strongly variable behaviour of subduction zones along their strike. This includes (i) the spontaneous development of arcuate trench geometry, (ii) regional subduction polarity reversals and slab tearing, and the newly discovered features (iii) 'slab tunnelling' and (iv) 'back-slab spiral flow'. Overall, this study demonstrates the strong interaction between surface topography and mantle currents and highlights the variability of subduction zones and their individual segments. REFERENCES Crameri, F., P. J. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus (2012a), A free

  17. Mantle wedge structure beneath the Yamato Basin, southern part of the Japan Sea, revealed by long-term seafloor seismic observations

    NASA Astrophysics Data System (ADS)

    Shinohara, M.; Nakahigashi, K.; Yamashita, Y.; Yamada, T.; Mochizuki, K.; Shiobara, H.

    2016-12-01

    The Japanese Islands are located at subduction zones where Philippine Sea (PHS) plate subducts from the southeast beneath the Eurasian plate and the Pacific plate descends from the east beneath the PHS and Eurasian plates and have a high density of seismic stations. Many seismic tomography studies using land seismic station data were conducted to reveal the seismic structure. These studies discussed the relationship between heterogeneous structures and the release of fluids from the subducting slab, magma generation and movement in the subduction zone. However, regional tomography using the land station data did not have a sufficient resolution to image a deep structure beneath the Japan Sea.To obtain the deep structure, observations of natural earthquakes within the Japan Sea are essential. Therefore, we started the repeating long-term seismic observations using ocean bottom seismometers(OBSs) in the Yamato Basin from 2013 to 2016. We apply travel-time tomography method to the regional earthquake and teleseismic arrival-data recorded by OBSs and land stations. In this presentation, we will report the P and S wave tomographic images down to a depth of 300 km beneath the southern part of the Japan Sea. This study was supported by "Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan" conducted by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

  18. Novel trench gate field stop IGBT with trench shorted anode

    NASA Astrophysics Data System (ADS)

    Xudong, Chen; Jianbing, Cheng; Guobing, Teng; Houdong, Guo

    2016-05-01

    A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop. Project supported by the National Natural Science Foundation of China (No. 61274080) and the Postdoctoral Science Foundation of China (No. 2013M541585).

  19. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  20. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.

    2011-01-01

    The region offshore Eastern Java represents one of the few places where the early stage of oceanic plateau subduction is occurring. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia. The presence of the abnormal bathymetric features entering the trench has a strong effect on the evolution of the subduction system, and causes additional challenges on the assessment of geohazard risks. We present integrated results of a refraction/wide-angle reflection tomography, gravity modelling, and multichannel reflection seismic imaging using data acquired in 2006 south of Java near 113°E. The composite structural model reveals the previously unresolved deep geometry of the oceanic plateau and the subduction zone. The oceanic plateau crust is on average 15 km thick and covers an area of about 100 000 km2. Within our profile the Roo Rise crustal thickness ranges between 18 and 12 km. The upper oceanic crust shows high degree of fracturing, suggesting heavy faulting. The forearc crust has an average thickness of 14 km, with a sharp increase to 33 km towards Java, as revealed by gravity modelling. The complex geometry of the backstop suggests two possible models for the structural formation within this segment of the margin: either accumulation of the Roo Rise crustal fragments above the backstop or alternatively uplift of the backstop caused by basal accumulation of crustal fragments. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favours the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw= 7.8 tsunamogenic event.

  1. Fault trends on the seaward slope of the Aleutian Trench: Implications for a laterally changing stress field tied to a westward increase in oblique convergence

    USGS Publications Warehouse

    Mortera-Gutierrez, C. A.; Scholl, D. W.; Carlson, R.L.

    2003-01-01

    Normal faults along the seaward trench slope (STS) commonly strike parallel to the trench in response to bending of the oceanic plate into the subduction zone. This is not the circumstance for the Aleutian Trench, where the direction of convergence gradually changes westward, from normal to transform motion. GLORIA side-scan sonar images document that the Aleutian STS is dominated by faults striking oblique to the trench, west of 179??E and east of 172??W. These images also show a pattern of east-west trending seafloor faults that are aligned parallel to the spreading fabric defined by magnetic anomalies. The stress-strain field along the STS is divided into two domains west and east, respectively, of 179??E. Over the western domain, STS faults and nodal planes of earthquakes are oriented oblique (9??-46??) to the trench axis and (69??-90??) to the magnetic fabric. West of 179??E, STS fault strikes change by 36?? from the E-W trend of STS where the trench-parallel slip gets larger than its orthogonal component of convergence. This rotation indicates that horizontal stresses along the western domain of the STS are deflected by the increasing obliquity in convergence. An analytical model supports the idea that strikes of STS faults result from a superposition of stresses associated with the dextral shear couple of the oblique convergence and stresses caused by plate bending. For the eastern domain, most nodal planes of earthquakes strike parallel to the outer rise, indicating bending as the prevailing mechanism causing normal faulting. East of 172??W, STS faults strike parallel to the magnetic fabric but oblique (10??-26??) to the axis of the trench. On the basis of a Coulomb failure criterion the trench-oblique strikes probably result from reactivation of crustal faults generated by spreading. Copyright 2003 by the American Geophysical Union.

  2. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  3. How broad and deep is the region of chemical alteration of oceanic plates at trenches?

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Grevemeyer, I.; Barckhausen, U.

    2017-12-01

    Different lines of evidence indicate that oceanic plates are affected by pervasive bending-related deformation approaching ocean trenches. Results from active-seismic work support that deformation provides paths for exchange between hydrosphere and lithosphere, possibly causing chemical alteration of the incoming lithosphere. Much work focused on the potential transformation of peridotite to serpentine in the uppermost mantle of incoming plates, but there is no consensus on the region where it may occur or the intensity of alteration, let alone on limiting factors for the process. Teleseismic (large-great) earthquakes with normal-fault mechanism in the outer rise region have been often called to speculate on the depth of penetration of plate hydration. However, large-great outer-rise earthquakes may be related to stress changes due to slab pull after decoupling along the inter-plate boundary, and not necessarily controlled by bending stresses only. If so, the majority of the time the depth of water percolation may be related to local bending stresses expressed by micro-earthquakes rather than large events. Seismic images and multibeam bathymetry from lithosphere of similar thermal thickness from different trenches display a remarkable variability of the intensity of bending-related deformation along the subduction zones where plate age does not change significantly indicating that the intensity of deformation (not the depth) and perhaps hydration is very variable in space and not controlled by plate age. Seismic images showing hundreds of kilometers perpendicular to the trench into the incoming plate show that the bending-related deformation reaches mantle under the outer rise, well before the lithosphere plunges into the trench and develops the marked bend-faulting fabric observable in bathymetric maps. Thus, alteration occurs in a hundreds-of-km wide area, with deformation intensity related to local characteristics, and deformation depth to plate age.

  4. Deformation in the mantle wedge associated with Laramide flat-slab subduction

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Smith, D.

    2013-12-01

    trench-parallel to trench-perpendicular seismic anisotropy, as commonly observed in the mantle wedge above active subduction zones. We also show that the deformation within these sheared peridotites can be used to estimate the magnitude of shear stress along the contact between the Farallon slab and the overlying North American lithosphere. Shear stresses along the plate interface were moderate to high (~40 MPa), allowing a strong degree of interplate coupling, consistent with the stress transfer required to deform the upper plate and produce the basement-cored uplifts characteristic of the Laramide orogeny (e.g. the Rocky Mountains). These results place important natural constraints on flat-slab subduction mechanics. Schematic representation of Laramide flat-slab subduction (modified from Humphreys et al., 2003, Int. Geo. Rev.). The mantle inclusions examined here are sourced from the mantle wedge above the slab and from a serpentinite melange along the slab interface.

  5. Frictional behaviour of exhumed subduction zone sediments from the Shimanto Belt, Japan, at in-situ P-T conditions and implications for megathrust seismogenesis

    NASA Astrophysics Data System (ADS)

    den Hartog, Sabine; Niemeijer, Andre; Saffer, Demian; Marone, Chris

    2014-05-01

    Seismogenesis on subduction zone megathrusts is generally thought to be limited to a region between the ~100-150°C isotherms, at ~5-15 km depth, and the ~350°C isotherm, typically at ~40 km depth. This zone is bounded at its up-dip and down-dip limits by aseismic zones. However, in recent years it has been discovered that very low frequency earthquakes (VLFE) and non-destructive Slow Slip Events (SSEs) or slow earthquakes nucleate in these presumed aseismic regions. Slip on megathrusts is likely to localize in the weak subducted sediments along the plate interface, which implies that the fault material is derived at least in part from these sediments. Therefore, understanding the depth distribution of seismicity and SSEs on megathrusts requires knowledge of the frictional behaviour of metapelites. We investigated such behaviour by performing shear experiments on natural megathrust fault gouges, derived from exhumed subduction zone sediments and faults exposed in the Shimanto Belt on Shikoku Island, Japan. These gouges correspond to peak paleo-temperatures of 105°C to 280°C, representing different stages in the diagenetic and metamorphic evolution of the subducted sediments, covering the shallow aseismic zone as well as the seismogenic zone. The composition of all gouges was dominated by illite/muscovite, with smaller amounts of quartz, feldspar and chlorite. We sheared these gouges at low displacement rates (0.1-100 micron/s) to address the nucleation of megathrust earthquakes and SSEs, using either a double-direct (biaxial) shear machine or a rotary shear machine. The double-direct shear experiments were performed at room temperature, 5% relative humidity and 50 MPa normal stress. The rotary shear experiments, in turn, were conducted at the sample-specific, approximate peak in-situ P-T conditions, i.e. the P-T conditions corresponding to the maximum burial depth of these samples. At room temperature, samples from different peak paleo-temperatures showed

  6. Spatio-temporal Variations of Characteristic Repeating Earthquake Sequences along the Middle America Trench in Mexico

    NASA Astrophysics Data System (ADS)

    Dominguez, L. A.; Taira, T.; Hjorleifsdottir, V.; Santoyo, M. A.

    2015-12-01

    Repeating earthquake sequences are sets of events that are thought to rupture the same area on the plate interface and thus provide nearly identical waveforms. We systematically analyzed seismic records from 2001 through 2014 to identify repeating earthquakes with highly correlated waveforms occurring along the subduction zone of the Cocos plate. Using the correlation coefficient (cc) and spectral coherency (coh) of the vertical components as selection criteria, we found a set of 214 sequences whose waveforms exceed cc≥95% and coh≥95%. Spatial clustering along the trench shows large variations in repeating earthquakes activity. Particularly, the rupture zone of the M8.1, 1985 earthquake shows an almost absence of characteristic repeating earthquakes, whereas the Guerrero Gap zone and the segment of the trench close to the Guerrero-Oaxaca border shows a significantly larger number of repeating earthquakes sequences. Furthermore, temporal variations associated to stress changes due to major shows episodes of unlocking and healing of the interface. Understanding the different components that control the location and recurrence time of characteristic repeating sequences is a key factor to pinpoint areas where large megathrust earthquakes may nucleate and consequently to improve the seismic hazard assessment.

  7. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active

  8. Interplate coupling along segments of the Central America Subduction zone

    NASA Astrophysics Data System (ADS)

    Zarifi, Zoya; Raeesi, Mohammad; Atakan, Kuvvet

    2013-04-01

    We analyzed 5 major earthquakes that occurred during 1992 to 2012 in a segment of the Central America subduction zone along the coasts of Guatemala and El Salvador. These events include 1992/09/02 (Mw 7.7), 1993/09/10 (Mw 7.2), 2001/01/13 (Mw 7.7), 2012/08/27 (Mw 7.3) and 2012/11/07 (Mw 7.3). We derived the asperities of these earthquakes using two completely independent methods of body-waveform inversion and a gravity-derived measure, Trench Parallel Bouguer Anomaly (TPBA). Using TPBA we discuss the status of interplate coupling along the segment and interpret each of the major earthquakes as a piece of the governing rupture process. We delineate the critical unbroken asperities along the segment that will likely generate great earthquake(s) in the future.

  9. 3D seismic structures in different subduction zones (Central Java, Toba Caldera, Central Chile, Costa-Rica and others): common and particular features

    NASA Astrophysics Data System (ADS)

    Koulakov, I.

    2009-12-01

    We present several seismic models for different subduction zones derived using the LOTOS tomographic code based on travel times from local earthquakes. The quality and reliability of all these models are supported by various tests (odd/even test, reconstructions with different starting models and free parameters, synthetic modeling with realistic setup, etc). For two datasets (Central Chile and Costa-Rica) we present the results of anisotropic inversion, which determines the orientations and values of fastest and slowest velocities in each point of the study volume. Comparing the velocity models for all considered subduction zones reveals some common features and differences. For example, in all cases we observe a clear low velocity anomaly which appears to link the cluster of intermediate seismicity in the Benioff zone with the volcanoes of the main arc. This pattern is interpreted as paths of ascending fluids and melts which are related to phase transitions in the slab. However, the depths of the seismicity clusters and dipping angle of the low-velocity anomaly are considerably different. For example, beneath Toba the cluster is at 100-130 km depth, and the anomaly is vertical. In Central Java the anomaly is strongly inclined to the direction of the slab, while beneath Central Chile it has the opposite orientation. The amplitudes of velocity anomalies are considerably different. The strongest heterogeneity (up to 30% of negative anomaly) is observed in the crust beneath Central Java, while much lower amplitudes (~15%) are found beneath the Toba Caldera, where a catastrophic super-eruption took place about 70000 years ago. The anisotropic inversion reveal similar features in Costa-Rica and Central Java: trench perpendicular fast velocity orientations in the subducting plate and trench parallel orientations in the mantle wedge. This is consistent with shear wave splitting results obtained for many other subduction zones. Such anisotropy in the corner flow may be

  10. Characterizing Shallow Seismicity at the Western End of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Abbott, E. R.; Brudzinski, M. R.

    2011-12-01

    The Middle America Trench along southwestern Mexico marks the subduction of both Cocos and Rivera plates. A wide range of seismic activity is seen all along this trench including great earthquakes with short (50-100 y) cycles, abundant microseismicity, prominent earthquake afterslip, recurring interseismic slow slip, and bands of non-volcanic tremor. Despite the fact that each of these different fault behaviors should be controlled by stress on the plate interface, no reliable relationship has been found between these phenomena as of yet. This study focuses on characterizing seismicity at the western end of the subduction zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. The subducted boundary between the Cocos and Rivera plates occurs beneath this region, indicated by the Manzanillo Trough, Colima Graben, inland volcanic activity, and a curious gap in tremor activity. Our data was collected by the MARS seismic array, which consists of about 50 three-component broadband seismometers deployed across Jalisco, Colima and Michoacán from January 2006 to June 2007, covering an along-strike distance of ~400 km. 18 months of data from this array was processed with Antelope for hypocentral locations of shallow (<30 km) earthquakes. To confirm the reliability of the automated locations, analyst refinement was performed on the first ~700 events, revealing little change in location and a similar clustering of events. Compilation of the resulting hypocenters reveals clusters that appear to be associated with the 2003 and 1973 megathrust earthquakes. While there are some events within the 2003 Tecomán earthquake rupture zone, more events are found inland and directly northward. Modeling of geodetic data following the neighboring 1995 Colima-Jalisco earthquake showed significant afterslip immediately downdip from that event, and there are also geodetic signatures consistent with afterslip following the 2003 event such that seismicity

  11. Effects of deep basins on structural collapse during large subduction earthquakes

    USGS Publications Warehouse

    Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur

    2017-01-01

    Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.

  12. Deformation of Forearcs during Aseismic Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Zeumann, S.; Hampel, A.

    2014-12-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To identify the crucial parameters for forearc deformation we created 3D finite-element models representing both erosive and accretive forearcs as well as migrating and non-migrating ridges. As natural examples we choose the Cocos ridge subducting stationary beneath the erosive margin of Costa Rica and the Nazca and Gagua Ridges that migrate along the erosive Peruvian margin and the accretive accretive Ryukyu margin, respectively. A series of models show that the deformation of the forearc depends on the ridge shape (height, width), on the frictional coupling along the plate interface and the mechanical strength of the forearc. The forearc is uplifted and moved sideward during ridge subduction. Strain components show domains of both, shortening and extension. Along the ridge axis, extension occurs except at the ridge tip, where shortening prevails. The strain component normal to the ridge axis reveals extension at the ridge tip and contraction above the ridge flanks. Shortening and extension increase with increasing ridge height. Higher friction coefficients lead to less extension and more shortening. Accretive wedges show larger indentation at the model trench. For stationary ridges (Cocos Ridge) the deformation pattern of the forearc is symmetric with respect to the ridge axis whereas for migrating ridges (Nazca Ridge, Gagua Ridge) the oblique convergence direction leads to asymmetric deformation of the forearc. In case of ridge migration, uplift occurs at the leading flank of the ridge and subsidence at the trailing flank, in agreement with field observations and analogue models. For a model with a 200-km-wide and 1500-m-high ridge (i.e. similar to the dimensions of the Nazca Ridge), the modelled uplift rate at the southern ridge flank of the ridge is ~1 mm/a, which agrees well with uplift rates of ~0.7 mm/a derived from the elevation of marine terraces in southern Peru.

  13. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    PubMed Central

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  14. Dynamics of double-polarity subduction: application to the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Peral, Mireia; Zlotnik, Sergio; Fernandez, Manel; Vergés, Jaume; Jiménez-Munt, Ivone; Torne, Montserrat

    2016-04-01

    The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle in opposite direction and the problem is driven by Rayleigh-Taylor instability. We study the influence of the boundary conditions in the model evolution, and the slab deformation produced by the proximity between both plates. Moreover the case of asymmetric friction on the lateral sides of slabs is also considered. Simulations of single subduction models are used as a reference, to compare results and understand the influence of the second plate. We observe slight differences in the trench retreat velocity and the slab morphology near the contact area when plates are

  15. Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.

    PubMed

    Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K

    2016-07-01

    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.

  16. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  17. Geochemical Variation of Subducting Pacific Crust Along the Izu-Bonin Arc System and its Implications on the Generation of Arc Magmas

    NASA Astrophysics Data System (ADS)

    Durkin, K.; Castillo, P.; Abe, N.; Kaneko, R.; Straub, S. M.; Garcia, E. S. M.; Yan, Q.; Tamura, Y.

    2015-12-01

    Subduction zone magmatism primarily occurs due to flux melting of the mantle wedge that has been metasomatized by the slab component. The latter is enriched in volatiles and fluid-mobile elements and derived mainly from subducted sediments and altered oceanic crust (AOC). Subduction input has been linked to arc output in many studies, but this relationship is especially well documented in sedimented arc-trench systems. However, the Izu-Bonin system is sediment-poor, therefore the compositional and latitudinal variations (especially in Pb isotopes) of its arc magmas must be sourced from the subduction component originating primarily from the AOC. Pb is a very good tracer of recycled AOC that may contribute 50% or more of arc magma Pb. Izu-Bonin arc chemistry suggests a subduction influx of Indian-type crust, but the subducting crust sampled at ODP Site 1149 is Pacific-type. The discrepancy between subduction input and arc output calls into question the importance of the AOC as a source of the subduction component, and raises major concerns with our understanding of slab input. During the R/V Revelle 1412 cruise in late 2014, we successfully dredged vertical fault scarps at several sites from 27.5 N to 34.5 N, spanning a range of crustal ages that include a suggested compositional change at ~125 Ma. Major element data show an alkali enrichment towards the north of the study transect. Preliminary incompatible trace element data (e.g. Ba, Zr and Sr) data support this enrichment trend. Detailed mass balance calculations supported by Sr, Nd, Hf and especially Pb isotope analyses will be performed to evaluate whether the AOC controls the Pb isotope chemistry of the Izu-Bonin volcanic arc.

  18. Age of the Subducting Philippine Sea Slab and Mechanism of Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian; Liu, Xin

    2018-03-01

    Nonvolcanic low-frequency earthquakes (LFEs) usually occur in young and warm subduction zones under condition of near-lithostatic pore fluid pressure. However, the relation between the LFEs and the subducting slab age has never been documented so far. Here we estimate the lithospheric age of the subducting Philippine Sea (PHS) slab beneath the Nankai arc by linking seismic tomography and a plate reconstruction model. Our results show that the LFEs in SW Japan take place in young parts ( 17-26 Myr) of the PHS slab. However, no LFE occurs beneath the Kii channel where the PHS slab is very young ( 15 Myr) and thin ( 29 km), forming an LFE gap there. According to the present results and previous works, we think that the LFE gap at the Kii channel is caused by joint effects of several factors, including the youngest slab age, high temperature, low fluid content, high permeability of the overlying plate, a slab tear, and hot upwelling flow below the PHS slab.

  19. Lithospheric mantle evolution above a subducting plate: Direct constraints from Antarctic Peninsula spinel peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Gibson, Lydia; Gibson, Sally; Leat, Phil

    2010-05-01

    Our understanding of the tectono-magmatic processes in subduction zones generally relies on interpretations of the bulk-rock compositions of associated volcanic rocks. These, however, have typically undergone extensive modification in the crust (fractionation and/or contamination) and interpreting the mantle processes that have contributed to their genesis is complex. Direct evidence of the composition of the mantle beneath subduction-related volcanics is rare as mantle xenoliths are seldom brought to the surface. An exception is the Antarctic Peninsula, which consists of a series of suspect arc terranes accreted to the margin of Gondwana. Subduction occurred along a trench, off the west coast, and lasted over 200 Ma. It finally ceased after a series of ridge-trench collisions, which began at ~50 Ma in the south and ended at ca. 4 Ma in the north. This was followed by extensive alkaline volcanism along the length of the Antarctic Peninsula. At several localities these post-subduction volcanics contain abundant, fresh spinel-bearing lherzolites, harzburgites and pyroxenites. The widest variety of xenoliths were collected from basanites and tephrites emplaced on Alexander Island and Rothschild Island in the accreted Western Domain. The mineral chemistry of the xenolith suite as a whole is highly varied, e.g. olivine ranges in composition from Fo77 to Fo91, but within individual xenoliths typically only limited variation is apparent. Xenolith textures and plots of mineral chemistry suggest that the constituent mineral phases are in equilibrium and can be used to determine pressures and temperatures. PT estimates based on pyroxene compositions indicate that the lithosphere beneath the Antarctic Peninsula has a normal, unperturbed mantle geotherm and a thickness of ~90 km; the base of the mechanical boundary layer is at ~70 km and the xenoliths appear to have been entrained from within this region. Preliminary modelling of incompatible-trace-element ratios of diopsides

  20. 'Dodo' and 'Baby Bear' Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites

    NASA Astrophysics Data System (ADS)

    Kraft, K.; Bebout, G. E.

    2017-12-01

    Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth

  2. Style of exhumation and rheological evolution of a Mediterranean subduction complex

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Platt, J. P.

    2012-04-01

    We examine the style of exhumation and rheological evolution of a subduction complex forming part of the Betic Cordillera in the Western Mediterranean. Rocks within the Nevado-Filabride complex (NFC) were subducted and exhumed to the surface within ~10 m.y. in the Miocene. Ti-in-quartz thermobarometry, Raman spectroscopy on graphite, and chlorite thermometry indicate that the exhumation path of the NFC was close to linear, reaching peak T and P of 550 ± 50°C and 15 ± 3 kbar. Two-dimensional thermal modeling allows us to fit this P-T-t path using exhumation rate and exhumation geometry as free parameters. We find that the P-T-t path is best fit by a model in which the rocks are subducted to > 50 km depth, exhumed rapidly along the same trajectory within a subduction channel, then captured by a low angle detachment fault cutting through the overlying crust. This model can be reconciled with the thermal history preserved in the overlying plate and is supported by the kinematics recorded in high strain fabrics within the NFC itself. We also link the exhumation history of the NFC subduction channel to the rheology of quartz-rich rocks within it by tracking changes in deformation mechanism, stress, strain rate, water content, and crystallographic preferred orientation (CPO) over time. Increasing localization during cooling allowed earlier microstructures to be preserved, such that the rocks record several stages in their exhumation history. Early deformation during initial subduction was accommodated by pressure solution under low-stress (<6 MPa), low-strain-rate, variable T conditions, and produced an inverted metamorphic gradient within the NFC. At the early stages of exhumation, the deformation mechanism at the top of the channel switched to dislocation creep at stresses of ~6-20 MPa, strain rates of < 5E-13/s and temperatures of 500-550°C. Both stress and strain rate increased with decreasing T in the channel margin, culminating in stresses of ~180 MPa, strain

  3. Style of exhumation and rheological evolution of a Mediterranean subduction complex

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Behr, W. M.

    2011-12-01

    We examine the style of exhumation and rheological evolution of a subduction complex forming part of the Betic Cordillera in the Western Mediterranean. Rocks within the Nevado-Filabride complex (NFC) were subducted and exhumed to the surface within ~10 m.y. in the Miocene. Ti-in-quartz thermobarometry, Raman spectroscopy on graphite, and chlorite thermometry indicate that the exhumation path of the NFC was close to linear, reaching peak T and P of 550 ± 50°C and 15 ± 3 kbar. Two-dimensional thermal modeling allows us to fit this P-T-t path using exhumation rate and exhumation geometry as free parameters. We find that the P-T-t path is best fit by a model in which the rocks are subducted to > 50 km depth, exhumed rapidly along the same trajectory within a subduction channel, then captured by a low angle detachment fault cutting through the overlying crust. This model can be reconciled with the thermal history preserved in the overlying plate and is supported by the kinematics recorded in high strain fabrics within the NFC itself. We also link the exhumation history of the NFC subduction channel to the rheology of quartz-rich rocks within it by tracking changes in deformation mechanism, stress, strain rate, water content, and crystallographic preferred orientation (CPO) over time. Increasing localization during cooling allowed earlier microstructures to be preserved, such that the rocks record several stages in their exhumation history. Early deformation during initial subduction was accommodated by pressure solution under low-stress (<6 MPa), low-strain-rate, variable T conditions, and produced an inverted metamorphic gradient within the NFC. At the early stages of exhumation, the deformation mechanism at the top of the channel switched to dislocation creep at stresses of ~6-20 MPa, strain rates of < 5E-13/s and temperatures of 500-550°C. Both stress and strain rate increased with decreasing T in the channel margin, culminating in stresses of ~180 MPa, strain

  4. Three-Dimensional Magnetotelluric Imaging of the Cascadia Subduction Zone with an Amphibious Array

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Yang, B.; Bedrosian, P.; Kelbert, A.; Key, K.; Livelybrooks, D.; Parris, B. A.; Schultz, A.

    2017-12-01

    We present results from three-dimensional inversion of an amphibious magnetotelluric (MT) array consisting of 71 offshore and 75 onshore sites in the central part of Cascadia, to image down-dip and along strike variations of electrical conductivity, and to constrain the 3D distribution of fluids and melt in the subduction zone. The array is augmented by EarthScope TA MT data and legacy 2D profiles providing sparser coverage of western WA, OR, and northern CA. The prior model for the inversion includes ocean bathymetry, conductive marine sediments, and a resistive subducting plate, with geometry derived from the model of McCrory et al. (2012) and seismic tomography. Highly conductive features appear just above the interface with the a priori resistive plate in three zones. (1) In the area with marine MT data a conductive layer, which we associate with fluid-rich decollement and subduction channel sediments, extends eastward from the trench to underthrust the seaward edge of Siletzia, which is clearly seen as a thick crustal resistor. The downdip extent of the underthrust conductive layer is a remarkably uniform 35 km. (2) High conductivities, consistent with metamorphic fluids associated with eclogitization, occur near the forearc mantle corner. Conductivity is highly variable along strike, organized in a series of E-W to diagonal elongated conductive/resistive structures, whose significance remains enigmatic. (3) High conductivities associated with fluids and melts are found in the backarc, again exhibiting substantial along strike variability.

  5. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  6. Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2017-07-01

    Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.

  7. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  8. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS

  9. A possible mechanism for earthquakes found in the mantle wedge of the Nazca subduction zone

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Chang, Y.; Prieto, G. A.

    2017-12-01

    Beneath Colombia, the Cauca cluster of intermediate-depth earthquakes extends for 200 km along the trench (3.5°N-5.5°N, 77.0°W-75.3°W) and, with 58 earthquakes per year with local magnitude ML >= 2.5, has a higher rate of seismicity than the subduction zone immediately to the north or south. By precisely locating 433 cluster earthquakes from 1/2010-3/2014 with data from the Colombian National Seismic Network, we found that the earthquakes are located both in a continuous Nazca plate subducting at an angle of 33°-43° and in the overlying mantle wedge. The mantle wedge earthquakes (12% of the earthquakes) form two isolated 40-km-tall columns extending perpendicular to the subducting slab. Using waveform inversion, we computed focal mechanisms for 69 of the larger earthquakes. The focal mechanisms are variable, but the intraslab earthquakes are generally consistent with an in-slab extensional stress axis oriented 25° counterclockwise from the down-dip direction. We suggest that the observed mantle wedge earthquakes are the result of hydrofracture in a relatively cool mantle wedge. This segment of the Nazca Plate is currently subducting at a normal angle, but Wagner et al. (2017) suggested that a flat slab slowly developed in the region between 9-5.9 Ma and persisted until 4 Ma. During flat slab subduction, the overlying mantle wedge typically cools because it is cut off from mantle corner flow. After hydrous minerals in the slab dehydrate, the dehydrated fluid is expelled from the slab and migrates through the mantle wedge. If a cool mantle wedge remains today, fluid dehydrated from the slab may generate earthquakes by hydrofracture, with the mantle wedge earthquakes representing fluid migration pathways. Dahm's (2000) model of water-filled fracture propagation in the mantle wedge shows hydrofractures propagating normal to the subducting slab and extending tens of km into the mantle wedge, as we observe.

  10. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    NASA Astrophysics Data System (ADS)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  11. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  13. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Provenance of Miocene submarine fans in the Shikoku Basin: Results from NanTroSEIZE and implications for stratigraphic correlation of subduction inputs

    NASA Astrophysics Data System (ADS)

    Pickering, K. T.; Underwood, M.; Moore, G. F.

    2013-12-01

    Seismo-stratigraphy, coring and LWD during IODP Expeditions 319, 322, and 333 (Sites C0011 / C0012) show three Miocene submarine fans in the NE Shikoku Basin, with broadly coeval deposits at ODP Site 1177 and DSDP Site 297, NW Shikoku Basin. Pickering et al. (2013) have shown that the sediment dispersal patterns for these fans have major implications for paleogeographies at that time. The oldest, Middle Miocene Kyushu Fan is the finest grained, has a sheet-like geometry, and was fed by quartz-rich sediment gravity-flows derived mostly from an ancestral landmass in the East China Sea. This likely sediment provenance is further supported by U-Pb zircon and fission track analysis of both zircons and apatites from sediments taken from the forearc and trench of the Nankai Trough, together with rivers from southwest Japan, that point to the influence of the Yangtze River in supplying into the Shikoku Basin prior to rifting of the Okinawa Trough at 10 to 6 Ma (Clift et al. 2013). During prolonged hemipelagic mud deposition at C0011-C0012 (12.2 to 9.1 Ma), sand supply continued at Sites 1177 and 297. Sand delivery to much of the Shikoku Basin, however, probably halted during a phase of sinistral strike-slip and oblique plate motion, after which the Daiichi Zenisu Fan (9.1 to 8.0 Ma) was fed by submarine channels. The youngest fan (Daini Zenisu; 8.0 to 7.6 Ma) has sheet-like geometry with thick-bedded, coarse-grained pumiceous sandstones. The pumice fragments were fed from a mixed provenance that included the collision zone of the Izu-Bonin and Honshu arcs. The shift from channelized to sheet-like flows was probably favored by renewal of relatively rapid northward subduction, which accentuated the trench as a bathymetric depression. Understanding the stratigraphic position and 3-D geometry of the sandbodies has important implications for stratigraphic correlation throughout the northern Shikoku Basin, together with subduction-related processes, including the potential for

  15. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  16. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  17. Controlling factors of stratigraphic occurrences of fine-grained turbidites: Examples from the Japanese waters

    NASA Astrophysics Data System (ADS)

    Ikehara, K.

    2017-12-01

    Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.

  18. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    PubMed Central

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  19. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs

    USGS Publications Warehouse

    Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.

    1991-01-01

    The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.

  20. 3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR - a multiparametric interpretation

    NASA Astrophysics Data System (ADS)

    Schneiderwind, Sascha; Mason, Jack; Wiatr, Thomas; Papanikolaou, Ioannis; Reicherter, Klaus

    2016-03-01

    Two normal faults on the island of Crete and mainland Greece were studied to test an innovative workflow with the goal of obtaining a more objective palaeoseismic trench log, and a 3-D view of the sedimentary architecture within the trench walls. Sedimentary feature geometries in palaeoseismic trenches are related to palaeoearthquake magnitudes which are used in seismic hazard assessments. If the geometry of these sedimentary features can be more representatively measured, seismic hazard assessments can be improved. In this study more representative measurements of sedimentary features are achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of ISO (iterative self-organising) cluster analysis of a true colour photomosaic representing the spectrum of visible light. Photomosaic acquisition disadvantages (e.g. illumination) were addressed by complementing the data set with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D interpretation of attached 2-D ground-penetrating radar (GPR) profiles collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements, and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. This manuscript combines multiparametric approaches and shows (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GPR techniques, and (ii) how a multispectral digital analysis can offer additional advantages to interpret palaeoseismic and stratigraphic

  1. Stress Drops of Earthquakes on the Subducting Pacific Plate in the South-East off Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yamada, T.

    2013-12-01

    Large earthquakes have been occurring repeatedly in the South-East of Hokkaido, Japan, where the Pacific Plate subducts beneath the Okhotsk Plate in the north-west direction. For example, the 2003 Tokachi-oki earthquake (Mw8.3 determined by USGS) took place in the region on September 26, 2003. Yamanaka and Kikuchi (2003) analyzed the slip distribution of the earthquake and concluded that the 2003 earthquake had ruptured the deeper half of the fault plane of the 1952 Tokachi-oki earthquake. Miyazaki et al. (2004) reported that a notable afterslip was observed at adjacent areas to the coseismic rupture zone of the 2003 earthquake, which suggests that there would be significant heterogeneities of strength, stress and frictional properties on the surface of the Pacific Plate in the region. In addition, some previous studies suggest that the region with a large slip in large earthquakes permanently have large difference of strength and the dynamic frictional stress level and that it would be able to predict the spatial pattern of slip in the next large earthquake by analyzing the stress drop of small earthquakes (e.g. Allmann and Shearer, 2007 and Yamada et al., 2010). We estimated stress drops of 150 earthquakes (4.2 ≤ M ≤ 5.0), using S-coda waves, or the waveforms from 4.00 to 9.11 seconds after the S wave arrivals, of Hi-net data. The 150 earthquakes were the ones that occurred from June, 2002 to December, 2010 in south-east of Hokkaido, Japan, from 40.5N to 43.5N and from 141.0E to 146.5E. First we selected waveforms of the closest earthquakes with magnitudes between 3.0 and 3.2 to individual 150 earthquakes as empirical Green's functions. We then calculated source spectral ratios of the 150 pairs of interested earthquakes and EGFs by deconvolving the individual S-coda waves. We finally estimated corner frequencies of earthquakes from the spectral ratios by assuming the omega-squared model of Boatwright (1978) and calculated stress drops of the earthquakes by

  2. Seismic variability of subduction thrust faults: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Funiciello, F.; Faccenna, C.; Ranalli, G.; Heuret, A.

    2011-06-01

    Laboratory models are realized to investigate the role of interface roughness, driving rate, and pressure on friction dynamics. The setup consists of a gelatin block driven at constant velocity over sand paper. The interface roughness is quantified in terms of amplitude and wavelength of protrusions, jointly expressed by a reference roughness parameter obtained by their product. Frictional behavior shows a systematic dependence on system parameters. Both stick slip and stable sliding occur, depending on driving rate and interface roughness. Stress drop and frequency of slip episodes vary directly and inversely, respectively, with the reference roughness parameter, reflecting the fundamental role for the amplitude of protrusions. An increase in pressure tends to favor stick slip. Static friction is a steeply decreasing function of the reference roughness parameter. The velocity strengthening/weakening parameter in the state- and rate-dependent dynamic friction law becomes negative for specific values of the reference roughness parameter which are intermediate with respect to the explored range. Despite the simplifications of the adopted setup, which does not address the problem of off-fault fracturing, a comparison of the experimental results with the depth distribution of seismic energy release along subduction thrust faults leads to the hypothesis that their behavior is primarily controlled by the depth- and time-dependent distribution of protrusions. A rough subduction fault at shallow depths, unable to produce significant seismicity because of low lithostatic pressure, evolves into a moderately rough, velocity-weakening fault at intermediate depths. The magnitude of events in this range is calibrated by the interplay between surface roughness and subduction rate. At larger depths, the roughness further decreases and stable sliding becomes gradually more predominant. Thus, although interplate seismicity is ultimately controlled by tectonic parameters (velocity of

  3. Deep 'Stone Soup' Trenching by Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    The lander's Surface Stereo Imager took this picture of Stone Soup trench on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  5. Remarkably Consistent Thermal State of the south Central Chile Subduction Zone from 36°S to 45°S

    NASA Astrophysics Data System (ADS)

    Rotman, H.; Spinelli, G. A.

    2013-12-01

    Delineating the rupture areas of large subduction zone earthquakes is necessary for understanding the controls on seismic and aseismic slip on faults. For the largest recorded earthquake, an event in south central Chile in 1960 with moment magnitude 9.5, the rupture area is only loosely defined due to limitations in the global seismic network at the time. The rupture extends ~900 km along strike on the margin. Coastal deformation is consistent with either a constant rupture width of ~200 km along the entire length, or a much narrower width (~115 km) for the southern half of the rupture. A southward narrowing of the seismogenic zone has been hypothesized to result from warming of the subduction zone to the south, where the subducting plate is younger. Here, we present results of thermal models at 36°S, 38°S, 43°S, and 45°S to examine potential along-strike changes the thermal state of the margin. We find that temperatures in the subduction zone are strongly affected by both fluid circulation in the high permeability upper oceanic crust and frictional heating on the plate boundary fault. Hydrothermal circulation preferentially cools transects with young subducting lithosphere; frictional heating preferentially warms transects with older subducting lithosphere. The combined effects of frictional heating and hydrothermal circulation increase decollement temperatures in the 36°S and 38°S transects by up to ~155°C, and decrease temperatures in the 45°S transect by up to ~150°C. In our preferred models, decollement temperatures 200 km landward of the trench in all four transects are ~350-400°C. This is consistent with a constant ~200 km wide seismogenic zone for the 1960 Mw 9.5 rupture, with decreasing slip magnitude in the southern half of the rupture.

  6. Implications of loading/unloading a subduction zone with a heterogeneously coupled interface

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Govers, R. M. A.

    2017-12-01

    Numerical models of subduction zones with appropriate physical properties may help understand deformation throughout great earthquake cycles, as well as associated observations such as the distribution of smaller magnitude megathrust earthquakes and surface displacements. Of particular interest are displacements near the trench, where tsunamis are generated. The patterns of co-seismic strain release in great megathrust earthquakes depend on the frictional coupling of the plate interface prior to the event. Geodetic observations during the inter-seismic stage suggest that the plates are fully locked at asperities surrounded by zones of apparent partial coupling. We simulate the accumulation (and release) of elastic strain in the subduction system using a finite element model with a relatively simple geometry and material properties. We demonstrate that inter-seismic apparent partial coupling can be dominantly explained by a distribution of completely locked asperities and zero friction elsewhere. In these models, the interface up-dip of the locked zone (< 15 km depth) accumulates large slip deficit even if its coefficient of friction is zero, as might be inferred from the scarcity of megathrust earthquakes shallower than 15 km in global earthquake catalogs. In addition, the upper plate above a low-friction shallow megathrust accumulates large displacements with little internal strain, potentially leading to large co-seismic block displacements (low displacement gradients) of the near-trench seafloor like those observed following the 2011 Mw 9.0 Tohoku earthquake. This is also consistent with anomalously low co-seismic frictional heating of the shallow megathrust indicated by borehole heat flow measurements after the Tohoku event. Our models also yield insights into slip partitioning throughout multiple earthquake cycles. In smaller ruptures, fault slip is inhibited by nearby locked zones; in subsequent multi-segment ruptures, the rest of this slip deficit may be

  7. Phoenix Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair

    This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008).

    In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair.

    For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  9. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  10. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less

  11. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

    USGS Publications Warehouse

    Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.

    2008-01-01

    We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.

  12. Melt production and mantle refertilisation above a subduction zone: Direct constraints from Antarctic Peninsula spinel-peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Gibson, L. C.; Gibson, S. A.; Leat, P. T.

    2010-12-01

    Spinel peridotites and pyroxenites from the Antarctic Peninsula provide rare, direct evidence of mantle processes operating during and after a major subduction event. The Antarctic Peninsula consists of a series of suspect arc terranes accreted onto the Gondwana margin. Subduction occured off the west coast and lasted for 200Ma before ceasing after a series of ridge-trench collisions, which began at ~50Ma in the south of the peninsula and ended at ~4Ma in the north. The end of subduction was followed by extensive alkaline volcanism which hosts mantle xenoliths at several localities. The widest variety of peridotites and pyroxenites so far collected occur in ~ 5Ma basanites and tephrites on Alexander Island and Rothschild Island, in the southern fore-arc. Mineral textures and chemistry suggest that the constituent phases are in equilibrium in the xenoliths and can be used to estimate pressures and temperatures. The results of these calculations indicate that, at the time of xenolith entrainment, the Antarctic Peninsula had a normal, unperturbed mantle geotherm and a lithospheric thickness of ~70km. The Alexander and Rothschild Island xenolith suites show an almost continuous range of compositions from harzburgites and lherzolites to pyroxenites. This wide variation in lithologies is confirmed by large ranges in mineral chemistry. For example, olivine compositions range from Fo77 to Fo91 while Al2O3 contents of orthopyroxenes range from 0.17 to 5.84%. Some clinopyroxenes have low LREE/MREE ratios ([La/Sm]n=0.01) whereas others are enriched in LREE relative to MREE ([La/Sm]n=8.56). The ‘depleted’ xenoliths resemble abyssal peridotites and may represent either (i) accreted sub-oceanic lithosphere or (ii) residues of melting in the underlying mantle wedge that have been incorporated in to the base of the Antarctic Peninsula lithosphere post subduction. The ‘enriched’ peridotites and pyroxenites appear to have formed as a result of mantle

  13. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes

  14. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    PubMed

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  15. Structure of the Sumatra-Andaman subduction zone

    NASA Astrophysics Data System (ADS)

    Pesicek, Jeremy Dale

    We have conducted studies of the Sumatra-Andaman subduction zone using newly available teleseismic data resulting from the aftershock sequences of the 2004, 2005, and 2007 great earthquakes that occurred offshore of the island of Sumatra. In order to better exploit the new data, existing methodologies have been adapted and advanced in several ways to obtain results at a level of precision not previously possible from teleseismic data. Seismic tomography studies of the mantle were conducted using an improved iterative technique that accounts for fine-scale three-dimensional (3-D) velocity variations inside the study region and coarser global velocity variations outside the region. More precise earthquake locations were determined using a double-difference technique that has been extended to teleseismic distances using spherical ray tracing through the nested 3-D regional-global velocity models. Earthquake relocation was included in the iterative tomography scheme and was found to significantly enhance the recovery of slab velocity anomalies. Finally, because crustal structure is poorly constrained by the teleseismic data, 3-D density modeling of the crust was conducted using newly available satellite gravity data and a spherical prism gravity algorithm. The results of these studies better constrain the structure of the Sumatra-Andaman subduction zone, including the geometry of the mantle slab, position of the megathrust, and structural features of the downgoing plate. Tomography results reveal continuous upper mantle slab anomalies with significant variations in dip throughout the region. Broad curvature of the fast anomalies beneath northern Sumatra, similar to curvature of the trench and volcanic arc at the surface, is interpreted as folding of the upper mantle slab. Earthquake relocations show systematic shifts of the hypocenters to the northeast and to shallower depths, each with average changes of 5 km. Reduced scatter in the relocations better constrain the

  16. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  17. Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone

    NASA Astrophysics Data System (ADS)

    Matsu'ura, Tabito

    2015-04-01

    Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.

  18. Plume type ophiolites in Japan, East Russia and Mongolia: Peculiarity of the Late Jurassic examples

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Akira; Ichiyama, Yuji; Ganbat, Erdenesaikhan

    2013-04-01

    Dilek and Furnes (2011; GSAB) provided a new comprehensive classification of ophiolites. In addition to the mid-ocean ridge (MOR) and supra-subduction zone (SSZ) types that are known for decades, they introduced rift-zone (passive margin) type, volcanic arc (active margin) type, and plume type. The last type is thought to be originated in oceanic large igneous provinces (LIPs; oceanic plateaus), and is preserved in the subduction-accretion complexes in the Pacific margins. The LIP-origin greenstones occur in the Middle Paleozoic (Devonian) accretionary complex (AC) in central Mongolia (Ganbat et al. 2012; AGU abst.). The Late Paleozoic and Mesozoic plume-type ophiolites are abundant in Japan. They are Carboniferous greenstones covered by thick limestone in the Akiyoshi belt (Permian AC, SW Japan; Tatsumi et al., 2000; Geology), Permian greenstones in the Mino-Tamba belt (Jurassic AC, SW Japan; Ichiyama et al. 2008; Lithos), and Late Jurassic-Early Cretaceous greenstone in the Sorachi (Hokkaido; Ichiyama et al, 2012; Geology) and Mikabu (SW Japan; this study) belts. The LIP origin of these greenstones is indicated by abundance of picrite (partly komatiite and meimechite), geochemical features resembling HIMU basalts (e.g. high Nb/Y and Zr/Y) and Mg-rich (up to Fo93) picritic olivines following the "mantle array", suggesting very high (>1600oC) temperature of the source mantle plume. The Sorachi-Mikabu greenstones are characterized by the shorter time interval between magmatism and accretion than the previous ones, and are coeval with the meimechite lavas and Alaskan-type ultramafic intrusions in the Jurassic AC in Sikhote-Alin Mountains of Primorye (E. Russia), that suggest a superplume activity in the subduction zone (Ishiwatari and Ichiyama, 2004; IGR). The Mikabu greenstones extend for 800 km along the Pacific coast of SW Japan, and are characterized by the fragmented "olistostrome" occurrence of the basalts, gabbros and ultramafic cumulate rocks (but no mantle

  19. Measurement of plasma sheath overlap above a trench

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Steinberger, Thomas E.

    2017-06-01

    The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.

  20. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

    NASA Astrophysics Data System (ADS)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao

    2017-09-01

    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid

  1. Eclogitization of the Subducted Oceanic Crust and Its Implications for the Mechanism of Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Zhao, Dapeng; Suzuki, Haruhiko; Li, Jiabiao; Ruan, Aiguo

    2017-12-01

    The generating mechanism and process of slow earthquakes can help us to better understand the seismogenic process and the petrological evolution of the subduction system, but they are still not very clear. In this work we present robust P and S wave tomography and Poisson's ratio images of the subducting Philippine Sea Plate beneath the Kii peninsula in Southwest Japan. Our results clearly reveal the spatial extent and variation of a low-velocity and high Poisson's ratio layer which is interpreted as the remnant of the subducted oceanic crust. The low-velocity layer disappears at depths >50 km, which is attributed to crustal eclogitization and consumption of fluids. The crustal eclogitization and destruction of the impermeable seal play a key role in the generation of slow earthquakes. The Moho depth of the overlying plate is an important factor affecting the depth range of slow earthquakes in warm subduction zones due to the transition of interface permeability from low to high there. The possible mechanism of the deep slow earthquakes is the dehydrated oceanic crustal rupture and shear slip at the transition zone in response to the crustal eclogitization and the temporal stress/strain field. A potential cause of the slow event gap existing beneath easternmost Shikoku and the Kii channel is the premature rupture of the subducted oceanic crust due to the large tensional force.

  2. Chemostratigraphy of Subduction Initiation: Boninite and Forearc Basalt from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Shervais, John; Haugen, Emily; Godard, Marguerite; Ryan, Jeffrey G.; Prytulak, Julie; Li, Hongyan; Chapman, Timothy; Nelson, Wendy R.; Heaton, Daniel E.; Kirchenbaur, Maria; Shimizu, Kenji; Li, Yibing; Whattam, Scott A.; Almeev, Renat; Sakuyama, Tetsuya; Reagan, Mark K.; Pearce, Julian A.

    2017-04-01

    The Izu-Bonin forearc has been the focus of several recent IODP (International Ocean Discovery Program) expeditions studying the geophysical, petrologic, and chemical response to subduction initiation and its potential relationship to ophiolite genesis. IODP Expedition 352 cored four holes in the Izu-Bonin forearc near Chichi Jima in order to document the petrologic and chemical evolution of nascent subduction zones. Holes U1440 and U1441, drilled closest to the trench, sampled forearc basalt (FAB). U1439 and U1442, drilled stratigraphically up-section and farther from the trench, sampled boninite, high-Mg andesite, and basalt. FAB are characterized by MORB-like compositions, with relatively constant Ti, Zr, and Ti/Zr. In general, more primitive FAB are found in the lower part of the section. In detail, FAB have lower Na, Ti, P, and Zr, lower Ti/V ratios, and are LREE-depleted relative to MORB. Best fit models for the least evolved FAB and a depleted MORB mantle (DMM) source require extraction of 1% melt in the garnet lherzolite field and 19% melt extraction in the spinel lherzolite field (relative to 8-10% melt of DMM to produce MORB). Three types of boninite were found: high silica boninite (HSB), low silica boninite (LSB), and basaltic boninite (BB), as well as high Mg andesites (HMA). HSB, the youngest unit in both U1439 and U1442, is underlain by LSB-BB-HMA lavas, which often occur in mixed magma zones with evolved boninite and basalt. Boninites are distinguished by co-variations in SiO2-MgO and TiO2-MgO, and by Ti/Zr ratios, which increase from HSB through LSB to BB. HSB, LSB and BB define parallel trends in TiO2-MgO space: a low Ti trend represented by LSB and BB, and a lower Ti trend represented by HSB. All of the boninite suite rocks are slightly LREE-rich relative to MORB. LSB and BB have flat REE patterns relative to primitive mantle, whereas HSB are slightly LREE-rich. These trends require distinct source compositions in HSB relative to LSB/BB. The

  3. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate

  4. Neogene Sediment Transport, Deposition, and Exhumation from the Southern Alaska Syntaxis to the Eastern Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Witmer, J. W.; Enkelmann, E.; Plafker, G.; Brennan, P. R.

    2011-12-01

    Over 5 km of Neogene sedimentary strata are well exposed in the Chugach-St. Elias Ranges within the southern Alaska syntaxis. This syntaxis forms where the Pacific-North America plate boundary changes from the northwest-trending Queen Charlotte-Fairweather transform system to the southwest-trending Alaska-Aleutian subduction zone. Active collision and subduction of the buoyant Yakutat microplate in the syntaxis results in a wide collisional zone defined by active mountain belts, extensive glaciation, and thick packages of synorogenic strata. New stratigraphic and U-Th/He thermochronologic data from Neogene synorogenic strata, named the Yakataga and Redwood Formations, provide insights on collisional tectonics, glacial erosion, and sediment transport, deposition, burial, and exhumation from the onshore Chugach and St. Elias Ranges to the exposed accretionary prism of the Aleutian trench. Stratigraphic analyses show that along the southeastern part of the syntaxis, Neogene strata are characterized by deposition in braid delta, shallow marine, and glaciomarine slope apron depositional systems that resulted in construction of a broad continental shelf. In the central part of the syntaxis, marine shelf and upper slope environments deposited thick-bedded sandstone and mudstone in a thrust belt/foreland basin system. Along the southwestern part of the syntaxis, Neogene strata were deposited in a regional submarine fan system that filled the easternmost part of the Aleutian trench. Geologic mapping of the contact between the Yakataga Formation and underlying strata along the syntaxis document an angular unconformity with maximum stratigraphic separation (> 5 km) in the central part of the syntaxis. Along strike, this unconformity becomes conformable along both the southwestern and southeastern parts of the syntaxis. The regional angular unconformity and facies transitions both point to the importance of the central part of the syntaxis in the generation and distribution of

  5. Arc/Forearc Lengthening at Plate Triple Junctions and the Formation of Ophiolitic Soles

    NASA Astrophysics Data System (ADS)

    Casey, John; Dewey, John

    2013-04-01

    The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overidding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform t along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallell split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in a readied obduction settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite

  6. Source time functions of large Mexican subduction earthquakes, morphology of the Benioff Zone, age of the plate, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Mortera, F.

    1991-12-01

    We study source parameters of large, shallow Mexican subduction zone earthquakes (95°W to 106°W) which occurred between 1928 and 1986 by modeling the P waves recorded on Galitzin-Wilip seismograph in DeBilt (DBN), Holland. For post-1962 events the source parameters retrieved from DBN seismograms alone agree well with those obtained from long-period World-Wide Standardized Seismograph Network records, giving us confidence in our results for pre-1962 events. All earthquakes are shallow (H˜10 to 20 km). With few exceptions the sources in Oaxaca (95°W to 99°W) are very simple. To the northwest of 99°W they are simple as well as complex. The ratio of surface wave to body wave seismic moment (Mos/MoP), which is a measure of long- to short-period radiation, is smaller in Oaxaca (˜ 1.5±0.5) than in the regions northwest of 99°W (˜3.1±1.3). These results suggest a change in the plate interface characteristics near 99°W. The sharp change in the rupture mode and the intersection of the O'Gorman Fracture Zone (OFZ) with the trench occur near 99°W. Two strike-slip events offshore, close to OFZ, suggest a segmentation of the subducting plate near 99°W. The age of the plate near the trench in Oaxaca is not well known; it is possible that it does not increase continuously from northwest to southeast in the region but jumps across 99°W. If so, then the older age of the subducted plate southeast of 99°W may be the cause of the distinct rupture mode of the Oaxaca earthquakes. The length of the Benioff zone, which is greatest below Oaxaca ( ≈ 400 km) and decreases toward the northwest, can be explained by the correlation between the length of the subducted slab and the product of the lithosphere age and convergence rate. The relative complexity of sources, the weaker background seismicity, and the lesser number of aftershocks northwest of Oaxaca may be explained by a stronger interface coupling resulting from subduction of younger oceanic slabs (˜5 to 13 m.y. old

  7. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle

    NASA Astrophysics Data System (ADS)

    Ribeiro, Julia M.; Lee, Cin-Ty A.

    2017-12-01

    The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.

  8. Trench Safety–Using a Qualitative Approach to Understand Barriers and Develop Strategies to Improve Trenching Practices

    PubMed Central

    FLYNN, MICHAEL A.; SAMPSON, JULIE M.

    2015-01-01

    Despite efforts to ensure workplace safety and health, injuries and fatalities related to trenching and excavation remain alarmingly high in the construction industry. Because properly installed trenching protective systems can potentially reduce the significant number of trenching fatalities, there is clearly a need to identify the barriers to the use of these systems and to develop strategies to ensure these systems are utilized consistently. The current study reports on the results of focus groups with construction workers and safety management personnel to better understand these barriers and to identify solutions. The results suggest several factors, from poor planning to pressures from experienced workers and supervisors, which present barriers to safe trenching practices. Based on the results, it is recommended that safety trainings incorporate unique messages for new workers, experienced workers and management in an effort to motivate each group to work safely as well as provide them with solutions to overcome the identified barriers. PMID:26550006

  9. Trenching in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Trenching studies of the San Andreas fault have been of great value to geologists in California for determining not only the prehistoric occurrences of earthquakes on the fault but also the age of these movements. In the New Madrid seismic zone, US Geological Survey scientists have been trenching across suspected faults to try to assess earthquake frequency in the Central US. The following photographs document these trenching studies.

  10. Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Berndt, Christian; Klaucke, Ingo

    2017-11-01

    Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60 m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000 m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500 m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10-11 m2 s-3 and eddy diffusivity KzT = 2 ± 1.5 × 10-4 m2 s-1 estimated for the depth range between 10,300 and 10,850 m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500 m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing.

  11. Trench mouth

    MedlinePlus

    ... fever. Good oral hygiene is vital to the treatment of trench mouth. Brush and floss your teeth thoroughly at least twice a day, or after each meal and at bedtime, if possible. Salt-water rinses (one half teaspoon or 3 grams of ...

  12. Possibility of existence of serpentinized material at the Izu-Bonin subduction plate boundary around 31N using Q structure by FDM-simulation

    NASA Astrophysics Data System (ADS)

    Kamimura, A.; Kasahara, J.

    2003-12-01

    At the Izu-Bonin subduction zone (IBSZ), there is a chain of serpentine seamounts at the forearc slope of trench axis, and few large earthquakes occurred at shallow depth (<100km) in spite of many large ones at greater depth (>400km). To elucidate these characteristics we carried out a seismic refraction-reflection study at the forearc slope of the IBSZ around 31N using 22 OBSs and chemical explosives and airguns as seismic sources in 1998. As the results of forward and travel-time inversion modeling of the study, P-wave velocity structures were obtained along E-W and N-S survey lines which is perpendicular to and parallel to the trench axis, respectively (Kamimura et al., 2002). The result of E-W line (transect a summit of serpentine seamount) suggests presence of a low velocity zone just above the subducting Pacific plate, and this zone connects to the Torishima Serpentine Forearc Seamount. The interpretation of the result was: dehydration of hydrated oceanic crust supplies water to the mantle wedge, and peridotites of the mantle wedge were serpentinized. The serpentinized peridotites have moved between the oceanic slab and the overriding island arc crust and were diapiring into the serpentine seamount. The serpentine on the plate boundary might act as a lubricant and decrease seismic activity along the subduction zone, and this can explain the characteristics of seismicity of IBSZ. In order to evaluate Q structures of the above low velocity zone on the subducting slab, we calculated synthetic waveforms using FDM (Finite Difference Method) with elastodynamic formulation (E3D code, developed by Dr. Shawn Larsen) and the P-wave velocity 2D structure of Kamimura et al. (2002). The E3D uses staggered grid, and 2nd order and 4th order approximation in time and space, respectively. Grid spacing of the calculation is 30 m in x and z, and 1.5 msec in time. Five-Hz and 0-phase Ricker wavelet_@pressure source was used. Several structure models are used for comparison. One

  13. Phoenix Dodo Trench

    NASA Image and Video Library

    2008-06-04

    This image was taken by NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The center of the image shows a trench informally called "Dodo" after the second dig. "Dodo" is located within the previously determined digging area, informally called "Knave of Hearts." The light square to the right of the trench is the Robotic Arm's Thermal and Electrical Conductivity Probe (TECP). The Robotic Arm has scraped to a bright surface which indicated the Arm has reached a solid structure underneath the surface, which has been seen in other images as well. http://photojournal.jpl.nasa.gov/catalog/PIA10763

  14. High Frequency Cut-off Characteristics of Strong Ground Motion Records at Hard Sites, Subduction and Intra-Slab Earthquakes

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Tsurugi, M.; Irikura, K.

    2006-12-01

    A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).

  15. Partitioning soil respiration: examining the artifacts of the trenching method.

    NASA Astrophysics Data System (ADS)

    Savage, K. E.; Davidson, E. A.; Finzi, A.; Giasson, M. A.; Wehr, R. A.

    2014-12-01

    Soil respiration (Rs) is a combination of autotrophic (Ra) and heterotrophic respiration (Rh). Several methods have been developed to tease out the components of Rs, such as isotopic analyses, and removing Ra input through tree girdling and root exclusion experiments. Trenching involves severing the rooting system surrounding a plot to remove the Ra component within the plot. This method has some potential limitations. Reduced water uptake in trenched plots could change soil water content, which is one of the environmental controllers of Rs in many ecosystems. Eliminating root inputs could reduce heterotrophic decomposition of SOM via lack of priming. On the other hand, the severed dead roots may temporarily increase available carbon substrate for Rh. At the Harvard Forest, MA, we used the trenching method to partition Rs into its components Ra and Rh. Pre-trenched Rs was measured from spring to fall of 2012. In late fall of 2012, a trench was excavated to 1m depth around a 5x5m area, severing all roots. Plastic tarp was placed along the trench walls and then backfilled. Four automated Rs chambers were placed in the trenched plot and four in an un-trenched plot. Respiration was measured hourly for each chamber along with soil temperature and moisture from spring through fall of 2013 and 2014. Eighty root decomposition bags were placed in the organic soil horizon of the trenched (40) and un-trenched (40) plots at the time of trenching in 2012 and measured in 2013 and 2014. These data are being used to estimate the size and duration of any artifact due to root death. As expected, Rs was lower in the trenched plot (Rh only) than in the un-trenched plot (Rh + Ra) in 2013, but the reverse was unexpectedly observed during a period of low precipitation in 2014. High rates of ET combined with below-average precipitation dried the un-trenched plot to a point where Rh was inhibited, whereas less ET allowed the un-trenched plots to remain measurably wetter.

  16. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  17. Seismicity in the source areas of the 1896 and 1933 Sanriku earthquakes and implications for large near-trench earthquake faults

    NASA Astrophysics Data System (ADS)

    Obana, Koichiro; Nakamura, Yasuyuki; Fujie, Gou; Kodaira, Shuichi; Kaiho, Yuka; Yamamoto, Yojiro; Miura, Seiichi

    2018-03-01

    In the northern part of the Japan Trench, the 1933 Showa-Sanriku earthquake (Mw 8.4), an outer-trench, normal-faulting earthquake, occurred 37 yr after the 1896 Meiji-Sanriku tsunami earthquake (Mw 8.0), a shallow, near-trench, plate-interface rupture. Tsunamis generated by both earthquakes caused severe damage along the Sanriku coast. Precise locations of earthquakes in the source areas of the 1896 and 1933 earthquakes have not previously been obtained because they occurred at considerable distances from the coast in deep water beyond the maximum operational depth of conventional ocean bottom seismographs (OBSs). In 2015, we incorporated OBSs designed for operation in deep water (ultradeep OBSs) in an OBS array during two months of seismic observations in the source areas of the 1896 and 1933 Sanriku earthquakes to investigate the relationship of seismicity there to outer-rise normal-faulting earthquakes and near-trench tsunami earthquakes. Our analysis showed that seismicity during our observation period occurred along three roughly linear trench-parallel trends in the outer-trench region. Seismic activity along these trends likely corresponds to aftershocks of the 1933 Showa-Sanriku earthquake and the Mw 7.4 normal-faulting earthquake that occurred 40 min after the 2011 Tohoku-Oki earthquake. Furthermore, changes of the clarity of reflections from the oceanic Moho on seismic reflection profiles and low-velocity anomalies within the oceanic mantle were observed near the linear trends of the seismicity. The focal mechanisms we determined indicate that an extensional stress regime extends to about 40 km depth, below which the stress regime is compressional. These observations suggest that rupture during the 1933 Showa-Sanriku earthquake did not extend to the base of the oceanic lithosphere and that compound rupture of multiple or segmented faults is a more plausible explanation for that earthquake. The source area of the 1896 Meiji-Sanriku tsunami earthquake is

  18. 3-D Seismic Tomographic Inversion to Image Segmentation of the Sumatra Subduction Zone near Simeulue Island

    NASA Astrophysics Data System (ADS)

    Tang, G.; Barton, P. J.; Dean, S. M.; Vermeesch, P. M.; Jusuf, M. D.; Henstock, T.; Djajadihardja, Y.; McNeill, L. C.; Permana, H.

    2009-12-01

    Oceanic subduction along the Sunda trench to the west of Sumatra (Indonesia) shows significant along-strike variations in seismicity. For example, the great M9.3 earthquake in 2004 occurred in the forearc basin north of Simeulue island, rupturing the fault predominantly towards the northwest, while the 2005 Nias earthquake nucleated near the Banyak islands, rupturing towards the southeast (Ammon et al., 2005; Ishii et al. 2005). The gap between these two active areas indicates segmentation of the subduction zone, but the cause of the segmentation remains enigmatic. To investigate the apparent barriers to rupture, two 3-D refraction surveys were conducted in 2008, one, the topic of this study, around Simeulue island and the other to the southeast of Nias island. Seismic data were collected using ocean bottom seismometers and a 12-airgun tuned array with a total capacity of 5420 cu. in., together with high resolution bathymetry data and gravity data. 174,515 traveltimes of first refracted arrivals were picked for the study area, and 128,138 of them were inverted for a model of minimum structure required by the data using the ‘FAST’ method (Zelt et.al, 1998). Resolution tests show that the model is resolvable mostly on a scale of >40 km horizontally. The final velocity model produced has two distinct features: i. the subducted oceanic plates (represented by 6 km/s contours) seem to be discontinuous along strike; ii. the subduction dip angle appears to be steeper in the southern part of the survey area than in the north. The geometric variation in the subducted plate appears to coincide with the segment boundary approximately across the centre of Simeulue island, and may perhaps associated with the segmentation of the seismicity noted from the earthquake record. More accurate velocity models will be developed by jointly inverting traveltimes of first and later arrivals as well as normal incidence data using the tomographic inversion program JIVE-3D (Hobro et

  19. Source Model of the MJMA 6.5 Plate-Boundary Earthquake at the Nankai Trough, Southwest Japan, on April 1, 2016, Based on Strong Motion Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Asano, K.

    2017-12-01

    An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling

  20. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences