Science.gov

Sample records for japan trench subduction

  1. Coulomb wedge model applied to the subduction of seamounts in the Japan Trench

    E-print Network

    Demouchy, Sylvie

    Coulomb wedge model applied to the subduction of seamounts in the Japan Trench Serge Lallemand and complementary data are used to propose a model of subduction of seamounts. Examples in two seamount chains, one of deformable, noncohesive Coulomb material during seamount subduction. This is illustrated by the subduction

  2. Paleoseismology Along the Japan Trench Subduction Zone: Deep-Sea Sediment Records of Earthquakes in Tohoku

    NASA Astrophysics Data System (ADS)

    Kanamatsu, T.; Ikehara, K.; Strasser, M.; Usami, K.; McHugh, C. M.; Fink, H. G.; Nakamura, Y.; Kodaira, S.

    2014-12-01

    After the 2011 off the Pacific coast of Tohoku Earthquake, we have intensively explored earthquake-induced records in the deep-sea basins close to rupture zones of the 2011 and past earthquakes in Tohoku, Our study area focuses on small terminal basins near the trench for the following reason. Mass transport deposits from up-slope area down into the Japan Trench axis floor during the 2011 event were documented (e. g. Oguri et al., 2013). Similarly past earthquake-induced turbidites were expected to have been deposited in a number of small basins in the trench floor and in a lower slope terrace. Here we introduce our recent results and future prospects for paleoseismology in the Japan Trench. We collected cores from areas that are generally composed of diatomaceous fine grain sediment and fine-grained turbidites. Occasionally, wide spread tephra patches/layers are intercalated in the sediment. In the trench floor, two thick turbidite units below (older) than the 2011 event deposits were identified in up to 10m long sedimentary cores. An intercalated tephra within these turbidite units indicates that turbidites were triggered by historical earthquakes in Tohoku (Ikehara et al., in prep). On the other hand, frequent occurrence of thin-bedded turbidites was identified in the lower slope terrace. Several turbidite layers can be correlated over a wide area by tephra-correlation and matching of paleomagnetic secular variations (Usami et al., in this session). Turbidite-stratigraphy from both locations, the trench and lower slope terrace shows a similar pattern, and seems to be tied to the onland tsunami deposit stratigraphy straightforwardly. These observations suggest that deep-sea turbidite records are more reliable proxy for paleoseimic-stratigraphy of the Tohoku area. Encouraged by the results obtained so far, we plan extensive investigations in the area over the next few years to document effectively the spatiotemporal distribution of earthquake records of Tohoku.

  3. Structure and lithology of the Japan Trench subduction plate boundary fault

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James D.; Rowe, Christie D.; Ujiie, Kohtaro; Moore, J. Casey; Regalla, Christine; Remitti, Francesca; Toy, Virginia; Wolfson-Schwehr, Monica; Kameda, Jun; Bose, Santanu; Chester, Frederick M.

    2015-01-01

    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ˜7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ˜5-15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin.

  4. Constraints on subducting plate strength within the Kermadec trench

    E-print Network

    Billen, Magali I.

    Constraints on subducting plate strength within the Kermadec trench Magali I. Billen Department to the Kermadec trench allow localized estimates of plate strength within the subducting Pacific plate to be made. The transfer function between topography and gravity is estimated for five trench-parallel ship tracks

  5. Constraints on interseismic deformation at Japan trench from VLBI data

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Lyzenga, Gregory A.

    1993-01-01

    Space geodetic data from very long baseline interferometry (VLBI) was used to estimate velocity relative to the plate interiors of two sites on the deforming leading edge at the Japan trench. Elastic models of interseismic deformation and results obtained were used to put constraints on the slip rate along the main thrust of the Japan subduction zone. Observed velocities reflect the sum of permanent west-northwest shortening in Honshu, elastic deformation due to locking of the main thrust fault at the Japan trench, and deformation associated with the subducting Phillipine plate. These velocities limit the locked segment of the main thrust at the Japan trench to 27 km vertically and 100 km along the dip. This indicates that the main Pacific plate thrust fault is not strongly coupled and probably does not generate strong earthquakes.

  6. Subduction dynamics as revealed by trench migration Serge Lallemand,1

    E-print Network

    Cattin, Rodolphe

    Subduction dynamics as revealed by trench migration Serge Lallemand,1 Arnauld Heuret,1 Claudio 2008; published 28 June 2008. [1] New estimates of trench migration rates allow us to address the dynamics of trench migration and back- arc strain. We show that trench migration is primarily controlled

  7. Deep scientific dives in the Japan and Kuril Trenches

    NASA Astrophysics Data System (ADS)

    Cadet, Jean Paul; Kobayashi, Kazuo; Lallemand, Serge; Jolivet, Laurent; Aubouin, Jean; Boulègue, Jacques; Dubois, Jacques; Hotta, Hiroshi; Ishii, Teruaki; Konishi, Kenji; Niitsuma, Nobuaki; Shimamura, Hideki

    1987-05-01

    In the summer of 1985, during the French-Japanese Kaiko program, ten dives to depths of 6000 m in the Japan and Kuril Trenches were made in the newly launched submersible "Nautile". The sites of the dives were selected on the basis of surface geophysical surveys made during the preceding summer involving Seabeam mapping, geomagnetic and gravimetric measurements, and single-channel seismic profiling. The results of the dives provide new constraints on the geodynamics of these subduction zones. In the Japan and Kuril Trenches huge slump scars were observed on the landward slopes of the trenches. Slumps produce a typical active erosional morphology with vertical or even overhanging cliffs in poorly consolidated material. The slump scars allowed us to observe the internal structure of the margin; the monoclinal structure on the northern Japan Trench margin deduced from the seismic profiles and DSDP drilling was confirmed. Several dives on Kashima Seamount confirmed that this volcano has recently been split into two parts by a normal fault system. Comparisons of lithology and paleontology on the two separated parts of the seamount were made. Deep-sea clams colonies were observed from nearly 6000 m up to 5000 m on the landward slopes of the trenches. It can be concluded that the whole margin is venting fluids from depths of 2-3 km which is consistent with the indications of overpressure observed in drill sites on the Japan Trench margin. The fluids probably originate by dewatering of the subducting sediments and then migrate to the seafloor.

  8. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.

    2011-08-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (vS$\\perp$) at the surface into its subducting plate motion component (vSP$\\perp$) and trench migration component (vT$\\perp$). Geodynamic models of progressive subduction demonstrate such dependence with five distinct slab geometries and corresponding partitioning ratios (vSP$\\perp$/vS$\\perp$): slab draping (vSP$\\perp$/vS$\\perp$ ? 0.5), slab draping with recumbent folds (0.5 < vSP$\\perp$/vS$\\perp$ < ˜0.8), slab piling (˜0.8 ? vSP$\\perp$/vS$\\perp$ ? ˜1.2), slab roll-over with recumbent folds (˜1.2 < vSP$\\perp$/vS$\\perp$ < ˜1.5) and slab roll-over (vSP$\\perp$/vS$\\perp$ ? ˜1.5). The model findings have been applied to subduction zones in nature with well-resolved slab geometries, for which subduction partitioning ratios have been calculated during the last 20 million years in two global reference frames: the Indo-Atlantic and Pacific hotspot reference frames. The model-nature comparison determines in which reference frame subduction partitioning ratios are most in agreement with observed slab geometries. In the Indo-Atlantic frame, five (out of five) selected subduction zone segments with well-resolved slab geometries, plate velocities and trench velocities (Japan, Izu-Bonin, Mariana, Tonga, Kermadec) agree with the geodynamic model predictions, as calculated subduction partitioning ratios match the observed slab geometries. In the Pacific frame the partitioning ratio of only one subduction zone segment (Izu-Bonin) matches observations. It is thus concluded that the Indo-Atlantic hotspot reference frame is preferred over the Pacific one as a subduction zone reference frame in which to describe plate motions, subduction kinematics and mantle flow.

  9. The Japan Trench and its juncture with the Kuril Trench: cruise results of the Kaiko project, Leg 3

    USGS Publications Warehouse

    Cadet, J.-P.; Kobayashi, K.; Aubouin, J.; Boulegue, J.; Deplus, C.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V "Jean Charcot". The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65?? oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary? ?? 1987.

  10. Oblique convergence and deformation along the Kuril and Japan trenches

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1992-01-01

    The hypothesis that present-day deformation within the southern Kuril forearc is driven by oblique subduction of the Pacific plate is tested using 397 horizontal slip directions derived from shallow-thrust earthquakes from the Kuril and Japan trenches for the period 1963-1991. A simple two-plate model fits the 397 slip vectors significantly worse than a model that permits strike-slip motion of the southern Kuril forearc relative to the overlying plate. Weighted, mean slip directions along the southern Kuril trench are systematically rotated toward the direction orthogonal to the trench, which implies that the net convergence is partitioned into less oblique subduction and trench-parallel displacement of the southern Kuril forearc. The angular discrepancy between the observed slip direction and the direction predicted by the NUVEL-1 Pacific-North America Euler vector implies that the southern Kuril forearc translates 6-11 mm/yr to the southwest relative to the overlying North American plate. These results are consistent with geologically, geodetically, and seismologically observed convergence at the leading edge of the forearc sliver in southern Kokkaido and with previously inferred extension at the trailing edge of the sliver, which is located at the Bussol Strait at 46 deg N.

  11. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems

    E-print Network

    van Keken, Peter

    LETTERS Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems of the Mariana1 and southern Andean2,3 subduction zones show trench- parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic

  12. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms of deviations from the mechanical equilibrium.

  13. Flexural bending of the oceanic plates near the Mariana, Japan, and Philippines trenches

    NASA Astrophysics Data System (ADS)

    Tang, M.; Lin, J.; Zhang, F.

    2013-12-01

    We conducted a detailed analysis of flexural bending of oceanic plates near the Mariana, Japan, and Philippines trenches to better understand the similarities and differences among these major subduction systems in the western Pacific Ocean. For each of the systems, we first obtained a 3-D deformation surface of the subducting plate by removing from the seafloor bathymetry the estimated topographic effects of sediment thickness, seamounts, and age-related thermal subsidence. We then calculated theoretical models of plate deformation along a series of trench-perpendicular profiles and inverted for the vertical force (Vo) and bending moment (Mo) at the trench axis, as well as variations in the elastic plate thickness (Te) that can best explain the observed plate deformation. From analysis of profiles across all trenches, we found that Te is reduced significantly from a value seaward of the outer rise (TeMax) to a value near the trench (TeMin), with the transition at distance Xr from the trench axis. Results of analysis reveal that the Mariana trench has the greatest amplitude of flexural bending (i.e., the greatest trench depth) in the range of 1.39 - 5.67 km and an average of 2.91 km, comparing to the Japan trench (range of 1.0 - 4.08 km, average of 2.59 km) and the Philippines trench (range of 0.48 - 4.04 km, average of 2.41 km). In contrast, the Philippines trench has the relatively narrow trench width (Xr range of 36 - 107 km, average of 68 km), in comparison to the Japan trench (Xr range of 47 - 122 km, average of 83 km) and the Mariana trench (Xr range of 60 - 125 km, average of 92 km). The best-fitting models reveal that for the Mariana trench, the effective elastic thickness is reduced significantly from a value seaward of the outer rise (TeMax = 45 - 55 km) to a value trench-ward of the outer rise region (TeMin = 19 - 40 km), with a corresponding reduction in Te in the range of 20 - 60%. In comparison, for the Japan trench, TeMax = 35 - 55 km, TeMin = 14 - 43 km, with Te reduction ranging 20 - 60%; for the Philippines trench, TeMax = 36 - 52 km, TeMin = 14 - 35 km, with Te reduction ranging 23 - 60%. Together these results illustrate that the elastic strength of the oceanic plates is significantly reduced near trenches, most likely due to pervasive trench-parallel normal faulting caused by flexural bending.

  14. Dehydration of incoming sediments at the Japan Trench

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Kameda, J.; Hamada, Y.; Tanikawa, W.; Kimura, G.

    2014-12-01

    In the 2011 Tohoku-oki earthquake, the seismic fault slip propagated to the trench axis and caused an extremely large tsunami (Ide et al., 2011). Ductile deformation of unconsolidated sediments is commonly prominent in the aseismic shallow parts of the subduction zone. It is unknown how the seismic rupture reached the nearby trench axis. Based on the result of Deep Sea Drilling Project (DSDP) Leg 56 at site 436 (reference, 1977), it is expected that the subducting sediments at the Japan Trench mainly consist of vitric diatomaceous and radiolarian ooze with pelagic clay intervals. Opal and smectite in the pelagic sediments transform respectively into quartz and illite. Kinetic modeling demonstrated that these reactions will progress with active dehydration at 50-60 km horizontally away from the trench axis and with a temperature of 100-120°C. This region coincides with the plate-boundary marked by a prominent seismic reflector. It suggests that the main source of highly pressured fluids is the dehydration of pelagic sediments (Kimura et al., 2012). However, detailed dehydration processes are still unclear mainly due to lack of quantitative sediment composition data. Therefore, in this study, we examined whole rock composition including amorphous silica of the core samples recovered at site 436 as well as those from the Japan Trench by the IODP 343 Japan Trench Fast Drilling Project (JFAST). Analysis of amorphous silica at the drilling site of J-FAST documents that dehydration of the sediments is able to contribute to excess pressure at the shallow part of the megathrust if they underthrust as the same composition. At the drilling site of JFAST, a plate-boundary shear zone was identified around 820 mbsf (Chester et al., 2012). Our analysis showed that the shear zone is characterized by extremely high concentration of smectite (~70 wt%).These results suggest that the abundant smectite may have possibly fostered localized rupture and slip during the earthquake, because smectite has low frictional coefficient. In our presentation, we will also show the results of the permeability and porosity measurements for the core samples recovered at site 436.

  15. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain

    E-print Network

    Conrad, Clint

    Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate, by compiling a dataset of trench fill thickness (a proxy for smoothing of subducting plate relief by sediment relationships between upper plate strain, trench sediment thickness and maximal earthquake magnitude. We find

  16. Paleoseismology off northern Japan: Sediments in the Japan Trench record earthquake activity

    NASA Astrophysics Data System (ADS)

    Fink, H. G.; Ikehara, K.; Kanamatsu, T.; Nagahashi, Y.; Koelling, M.; Strasser, M.; Wefer, G.

    2013-12-01

    The Japan Trench subduction zone has repeatedly been affected by large earthquakes as most recently in 2011 by the giant magnitude 9 Tohoku-Oki earthquake. Several studies indicate that the 2011 earthquake has induced large seafloor displacements and triggered submarine landslides and gravity flows. The depression of the Japan Trench floor acts as sediment trap, where earthquake triggered mass flows originating from the landward slope are deposited. Thus, the deep Trench floor (>7500 m water depth) is a suitable area to trace the paleoseismicity in the region. During the R/V SONNE cruise (SO219A) in 2012, sediment cores have been collected east of the 2011 earthquake epicenter in a 60 km north-south transect along the Japan Trench floor axis, as well as from a small basin on the upper mid slope. The sediment cores contain several turbidite sequences (few cm to m thick), mainly revealing a coarse sand layer on an erosive base and a gradually fining upward to hemipelagic diatomaceous mud. Tephrochronological analyses on intercalated ash layers within the records provide an age control and show that the cores cover the past ~15 ka. Detailed analyses of these records, by using their sedimentological and lithological characteristics, their physical properties (Multi Sensor Core Logging, MSCL) as well as their elemental composition (X-ray Fluorescence, XRF) allow to characterize and to identify specific turbidite units. We observe particular turbidite units with the same characteristics in different cores along the trench axis and on the mid slope. Besides the top-unit turbidite, being related to the 2011 Tohoku earthquake, we detect a widespread unique calcareous nanno fossil bearing turbidite mud as well as some sand turbidite units of similar elemental composition within the records. Their large spatial extent suggests earthquake related trigger mechanisms. Thus, these event deposits sampled from the deep Japan Trench provide important information on the paleoseismic activity of the off Tohoku.

  17. Subduction of the Ogasawara Plateau in the Southern Izu-Ogasawara (Bonin) Trench

    NASA Astrophysics Data System (ADS)

    Miura, R.; Nakamura, Y.; Tokuyama, H.; Tamaki, K.; Koda, K.

    2002-12-01

    The Ogasawara Plateau is a topographic high located on the Pacific plate at the junction of the Izu-Ogasawara Trench and the Mariana Trench. The plateau has 2000 to 3000 m of relief above the ocean floor, and several guyots rest on it. This plateau is the largest subducting seamount in the Western Pacific area. In November 2000, multi-channel seismic reflection data of 3 EW and 4 NS survey lines were collected by M/V Geco Emerald, chartered by Metal Mining Agency of Japan and Japan National Oil Company, in the southern Izu-Ogasawara (Bonin) Trench area,. Seismic reflection data were acquired using a 240-channel streamer of 6000 m length and 134.4 l air gun seismic source. The seismic source was fired every 50 m, except for the line D00-1, which was fired every 100 m due to depth constraints. We processed 3 EW lines (D00-1, "typical" subduction of oceanic plate; D00-2, central part of subducting Ogasawara Plateau; D00-3, southern part of subducting Ogasawara Plateau). Processing included f-k filtering to suppress multiple, followed by common mid-point (CMP) stacking. Post-stack time migration was applied after CMP stacking. These three seismic profiles clarify the geologic structure of the subducting Ogasawara Plateau and the adjacent area. There is no evidence for compressional features such as thrusts or folds in the plateau and the adjacent ocean floor. Normal faults, probably formed during bending of the subducting oceanic plate, are commonly observed in the seaward (Pacific) plate. In contrast, several thrusts are observed in the frontal part of the landward (Philippine Sea) plate, and a very small and accretionary prism is also observed. The top of the subducting plateau is located beneath a fore-arc serpentinite seamount on the Philippine Sea Plate. This observation indicates that the Ogasawara Plateau has been subducting beneath the landward plate, and is not accreting to the overriding plate. The structural features of the plateau and the deformed landward plate, imaged using seismic profiling, suggest high-relief oceanic plateaus or seamounts do not necessarily accrete to the overriding plate as ophiolites.

  18. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain

    E-print Network

    Conrad, Clint

    Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate of sediment thickness at trench We constrained sediment thickness at the trench (Tsed), and its lateral variability, for 44 trench sections (Figure 1) based on a compilation of published local seismic

  19. Trench migration and overriding plate stress in dynamic subduction models

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Becker, T. W.; Buffett, B. A.

    2015-04-01

    On Earth, oceanic plates subduct beneath a variety of overriding plate (OP) styles, from relatively thin and negatively buoyant oceanic OPs to thick and neutrally/positively buoyant continental OPs. The inclusion of an OP in numerical models of self-consistent subduction has been shown to reduce the rate that subducting slabs roll back relative to the equivalent single plate models. We use dynamic, 2-D subduction models to investigate how the mechanical properties, namely viscosity, thickness, and density, of the OP modify the slab rollback rate and the state of stress of the OP. In addition, we examine the role of the subducting plate (SP) viscosity. Because OP deformation accommodates the difference between the slab rollback rate and the far-field OP velocity, we find that the temporal variations in the rollback rate results in temporal variations in OP stress. The slabs in our models roll back rapidly until they reach the lower mantle viscosity increase, at which point the rollback velocity decreases. Concurrent with this reduction in rollback rate is a switch from an OP dominated by extensional stresses to a compressional OP. As in single plate models, the viscosity of the SP exerts a strong control on subducting slab kinematics; weaker slabs exhibit elevated sinking velocities and rollback rates. The SP viscosity also exerts a strong control on the OP stress regime. Weak slabs, either due to reduced bulk viscosity or stress-dependent weakening, have compressional OPs, while strong slabs have dominantly extensional OPs. While varying the viscosity of the OP alone does not substantially affect the OP stress state, we find that the OP thickness and buoyancy plays a substantial role in dictating the rate of slab rollback and OP stress state. Models with thick and/or negatively buoyant OPs have reduced rollback rates, and increased slab dip angles, relative to slabs with thin and/or positively buoyant OPs. Such elevated trench rollback for models with positively buoyant OPs induces extensional stresses in the OP, while OPs that are strongly negatively buoyant are under compression. While rollback is driven by the negative buoyancy of the subducting slab in such models of free subduction, we conclude that the physical properties of the OP potentially play a significant role in modulating both rollback rates and OP deformation style on Earth.

  20. Modelling lithospheric ageing during subduction: Implications for the Izu-Bonin-Mariana trench migration

    NASA Astrophysics Data System (ADS)

    di Giuseppe, E.; Faccenna, C.; Funiciello, F.; van Hunen, J.; Lallemand, S.

    2010-12-01

    Lithosphere bends and subducts into the mantle at trenches. Subducting plate cools, thickens, and contracts in time, inducing changes in the strength of the litosphere and its buoyancy as it grows older. Recent worldwide databases reveal that most of the trenches roll back, but a significant amount of them migrates in advancing toward the upper plate. On Earth this dichotomy is exhibited in the Pacific area: most of the advancing slabs are located in the Western Parific, whereas the Eastern Pacific trenches retreat. It seems that the age of the slab, and consequently the slab strength, to a certain extent controls the subduction style. In this study we select a region where geological studies illustate a variability in trench migration in time. The Izu-Bonin-Mariana (IBM) system, the oldest subducting lithosphere on Earth, represents a significant esample. The reconstruction of the trench migration of the IBM subducting system shows a long episode of asymmetric trench rollback, followed by a recent phase of trench advance. We suggest that this evolution of trench migration from retreating to advancing mode would be the consequence of the subduction of progressively older and stiffer lithospheric material. We tested this speculation by performing 2-D numerical, fully dynamic models, implemented in order to mimic the influence of the progressive lithospheric ageing on trench kinematics. The arrival of older and stiffer lithosphere at the trench has, as consequence, the gradual slow down of the trench migration, and the continuous increase of the resisting force for bending. Hence, the plate is forced to move in advancing, and the change in trench migration occurs. Despite the simplified assumptions of the model, we are confident in the robustness of our results. This model can be applied to the IBM subduction system reconciling down-dip slab shape with the recent transition of trench kinematics from retreating to advancing style.

  1. Trench Advance By the Subduction of Buoyant Features - Application to the Izu-Bonin-Marianas Arc

    NASA Astrophysics Data System (ADS)

    Goes, S. D. B.; Fourel, L.; Morra, G.

    2014-12-01

    Most subduction trenches retreat, not only today but throughout the Cenozoic. However, a few trenches clearly advance during part of the evolution, including Izu-Bonin Marianas (IBM) and Kermadec. Trench retreat is well understood as a basic consequence of slab pull, but it is debated what causes trench advance. The IBM trench underwent a complex evolution: right after its initiation, it rotated clockwise, leading to very fast retreat in the north and slow retreat in the south. But since 10-15 Ma, IBM trench motions have switched to advance at the southern end, and since 5 Ma also the northern end is advancing. Based on 2-D subduction models, it has been proposed proposed that the change in age of the subducting plate at the IBM trench (from 40-70 m.y. at the initiation of the trench 45 m.y. ago to 100-140 m.y. lithosphere subducting at the trench today) and its effect on plate strength could explain the transition from trench retreat to trench advance, and that the age gradient (younger in the north and older in the south) could explain the rotation of the trench. However, with new 3-D coupled fluid-solid subduction model where we can include such lateral age gradients, we find that this does not yield the observed behaviour. Instead, we propose an alternative mechanism, involving the subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench and show that it can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  2. Outer slope faulting associated with the western Kuril and Japan trenches

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuo; Nakanishi, Masao; Tamaki, Kensaku; Ogawa, Yujiro

    1998-08-01

    Elongated fault escarpments on the outer slopes of the western Kuril and Japan trenches have been investigated through detailed swath bathymetric mapping. Numerous horsts and grabens formed by these escarpments were identified. Distinct N70°E linear alignment of the escarpments, parallel to the magnetic anomaly lineations, was revealed on the outer slope of the western Kuril Trench. In the Japan Trench north of 39°00'N, most of the escarpments are parallel to the trench axis and oblique to the magnetic lineations. A zig-zag pattern of faulting exists south of 39°00'N. Each topographic profile was decomposed by computer analysis into two curves representing (1) the smoothed long-wavelength slope of the subducting ocean-crust surface and (2) the short-wavelength (<10 km) roughness of plateaus and valleys edged by outward- and inward-facing fault escarpments. Throughout the surveyed areas, escarpment heights increase from the crest of the trench outer swell down to a depth of about 6000 m on the slope of the outer trench wall, but with no distinct increase below that depth. No significant difference is recognized in fault throws towards and away from the trench. It can be concluded that these elongated escarpments originate from normal faults on the upper layer of the oceanic crust under extensional stress in a direction perpendicular to the trench axis, which is caused by downward bending of the subducting lithosphere. The relationship of escarpment height to escarpment length is similar to that obtained from normal fault escarpments in the East Pacific Rise crest. The maximum length and height of escarpments are small in the Kuril Trench compared with those in the Japan Trench, implying a difference in mechanical strength depending on the fault orientation. The crust is weakest along the inherited spreading fabric, second weakest probably along the non-transform offset direction and strongest in directions very oblique to these orientations. Seamounts appear to be more rigid than normal ocean crust, with no particular weak orientations, resulting in fewer but larger faults along the axis of plate bending, as most clearly represented in the subducting Daiichi-Kashima Seamount.

  3. Seismic Tomography for the Crust and Upper Mantle behind the Japan Trench

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2014-12-01

    The Pacific plate subducts WNW under the Eurasian plates with a ~30° angle of dip and a rate of ~8 cm/yr from the Japan-Kuril Trench. The Kuril-NE Japan arc of the uppermost mantle, overlying the subducting Pacific slab, is the locus of important processes, including serpentinization of the forearc mantle wedge, repeated genesis of megathrust earthquakes, slab dehydration, arc magmatism and interplate coupling. To improve our knowledge of crustal and upper mantle structures through tomographic imaging, we determined the three-dimensional (3-D) velocity (Vp, Vs) and Vp/Vs structures under the Kuril-NE Japan subduction zone. The Vp, Vs and Vp/Vs models provide compelling evidence for a highly hydrated and serpentinized forearc mantle and the fluids related to low-velocity and high-Vp/Vs anomalies associated with the slab dehydration. Significant slow anomalous Vp and Vs with a high-Vp/Vs ratio are clearly imaged along the volcanic front with an extended depth of ~100 km under the Kuril-NE Japan arc, showing good consistency with the results of previous studies. This is caused mainly by the fluids associated with the extensive dehydration of the subducting Pacific slab. Fluid-related anomalies under the Kuril-NE Japan arc system, attributed to various processes such as slab dehydration and serpentinization of the forearc mantle wedge, are contributed mainly by arc magmatism, interplate coupling and the repeated generation of megathrust earthquakes. The characteristic distribution of high and low Vp/Vs in the forearc continental crust along the trench-parallel direction may reflects the spatial heterogeneity of the amount of the subducted water which related to the difference of the sedimentary unit and seismic activity in the oceanic crust. Our study demonstrates that the directly optimization of Vp/Vs tomographic procedure provides more stable and reliable Vp/Vs image than previous method.

  4. Evidence for active subduction at the New Guinea Trench P. Tregoning

    E-print Network

    Tregoning, Paul

    subduction of the Solomon Sea Plate occurs beneath the South Bismarck Plate on the New Britain Trench complicated with inter- actions between Halmahera, the Molucca Sea Plate and Sulawesi while east of 148°E

  5. Mechanism for normal faulting in the subducting plate at the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiyuan; Lin, Jian; Behn, Mark D.; Olive, Jean-Arthur

    2015-06-01

    We investigate the mechanisms of normal fault initiation and evolution in the subducting Pacific Plate near the Mariana Trench, through bathymetry analysis and geodynamic modeling. We model the subducting plate as an elastoplastic slab subjected to tectonic forcing at the trench, including vertical load, bending moment, and horizontal tensional force. In our simulations, normal faults initiate within the outer rise region and reach maximum throw toward the trench. This result holds over a wide range of tectonic forcing and is consistent with observations of the Challenger Deep region, where multibeam bathymetry data indicate faults initiate near the outer rise at 70-110 km from the trench and reach maximum throw at 10-35 km from the trench. However, models require a horizontal tensional force with magnitude comparable to axial vertical load to jointly explain the observed seafloor bathymetry, location of maximum normal fault throw, and prevalence of normal faults dipping toward the trench.

  6. Mechanism for Normal Faulting in the Subducting Plate at the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Lin, J.; Behn, M. D.; Olive, J. A. L.

    2014-12-01

    We investigate the characteristics of normal faulting between the trench and outer rise in the subducting Pacific plate through analysis of high-resolution multi-beam bathymetry and geophysical data and geodynamic modeling. Analysis of multi-beam bathymetry data reveals significant variations in normal faulting characteristics along the Mariana trench: (1) The vast majority of the observed surface normal faulting scarps are observed to be sub-parallel to the local strike of the Mariana trench axis, indicating that the orientation of normal faults is predominantly controlled by subduction-related stresses rather than by pre-existing abyssal hill fabrics. (2) Trench-parallel normal fault scarps become apparant as the subducting plate approaches the outer rise of the Mariana trench, indicating that normal faulting initiates in this region. (3) Along the Mariana trench, the Challenger Deep region is associated with the greatest trench depth and largest average values of normal fault throw, while regions with seamounts near the trench axis show the smallest average values of fault throw. To explore the mechanisms that control normal faulting in a subducting plate, we perform numerical simulations of elasto-plastic plate subjected to tectonic loading, bending, and horizontal forces from slab pull. Modeling results suggest that bending-induced extensional stresses in the upper plate reaches maximum values near the outer rise, consistent with the onset of normal faulting in this region. However, bending alone does not predict the continued growth of normal faults toward the trench. We hypothesize that this additional fault growth could be related to (1) tectonic stresses induced by steep topographic slopes; and/or (2) slab pulling forces that are originated in the upper mantle due to the negative buoyancy of a subducted slab but are transmitted to the shallower part of the lithospheric plate prior to its subduction.

  7. Thermal effects of hydrothermal circulation and seamount subduction: Temperatures in the Nankai Trough Seismogenic Zone Experiment transect, Japan

    NASA Astrophysics Data System (ADS)

    Spinelli, G. A.; Harris, R. N.

    2011-12-01

    We examine the thermal effects of seamount subduction. Seamount subduction may cause transient changes in oceanic crust hydrogeology and plate boundary fault position. Prior to subduction, seamounts provide high-permeability pathways between the basaltic crustal aquifer and overlying ocean that can focus fluid flow and efficiently cool the oceanic crust. As the seamount is subducted, the high-permeability pathway is closed, shutting down the advective transfer of heat. If significant fluid flow occurs, it would be restricted after seamount subduction and would result in a redistribution of heat warming the trench and cooling landward parts of the system. Additionally, subducting seamounts can influence the position of the plate boundary fault that has thermal consequences by locally controlling the proportions of incoming sediment that subduct and accrete. Shifting the décollement to the seafloor at the trench in the wake of seamount subduction causes limited cooling focused at the toe of the margin wedge. We apply these features of seamount subduction to a thermal model for the Nankai Trough Seismogenic Zone Experiment transect on the margin of Japan. Models with hydrothermal circulation provide an explanation for anomalously high surface heat flux observations near the trench. They yield temperatures of ˜100°C-295°C for the rupture area of the 1944 Tonankai earthquake. Temperatures in the region of episodic tremor and slip are estimated at ˜290°C-325°C, ˜70°C cooler than a model with no fluid circulation.

  8. Constraints on subducting plate strength within the Kermadec trench

    E-print Network

    Billen, Magali I; Gurnis, M

    2005-01-01

    parallel to the plate boundary, namely the trench. Second,plate boundaries as faults simultaneously reproduce not only the steep trenchplate boundaries (Table 6.1 in [Watts, 2001]). Within the Kermadec trench

  9. Heat-flow determination in three DSDP boreholes near the Japan trench

    SciTech Connect

    Burch, T.K.; Langseth, M.G.

    1981-10-10

    The first deep borehole determinations of temperature gradients and heat flow of the landward wall of the Japan Trench and forearc were made on IPOD DSDP leg 57. These heat flow values are based on temperature logs corrected to equilibrium, using a detailed model of the drilling disturbance. Heat flow values on a deeply submerged terrace, landward of the trench slope break are 28 and 32 mW m/sup -2/. A measurement in the midslope terrace basin on the landward wall of the trench yielded a value of 22 mW m/sup -2/. The results are in good agreement with earlier seafloor measurements and indicate that most of the forearc area is characterized by heat flow about one half of that over oceanic lithosphere seaward of the trench. Our observations indicate only a small increase of heat flow from the trench to the volcanic arc, in agreement with thermal models, which suggests that the subduction of the relatively cold oceanic plate continues to dominate the temperature structure for distances of up to 250 km landward of the trench. The temperature profile in the borehole on the midslope terrace indicates possible vertical flow of pore waters. Hundreds of conductivity determinations were made using a new technique.

  10. Relation between subduction megathrust earthquakes, sediment thickness at trench, and plate coupling

    NASA Astrophysics Data System (ADS)

    Heuret, A.; Conrad, C. P.; Funiciello, F.; Lallemand, S.

    2011-12-01

    Extreme seismic events (Mw 8.5 and higher) are uniformly characterized by trench-parallel rupture lengths longer than about 250 km, whereas downdip rupture width ranges from less than 70 km (e.g., Central Aleutians) to more than 200 km (e.g., Andaman-Sumatra). The ability of rupture to propagate in the trench-parallel direction thus appears to play a fundamental role in determining the potential magnitude that an earthquake can achieve for a given subduction zone. The rupture length may be influenced by the nature of the plate interface and the normal stresses applied to the plate interface (plate coupling). The nature of the plate interface is potentially modified by sediment subduction. Subduction of a thick section of trench sediment constructs a laterally homogenous layer between upper and lower plates that smoothes subducted sea-floor relief and strength-coupling asperities (Ruff, 1989). Such a homogeneous interface running parallel to the subduction zone tends to favor long trench-parallel propagation of rupture, and thus large earthquake magnitudes. Compressive normal stresses applied along the plate interface may also tune the earthquake magnitude potential (Ruff & Kanamori, 1980). This plate coupling across the subducting interface can be indirectly estimated by Upper Plate Strain analysis, by using the back-arc as a strain sensor from which we can infer the back-arc stress state. Compressive back-arcs indicate that large stresses are transmitted across the plate interface whereas extensional settings indicate weak plate coupling. Here we present the results of a study funded by the European Science Foundation - EURYI project titled "Convergent margin and seismogenesis". Maximal earthquake magnitude, sediment thickness at the trench and Upper Plate Strain are characterized for worldwide subduction zones in order to test how plate coupling and sediment thickness combine to explain the occurrence of mega-events at the subduction interface. Subduction zones are described through an initial set of 505 transects, systematically extracted each 1° of trench, and merged into 62 subduction segments of homogeneous seismogenetic conditions. Maximal earthquake magnitude has been estimated by combining instrumental and historical seismicity. Trench sediment thickness has been constrained for 48 subduction segments; based on a compilation of 165 different seismic-reflection lines (33% of the initial set of transects).

  11. Incoming sediments and its deformation observed on high resolution seismic profiles in the northern Japan Trench axis region

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kodaira, S.; Yamashita, M.; Miura, S.; Fujie, G.; Strasser, M.; Ikehara, K.; Kanamatsu, T.; Usami, K.

    2014-12-01

    The Japan Trench axis area has been intensively investigated since the 2011 Tohoku earthquake because the large slip reached to the vicinity of the trench axis. We have conducted three high resolution seismic cruises in the northern part of the Japan Trench axis region. The trench area between 38 - 40 N was covered by 81 E-W seismic lines with 2 - 4 km line interval. A 1200 m-long, 192 channel streamer cable and a cluster gun array with volume of 320 - 380 inch3 were used for these surveys. Post-stack time migrated sections provide detailed image of sediments above the subducting Pacific plate and its deformation by the bending-related normal faults on the outer trench slope, thrust faults and possible slope failures in the trench axis and inner trench slope. The deformation style of the sediments in the trench axis shows variation along the trench strike. To the south of the survey area in 38 - 39 N, the trench axis shows imbricate thrust-and-fold packages, which could be related to the interaction between the frontal prism toe and horst-graben structure. To the north around 40 N, the trench axis is located on a horst, and frontal thrust and imbricate structure are clearly observed on the seismic profiles. Around 39.5 N, the trench inner slope is very steep. It is suggested that slope failures as rotational slumps have occurred in this area. The trench axis is filled by slump deposits and debris with chaotic acoustic characteristics, which is similar with that in the seaward portion of the frontal prism. Seismic profiles on the outer trench slope show the variation on the thickness of the incoming sediments along the trench strike. It is thick, ~ 500 ms, in the northern part of the survey area around 40 N, and it is ~ 250 ms in the southern part around 38 N. The thickness is varied in the area between 38.5 - 39.5 N, and is very thin at 39.5 N. Sediments on the trench outer slope basically conformably cover the igneous basement of the Pacific plate and they were deformed by the bending-related normal faults, however graben fill sediments which onlap the original incoming sediments are also clearly observed on the seismic profiles in the outer trench slope. These graben fill sediments have been deposited in several isolated basins on the outer trench slope. Similar onlap fill sediments are also observed in a few places in the trench axis.

  12. Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan: Sediment transport

    E-print Network

    Clift, Peter

    Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan complexes of southwest Japan and has preserved a record of sediment flux to the trench during its sediments taken from the forearc and trench of the Nankai Trough, as well as rivers from southwest Japan

  13. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  14. Episodic tremor and slip near the Japan Trench prior to the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro; Hino, Ryota; Suzuki, Syuichi; Kaneda, Yoshiyuki

    2015-03-01

    Change in the rates of aseismic deformation prior to large earthquakes is a major area of interest in earthquake physics. Here we present evidence that episodic tremor and slip occurred in the shallow subduction zone within the source region of the 2011 Tohoku-Oki earthquake prior to the main shock. Ocean bottom seismometers near the Japan Trench recorded some excitations in amplitude of ambient noise level accompanying both the 2008 and 2011 slow slip events. The observed signals show that low frequencies of 5-8 Hz dominated, suggesting that the excitations were due to small low-frequency tremors accompanying the slow slip events. The largest amplitude tremor was observed just before the 2011 event. The estimated sources of tremors were possibly distributed within the coseismic slip area of the 2011 event, suggesting the shallow plate-boundary thrust near the trench is a general location of slow earthquakes.

  15. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction

    E-print Network

    Deformation from the convergence of oceanic lithosphere into Yap trench and its implications in style of deformation and state of stress are observed on a young trench-arc system as a result of subduction of the Oligocene Caroline plate beneath the Philippine Sea plate along the Yap Trench. The unique

  16. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems.

    PubMed

    Kneller, Erik A; van Keken, Peter E

    2007-12-20

    Shear-wave splitting measurements above the mantle wedge of the Mariana and southern Andean subduction zones show trench-parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic anisotropy may be caused by three-dimensional flow associated with along-strike variations in slab geometry. The Mariana and Andean subduction systems are associated with the largest along-strike variations of slab geometry observed on Earth and are ideal for testing the link between slab geometry and solid-state creep processes in the mantle. Here we show, with fully three-dimensional non-newtonian subduction zone models, that the strong curvature of the Mariana slab and the transition to shallow slab dip in the Southern Andes give rise to strong trench-parallel stretching in the warm-arc and warm-back-arc mantle and to abrupt rotations in stretching directions that are accompanied by strong trench-parallel stretching. These models show that the patterns of shear-wave splitting observed in the Mariana and southern Andean systems may be caused by significant three-dimensional flow induced by along-strike variations in slab geometry. PMID:18097407

  17. Quantitative Study of Seismogenic Potential Along Manila Trench: Effects of Scaborough Seamount Chain Subduction

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, Y.; Li, D.; Ning, J.; Matsuzawa, T.; Shibazaki, B.; Hsu, Y. J.

    2014-12-01

    Modern seismicity record along the Manila Trench shows only infrequent Mw7 earthquakes, the lack of great earthquakes may indicate the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a megathrust earthquake. We conduct numerical simulations of the plate coupling, earthquake nucleation and dynamic rupture propagation processes along the Manila subduction fault (15-19.5ºN), taking into consideration the effects of plate geometry (including subducted seamounts), fault strength, rate-state frictional properties and pore pressure variations. Specifically, we use the bathymetry to depict the outline of Manila trench along its strike, 2681 background seismicity (1970/02/13 to 2013/09/06) from Chinese Earthquake Network Center and 540 focal mechanism solutions (1976/01/01 to 2013/01/27) from Global CMT project to constrain the geometry of the subducting Sunda/Eurasian slab. The compilation of seismicity and focal mechanism indicates the plate dipping angle gradually changes from 28º (south of the Scaborough Seamount Chain) to 12º (north of it). This geometric anomaly may due to the subducted part of the seamount chain. Preliminary modeling results using gabbro gouge friction data show that the Scaborough Seamount Chain could be a barrier to earthquake rupture propagation. Only earthquakes larger than Mw7 can overcome the barrier to rupture the entire Manila trench. Smaller earthquakes would cease rupturing when it encounters the seamount chain. Moreover, we propose that Manila trench subduction zone has the potential of rupturing in a Mw8 megathrust earthquake, if the simulation period is long enough for an Mw8 earthquake cycle and dynamic rupture overcomes the subducted Scaborough Seamount Chain. Our model parameters will be further constrained by laboratory rock mechanics experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples (work in progress at China Earthquake Administration Key Laboratory of Earthquake Dynamics), and by GPS records from the Luzon Island. Our results improve ability of earthquake and tsunami hazards assessment and mitigation in the populated regions around the SCS, and provide theoretical basis for future ocean bottom seismometer and seafloor geodesy experiments in the SCS.

  18. P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhao, Dapeng

    2012-05-01

    The active subduction of the young Philippine Sea (PHS) plate and the old Pacific plate has resulted in significant seismic heterogeneity and anisotropy in Southwest (SW) Japan. In this work we determined a detailed 3-D P wave anisotropic tomography of the crust and upper mantle beneath SW Japan using ˜540,000 P wave arrival times from 5,249 local earthquakes recorded by 1095 stations. The PHS slab is imaged clearly as a high-velocity (high-V) anomaly which exhibits considerable lateral variations. Significant low-velocity (low-V) anomalies are revealed above and below the PHS slab. The low-V anomalies above the PHS slab may reflect the upwelling flow in the mantle wedge and the PHS slab dehydration, and they form the source zone of the arc volcanoes in SW Japan. The low-V zones under the PHS slab may reflect the upwelling flow in the big mantle wedge above the Pacific slab. The anisotropy in the crust and upper mantle is complex. In Kyushu, the P wave fast velocity direction (FVD) is generally trench-normal in the mantle wedge under the back-arc, which is consistent with the corner flow driven by the PHS slab subduction. The FVD is trench-parallel in the subducting PHS slab under Kyushu. We think that the intraslab seismicity is a potential indicator to the slab anisotropy. That is, the PHS slab with seismicity has kept its original fossil anisotropy formed at the mid-ocean ridge, while the aseismic PHS slab has reproduced the anisotropy according to its current deformation.

  19. Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Kawakatsu, H.; Shiomi, K.

    2014-12-01

    Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013). In addition, the azimuthal anisotropy in the PAC slab that we obtained is subparallel to that in the PAC plate before subducting (e.g., Shimamura et al., 1983). Therefore, we suggest that the slab anisotropy is "frozen anisotropy", which is attributed to the episode before subduction, and mantle wedge anisotropy reflects present dynamics.

  20. Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate

    NASA Astrophysics Data System (ADS)

    Yamano, Makoto; Hamamoto, Hideki; Kawada, Yoshifumi; Goto, Shusaku

    2014-12-01

    Extensive heat flow measurements were conducted on the seaward side of the Japan Trench for investigation of the extent and the origin of high heat flow previously found on the incoming Pacific plate. The obtained data combined with the existing data showed that high and variable heat flow values are pervasively distributed seawards of the northern half of the trench and within about 150 km of the trench axis. In this anomalous zone, the average heat flow is 60 to 70mW/m2, appreciably higher than the value typical for the seafloor age of about 135 m.y. The occurrence of the anomalous heat flow along the trench indicates that it results from processes closely related to deformation of the incoming plate. Heating by intra-plate "petit-spot" volcanism and/or fluid flow along normal faults developed on the trench slope may yield local heat flow peaks but cannot raise regional average heat flow. The most probable cause of the observed widespread anomalous heat flow is efficient vertical heat transport by hydrothermal circulation in a permeable layer in the oceanic crust, which is gradually developed by fracturing due to plate bending. Similar heat flow and temperature structure anomalies on the seaward side of the trench may exist in other subduction zones.

  1. Seismic constraints on mantle hydration during subduction: Mariana versus Middle America Trench

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Lizarralde, D.; Wiens, D. A.; Collins, J. A.; Holbrook, W.; Van Avendonk, H. J.

    2013-12-01

    We will present new results from active-source seismic experiments that constrain the amount of seawater entering the upper mantle along bending-induced faults at the outer rise of the Mariana and Middle America Trenches. This seawater may fill cracks in the upper mantle with free water; react strongly with olivine in upper mantle peridotite, filling cracks and fault zones with the hydrous mineral serpentinite; and/or diffuse between fault zones, pervasively serpentinizing the upper mantle. The upper mantle accounts for a large portion of the subducting lithosphere, and a hydrated upper mantle may supply the majority of water fluxing into arcs. Serpentinite is not stable at high temperatures and pressures, and, once subducted, would undergo a reverse reaction, releasing water into the mantle at depth and driving many arc- and global-scale geochemical and geodynamic processes. Hydration of the subducting upper mantle by fluid flow along bending-induced faults should depend on the density and depth of this faulting, as well as on the plate convergence rate and upper mantle temperature, which together control the rate of serpentinization reactions. Thus, a test of the outer-rise hydration hypothesis is to compare observations of the distribution of serpentinization in the upper mantle from subduction zones with different plate ages (temperatures); convergence rates; and angles between the relic abyssal-hill fabric, plate motion direction, and the trench (i.e. subduction obliquity), which control patterns of faulting. We will compare new seismic observations of faulting and serpentinization at the outer rise of the Middle America Trench offshore Nicaragua to observations from the central Mariana Trench. At the Middle America Trench, a moderately aged slab (24 Ma), and thus hot upper mantle, is subducting rapidly (85 mm/yr), both conditions that can limit serpentinization. Offshore Nicaragua, bending reactivates relic abyssal-hill fabric, which is oriented parallel to the trench. Here, measurements of seismic anisotropy and slow absolute wavespeeds suggest that these faults penetrate into the upper-most mantle and supply seawater that serpentinizes the mantle by up to ~13% (~1 wt% water). At the Mariana Trench, the slab is much older (140 Ma), and thus colder, and the convergence rate is slower (41 mm/yr), conditions expected to promote serpentinization. Here, preliminary analysis of new data suggests that upper mantle velocities are also significantly reduced under the outer rise. This velocity reduction is most extreme where bending-induced faulting is most pronounced, consistent with serpentinization via fluid flow along faults, although Cretaceous-age off-axis magmatism and the faults themselves may also affect seismic wavespeed. The goal of in-progress work on these Mariana data is to separate these wavespeed effects, enabling an estimate of serpentinization that can be compared to results from a similar analysis of the Middle America data, advancing our understanding of processes controlling the water input to subduction zones in general.

  2. Teleseismic shear wave tomography of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Asamori, Koichi; Zhao, Dapeng

    2015-12-01

    We present a high-resolution shear wave tomography of the Japan subduction zone down to a depth of 700 km, which is determined by inverting a large number of high-quality S-wave arrival-time data from local earthquakes and teleseismic events. The subducting Pacific and Philippine Sea (PHS) slabs are revealed clearly as high-velocity (high-V) zones, whereas low-velocity (low-V) anomalies are revealed in the mantle wedge above the two slabs. The PHS slab has subducted aseismically down to a depth of 480 km under the Japan Sea and to a depth of 540 km under the Tsushima Strait. A window is revealed within the aseismic PHS slab, being consistent with P-wave tomography. Prominent low-V and high-Poisson's ratio (?) anomalies exist below the PHS slab and above the Pacific slab, which reflect hot and wet mantle upwelling caused by the joint effect of deep dehydration of the Pacific slab and convective circulation process in the mantle wedge above the Pacific slab. The hot and wet mantle upwelling has caused the complex geometry and structure of the PHS slab in SW Japan, and contributed to the Quaternary volcanism along the Japan Sea coast. In eastern Japan, low-V zones are revealed at depths of 200-700 km below the Pacific slab, which may reflect hot upwelling from the lower mantle or even the core-mantle boundary.

  3. Development of precision acoustic transponders for GPS/Acoustic observation on the deep seafloor near the Japan Trench axis

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Kido, M.

    2012-12-01

    The 2011 Tohoku-oki earthquake has let most of researchers recognize the importance of seafloor geodetic observation, especially near the trench axis. Iinuma et al. (2012a) estimated the coseismic slip distribution combining onshore GPS data with the seafloor geodetic data. Their results reveal that a huge (> 50 m) slip occurred in a small area (about 40 km in width and 120 km in length) near the Japan Trench and generated the huge tsunami. After the Tohoku-oki earthquake, seismic coupling near the trench axis has become a key to understand giant earthquakes in subduction zones, and it is GPS/Acoustic (GPS/A) repeated seafloor positioning that can give an observational constraint to it. Observation of postseimic deformation is another and urgent task required in the Japan Trench. Seafloor geodetic observation indicates posteseimic deformation near the Japan Trench axis in the north and south of the huge slip area (Iinuma et al., 2012b). The result is clearly different from that of onshore GPS observation. Postseismic deformation is estimated to be a key observation that can discriminate proper models from several ones that can explain the occurrence of the mega thrust. Tohoku University plans to deploy extensive GPS/A observation array along the Japan Trench in 2012 with a fund from MEXT, Japan, to cope with these requests (Kido et al., in this meeting). Precision acoustic transponders have newly been developed for the array to enable the following three requests: (1) observation on the deep seafloor, (2) compatibility among three institutions in Japan, and (3) observation for ten years. The first is the observation on the deep seafloor near the trench. While the Japan Trench axis is deeper than 7000 m, the existing GPS/A sites along the Japan Trench have remained on the seafloor shallower than 2500 m except the one nearest to the trench, where we observed coseismic slip of 31 m (Kido et al., 2011). We deployed 4 units of the new transponders supplied by Kaiyo Denshi, Ltd., in July this year on the seafloor of water depth around 5570 m. We have confirmed reliable acoustic ranging up to a slant range of 13 km, which is necessary for GPS/A observation on the seafloor of 6000 m water depth. The depth of 6000 m is a limit of cost effective glass-sphere pressure housing. The new transponder can also be adaptable to the GPS/A observation systems of Japan Coast Guard and Nagoya University to increase the chance of observations and to realize mutual comparison of the observed results. The acoustic system of Tohoku University was not so different from that of Nagoya University, but was quite different from that of Japan Coast Guard. Stronger Doppler effect on a longer acoustic signal adopted by the Japan Coast Guard was the most critical problem. We deployed one unit of the new transponder on the seafloor of about 2000 m water depth, and Japan Coast Guard has confirmed precise acoustic ranging with it up to a slant range of about 6000 m by using the acoustic system installed on their survey vessel.

  4. Cambrian plutonism in Northeast Japan and its significance for the earliest arc-trench system of proto-Japan: New UPb zircon ages of the

    E-print Network

    Ikegami, Takashi

    Cambrian plutonism in Northeast Japan and its significance for the earliest arc-trench system that the arc-trench system of proto-Japan had developed by the mid-Cambrian (ca. 520­500 Ma) (Isozaki et al

  5. Subduction erosion: the cause of sediment-starved trenches and the birth of new forearc above the seismogenic interface?

    NASA Astrophysics Data System (ADS)

    Vannucchi, P.; Morgan, J.; Sak, P. B.; Balestrieri, M.

    2013-12-01

    Subduction erosion is usually thought to occur at ';sediment starved' margins with trench sediments limited to a layer <400m thick. In the region of CRISP drilling along the Osa Peninsula in Central America, trench sediment thicknesses vary from 100-200m. Here, a pulse of extreme subduction erosion occurred at ~2.5Ma. This episode was linked to the rapid formation of a deep (~1 km) sediment-filled forearc basin where sediment accumulation reached a peak rate of 1035 m/Myr. The most recent sediments in this basin do not come from high Talamanca inland from Osa, but instead from the nearshore Osa mélange within the Osa Peninsula. While rapid sediment accumulation has occurred within this forearc basin, the adjacent trench has remained unfilled, as indicated by IODP Site U1381, 5 km outboard of the trench, where a thin (96 m) veneer of recent to middle Miocene (Serravallian) sediment mantling the aseismic Cocos Ridge was recovered. Thus the highly erosive margin off the Osa Peninsula has had a large volume of sediment delivered offshore, but this sediment never reached the trench and was instead captured within a rapidly subsiding forearc basin. From this example, it is clear that sediment-starved trenches do not necessarily imply low rates of sediment supply to the margin. At this margin, the thin sediment layer in the trench is not the controlling factor for subduction erosion, but rather the consequence of rapid subduction erosion that created a rapidly subsiding forearc basin. A further consequence for Osa is that the forearc is rapidly being transformed from eroded material to the new basin fill. If this material differs rheologically from ';old forearc', this may have further implications for changing seismic characteristics at erosive subduction margins.

  6. Physical properties and Consolidation behavior of sediments from the N. Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Lauer, R. M.; Ikari, M.; Kitajima, H.; Saffer, D. M.

    2013-12-01

    Sediment hydraulic properties, consolidation state, and ambient pore pressure development are key parameters that affect fluid migration, deformation, and the slip behavior and mechanical strength of subduction zone megathrusts. In order to better understand the dynamics and mechanisms of large subduction earthquakes, Integrated Oceanic Drilling Program (IODP) Expedition 343, drilled into the toe of the Japan Trench subduction zone in a region of large shallow slip in the M 9.0 Tohoku earthquake, as part of the Japan Trench Fast Drilling Project (J-FAST). Here, we report on two constant rate of strain (CRS) uniaxial consolidation experiments and two triaxial deformation experiments on bedded claystone and clayey mudstone core samples collected from the frontal prism and subducted sediment section cored at Site C0019, 2.5 km landward of the Japan Trench, from depths of 697.18 and 831.45 mbsf. The goals of our experiments were: (1) to define the hydraulic and acoustic properties of sediments that host the subduction megathrust fault that slipped in the M 9.0 Tohoku earthquake; and (2) to constrain in-situ consolidation state and its implications for in-situ stress. The permeability-porosity trends are similar for the two samples, and both exhibit permeability that decreases systematically with increasing effective stress and decreasing porosity, and which varies log-linearly with porosity. Permeabilities of material from the frontal prism decrease from 5×10-18 m2 at 5 MPa effective stress, to 3.0×10-19 m2 at 70 MPa, and porosities decrease from 51% to 29%, while permeabilities of the subducted sediment sample decrease from 5×10-18 m2 at 5 MPa to 3.6×10-19 m2 at 90 MPa, and porosities decrease from 49% to 36%. In-situ permeabilities for the prism and underthrust sediment samples, estimated using laboratory defined permeability-porosity relationships, are 4.9×10-18 m2 and 3.7×10-18 m2, respectively. Elastic wavespeeds increase systematically with increasing effective stress. P-wave velocities (Vp) in the frontal prism sample increase from 2.1 km/s at 8 MPa to 2.7 km/s at 55 MPa effective stress, and velocities in the underthrust sediment sample increase from 2.3 km/s at 6 MPa to 3.0 km/s at 76.5 MPa. Estimated in-situ Vp for the frontal prism and underthrust sediment sample are 2.1 km/s and 2.4 km/s, respectively. This is slightly higher than both the logging while drilling (LWD) measurements and shipboard velocity measurements on discrete samples. We also estimated pre-consolidation pressures (Pc) for each sample using the work-stress method. Comparing Pc with the present day in-situ vertical stress calculated from shipboard bulk density data, we find that both samples are severely overconsolidated. We report this in terms of overconsolidation ratio (OCR), defined as the ratio of Pc to the in-situ stress expected for the case of normal consolidation. Values of OCR for the prism and underthrust samples are 3.95 and 4.28, respectively. This overconsolidation is broadly consistent with fully drained (non-overpressured) conditions, and may reflect uplift and unroofing of the sediments following peak burial greater than their current depth, a significant contribution from lateral tectonic stresses leading to an effective stress far greater than expected for the case of uniaxial burial, or cementation that leads to apparent overconsolidation.

  7. Development of GPS/A Seafloor Geodetic Network Along Japan Trench and Onset of Its Operation

    NASA Astrophysics Data System (ADS)

    Kido, M.; Fujimoto, H.; Osada, Y.; Ohta, Y.; Yamamoto, J.; Tadokoro, K.; Okuda, T.; Watanabe, T.; Nagai, S.; Kenji, Y.

    2012-12-01

    The Tohoku-oki earthquake in 2011 revealed that an M9-class giant earthquake could occur even in the old subduction zone and that coseismic slip can reach its frontal wedge, where we considered no significant stress had been accumulated in. One of the leading figure of such finding is in situ seafloor geodetic measurement, such as GPS/A technique for horizontal displacement and pressure gauge for vertical displacement. Japan Coast Guard and Japanese university group had developed several GPS/A sites near the source region of the Tohoku-oki earthquake and detected quite large coseismic movements over 20 m in there. Displacement vectors observed these sites showed systematic variation, i.e., mainly confined in the off-Miyagi area and getting larger near the trench. However, subsequent post-seismic deformation shows inexplicable distribution. In order to elucidate this complex feature, MEXT Japan has decided to construct dense and widely-extended GPS/A network along Japan trench, including deep area (~6000m). We, Tohoku and Nagoya universities, have firstly developed high-powered seafloor transponders with an omnidirectional acoustic unit that works at 6000 m deep ocean and enable acoustic ranging over 13 km slant length. In addition, using high-energy density battery, its lifetime is expected 10 years with normal operation. Secondly, we examined the optimal distribution of GPS/A sites forming a network, taken pre-existing sites into consideration. The new network consists of 20 sites (roughly four transponders at a single site and 86 transponders in total). The distribution is dense near the area of complex post-seismic deformation and extended over 400 km to cover the adjacent area of the source region, in where induced earthquake may be expected. The largest obstacle to draw network plan is seafloor topography. Because a GPS/A site is a seafloor benchmark, its installation must be on flat and locally stable spot. Since a single GPS/A site consists of three or more transponders in an area extending roughly the same dimension of its depth, flat spot is quite limited especially near the trench. The positions of the 20 sites were carefully determined using a high-definition bathymetry map. We already have constructed two sites, one of which is 5500 m depth, and successfully obtained acoustic data. In September, we will install rest of the sites (18 sites) and begin initial campaign survey. The second campaign is planned in November. We will introduce details of the network and report updated result in the talk.

  8. Neogene evolution of lower trench-slope basins and wedge development in the central Hikurangi subduction margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Bailleul, Julien; Chanier, Frank; Ferrière, Jacky; Robin, Cécile; Nicol, Andrew; Mahieux, Geoffroy; Gorini, Christian; Caron, Vincent

    2013-04-01

    Detailed analysis of the stratigraphic architecture and deformation of lower trench-slope sedimentary basins permits the tectonic evolution of subduction margins to be constrained. This study utilises offshore seismic reflection profiles and onshore outcrop data to examine the entire lower trench-slope of the Hikurangi subduction margin in the eastern North Island, New Zealand. Our results constrain the main spatial and temporal changes of facies and sedimentary units since about 25 Ma. We demonstrate that the geometries and locations of Miocene to Quaternary sedimentary basins are controlled by tectonic activity and reflect stages of subduction wedge development. Four types of sedimentary basins have been recognized: 1) flysch basins with local olistostromes at the front of seaward propagating thrust sheets; 2) 5-10 km wide turbidite-rich trench-slope basins between uplifting structural ridges (i.e. anticlines) associated with shortening within 100 km of the subduction front at the seafloor; 3) 30-40 km wide trench-slope basins associated with an upslope increase in thrust and ridge spacing; and 4) mixed siliciclastic-carbonate shelves formed in association with margin uplift after filling of the wider (30-40 km) trench-slope basins. The lateral and vertical successions of basin geometries and sedimentary infill are consistent with the overall progressive uplift of the subduction wedge. Formation of some of the wide trench-slope basins may be accompanied by significant local subsidence and normal faulting synchronous with active shortening at the subduction front. Margin-wide normal faulting during the Middle-Late Miocene may have formed due to upslope collapse related to tectonic erosion. All of the basins studied contain major unconformities at their base and top, with basin strata deposited over about 2-8 Myr. The short life span of these lower trench-slope sedimentary basins is consistent with a succession of short paroxysmal tectonic episodes rather than continuous deformation for the duration of subduction. Stratigraphic discontinuities within basins (e.g., facies changes and reversal of paleo-currents) also record short-term tectonic events (c. 1-2 Myr) on the basin-bounding structures and attest to the episodic nature of upper-plate deformation in response to continuous subduction beneath the active margin.

  9. Comment on "The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle" by W.P. Schellart

    E-print Network

    deformation, trench migration and slab dip angle" by W.P. Schellart Carlo Doglioni Dipartimento di Scienze on overriding plate deformation, trench migration and slab dip angle. Tectonophysics, 445, 363­372.] paper uses of the lithosphere. © 2008 Elsevier B.V. All rights reserved. Keywords: Westward drift Subduction hinge Trench

  10. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    USGS Publications Warehouse

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  11. Hadal disturbance and radionuclide profiles at the deepest Japan Trench, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Oguri, Kazumasa; Kawamura, Kiichiro; Sakaguchi, Arito; Toyofuku, Takashi; Kasaya, Takafumi; Murayama, Masafumi; Glud, Ronnie; Fujikura, Katsunori; Kitazato, Hiroshi

    2013-04-01

    Four months after the 2011 Tohoku-Oki earthquake, we carried out a video survey and collected sediment core collection from the hadal region (~7,600 m water depth) of the Japan Trench using an autonomous instrument. Fine material remained suspended at ~50 m above the seabed presumably induced by turbidities released during the central earthquake and the following aftershocks. Elevated levels of Cs-137 (T1/2=30 y) and excess Pb-210 (T1/2=22.3 y) concentrations suggested that 30 cm thick sediment layer had accumulated at the trench base (7,553 m) after the mainshock. However, no Cs-134 (T1/2=2 y) fallout from the Fukushima Dai-ichi nuclear disaster was detected. In contract, inspection of a nearby sediment site (7,261 m) 4.9 km away from the central trench site revealed fewer disturbances as reflected by a recent deposition of only 4 cm sediment, but here we encountered recent Cs-134 fallouts from the top 0-1 cm depth. We propose that the apparent lack of Cs-134 in the central trench is coursed by settlement of turbidites containing Cs-137 from past atmospheric fallout and higher excess Pb-210. The fast transport of the Cs-134 to the hadal slope sediment is presumably induced by enhanced scavenging and the vertical transport associated to an intensified diatom blooming occurring just at the time of the Fukushima disaster.

  12. Subduction trench migration as a constraint on absolute plate motions since 130 Ma

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Flament, Nicolas; Müller, Dietmar; Butterworth, Nathan

    2015-04-01

    The absolute motions of the lithospheric plates relative to the Earth's deep interior are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. Absolute plate motion (APM) models (or "reference frames") derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Previous studies of contemporary plate motions have used subduction zone kinematics as a constraint on the most likely APM model. Here we use a relative plate motion model to compute these values for the last 130 Myr for a range of alternative reference frames, and quantitatively compare the results. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the 130-70 Ma period, where hotspot reference frames are less well constrained, these models yield a much more dispersed distribution of slab advance and retreat velocities. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation of a new method of constraining APMs (and in particular paleolongitude) in deep geological time.

  13. Short communication The December 7, 2012 Japan Trench intraplate doublet (Mw 7.2, 7.1) and

    E-print Network

    Duputel, Zacharie

    Short communication The December 7, 2012 Japan Trench intraplate doublet (Mw 7.2, 7.1) and interactions between near-trench intraplate thrust and normal faulting Thorne Lay a, , Zacharie Duputel b Keywords: Japan Trench intraplate earthquake doublet Plate bending stress Earthquake triggering a b s t r

  14. GPS/acoustic seafloor geodetic observation in the subduction zone around Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Sato, M.; Kido, M.; Tadokoro, K.; Fujimoto, H.

    2013-12-01

    GPS/acoustic (GPS/A) seafloor geodetic observation is a precise seafloor positioning technique and has made great progress over the last decade. GPS/A observation determines the positions of acoustic mirror-type transponders installed on the seafloor by combining the two techniques of kinematic GPS and acoustic ranging through a ship or a buoy. The original idea was proposed by Prof. Spiess at the Scripps Institution of Oceanography in 1985 and its protocol and hardware were made through research and development of his group by the mid-1990s. In Japan, three research groups, Japan Coast Guard, Tohoku University and Nagoya University, began to develop the GPS/A observation system in the 1990s, established GPS/A observation sites mainly on the landward slope of the plate boundaries around Japan, such as the Japan Trench and the Nankai trough, and have been carrying out campaign observations since around 2000. The primary purpose of our observation is to detect and monitor the crustal deformation caused by the subduction of the oceanic plate near the plate boundary where large interplate earthquakes have repeatedly occurred. By continuous efforts for over a decade, the positioning precision has achieved a few centimeters and seafloor movements such as intraplate deformation and coseismic displacements have been successfully detected. In particular, regarding the 2011 Tohoku-oki earthquake (M9.0), which occurred off northeastern Japan on March 11, 2011, east-southeastward coseismic displacements of up to 31 m were observed above the focal region, especially close to the epicenter, while those detected by on-land GPS measurements over 100 km away from the epicenter, conducted by the Geospatial Information Authority of Japan, was up to 5.3 m. Coseismic slip models on the plate boundary estimated from not only GPS data but also GPS/A results indicate that a huge slip of more than 50 m generated close to the trench axis, which was much larger than that estimated from GPS data only. This demonstrates the indispensable roles of seafloor geodesy. After the event, Tohoku University and Nagoya University deployed additional GPS/A sites along the Japan Trench in order to monitor postseismic movements offshore spatially, especially close to the trench axis. In addition, Japan Coast Guard deployed additional GPS/A sites along the Nankai Trough, southwestern Japan, where there are growing concerns about the occurrence of a huge earthquake in the future. This expansion will enable us to detect the spatial change of intraplate velocities along the Nankai Trough, which reflects the difference of the degrees of interplate coupling. We have more than 50 GPS/A sites in total and have been carrying out several campaign observations per site per year. Seafloor geodetic data is an important key to understand the mechanism of the occurrence of interplate earthquakes which occur in the sea area.

  15. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  16. The buoyancy variation of plate coupling from subduction to collision: an example across the northernmost Manila trench

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2015-04-01

    The Manila trench is the boundary between the South China Sea (SCS) of Eurasian Plate (EU) and Philippine Sea Plate (PSP). The east subducting of SCS is a ceased rifting oceanic crust. To the north, the subduction is obscured and transits to collision extended to the Taiwan orogenesis. The Taiwan Integrated Geodynamics Research (TAIGER) project has implemented several offshore multichannel seismic (MCS) reflection and wide-angle seismic experiments to model the velocity structure of the incipient arc-continental collision. Amongst, along two trench perpendicular transects (MGL0905_23, 25) are associated with ocean bottom seismometer (OBS) deployed in the northern Manila trench. The transect MCS data and tomographic velocity structure provide well constraint on the recognition between the crust and mantle lithosphere that helps to reconstruct synthetic density structure to fit the observation gravity data. The synthetic gravity result along two transects also show that there exists an anomalous high density (~2.97 g/cm3) mass beneath the accretionary prism in the leading edge of overriding plate; however, unfortunately, the MCS and OBS data have no resolution there. Meanwhile, the buoyancies of crust (Hc) and mantle lithosphere (Hm) can be calculated associated with the residual topography based on the isostatic equilibrium. According to the contribution of Hm, the estimation of the plate coupling effect can be approached. Combining two transects data across the northern Manila trench and one profile across the Hengchun Peninsula in southern Taiwan (T29-33, TAICRUST project), a sequence from subduction to collision of plate coupling effect can therefore be evaluated, and also offers the opportunity to examine the lithospheric structure variation in the zone between Taiwan and northernmost Manila trench.

  17. Draft du 6 avril-2009, submitted (and rejected) to Advances in Space Research Chilean-French cGPS Operations along the Subduction Trench in Chile, South-1

    E-print Network

    Vigny, Christophe

    GPS Operations along the Subduction Trench in Chile, South-1 America2 3 Christophe Vigny1 , Anne Socquet2 , Alain Division Technique de l'INSU, Meudon, France11 4 Departamento de Geofísica (DGF), Universidad de Chile, Santiago, Chile.12 13 Abstract:14 The subduction in Chile is very active with in average a Mw 8 event every

  18. On the evolution of Subduction-Transform Edge Propagators (STEPs): application to the Pliny-Strabo 'trenches'

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob

    2015-04-01

    At the eastern side of the Aegean slab, tomographic evidence shows that a slab edge is present. The subducting African plate needs to tear to permit continued subduction and rollback of the Hellenic trench. This vertical tear is named a Subduction-Transform Edge Propagator (STEP) and is defined as the region of active tearing. At the eastern side of the Hellenic trench, the active STEP is probably located along the Ptolemy 'trench'. The surface expression (deformation zone) of this propagating STEP is observed in bathymetry and seismology, where the Pliny-Strabo 'trenches' are referred to as the STEP fault zone, i.e. the deformation zone in the wake of the active STEP. Due to its immaturity, the plate boundary is a relatively wide zone as strain has not localized yet. A key question is the propagation direction of an active STEP. It is suspected that passive margins may play a critical role in steering a STEP as they represents first order strength contrasts between oceanic and continental lithosphere. Here, we seek to identify the preferred propagation direction for a STEP and also investigate the effect of passive margins on STEP propagation (direction) through mechanical, finite element models. Our model results show that propagation of a STEP along a passive margin-ocean interface is likely for a range of models which show a passive margin-trench orientation within 15 degrees from a perpendicular setup. Passive margins are rarely straight features and with the inclusion of a change in strike of the passive margin ahead of the active STEP, model results show that propagation will occur along the passive margin-ocean interface if this change is less than 25 degrees from a perpendicular setup. Surprisingly, the subduction history and magnitude of the strength(/effective viscosity) contrast across the passive margin are less relevant. The STEP system seems relatively insensitive to small scale details, e.g. so that small, gradual changes in passive margin orientation do not affect STEP propagation. For the eastern side of the Aegean slab, tectonic reconstructions suggest that the passive margin was oriented nearly perpendicular to the STEP fault in the Pliocene. Propagation of the STEP into the oceanic lithosphere of the Eastern Mediterranean basin along the Pliny-Strabo 'trenches' is therefore consistent with our model results, i.e., an expected consequence of the (past) tectonic setting.

  19. Seismic structure related to the Philippine Sea plate subduction beneath the southwestern Nansei-Shoto (Ryukyu) Trench

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.; Horiuchi, D.; Fujioka, Y.

    2013-12-01

    The northwestern part of the Philippine Sea plate (PSP) is subducting beneath the Nansei-Shoto (Ryukyu) Trench. Earthquakes larger than M8 have not been recorded instrumentally in the southwestern part of the Ryukyu Trench. However, there was a large tsunami killed around 12,000 people in 1771 and the position of the source area has not been established. The direction of the PSP subduction is almost perpendicular to the Ryukyu Trench to the northeast of 126.5 E and changes to oblique to the southwest. Seismicity varies along the trench axis and lower seismicity seems to correspond to the free-air gravity anomaly high region in the forearc at around 126 E. On the other hand, the Okinawa-Luzon fracture zone extending from southwest to northeast on the PSP subducts beneath Ryukyu Trench to the northeast of 126 E and seems to relate to the high gravity anomaly. We carried out seismic experiments to elucidate these inhomogeneous crustal structures along the southwestern part of the trench and provide valuable information on potential source areas for large earthquakes and/or tsunamis. We conducted five seismic lines across southwestern Ryukyu Trench region. Multichannel reflection seismic (MCS) data using 240 ch. and 3000 m long hydrophone streamer were collected for airgun shots at an interval of 50 m. We also deployed ocean bottom seismographs (OBSs) as a receiver at an average interval of 5 km along each line. A tri-gun cluster with a volume of 1,050 (350 * 3) cubic inches (17.2 liters) was used for the reflection surveys and a non-tuned airgun array with a volume of 6,000 (1500 * 4) cubic inches (98 liters) was shot at an interval of 200 m (90 sec) for the wide-angle seismic survey. Depth conversion from the MCS time section was carried out using the refraction results. In this paper, we present the seismic structure related to the PSP subduction in the forearc region of the Nansei-Shoto island arc. The subducting Okinawa-Luzon fracture zone was able to be clearly imaged beneath two MCS lines to the northeast of 126 E. The fracture zone has several rows of valleys, of which the maximum relative depths are more than 0.5 km. The MCS records show such fracture topography subducts without deformation. P-wave velocity structure beneath the high free-air gravity region in the forearc at 125-127 E shows that materials with a high velocity of around 4 km/s ascend to 1 km below the seafloor at the shallowest region, which indicates that the gravity anomaly high does not reflect the fracture zone directly. There are not clear splay faults in the seaward of the high gravity region, but this might be due to insufficient energy of the airgun source. On the other hand, distinctive signals from the plate boundary and the fault branching from the plate boundary were detected in the oblique subduction area to the southwest of 125 E.

  20. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals

    NASA Astrophysics Data System (ADS)

    Emry, Erica L.; Wiens, Douglas A.; Garcia-Castellanos, Daniel

    2014-04-01

    We investigate faulting within the incoming Pacific plate at the Mariana subduction trench to understand stresses within the bending plate, regional stresses acting upon the plate interface, and the extent of possible faulting-induced mantle serpentinization. We determine accurate depths by inverting teleseismic P and SH waveforms for earthquakes occurring during 1990-2011 with Global Centroid Moment Tensor (GCMT) solutions. For earthquakes with Mw 5.0+, we determine centroid depths and source time functions and refine the fault parameters. Results from Central Mariana indicate that all earthquakes are extensional and occur at centroid depths down to 11 km below the Moho. At the Southern Mariana Trench, extensional earthquakes continue to 5 km below the Moho. One compressional earthquake at 34 km below the seafloor suggests stronger plate interface coupling here. In addition, we model the stress distribution within the Pacific plate along two bathymetric profiles extending seaward from the Mariana subduction trench axis to better understand whether our earthquake depth solutions match modeled scenarios for plate bending under applied external forces. Results from our flexure models match the locations of extensional and compressional earthquakes and suggest that the Pacific plate at Southern Mariana is experiencing larger, compressional stresses, possibly due to greater interplate coupling. Additionally, we conclude that if extensional faulting promotes the infiltration of water into the subducting plate mantle, then the top 5-15 km of the Pacific plate mantle are partially serpentinized, and a higher percentage of serpentinization is located near the Central Mariana trench where extensional events extend deeper.

  1. Seismicity detection around the subduting seamount off Ibaraki the Japan Trench using dense OBS array data

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Mochizuki, K.; Shinohara, M.; Yamada, T.; Hino, R.; Ito, Y.; Murai, Y.; Sato, T.

    2013-12-01

    A subducting seamount which has a height of about 3 km was revealed off Ibaraki in the Japan Trench by a seismic survey (Mochizuki et al., 2008). Mochizuki et al. (2008) also interpreted that interplate coupling was weak over the seamount because seismicity was low and the slip of the recent large earthquake did not propagate over it. To carry out further investigation, we deployed dense ocean bottom seismometers (OBSs) array around the seamount for about a year. During the observation period, seismicity off Ibaraki was activated due to the occurrence of the 2011 Tohoku earthquake. The southern edge of the mainshock rupture area was considered to be located around off Ibaraki by many source analyses. Moreover, Kubo et al. (2013) proposes the seamount played an important role in the rupture termination of the largest aftershock. Therefore, in this study, we try to understand about spatiotemporal variation of seismicity around the seamount before and after the Mw 9.0 event as a first step to elucidate relationship between the subducting seamount and seismogenic behavior. We used velocity waveforms of 1 Hz long-term OBSs which were densely deployed at station intervals of about 6 km. The sampling rate is 200 Hz and the observation period is from October 16, 2010 to September 19, 2011. Because of the ambient noise and effects of thick seafloor sediments, it is difficult to apply methods which have been used to on-land observational data for detecting seismicity to OBS data and to handle continuous waveforms automatically. We therefore apply back-projection method (e.g., Kiser and Ishii, 2012) to OBS waveform data which estimate energy-release source by stacking waveforms. Among many back-projection methods, we adopt a semblance analysis (e.g., Honda et al., 2008) which can detect feeble waves. First of all, we constructed a 3-D velocity structure model off Ibaraki by compiling the results of marine seismic surveys (e.g., Nakahigashi et al., 2012). Then, we divided a target area into small areas and calculated P-wave traveltimes between each station and all small areas by fast marching method (Rawlinson et al., 2006). After constructing theoretical travel-time tables, we applied a proper frequency filter to the observed waveforms and estimated seismic energy release by projecting semblance values. As the result of applying our method, we could successfully detect magnitude 2-3 earthquakes.

  2. Mass-transport deposits in the northern Ecuador subduction trench: Result from frontal erosion over multiple seismic cycles

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Collot, Jean-Yves; Sosson, Marc; Migeon, Sebastien

    2010-05-01

    Investigations of Mass Transport Deposits (MTDs) and turbidite depositions in the confined North Ecuador subduction trench provide access to paleo-seismic information and insights into long-term mechanisms for frontal tectonic erosion at a convergent margin. The Ecuadorian margin is located along Northwestern South America, where the Nazca plate underthrusts eastward the South America plate with a 58 mm.yr-1 convergence rate. The studied trench has been the site of four great subduction earthquakes (7.7 ? Mw ? 8.8) during the 20th century, and is isolated from major continental sediment input, so that investigated MTDs and turbidites are considered of local origin. Swath bathymetry, seismic reflection and Chirp data, together with sedimentary cores and 14C datings revealed that seven MTDs emplaced in distinct trench sub-basins since ~20 kyr, and 27 turbidites deposited in the southernmost trench sub-basin since ~4.7kyr. Our analysis shows that six MTDs derived from the margin, while a single one stemmed from the outer trench wall. Temporal correlations between MTDs emplaced within trench sub-basins separated by a structural saddle, indicate that the seven MTDs emplaced during five main events. Three were triggered locally and tentatively dated 5.2 kyr, 1.4 kyr and sub-actual, whereas four were emplaced in distinct trench sub-basins as a result of two regional events at 20 kyr and 13.7 kyr. None of the MTDs occurred during the fast stage of the last sea level rise (~14 to 8 kyr). However, dissociation of gas hydrates during the last 8 kyr-stage of slow sea level rise might have contributed to trigger the three youngest MTDs. Synchronous deposits in independent basins however suggest that at least part of the MTDs were likely triggered by earthquakes. Low sedimentation rates on the slope and high recurrence seismicity also support a seismic trigger for the 27 turbidites sampled in the trench. However, the large 1.4-12 kyr MTDs return time strongly contrasts with the 50-250 yr turbidites return time. The later is consistent with the 73 to >103 yr frequency of Mw?8.2 to ?8.8 earthquakes, implying that turbidites might have been triggered by large earthquakes. The very large MTDs return time is attributed to long-term deformation processes and mechanical weakening of the margin outer wedge, in response to repeated variations in basal friction, pore pressure and margin extensional/contraction strain over multiple earthquake cycles. This process contributes to short-term frontal erosion, which rate is estimated to be 9.7 km3/Myr/km, since at least 13 kyr.

  3. Mass-transport deposits in the northern Ecuador subduction trench: Result of frontal erosion over multiple seismic cycles

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Collot, Jean-Yves; Sosson, Marc; Migeon, Sebastien

    2010-07-01

    Investigations of Mass-Transport Deposits (MTDs) and turbidite deposition in the confined North Ecuador subduction trench provide access to paleoseismic information and insights into long-term mechanisms for frontal tectonic erosion at a convergent margin. The studied trench has been the site of four great subduction earthquakes (7.7 ? Mw ? 8.8) during the 20th century. The trench is isolated from major continental sediment input, so that investigated MTDs and turbidites are considered of local origin. Swath bathymetry, seismic reflection and Chirp data, together with sedimentary cores and 14C dating revealed that seven MTDs were emplaced in distinct trench sub-basins since ˜ 23 kyr, and 27 turbidites deposited in the southernmost trench sub-basin since ˜ 4.9 kyr. Our analysis shows that six MTDs were derived from the margin, while a single one stemmed from the outer trench wall. Temporal correlations between MTDs emplaced within trench sub-basins separated by a structural saddle, indicate that the seven MTDs were emplaced during five main events. Three were triggered locally and tentatively dated 5.8, 1.6 kyr and Recent, whereas four were emplaced in distinct trench sub-basins as a result of two regional events at 22.6 and 15.4 kyr. None of the MTDs occurred during the fast stage of the last sea-level rise (˜ 13 to 8 kyr). However, dissociation of gas hydrates during the last 8 kyr-stage of slow sea-level rise might have contributed to trigger the three youngest MTDs. The large 1.5-13.5 kyr return time of the MTDs contrasts with that of 189 yr of the turbidites. The later is consistent with the 73 yr return time of two local Mw ? 8.2 earthquakes, implying that turbidites might have been triggered by large earthquakes. The very large MTDs return time is attributed to long-term deformation processes and mechanical weakening of the margin outer wedge, in response to repeated variations in basal friction, pore pressure and margin extensional/contraction strain over multiple earthquake cycles. This process contributes to short-term frontal erosion, the rate of which is estimated to be 8.6 · 10 - 3 km 3/kyr/km, since at least 15.4 kyr.

  4. Constraints on Subduction Zone Coupling along the Philippine and Manila Trenches based on GPS and Seismological Data

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Johnson, K. M.; Nowicki, M. A. E.; Bacolcol, T. C.; Solidum, R., Jr.; Galgana, G.; Hsu, Y. J.; Yu, S. B.; Rau, R. J.; McCaffrey, R.

    2014-12-01

    We present results of two techniques to estimate the degree of coupling along the two major subduction zone boundaries that bound the Philippine Mobile Belt, the Philippine Trench and the Manila Trench. Convergence along these plate margins accommodates about 100 mm/yr of oblique plate motion between the Philippine Sea and Sundaland plates. The coupling estimates are based on a recently acquired set of geodetic data from a dense nationwide network of continuous and campaign GPS sites in the Philippines. First, we use a kinematic, elastic block model (tdefnode; McCaffrey, 2009) that combines existing fault geometries, GPS velocities and focal mechanism solutions to solve for block rotations, fault coupling, and intra-block deformation. Secondly, we use a plate-block kinematic model described in Johnson (2013) to simultaneously estimate long-term fault slip rates, block motions and interseismic coupling on block-bounding faults. The best-fit model represents the Philippine Mobile Belt by 14 independently moving rigid tectonic blocks, separated by active faults and subduction zones. The model predicts rapid convergence along the Manila Trench, decreasing progressively southwards, from > 100 mm/yr in the north to less than 20 mm/yr in the south at the Mindoro Island collision zone. Persistent areas of high coupling, interpreted to be asperities, are observed along the Manila Trench slab interface, in central Luzon (16-18°N) and near its southern and northern terminations. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with high coupling observed at its central and southern segments. We identify the range of allowable coupling distributions and corresponding moment accumulation rates on the two subduction zones by conducting a suite of inversions in which the total moment accumulation rate on a selected fault is fixed. In these constrained moment inversions we test the range of possible solutions that meet criteria for minimum, best-fit, and maximum coupling that still fit the data, based on reduced chi-squared calculations. In spite of the variable coupling, the total potential moment accumulation rate along each of the two subduction zones is estimated to range from 3.98 x 1019 to 2.24 x 1020 N-m yr-1, equivalent to a magnitude Mw 8.4 to 8.9 earthquake per 100 years.

  5. GPS/Acoustic Observations Along the Japan Trench for Postseismic Deformation After the 2011 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Kido, M.; Tomita, F.; Osada, Y.; Fujimoto, H.; Hino, R.; Ohta, Y.; Iinuma, T.; Azuma, R.; Wada, I.

    2014-12-01

    After the 2011 Tohoku-Oki Earthquake, we realized that the interplate coupling can be extended to the trench even for subducting slab of great age. Monitoring the recovering process of the coupling after the earthquake may provide important knowledge on the total perspective of this great earthquake. For this purpose, Japanese government decided to strengthen the monitoring systems by means of seafloor geodesy. Constructing a GPS/Acoustic network along the trench is one of these projects. Before the earthquake, only five (Japan Coast Guard) and three (Tohoku Univ.) benchmarks were working off-Tohoku area, however, in 2012, we have newly installed up to 20 benchmarks along the trench, especially close to the trench. We took place GPS/Acoustic surveys after the installation and have carried out four times of campaign surveys until 2013 (FY). Not all the benchmarks were measured in each campaign, however, three times of campaigns were made for most of the benchmarks ranging 1 or 1.5 years. Because of such a short period of data accumulation and hard conditions on the accuracy due to great depth (>5000 m) than before, the estimated errors in the obtained displacement vectors are typically 5-10 cm for most of the benchmarks, which are not enough to clearly address the postseismic deformation. Nevertheless, some benchmarks, one is at relatively close to the coast and the other is on the incoming Pacific plate off-Miyagi, show significant WNW-ward movements up to 17 cm/yr, which is much larger than interseismic subducting rate. This gives a strong constraint to evaluate the viscoelastic relaxation process after the earthquake. More campaign surveys are planned in the next year to accumulate the data for improvement of the total accuracy in the displacement vectors for all the benchmarks. In addition, we are dedicated in improving the analytic technique to reduce error sources, such as acoustic signal processing and sound speed correction to lessen the uncertainty in each campaign data. In the presentation, we will introduce our measured results above and additional benchmarks applying the analytical improvement.

  6. Variations of short-term slow slip events along the Nankai Trough to the Ryukyu Trench, southwest Japan

    NASA Astrophysics Data System (ADS)

    Nishimura, T.

    2013-12-01

    ETSs (Episodic Tremor and Slips) occur at a depth of 30-40 km on the plate interface of the subducting Philippine Sea plate along the Nankai trough, southwest Japan (e.g., Obara, 2010). Low-frequency tremors along the Nankai Trough suddenly disappeared southwest of the Bungo Channel between Shikoku and Kyushu, which is a junction between the southwest Honshu arc along the Nankai Trough and the Ryukyu arc along the Ryukyu Trench. Any short-term SSEs (slow slip events) have never been reported southwest of the Bungo Chanel, though Mw~7 long-term SSEs repeated in the Bungo Channel every ~6 years (e.g., Ozawa et al., 2013). Here, we apply a SSE detection method using continuous GNSS data (Nishimura et al., 2013) to find out SSEs in a region along the Nankai Trough to the Ryukyu Trench. We also compare the detected SSEs with epicenters of low-frequency tremors, very-low-frequency earthquakes (VLFEs), and regular earthquakes and discuss along-trench variations on short-term SSE characteristics. Daily coordinates of ~800 GEONET GNSS stations in southwest Japan were used to detect displacements caused by short-term SSEs. We divided a whole region into three regions for spatial filtering to reduce a noise of GNSS data. We fitted a step function with a linear trend to spatial-filtered daily coordinates to detect significant displacements in a direction opposite to the relative plate motion between the Philippine Sea plate and southwest Japan. If Akaike's information criterion expressing data fits exceeds a threshold, three-dimensional displacements were inverted to estimate a rectangular fault along the plate interface. We found more than 200 probable short-term SSEs in the region over 16 years. In western Shikoku, we detected 49 Mw ~6.0 ETSs. SSEs with a similar magnitude are found at the same depth range in northeast Kyushu without tremors although the number of detected SSEs is only 10. In the further southwest region, we found several shallow SSEs at a depth of 10-40 km. Some of them accompany regular earthquakes with the maximum magnitude of ~5. A shallow Mw~6.4 SSE was detected east off southern Kyushu around January 27, 2010. VLFEs were coincidentally activated in a shallow adjacent region near the trench. Although a resolving power of SSEs along the Ryukyu arc is limited due to sparse GNSS stations, we found series of repeated SSEs near Kikaijima and Okinawa Islands in a depth of 10-30 km. A cumulative slip of the estimated SSEs over 16 years suggests along-trench variations of SSEs distribution. A band of large (> 10 cm) slip at a depth of 30-40 km stretches from Shikoku to northeast Kyushu which is ~50 km southwest of the western limit of the tremors. However, the cumulative slip in the Bungo channel and northeast Kyushu is one-third of that in western Shikoku. No shallow slip of SSEs was found from Shikoku to northeast Kyushu. Shallow separated patches of SSEs exist in a region southwest of southern Kyushu along the Ryukyu trench. The variation of SSEs may be related with that of large megathrust earthquakes, that is, repeated Mw>8 and few earthquakes along the Nankai Trough and the Ryukyu Trench, respectively.

  7. Multiple-scale hydrothermal circulation in 135 Ma oceanic crust of the Japan Trench outer rise: Numerical models constrained with heat flow observations

    NASA Astrophysics Data System (ADS)

    Ray, Labani; Kawada, Yoshifumi; Hamamoto, Hideki; Yamano, Makoto

    2015-09-01

    Anomalous high heat flow is observed within 150 km seaward of the trench axis at the Japan Trench offshore of Sanriku, where the old Pacific Plate (˜135 Ma) is subducting. Individual heat flow values range between 42 and 114 mW m-2, with an average of ˜70 mW m-2. These values are higher than those expected from the seafloor age based on thermal models of the oceanic plate, i.e., ˜50 mW m-2. The heat flow exhibits spatial variations at multiple scales: regional high average heat flow (˜100 km) and smaller-scale heat flow peaks (˜1 km). We found that hydrothermal mining of heat from depth due to gradual thickening of an aquifer in the oceanic crust toward the trench axis can yield elevated heat flow of the spatial scale of ˜100 km. Topographic effects combined with hydrothermal circulation may account for the observed smaller-scale heat flow variations. Hydrothermal circulation in high-permeability faults may result in heat flow peaks of a subkilometer spatial scale. Volcanic intrusions are unlikely to be a major source of heat flow variations at any scale because of limited occurrence of young volcanoes in the study area. Hydrothermal heat transport may work at various scales on outer rises of other subduction zones as well, since fractures and faults have been well developed due to bending of the incoming plate.

  8. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy; Windley, Brian; Wang, Lu; Wang, Zhensheng; Li, Xiaoyong; Zhu, Peimin

    2015-04-01

    We define and test a unifying plate tectonic driving mechanism that explains the characteristics of the destruction of cratonic lithospheric roots. We document and model the relationships between flat slab subduction, trench suction, and craton destruction, using examples from the North China and Wyoming cratons, each of which locally lost approximately 100 km of their lithospheric roots in the Cretaceous and which show spatio-temporal relationships with episodes of flat slab subduction in the mantle transition zone associated with deep mantle hydration, coupled with slab rollback and concomitant influx of fertile mantle material to accommodate the space created by slab rollback. A similar process has more recently operated along the western side of the Brazilian craton where it is thrust beneath the thickened crust of the Andes in an area of trench rollback. The importance of the mutual interaction between these processes for destruction of cratonic roots may be greater than currently perceived. Together with the other processes of subduction erosion and arc subduction, larger amounts of continental lithosphere may have been subducted or otherwise returned to the sub-lithospheric mantle than previously appreciated. When oceanic lithosphere subducts, it hydrates the upper mantle beneath an arc from well-known dehydration reactions. However, some hydrous phases (e.g., Phase A, Phase E, and -?t and ?-phase olivine) are stable to much greater depths and dehydrate even when a slab is in the mantle transition zone. It is estimated that 40% of the water subducted in hydrated oceanic crust, mantle, sediments, and subducted continental material reaches the mantle transition zone between 410 and 660 km. For instance lawsonite may contain up to 11% water, and is stable up to 11 GPa or about 300 km and serpentinites can contain up to 13% water and are stable up to 7 GPa, and after conversion to denser hydrous phases such as ?-phase olivine they can be stable up to 50 GPa, well past the mantle transition zone. With increasing temperature (i.e., more time in the transition zone for deep flat slabs) these phases decompose to less hydrous wadsleyite and ringwoodite with 2.2-3.3 wt % water, releasing water to the deep mantle, which rises and hydrates the overlying mantle. During flat slab subduction dehydration reactions therefore add water to the overlying mantle wedge. As the subducting slabs roll back, they suck in mantle material to infill the void space created by the slab roll back, and this fertile mantle becomes hydrated. The roll-back causes concomitant lithospheric thinning of the overlying craton so the flux of newly hydrated mantle material inevitably rises causing adiabatic melting, generating new magmas that gradually destroy the roots of the overlying craton through melt-peridotite reactions. Calculated fluxes of new mantle material beneath cratons that have lost their roots range from 2.7 trillion to 70 million cubic kilometers, which is sufficient to generate enough melt to completely replace the affected parts of the destroyed cratons. Cratonic lithosphere may be destroyed in massive quantities through this mechanism, warranting a re-evaluation of continental growth rates with time.

  9. 3-D Simulation of Steady Plate Subduction with Tectonic Erosion: Current Crustal Uplift and Free-Air Gravity Anomaly in Northeast Japan

    NASA Astrophysics Data System (ADS)

    Hashimoto, Chihiro; Sato, Toshinori; Matsu'Ura, Mitsuhiro

    2008-04-01

    Free-air gravity anomaly in plate subduction zones, characterized by island-arc high, trench low and outer-rise gentle high, reflects the cumulative effects of long-term crustal uplift and subsidence. In northeast Japan the island-arc high of observed free-air gravity anomaly takes its maximum about the eastern coastline. On the other hand, the current vertical crustal motion estimated from geological and geomorphological observations shows a gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Such a discrepancy in spatial patterns between the free-air gravity anomaly and current vertical crustal motion can be ascribed to a change in the mode of crustal uplift and subsidence associated with the initiation of tectonic erosion at the North American-Pacific plate interface. We developed a realistic 3-D simulation model of steady plate subduction with tectonic erosion in northeast Japan on the basis of elastic/viscoelastic dislocation theory. Through numerical simulations with this model we found that simple steady plate subduction brings about the crustal uplift characterized by island-arc high with its maximum about the eastern coastline, while steady plate subduction with tectonic erosion, which is represented by the landward retreat of the plate interface, brings about gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Therefore, if we suppose that tectonic erosion started 3 4 million years ago after the long duration of simple steady plate subduction, we can consistently explain both patterns of free-air gravity anomaly and current crustal uplift in northeast Japan.

  10. Major Existence of Very Low Frequency Earthquakes in Background Seismicity Along Subduction Zone of South-western Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.

    2003-12-01

    The condense, high quality and equalized broadband seismic network provided us to recognize the variety of seismic sources. The active volcanoes excite seismic waves with various frequency characteristics. Some cases show the long period seismic waves greater than 10 sec associates with volcanic activities. The tectonic seismic events originated at the close to trench zone are frequently lack of high frequency, greater than 1 Hz, seismic wave component. Meanwhile, the many low frequency earthquakes and tremors whose sources are not explicated are occurred in lower crust and subcrustal region. The subduction zone of Philippine Sea plate in south-western Japan is actively genetic area of low frequency earthquake group. The broadband seismic array of Japan region observed unknown long period ground motions. The seismograms are higher amplitude between 10 and 30 sec period than ground noise level. The earthquake JMA and USGS catalogues don_ft list about these long period seismograms. The arrival order of wave packet means that these events locate subduction zone around Japan. The hypocenters of unknown events are estimated by arrival times of vertical peak amplitude using the assumption that the ground motion dominates Rayleigh wave. The more detailed determination of major events is performed by combined technique for moment tensor inversion and grid search. The moment magnitude of uncatalogued event is greater than 3.5 because of the detection limitation. The largest event is distributed to about 4.5 Mw level and special event is greater than 5.0. The frequency characteristics show that source time is 7 to 20 sec by comparison with synthetic seismograms. We call these uncatalogued events _gvery low frequency earthquake_h. The hypocenters are located to two kinds of zones along the Philippine Sea subducting plate in south-western Japan. The one zone is very close to the trough. The seismicity listed by earthquake catalogues is low level in the zone and hypocenters are distributed in island arc side. The very low frequency earthquakes occur in outer area of seismic generation zone. The other zone is coincided with extended zone generating low frequency seismic events. Very low frequency earthquake occurs intermittently in limited area. Frequently, activity increases for some days and swarm type activity generates occasionally. To evaluate integrated seismicity for anomalous events, same class magnitude, greater than 3.0, events occurred in same and surrounding area are picked up from JMA earthquake catalogue. The analysis shows that seismicity of very low frequency earthquakes is comparative with one of normal earthquakes in background activity. We concluded that very low frequency earthquake is one of factors playing seismically important role.

  11. Direct-path acoustic ranging across the Japan Trench axis, Adjacent to the Large Shallow Thrusting in the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.

    2014-12-01

    Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process. ?To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for each of the two baselines. Although the duration of the observation was not long enough to estimate precise rate of baseline length changes, it is unlikely that the shortening rates of the baseline lengths exceed the rate of plate convergence (~ 8 cm/a). The results do not support occurrence of evident afterslip along the shallow plate boundary fault in 2013.

  12. 3-D simulation for the tectonic evolution around the Kanto Region of Japan using the kinematic plate subduction model

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Kameo, K.; Yamamoto, S.

    2011-12-01

    In the Kanto region of Japan, we can observe one of the most active crustal deformations on the earth. In the southern part of the Boso peninsula to the south, the uplift rate is estimated to be 5 mm/yr from the height of marine terraces. From geological evidence, the Kanto mountains to the west are considered to uplift at 1mm/yr. In contrast, the center part of the Kanto region is stable or subsiding, covered by the Holocene sediments. The depth of the basement reaches 3 km at the deepest. Vertical deformation in the timescale of 1 Myr is being revealed by the analysis of the recent seismic reflection experiments compared with the heights of the dated sediment layers exposed on land. These crustal deformation occurs in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands due to the buoyancy of the arc crust. At the plate boundaries near the Izu-Bonin arc, large interplate earthquakes occurred at the Sagami trough in 1703 and 1923 (Kanto earthquake) and at the Nankai trough in 1707, 1854 and 1944. To reveal the crustal deformation under these plate-to-plate interactions, we use the kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend because of its buoyancy. This can be represented by giving slip-rate deficit. When crustal deformation occurs, it also causes change in geometry of the plate boundary itself. Iterating this effect sequentially backward in time, we can reconstruct the past plate boundary geometry and past crustal deformation fields. Using the above model, we estimate the long-term slip-rate distribution due to plate subduction/collision to explain the crustal deformation in Kanto obtained from geological and geomorphological studies. The basic deformation pattern of the basin-forming movement in the Kanto plain and uplifts in the southern Boso peninsula and in the Kanto and Akaishi mountains cannot be explained by the collision restricted to the Izu peninsula only. It is necessary to assume wider collision extended to the neighboring Sagami and Suruga trough, which is consistent to the width of the arc crust of the Izu-Bonin arc. However, the degree of the collision is relatively small in these areas where large interplate earthquake occurs. The effect of temporal change in geometry of the plate interfaces is not so large in the timescale of 1 Myr.

  13. Depth of seismic coupling along subduction zones

    NASA Astrophysics Data System (ADS)

    Tichelaar, Bart W.; Ruff, Larry J.

    1993-02-01

    The depth dependence of underthrusting seismicity is investigated here by mapping the maximum depth of the coupled plate interface in several subduction zones that have generated large and great earthquakes. Transition depths of coupling-uncoupling are found for the circum-Pacific subduction zones of Honshu, Kuriles, Kamchatka, Aleutians, Alaska, and Mexico. For an average P wave velocity of 6.7 km/s above the plate interface the stability transition occurs at 40 +/- 5 km for most subduction zones. At the Hokkaido trench junction, where the Japan trench and the Kurile trench interact, seismic coupling is deep and extends down to 52-55 km. Deep coupling is also found in the Coquimbo region in central Chile. The Mexico subduction zone transition occurs at 20-30 km. The mechanism that may determine coupling depth is explored.

  14. Reflections from midcrustal rocks within the Mesozoic subduction complex near the eastern Aleutian Trench.

    USGS Publications Warehouse

    Fisher, M.A.; Von Huene, R.; Smith, G.L.

    1987-01-01

    Seismic reflection data show that highly reflective rocks make up the midcrust of the convergent margin adjacent to the eastern Aleutian Trench. These rocks form an arch that strikes obliquely across the strongly expressed NE-SW structural grain of exposed Mesozoic rocks. Deep reflections could be from underplated rocks that have been arched by the imbrication or underplating of strata below the reflective rocks. Speculates that one band of reflections that rises toward but does not reach the surface is from the Eagle River thrust fault, which separates Late Cretaceous melange from deformed turbidite sequences of the same age. -from Authors

  15. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench.

    PubMed

    Felden, J; Ruff, S E; Ertefai, T; Inagaki, F; Hinrichs, K-U; Wenzhöfer, F

    2014-05-01

    Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL(-1) day(-1)) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep-sea trench biodiversity as well as to the organic carbon availability, also for non-seep organisms, in such oligotrophic benthic environment of the dark deep ocean. PMID:24593671

  16. Earthquake generation cycles and tsunami simulations providing possible scenarios for Turkey (Marmara sea) and Japan (Nankai trough and Japan trench)

    NASA Astrophysics Data System (ADS)

    Hori, Takane; Yalciner, Ahmet; Ozel, Nurcan; Kilic, Irfan; Miyazaki, Shin'ichi; Hyodo, Mamoru

    2015-04-01

    In order to obtain comprehensive earthquake and tsunami scenarios for disaster assessment, numerical simulations of earthquake generation cycles and resultant tsunami generations have been performed in Japan. The occurrence of the 2011 Tohoku earthquake has realized us the necessity to consider all the possible scenarios without preconceptions. We have performed large-scale numerical simulations using Earth Simulator and K-computer for earthquake generation cycles along the Nankai trough, southwest Japan, where megathrust earthquakes with some segments have sequentially occurred. We have succeeded to reproduce various rupture pattern seen in historical data and geological evidences (such as tsunami deposit) being consistent with GEONET data during interseismic period. Using the results of such earthquake generation cycle simulations, we performed tsunami generation, propagation and inundation simulation. In Turkey, tsunami simulation methods and tsunami scenario database have been developed. In the research project of SATREPS -Earthquake and tsunami disaster mitigation in the Marmara region and disaster education in Turkey, we are applying such earthquake generation cycle and tsunami simulations to the North Anatolian fault system to obtain possible earthquake scenarios and to improve tsunami scenario data base for Sea of Marmara. For the modeling of the fault system, we will use observation results by the earthquake source modeling group in this project to improve the existing models. The earthquake scenarios will be used also for strong motion predictions by the group of seismic characterization and damage prediction. We will visualize the simulation results for disaster education. Furthermore, we will contribute to improve semi-realtime earthquake analyses and tsunami forecasting. In the presentation, we will show some recent simulation results of earthquake generation cycles and tsunamis for Turkey (Marmara sea) and Japan (Nankai trough and Japan trench). Acknowledgements: Support by Japan-Turkey Joint Research Project by JICA and JST on earthquakes and tsunamis in Marmara Region (SATREPS) is acknowledged.

  17. Variable Holocene deformation above a shallow subduction zone extremely close to the trench

    PubMed Central

    Thirumalai, Kaustubh; Taylor, Frederick W.; Shen, Chuan-Chou; Lavier, Luc L.; Frohlich, Cliff; Wallace, Laura M.; Wu, Chung-Che; Sun, Hailong; Papabatu, Alison K.

    2015-01-01

    Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and 230Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4–40?km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next. PMID:26123872

  18. Variable Holocene deformation above a shallow subduction zone extremely close to the trench.

    PubMed

    Thirumalai, Kaustubh; Taylor, Frederick W; Shen, Chuan-Chou; Lavier, Luc L; Frohlich, Cliff; Wallace, Laura M; Wu, Chung-Che; Sun, Hailong; Papabatu, Alison K

    2015-01-01

    Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and (230)Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4-40?km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next. PMID:26123872

  19. Variable Holocene deformation above a shallow subduction zone extremely close to the trench

    NASA Astrophysics Data System (ADS)

    Thirumalai, Kaustubh; Taylor, Frederick W.; Shen, Chuan-Chou; Lavier, Luc L.; Frohlich, Cliff; Wallace, Laura M.; Wu, Chung-Che; Sun, Hailong; Papabatu, Alison K.

    2015-06-01

    Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and 230Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4-40 km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next.

  20. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation

    NASA Astrophysics Data System (ADS)

    Koge, Hiroaki; Fujiwara, Toshiya; Kodaira, Shuichi; Sasaki, Tomoyuki; Kameda, Jun; Kitamura, Yujin; Hamahashi, Mari; Fukuchi, Rina; Yamaguchi, Asuka; Hamada, Yohei; Ashi, Juichiro; Kimura, Gaku

    2014-12-01

    The 2011 Tohoku-Oki earthquake (Mw 9.0) produced a fault rupture that extended to the toe of the Japan Trench. The deformation and frictional properties beneath the forearc are keys that can help to elucidate this unusual event. In the present study, to investigate the frictional properties of the shallow part of the plate boundary, we applied the critically tapered Coulomb wedge theory to the Japan Trench and obtained the effective coefficient of basal friction and Hubbert-Rubey pore fluid pressure ratio (?) of the wedge beneath the lower slope. We extracted the surface slope angle and décollement dip angle (which are the necessary topographic parameters for applying the critical taper theory) from seismic reflection and refraction survey data at 12 sites in the frontal wedges of the Japan Trench. We found that the angle between the décollement and back-stop interface generally decreases toward the north. The measured taper angle and inferred effective friction coefficient were remarkably high at three locations. The southernmost area, which had the highest coefficient of basal friction, coincides with the area where the seamount is colliding offshore of Fukushima. The second area with a high effective coefficient of basal friction coincides with the maximum slip location during the 2011 Tohoku-Oki earthquake. The area of the 2011 earthquake rupture was topographically unique from other forearc regions in the Japan Trench. The strain energy accumulation near the trench axis may have proceeded because of the relatively high friction, and later this caused a large slip and collapse of the wedge. The location off Sanriku, where there are neither seamount collisions nor rupture propagation, also has a high coefficient of basal friction. The characteristics of the taper angle, effective coefficient of basal friction, and pore fluid pressure ratio along the Japan Trench presented herein may contribute to the understanding of the relationship between the geometry of the prism and the potential for generating seismo-tsunamigenic slips.

  1. Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Arai, Kohsaku; Inoue, Takahiko; Ikehara, Ken; Sasaki, Tomoyuki

    2014-12-01

    To investigate the present-day geological deformation occurring off the Pacific coast of Tohoku, Japan, we obtained high-resolution multichannel seismic reflection and bathymetric data in 2007. The study area is located along the Japan Trench near the epicenter of the 2011 off the Pacific coast of Tohoku Earthquake. The seismic profiles do not show active structures indicative of compressional stress on the forearc slope. Instead, recent tectonic deformation is characterized by extensional subsidence and the occurrence of normal faults within a series of small basins on the slope to a water depth of ?3000 m. These isolated basins are thickest (?525 m, ?0.7 s two-way travel time) in regions underlying areas of flat bathymetry. The isolated basins range in width from several to 40 km and are covered by stratified sediments onlapping at the termination of concave-down reflectors. The seismic units below the basins show continuous, subparallel internal reflectors, suggesting that the subsidence-related deformation started abruptly and recently. The thickness of sediments overlying the unconformity at the top of the Cretaceous is roughly constant in the upper slope area. However, lenticular internal reflection patterns occur locally. The lenticular sedimentary units are similar to the isolated basins in terms of their widths and internal reflection patterns. We infer that episodes of extensional deformation of the overriding plate, in the form of isolated basins, have occurred over geological time. We suggest that the geological structures of the forearc slope along the Japan Trench are typical of those resulting from subduction erosion and propose that the episodic subsidence accompanied by normal faulting is the most recent deformation.

  2. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    PubMed

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-01-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas. PMID:26399180

  3. The 2000 Nemuro-Hanto-Oki earthquake, off eastern Hokkaido, Japan, and the high intraslab seismic activity in the southwestern Kuril Trench

    USGS Publications Warehouse

    Takahashi, H.; Hirata, K.

    2003-01-01

    The 2000 Nemuro-Hanto-Oki earthquake (Mw6.8) occurred in the southwestern part of the Kuril Trench. The hypocenter was located close to the aftershock region of the great 1994 Kuril earthquake (Mw8.3), named "the 1994 Hokkaido-Toho-Oki earthquake" by the Japan Meteorological Agency, for which the fault plane is still in debate. Analysis of the 2000 event provides a clue to resolve the fault plane issue for the 1994 event. The hypocenters of the 2000 main shock and aftershocks are determined using arrival times from a combination of nearby inland and submarine seismic networks with an improved azimuthal coverage. They clearly show that the 2000 event was an intraslab event occurring on a shallow-dipping fault plane between 55 and 65 km in depth. The well-focused aftershock distribution of the 2000 event, the relative location of the 1994 event with respect to the 2000 event, and the similarity between their focal mechanisms strongly suggest that the faulting of the great 1994 earthquake also occurred on a shallow-dipping fault plane in the subducting slab. The recent hypocenter distribution around the 1994 aftershock region also supports this result. Large intraslab earthquakes occuring to the southeast of Hokkaido may occur due to a strong coupling on the plate boundary, which generates relatively large stress field within the subducting Pacific plate.

  4. First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique

    NASA Astrophysics Data System (ADS)

    Tomita, Fumiaki; Kido, Motoyuki; Osada, Yukihito; Hino, Ryota; Ohta, Yusaku; Iinuma, Takeshi

    2015-10-01

    The subduction rate of an oceanic plate may accelerate after large earthquakes rupture the interplate coupling between the oceanic and overriding continental plates. To better understand postseismic deformation processes in an incoming oceanic plate, we directly measured the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using a GPS/acoustic technique over a period of 2 years (September 2012 to September 2014). The displacement rate was measured to be 18.0 ± 4.5 cm yr-1 (N302.0°E) relative to the North American Plate, which is almost twice as fast as the predicted interseismic plate motion. Because the sum of steady plate motion and viscoelastic response to the Tohoku-Oki earthquake roughly accounts for the observed displacement rate, we conclude that viscoelastic relaxation is the primary mechanism responsible for postseismic deformation of the Pacific Plate and that significant subduction acceleration did not occur at least not during the observation period.

  5. The huge shallow slip during the 2011 Tohoku-Oki earthquake as a result of very low coseismic shear strength of the Japan Trench décollement material

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Tanaka, H.; Saito, T.; Tsutsumi, A.; Mori, J. J.; Kameda, J.

    2013-12-01

    Megathrust earthquakes commonly occur in subduction zones at depths where there is strong coupling between the plates and long-term strain accumulation. Unconsolidated sediments in the shallow plate-boundary décollement were thought to slip aseismically and have low levels of coupling. However, the 2011 Tohoku-Oki earthquake (Mw9.0) produced unprecedented slip of >50 m near the Japan Trench, resulting in the devastating tsunami. IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST) successfully drilled the décollement in the maximum slip area of the 2011 earthquake. The décollement mostly consists of highly sheared pelagic clays. To investigate the mechanisms of the huge shallow seismic slip, we conducted high-velocity (1.3 m/s) friction experiments on the Japan Trench décollement material at normal stresses of ~2.0 MPa and displacements of ~60 m. To simulate both permeable and impermeable conditions during high-velocity shearing, the water-saturated gouge was placed between a pair of solid cylinders of porous Berea sandstone and Indian gabbro, respectively. The results show rapid slip weakening properties with very low peak and steady-state shear strength. The steady-state values for the effective coefficient of friction at normal stress of 2 MPa are 0.2 and 0.1 for the permeable and impermeable tests, respectively. The steady-state shear stress is independent of normal stress, suggesting the fluid-like behavior of the gouge during high-velocity shearing. The fluid-like behaved gouge is also supported by microstructural observations showing the evidence of fluidization effects such as injection structures and mixing flow. The axial displacement data indicate that the specimen compacted and dilated during permeable and impermeable tests, respectively. For the same amount of displacement, the temperature in the gouge is always smaller for the impermeable tests compared to the permeable tests. These results indicate that high-velocity weakening is more pronounced in the impermeable tests due to more effective thermal pressurization than in the permeable tests. Similar behaviors were also obtained from the high-velocity friction experiments on the Nankai Trough décollement material. However, when we compare the data obtained under the same experimental conditions for the two different regions, the décollement material from the Japan Trench has overall lower effective coefficient of friction than material from the Nankai Trough. The weaker décollement during seismic slip is likely due to higher smectite content in the Japan Trench (80%) than that in the Nankai Trough (30%). The presence of a smectite-rich décollement with very low effective coefficient of friction is incompatible with the idea that large strain accumulates in the region of the plate-boundary during the interseismic period. Our results indicate that large slip result from an extremely low dynamic shear strength due to the abundance of smectite and thermal pressurization effects. Large coseismic displacement could be promoted even in unstrained portions at shallow depths as the earthquake rupture propagates through the smectite-rich fault material particularly under fluid-saturated, impermeable conditions. This provides an explanation for the very large slip and resultant tsunami during the 2011 earthquake.

  6. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.; Rawlinson, N.

    2013-12-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g. Mariana, Scotia). Here we show how such variability might depend on various subduction zone parameters. We present 24 physical parameters that characterize these subduction zones in terms of their geometry, kinematics, geology and dynamics. We have investigated correlations between these parameters and the maximum recorded moment magnitude (MW) for subduction zone segments in the period 1900-June 2012. The investigations were done for one dataset using a geological subduction zone segmentation (44 segments) and for two datasets (rupture zone dataset and epicenter dataset) using a 200 km segmentation (241 segments). All linear correlations for the rupture zone dataset and the epicenter dataset (|R| = 0.00-0.30) and for the geological dataset (|R| = 0.02-0.51) are negligible-low, indicating that even for the highest correlation the best-fit regression line can only explain 26% of the variance. A comparative investigation of the observed ranges of the physical parameters for subduction segments with MW > 8.5 and the observed ranges for all subduction segments gives more useful insight into the spatial distribution of giant subduction thrust earthquakes. For segments with MW > 8.5 distinct (narrow) ranges are observed for several parameters, most notably the trench-normal overriding plate deformation rate (vOPD?, i.e. the relative velocity between forearc and stable far-field backarc), trench-normal absolute trench rollback velocity (vT?), subduction partitioning ratio (vSP?/vS?, the fraction of the subduction velocity that is accommodated by subducting plate motion), subduction thrust dip angle (?ST), subduction thrust curvature (CST), and trench curvature angle (?T). The results indicate that MW > 8.5 subduction earthquakes occur for rapidly shortening to slowly extending overriding plates (-3.0 ? vOPD? ? 2.3 cm/yr), slow trench velocities (-2.9 ? vT? ? 2.8 cm/yr), moderate to high subduction partitioning ratios (vSP?/vS? ? 0.3-1.4), low subduction thrust dip angles (?ST ? 30°), low subduction thrust curvature (CST ? 2.0 × 10-13 m-2) and low trench curvature angles (-6.3° ? ?T ? 9.8°). Epicenters of giant earthquakes with MW > 8.5 only occur at trench segments bordering overriding plates that experience shortening or are neutral (vOPD? ? 0), suggesting that such earthquakes initiate at mechanically highly coupled segments of the subduction zone interface that have a relatively high normal stress (deviatoric compression) on the interface (i.e. a normal stress asperity). Notably, for the three largest recorded earthquakes (Chile 1960, Alaska 1964, Sumatra-Andaman 2004) the earthquake rupture propagated from a zone of compressive deviatoric normal stress on the subduction zone interface to a region of lower normal stress (neutral or deviatoric tension). Stress asperities should be seen separately from frictional asperities that result from a variation in friction coefficient along the subduction zone interface. We have developed a global map in which individual subduction zone segments have been ranked in terms of their predicted capability of generating a giant subduction zone earthquake (MW > 8.5) using the six most indicative subduction zone parameters (vOPD?, vT?, vSP?/vS?, ?ST, CST and ?T). We identify a number of subduction zones and segments that rank highly, which implies a capability to generate MW > 8.5 earthquakes. These include Sunda, North Sulawesi, Hikurangi, Nankai-northern Ryukyu, Kamchatka-Kuril-Japan, Aleutians-Alaska, Cascadia, Mexico-Central America, South America, Lesser Antilles, western Hellenic and Makran. Several subduction segments have a low score, most notably Scotia, New Hebrides and Mariana.

  7. Structural Characteristics of the Philippine Sea Plate Subducted beneath the Southwest Japan Arc

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Kurashimo, E.; Kato, A.; Sato, H.; Iidaka, T.; Nakayama, Y.; Arai, R.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.; Ito, T.; Ito, K.

    2012-12-01

    The northwestward subduction of Philippine Sea (PHS) plate forms a well-known seismogenic zone beneath the Southwest Japan Arc, along which M8-class megathrust earthquakes repeatedly occur. Since the eastern half of this seismogenic zone is situated beneath highly populated areas including Tokyo, Yokohama and Nagoya cities, the understanding on the generation mechanism of the megathrust event is inevitably important from social point of view as well as geological/geophysical interests. This seismogenic zone is geologically separated by the Izu Collision Zone (ICZ), where the Izu-Bonin Arc (IBA) has collided to the SW Japan Arc since middle Miocene. The region west of the ICZ, beneath which a young oceanic crust is subducted, involves fault areas of the 1946 Nankai (M8.0) and 1944 Tonankai (M7.9) Earthquakes. An area just east of the Tonankai fault is considered to be a source region of the forthcoming Tokai Earthquake. East of the ICZ, the forearc side of the IBA is subducted, where the 1923 Kanto Earthquake of M7.9 occurred. Recent intensive active and passive source seismic experiments along SW Japan have revealed general structural features as well as regional difference which provide an important key in understanding of the generation mechanism of megathrust earthquake. The most prominent and common feature of seismic profiles west of the ICZ is very strong reflection generated from a very thin (200-500 m) low velocity (Vp=3-4 km/s) layer at the top of the plate boundary. Careful ray-tracing analysis indicates that the low velocity layer extends from the lowermost limit of the locked part to the wedge mantle. A seismic profile crossing the 1944 Tonankai Earthquake delineated detailed structural change along the downgoing plate. A thin low velocity layer as mentioned above exists at the top of the plate around the deepest limit of the locked part. But, in the deeper part, reflectors are distributed with a several kilometer thickness extending from the wedge mantle to the subducted oceanic crust/upper mantle. Low frequency earthquakes (LFEs) are concentrated within or beneath this reflective zone. This indicates that dehydrated fluids ascending from the oceanic lithosphere are trapped around the wedge mantle and the top of the subducted plate to generate strong reflectivity. Passive source observation by a dense array in Tokai area provided more direct evidence of the dehydrated fluids within the oceanic lithosphere. The most important characteristic in this region is a significantly low Vp/Vs portion around a subducted ridge 15-20 km landward of the deepest limit of the locked portion, probably formed by high-pressure dehydrated fluids. This portion well corresponds to an area of slow slip which continued from 2000 to 2005. The wedge mantle is also characterized by low Vp/Vs and LFEs, as in the case of the Tonankai area. Several seismic reflection experiments east of the ICZ showed that asperities of the Kanto Earthquake are characterized by less reflective portions of the plate boundary. Although the deeper part of the plate is identified as dipping reflectors, their reflectivity is much weaker than in the cases west of the ICZ. Probably, the dehydration and water supply system in this region is significantly different from that west of the ICZ where the young oceanic plate is subducted.

  8. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    NASA Astrophysics Data System (ADS)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  9. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    NASA Astrophysics Data System (ADS)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact natural samples have high porosities of up to ~71 to 75% at a vertical effective stress of 0.1 MPa, which decreases to 39 to 49% at 8 MPa vertical effective stress. The behavior of the remolded samples is in good accordance with compiled in-situ porosity vs. depth profiles from the high porosity zone. This suggests that cementation is not the cause for the anomalously high porosity. The consolidation tests on the artificial samples document that pure ash and pumice samples are highly resistant to consolidation. Between 0.1 to 8 MPa vertical effective stress, the porosity decreases from 51 to 47% for the ash sample and 60% to 46% for the pumice sample. The higher initial porosity in the pumice may be explained by a porous internal grain structure that allows storage of additional water. Mixtures with smectite are characterized by higher compressibility and higher porosity. For a mixture of 80% smectite and 20% pumice the porosity decreases from 65% to 39%, similar to that of the natural samples. Our results suggest that the high porosity zone is caused by the bulk mechanical behavior of pumice in the USB.

  10. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance downward drag of the overriding plate and synchronous strong compressional stress field in the crust. More westerly PHS subduction since middle Pleistocene, suggested by unconformity in the forearc basin deposits and change of sense of fault slip along the active MTL cause stronger horizontal stress in the overriding plate, consistent with increasing geologic slip rate on active structures with this plate configurations. In shorter timescales, during four repetitions of the Nankai subduction zone earthquakes since 17th century, numbers of intraplate large (M>6.5) earthquakes occurred above or near the PHS flat slab are much larger than other surrounding regions. This also may suggest mechanical link between subduction processes and seismicity in the overriding plate.

  11. Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST)

    NASA Astrophysics Data System (ADS)

    Lin, Weiren; Fulton, Patrick M.; Harris, Robert N.; Tadai, Osamu; Matsubayashi, Osamu; Tanikawa, Wataru; Kinoshita, Masataka

    2014-12-01

    We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for four whole-round core samples obtained by the Japan Trench Fast Drilling Project/Integrated Ocean Drilling Program Expedition 343. These thermal properties are necessary for the interpretation of a temperature anomaly detected in the vicinity of the plate boundary fault that ruptured during the 2011 Tohoku-Oki earthquake and other thermal processes observed within the Japan Trench Fast Drilling Project temperature observatory. Results of measured thermal conductivities are consistent with those independently measured using a transient line source method and a divided bar technique. Our measurements indicate no significant anisotropy in either thermal conductivity or thermal diffusivity.

  12. Bending-related Topographic Structures of the Subducting Plate in the Northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nakanishi, M.; Manabe, I.; Oikawa, M.

    2012-12-01

    We present the elongated topographic structures associated with bending of the subducting oceanic plate along the western Kuril, Japan and Izu-Ogasawara trenches using multibeam bathymetric data. The trench-outer rise earthquake near the Japan Trench occurred in the same day after the 2011 Tohoku Earthquake. Several studies pointed out high occurrence probability of trench-outer rise earthquake after the 2011 Tohoku Earthquake in near future. Trench-outer rise earthquakes occur by reactivation or creation of normal faults caused as the oceanic lithosphere approaches a subduction zone and bends into the deep-sea trench. Bending-related faults in the oceanward trench slope are ubiquitous structures of oceanic plates incoming to trenches. In general, the faults are thought to be formed parallel or subparallel to the bending axis of the incoming plate, namely the trench axis. Oceanward slopes of several trenches have bending-related structure with a strike different from the trench axes (Masson, 1991; Kobayashi et al., 1998; Ranero et al., 2003). In these areas, abyssal hill fabric was reactivated instead of the creation of new faulting parallel to the trench axis. The Mesozoic Pacific Plate is subducting along the Kuril, Japan, Izu-Ogasawara, and Mariana trenches (Nakanishi et al. 1992). Kobayashi et al. (1998) investigated the bending-related structures of the oceanward trench slope of the western Kuril and northern Japan trenches using the multibeam data. They concluded that the abyssal hill fabric is revalidated when abyssal hill fabric trend within 30 degree of trench axes. To examine controlling factors for strikes of bending-related structures, it is indispensable to describe oceanic spreading fabric and to identify magnetic anomaly lineations. The oceanic spreading fabric consists of inherited abyssal hill fabric and other preexisting weak zones related to seafloor spreading process, which are fracture zones, non-transform offsets, and so on. The new bathymetric map demonstrated that most of bending-related topographic structures exist in the oceanward trench slopes deeper than 5600 m. The map revealed that bending-related topographic structures are developed parallel to the trench axis or inherited oceanic spreading fabric. Detailed identification of magnetic anomalies near the Japan Trench revealed curved lineations and discontinuity of lineations associated with propagation ridges. Comparison between the detailed bathymetric and magnetic anomaly lineation maps elucidated that abyssal hill fabrics were reactivated where the angle between abyssal hill fabrics and trench axis is less than about 30 degree.

  13. Seismic structure along transitions from flat to normal subduction: central Mexico, southern Peru, and southwest Japan

    NASA Astrophysics Data System (ADS)

    Dougherty, Sara L.

    The fine-scale seismic structure of the central Mexico, southern Peru, and southwest Japan subduction zones is studied using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. The morphology of the transition from flat to normal subduction is explored in central Mexico and southern Peru, while in southwest Japan the spatial coincidence of a thin ultra-slow velocity layer (USL) atop the flat slab with locations of slow slip events (SSEs) is explored. This USL is also observed in central Mexico and southern Peru, where its lateral extent is used as one constraint on the nature of the flat-to-normal transitions. In western central Mexico, I find an edge to this USL which is coincident with the western boundary of the projected Orozco Fracture Zone (OFZ) region. Forward modeling of the 2D structure of the subducted Cocos plate using a finite-difference algorithm provides constraints on the velocity and geometry of the slab's seismic structure in this region and confirms the location of the USL edge. I propose that the Cocos slab is currently fragmenting into a North Cocos plate and a South Cocos plate along the projection of the OFZ, by a process analogous to that which occurred when the Rivera plate separated from the proto-Cocos plate 10 Ma. In eastern central Mexico, observations of a sharp transition in slab dip near the abrupt end of the Trans Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of the USL is found to be coincident with these features and with the western boundary of a zone of decreased seismicity, indicating a change in structure which I interpret as evidence of a possible tear. Analysis of intraslab seismicity patterns and focal mechanism orientations and faulting types provides further support for a possible tear in the South Cocos slab. This potential tear, together with the tear along the projection of the OFZ to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments. In southern Peru, observations of a gradual increase in slab dip coupled with a lack of any gaps or vertical offsets in the intraslab seismicity suggest a smooth contortion of the slab. Concentrations of focal mechanisms at orientations which are indicative of slab bending are also observed along the change in slab geometry. The lateral extent of the USL atop the horizontal Nazca slab is found to be coincident with the margin of the projected linear continuation of the subducting Nazca Ridge, implying a causal relationship, but not a slab tear. Waveform modeling of the 2D structure in southern Peru provides constraints on the velocity and geometry of the slab's seismic structure and confirms the absence of any tears in the slab. In southwest Japan, I estimate the location of a possible USL along the Philippine Sea slab surface and find this region of low velocity to be coincident with locations of SSEs that have occurred in this region. I interpret the source of the possible USL in this region as fluids dehydrated from the subducting plate, forming a high pore-fluid pressure layer, which would be expected to decrease the coupling on the plate interface and promote SSEs.

  14. Sedimentation Triggered by the 2011 Tohoku Megathrust Earthquake along the Japan Trench

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Kanamatsu, T.; Cormier, M. H.; Seeber, L.; Bopp, R.; Ikehara, K.; Usami, K.

    2014-12-01

    Recent developments in the field of subaqueous paleoseismology have provided information about the sedimentation record of earthquakes and about the long-term seismicity of fault systems. In 2013, the Japan Agency for Marine-Earth Science and Technology conducted expeditions NT13-02 and NT13-19 to the 2011 Tohoku Mw 9.0 megathrust earthquake and tsunami source, with R/V Natushima in 800-5,900 m water depth. The goal was identifying earthquake-triggered deposits and mapping their spatial and temporal distribution, as a strategy to recognize the sedimentary signature of Tohoku-like events and measure recurrence intervals for seismic hazard assessment. Twenty-four piston cores, 3 to 6 m long, were recovered during the NT13-19 expedition along a 300 km-long portion of the mid-slope terrace. This elongated structure is parallel to the strike of the Japan Trench, and located landward of the frontal prism where deformation is most intense. Faults, sometimes forming steep scarps, define small (5km long) confined basins that were targeted for coring. Radioisotopes 137Cs and xs210Pb measured in the cores mark the 2011 Tohoku earthquake-related sedimentation. Detection of 134Cs and enrichment of 137Cs provided a 2011 Fukushima reactor signature, which was found in the upper 5cm of several cores and was buried 10-15cm in others. Very high activities of xs210Pb were measured in the upper half-meter of the majority of the cores providing evidence of very recent depositional events that we are linking to the 2011 earthquake. We envision the shaking by the earthquake fluidized a layer of surface sediment, which then moved downslope and was deposited where surface slope decreased. These sediments also incorporated 137Cs derived from global fallout over the past half century. These deposits can be recognized in the cores because they are homogeneous and lack bioturbation. The thickest ones (~1m) have soft sediment deformation features at their base. Along the mid-slope terrace, they are thicker in the region where maximum 2011 rupture displacement was documented. Several older event horizons separated by bioturbated sediments are recognized in the cores. Usami et al. (2014) used tephra chronology to estimate an average recurrence interval of 100-500 yrs in most cores, although some cores suggest recurrence of 1500-2000 yrs.

  15. Subduction dynamics at the middle America trench : new constraints from swath bathymetry, multichannel seismic data, and ¹?Be

    E-print Network

    Kelly, Robyn K

    2003-01-01

    The cosmogenic radionuclide ¹?Be is a unique tracer of shallow sediment subduction in volcanic arcs. The range in ¹?Be enrichment in the Central American Volcanic Arc between Guatemala and Costa Rica is not controlled by ...

  16. Micro-seismicity survey of a seismic gap caused by the subduction of the Louisville seamount chain in the Tonga trench, 25°30’S to 28°S

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Dannowski, A.; Flueh, E. R.; Moeller, S.

    2009-12-01

    The distribution of teleseismically recorded earthquakes in the Kermadec-Tonga subduction zone reveals a major seismic gap centered roughly at 26°S. The gap parallels the trench axis and stretches for approximately 250 km. The seismic gap coincides with the area, where the Louisville hotspot chain enters the Tonga trench. Subducting seamounts may therefore control seismic coupling and hence define seismogenic asperities in subduction zones. Louisville seamounts rise 3 to 4 km above the regional seafloor. Seamounts and guyots are between 10 to 40 km in diameter and hence smaller than the width of the seismic gap, suggesting that other features - like the hotspot swell, crustal underplating or the flexural may contribute or control seismic locking. We deployed a network of 21 ocean-bottom-seismometers (OBS) and 2 ocean-bottom-hydrophones (OBH), including 9 broadband OBS with Guralp CMG-40T sensors. The network covered the southern portion of the seismic gap and the transition zone to “normal” seismic behavior. The ocean bottom seismic stations provided data from July 9, 2007 to December 31, 2007. For the earthquake location procedure we derived a minimum 1-D velocity model from active seismic wide-angle profiling in the uppermost 6 km of the fore-arc crust and earthquake arrival time data at greater depths. In total 1523 local and regional earthquake could be located. Within the network, 383 events have been recorded with a gap of <230 degree at 4 stations, and 160 events with a gap of <180 degree at 6 stations. It is interesting to note that local earthquakes (M < 4) did not mimic the teleseismic gap. Overall, seismicity seems to be randomly distributed within the network. Furthermore, in contrast to other subduction zones, where earthquakes occur predominantly along the subduction megathrust fault, we observed only a few events along the plate boundary. Thus, most local earthquakes occur in the uppermost mantle, perhaps caused by extension related to the slab-pull force of the down-going Pacific lithosphere. However, events that were related to the subduction thrust generally occur in small clusters with 10-20 sub-events, while earthquakes in the mantle of the lower plate were single events. One cluster has been observed in the outer rise seaward of the trench axis. Fife events of this cluster were also reported in the NEIC/PDE catalogue and the largest earthquake was reported as a tensional event in Lamont’s global CMT catalogue. During the time of network operation we recorded in total 15 events that have been reported in the NEIC/PDE catalogue. Earthquake in the global catalogue were biased with respect to the epicenters from the local network. In general, events were mislocated by 40-60 km in east-west direction. In latitude the error was generally in the order of <10 km.

  17. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Miyake, Hiroe; Koketsu, Kazuki

    2015-07-01

    The central Japanese subduction zone is characterized by a complex tectonic setting affected by the dual subduction of oceanic plates and collisions between the island arcs. To better understand of the subduction system, we performed an anisotropic tomography analysis using P-wave arrival times from local earthquakes to determine the three-dimensional structure of P-wave azimuthal anisotropy in the overriding plate and the Pacific and Philippine Sea (PHS) slabs. The principal characteristics of anisotropy in the subducted and subducting plates are (1) in the overriding plate, the distribution pattern of fast direction of crustal anisotropy coincides with that of the strike of geological structure, (2) in the two oceanic plates, fast propagation directions of P-wave were sub-parallel to the directions of seafloor spreading. Additionally, our tomographic images demonstrate that (1) the bottom of the Median Tectonic Line, the longest fault zone in Japan, reaches to the lower crust, and seems to link to the source region of an inter-plate earthquake along the PHS slab, (2) the segmentation of the PHS slab - the Izu Islands arc, the Nishi-Shichito ridge, and the Shikoku basin - due to the formation history, is reflected in the regional variation of anisotropy. The tomographic study further implies that there might be a fragment of the Pacific slab suggested by a previous study beneath the Tokyo metropolitan area. The overall findings strongly indicate that seismic anisotropy analysis provide potentially useful information to understand a subduction zone.

  18. Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng

    2015-04-01

    We determined the first high-resolution P- and S-wave attenuation (Qp and Qs) tomography of the crust and upper mantle under the entire Nankai subduction zone from the Nankai Trough to the Japan Sea using a large number of high-quality t* data measured from P- and S-wave spectra of local earthquakes. The suboceanic earthquakes used in this study were relocated precisely using sP depth phases and ocean-bottom-seismometer data. The overall pattern of the obtained Q models is similar to that of velocity models of the study region. Our present results show that high-Q (i.e. weak attenuation) anomalies in the upper crust generally correspond to plutonic rocks widely exposed in the Nankai arc. Some of the low-Q (i.e. strong attenuation) anomalies in the upper crust along the Pacific coast are associated with the Cretaceous-Cenozoic accretionary wedge. Obvious low-Q anomalies exist in the crust under the active arc volcanoes. Most of the large inland crustal earthquakes are located in or around the low-Q zones in the crust. The subducting Philippine Sea slab is imaged clearly as a landward dipping high-Q zone. Prominent low-Q anomalies are revealed in the mantle wedge under the volcanic front and backarc area, which reflect the source zone of arc magmatism caused by slab dehydration and corner flow in the mantle wedge. Significant low-Q anomalies exist in the forearc mantle wedge, which reflects a highly hydrated and serpentinized forearc mantle wedge due to abundant fluids released from dehydration of the young and warm Philippine Sea slab.

  19. Evolution of a trench-slope basin within the Cascadia subduction margin: the Neogene Humboldt Basin, California

    USGS Publications Warehouse

    McCrory, P.A.

    1995-01-01

    The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. -from Author

  20. Reconstruction of ocean plate stratigraphy in the Gwna Group, NW Wales: Implications for the subduction-accretion process of a latest Proterozoic trench-forearc

    NASA Astrophysics Data System (ADS)

    Asanuma, Hisashi; Okada, Yoshihiro; Fujisaki, Wataru; Suzuki, Kazue; Sato, Tomohiko; Sawaki, Yusuke; Sakata, Shuhei; Yamamoto, Shinji; Hirata, Takafumi; Maruyama, Shigenori; Windley, Brian F.

    2015-11-01

    The Gwna Group in Anglesey island and Lleyn peninsula, Wales consists of a latest Proterozoic volcano-sedimentary trench mélange, which has a complicated accretionary structure, and is poorly constrained by isotopic ages. The mélange contains oceanic-trench rocks including pillow basalts, cherts, mudstones and sandstones, which have not previously been interpreted as ocean plate stratigraphy (OPS). We reconstructed imbricated OPS at 5 localities in the coastal Lleyn peninsula. In order to constrain the depositional U-Pb age of the upper clastic sediments, detrital zircons, separated from 9 clastic sediments, were analyzed with a Nu AttoM single-collector inductively-coupled plasma-mass spectrometer. The ages indicate that there are two Gwna Groups (maximum depositional ages of: 1 at 608-601 Ma, and 2 at 564-539 Ma) that were deposited between the late Neoproterozoic and the Middle Cambrian contemporaneously with dated calc-alkaline arc magmatism and regional metamorphism in the Anglesey-Lleyn complex. The age spectra of the detrital zircons show a prominent peak at ca. 650-600 Ma, and several Proterozoic and Archean ages. To account for the older ages, we integrated our new isotopic data with published radiometric and fossil ages, and conclude that the clastic sediments at the top of the OPS were deposited in a trench on the western active margin of Avalonia when it was close to the Amazonian craton, and that the Gwna Group OPS began to be incorporated into an accretionary wedge in an active subduction zone in the latest Proterozoic.

  1. Mantle wedge flow pattern and thermal structure in Northeast Japan: Effects of oblique subduction and 3-D slab geometry

    NASA Astrophysics Data System (ADS)

    Wada, Ikuko; He, Jiangheng; Hasegawa, Akira; Nakajima, Junichi

    2015-09-01

    We develop a 3-D thermal model for the Northeast Japan subduction margin, using a realistic slab geometry for the subducting Pacific plate, and investigate the effects of oblique subduction and 3-D slab geometry on the mantle wedge flow pattern and the thermal structure. In the Tohoku region, the mantle wedge flow pattern is nearly two-dimensional resulting in a thermal structure similar to those obtained by a 2-D model, owing to the simple slab geometry and subduction nearly perpendicular to the margin. However, in Hokkaido, oblique subduction leads to 3-D mantle wedge flow with northerly inflow and west-northwestward outflow and also results in lower temperatures in the shallow part of the mantle wedge than in Tohoku due to lower sinking rate of the slab. Between Hokkaido and Tohoku, the slab has a hinge-like shape due to a relatively sharp change in the dip direction. In this hinge zone, northerly mantle inflow from Hokkaido and westerly mantle inflow from Tohoku converge, discouraging inflow from northwest and resulting in a cooler mantle wedge. The model-predicted mantle wedge flow patterns are consistent with observed seismic anisotropy and may explain the orientations of volcanic cross-chains. The predicted 3-D thermal structure correlates well with the along-arc variations in the location of the frontal arc volcanoes and help to provide new insights into the surface heat flow pattern and the down-dip extent of interplate earthquakes.

  2. Identification of subducting plate structure within seismogenic zones and relationships with seismicity

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.

    2014-12-01

    The roughness of subducting plates is one of the most important parameters controlling the seismogenic behavior of subduction megathrusts, but in most regions the distribution of subducting relief is inferred from structure seaward of trenches. Spectral averaging techniques developed to remove the steep topographic gradients across forearcs are shown to improve resolution of local trench-slope uplift, that may be diagnostic of subducting relief. This interpretation is locally calibrated where the Louisville Ridge subducts at the Tonga trench. From a global extension of these techniques, >200 residual bathymetric anomalies are identified, enabling links between subducting relief, slip behavior and seismicity to be reconsidered. We interpret >150 potential subducting seamounts, 36 of which have height ?1 km and area ?500 km2. These anomalies are similar in wavelength, amplitude and morphology with unsubducted seamounts, are associated with aseismic regions in Tonga and Mariana, and prevented along strike rupture propagation in large recent earthquakes in Java (2006) and Japan (2011). Subducting aseismic ridges in Peru, Ecuador and Costa-Rica are associated with uplift and steepening of the outer-forearc and a local increase in the width and elevation of the volcanic-arc. Associations with complex large earthquakes, higher frequencies of small events, and creep suggest aseismic ridges may also subduct via the development and evolution of an adjacent fracture network. Megathrust complexity is expected to be greatest on subducting ridge flanks. The bathymetric expression of subducting relief is strongest near the trench (<70 km) and above shallow slab depths (<~17 km). Dip-parallel transitions in the surface expression of aseismic ridges may reflect physical transitions in megathrust slip-behavior and/or material properties in the overthrusting wedge. Aseismic ridges and seamounts represent seafloor roughness over different wavelengths and are associated with contrasting modes of isostatic compensation. Consideration of these differences, coupled with improved knowledge of where subducting bathymetric features are likely within seismogenic zones, may reconcile some debated aspects of the mechanics and seismological consequences of bathymetric relief subduction.

  3. 3D array observation of the low frequency earthquakes in Tokai subduction zone, central Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Okubo, M.; Imanishi, K.; Kitagawa, Y.; Takeda, N.

    2011-12-01

    Tokai area is the eastern side of Southwest Japan subduction where great earthquakes and deep low-frequency earthquakes (LFEs) occur along the convergent plate boundary. Researching the relationship between the great interplate earthquakes and activity of LFEs, Tono Research Institute of Earthquake Science (TRIES) installed two seismic arrays at Shimoyama in Tokai area. The first was a small-aperture array (six stations in the area of 120m diameter) with short-period velocity type seismographs. The second was a middle-aperture array (four stations in the area of 4 km diameter) with high-sensitive acceleration type seismographs. Geological Survey of Japan (AIST) also installed a seismic array of three borehole-type instruments with high-sensitive seismographs at three depths of 50m, 200m, and 600m at Shimoyama. We used seismic data of those three arrays and SMYH station of Hi-net array of National Research Institute of Earth Science and Disaster Prevention (NIED) as 3D array data for investigating LFEs. Using the 3D array (total 14 stations), we observed a remarkable activity of LFEs occurring in Tokai area in November 10-30, 2010. We analyzed the 3D array data to pick out direct P and S-waves propagating from LFE origins by using the semblance method (Neidel and Tarner, 1971). Assuming a homogeneous half space model with Vp=4.5 km/s and Vs=2.2 km/s, we obtained a semblance distribution for each component depending on the three factors of time, back-azimuth and incident angle of seismic waves. The maximum semblance point in each component shows a direct P-wave in UD, and S-wave in NS and EW, respectively. Incident angles and back-azimuths are compared with theoretical ones calculated by using JMA hypocenter data.

  4. The Mariana Trench: A new view based on multibeam echosounding

    NASA Astrophysics Data System (ADS)

    Gardner, J. V.; Armstrong, A. A.

    2011-12-01

    The entire Mariana Trench, from its northern end at Dutton Ridge to the southwestern terminus at the Yap Trench, was mapped in 2010 using a Kongsberg EM122 12-kHz multibeam echosounder. The region ranges in depths from the shoreline at Guam to almost 11,000 m at the Challenger Deep. The northern part of the trench is receiving seamounts and guyots of the Magellan Seamount chain, whereas the southern section is receiving seafloor that carries the Caroline Ridge to the trench. The area immediately seaward of the trench where the Pacific Plate has bent downward toward the subduction zone has been broken by a series of subparallel horst and graben structures generated by extension on the bending upper surface of the Pacific Plate. Four bathymetric "bridges" span across the trench axis and extend from the Pacific Plate to the inner wall of the trench. The bridges stand as much as 2500 m above the trench axis and are composed of Latest Jurassic to Early Cretaceous accreted seamounts and guyots of the Magellan Seamount chain that are in the process of breaking up and being subducted beneath the Philippine Plate. Only two seamounts of the Caroline Ridge are in the vicinity of the trench and they both presently reside on the outer trench wall. The faults of the horsts and grabens have fractured the seamounts and guyots within the trench depression seaward from the axis outward for about 80 km, but within ~5 km of the trench axis the faults have reactivated to compressional thrust faults. The faults tend to parallel the axis of the trench until the immediate vicinity of an accreting seamount or guyot where the faults bend inward toward the trench axis, as has been observed in many other trenches. Most of the accreted seamounts and guyots are not associated with embayments or reentrants on the inner trench wall, as has been documented in the Middle America and Japan Trenches, perhaps because there is not a large accretionary prism that extends seaward of the forearc. The one exception is a large seamount of the Caroline Ridge that has been fractured into several sections, some of which appear to be mostly subducted, that are associated with a 30 km embayment landward from the trench axis. However, there are reentrants along the inner trench wall but without bathymetric expression of an associated subducting seamount or guyot. These reentrants may mark zones where seamounts and guyots have been completely consumed into the trench. There is no evidence from the acoustic backscatter of sediment filling by debris flows and other failure deposits along the entire trench axis, although the inner trench wall has numerous scarps from wall failures. The forearc area has numerous features that resemble diapirs with what appears from the acoustic backscatter to be ponded sediment in bathymetric lows that are surrounded by diapirs. An analysis of the individual soundings within Challenger Deep shows the deepest depth of the Mariana Trench is 10,994 m (2? ±40 m), based on numerous soundings and sound-speed profiles collected during the cruise in the immediate area. The location of the deepest depth does not coincide exactly with published claims of the deepest depth, although many of the claims are within a few kilometers of the 10,944 m depth.

  5. Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches

    NASA Astrophysics Data System (ADS)

    Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.

    2014-12-01

    There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than shallower one along the Ryukyu trench suggesting larger locking along the shallower band. This feature is also similar to the pattern in the NE Japan. Our results indicate that the Ryukyu subduction zone is very similar to the NE Japan subduction zone, while the Izu-Bonin subduction zone appears to be different from the other two zones according to the RE analyses.

  6. Seismic Constraints on the Japan Subduction Zone from Waveform Inversions of SS precursors

    NASA Astrophysics Data System (ADS)

    Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2014-12-01

    Arrival times of long-period secondary mantle reflections such as SS and PP precursors have made significant contributions to the understanding of the mantle structure and slab dynamics beneath the Pacific Northwest. Due to strong sensitivities to discontinuity depths, the timing information is often correlated with P/S velocity models from high-resolution seismic tomography while stacked reflection amplitudes provide a measure of impedance contrast. A potential pitfall in the interpretations of SS-precursor measurements is velocity-discontinuity depth ambiguity, as the timing of secondary reflections is mainly 'corrected' based on existing smoothed velocity estimates. In this study we quantitatively investigate the amplitude information of a dense SS precursor data set sampling the northwestern Pacific region. We model the full waveforms of SS precursors using the Genetic Algorithm (GA), an effective nonlinear inversion technique, and properly account for the tradeoff between shear wave velocity and discontinuity depth perturbation. The inverted shear velocities clearly show a consistent high-velocity, dipping structure along the Wadati-Benioff zone, likely in connection with the descending Japan slab. The slab appears to stagnate and horizontally deflect within the upper mantle transition zone beneath northeastern China. The integrity of the deflected slab appears to be compromised beneath the Changbai hotspot where a low velocity anomaly interrupts the flat lying high velocity structure and extends upward to, at least, mid MTZ depths. This anomaly does not appear to reach the Changbai hotspot, though its connection with observed low velocities in the lithosphere and asthenosphere may not be ruled out. Our nonlinear waveform inversion results also show a 600-km wide low velocity zone (up to -4% relative to the Preliminary Reference Earth Model (PREM)) atop the 660-km discontinuity on the oceanic side of the subducting Japan slab. The cause of this anomaly remains questionable, though 1) upwelling hot mantle materials in response to slab interaction with the lower mantle and 2) the remnant of the Mesozoic-era superplume in the Pacific ocean may both contribute to its existence.

  7. Invited review paper: Fault creep caused by subduction of rough seafloor relief

    NASA Astrophysics Data System (ADS)

    Wang, Kelin; Bilek, Susan L.

    2014-01-01

    Among the wide range of thermal, petrologic, hydrological, and structural factors that potentially affect subduction earthquakes, the roughness of the subducting seafloor is among the most important. By reviewing seismic and geodetic studies of megathrust locking/creeping state, we find that creeping is the predominant mode of subduction in areas of extremely rugged subducting seafloor such as the Kyushu margin, Manila Trench, northern Hikurangi, and southeastern Costa Rica. In Java and Mariana, megathrust creeping state is not yet constrained by geodetic observations, but the very rugged subducting seafloor and lack of large earthquakes also suggest aseismic creep. Large topographic features on otherwise relatively smooth subducting seafloor such as the Nazca Ridge off Peru, the Investigator Fracture Zone off Sumatra, and the Joban seamount chain in southern Japan Trench also cause creep and often stop the propagation of large ruptures. Similar to all other known giant earthquakes, the Tohoku earthquake of March 2011 occurred in an area of relatively smooth subducting seafloor. The Tohoku event also offers an example of subducting seamounts stopping rupture propagation. Very rugged subducting seafloor not only retards the process of shear localization, but also gives rise to heterogeneous stresses. In this situation, the fault zone creeps because of distributed deformation of fractured rocks, and the creep may take place as transient events of various spatial and temporal scales accompanied with small and medium-size earthquakes. This process cannot be described as stable or unstable friction along a single contact surface. The association of large earthquakes with relatively smooth subducting seafloor and creep with very rugged subducting seafloor calls for further investigation. Seafloor near-trench geodetic monitoring, high-resolution imaging of subduction fault structure, studies of exhumed ancient subduction zones, and laboratory studies of low-temperature creep will greatly improve our understanding of the seismogenic and creep processes and their hazard implications.

  8. Upper boundary of the Pacific plate subducting beneath Hokkaido, Japan, estimated from ScSp phase

    NASA Astrophysics Data System (ADS)

    Osada, Kinue; Yoshizawa, Kazunori; Yomogida, Kiyoshi; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark

    2010-11-01

    Three-dimensional geometry of the upper boundary of the Pacific plate subducting beneath Hokkaido, Japan, was obtained using the ScSp phase: the phase converted from ScS (S wave reflected at the core-mantle boundary) to P wave at the plate boundary. Taking the advantage of a dense seismic network, "Hi-net", recently deployed across the Japanese islands, we applied several seismic array analyses to the recorded waveform data for a large nearby deep earthquake, in order to enhance very weak ScSp signals in the original records. At first, we set up five blocks for the region in plate dip directions. After aligning the travel times of ScS and stacking seismograms among stations in a given sub-block perpendicular to each dip direction, we searched for the optimal plate model (i.e., two-dimensional geometry of the upper boundary) for each block. The model was parameterized by seven depth grids, and seismograms were stacked based on the travel time of ScSp as a time lag of each sub-block, so that the optimal model would yield the maximum spectral energy of ScSp after stacking. This model parameter search was conducted, using ray tracings of ScSp with a reference velocity model and a non-linear inversion scheme (Neighbourhood Algorithm). The optimal model of each block was combined each other by cubic spline interpolation, in order to construct an overall three-dimensional geometry of the upper boundary of the plate. Next, we performed the frequency-wavenumber ( f- k) spectral analysis to refine the above result. Assuming each station as a reference point, we made beam output from records of its adjacent stations as a function of wavenumber vector ( kx, ky) and frequency. The peak of its power spectrum was considered to represent the wavenumber vector of ScSp, that is, azimuth of arrival and slowness, so that we can estimate the position and depth of the corresponding ScS- ScSp conversion. In the frequency range from 0.5 to 1.5 Hz, we could estimate the conversion points for 21 stations or hypothetical arrays, and revised the geometry of the upper boundary obtained by the non-linear stacking approach in the previous step. The final plate model was compared with the distribution of intraplate earthquakes in the Pacific plate. This comparison clearly reveals that the upper seismic zone merges with the lower from 150 to 200 km in depth, deviating systematically away from the upper boundary where the boundary is slightly bumped in a convex manner.

  9. Water transportation through the Philippine Sea slab subducting beneath the central Kyushu region, Japan, as derived from receiver function analyses

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.

    2011-12-01

    Receiver function analyses are performed to detect seismic velocity discontinuities in the uppermost mantle beneath the Kyushu subduction zone, Japan. The Philippine Sea slab subducting beneath Kyushu is young (26-50 Ma) and steeply dipping (at greater than 30°). We detect a seismic velocity contrast larger than 10% corresponding to the oceanic Moho down to 90 km in depth, implying that the subducting oceanic crust contains more than 3.0 wt.% water down to this depth. We also detect a discontinuity with downward decreasing seismic velocity at depths of 50-80 km, which is parallel to the oceanic Moho and 10 km shallower than it. This fact indicates that there is a sharp discontinuity between the mantle wedge and the hydrous oceanic crust. The existence of such a sharp discontinuity would require a large temperature gradient around the boundary or a permeability barrier at the upper boundary of the slab. We delineate the continental Moho with downward decreasing seismic velocity and the upper boundary of the slab with upward decreasing seismic velocity beneath the forearc region, which implies the existence of serpentinite and/or free fluid which causes high pore pressure in the forearc mantle.

  10. Mid-Tertiary extension and broadening of the locus of Andean magmatic activity in southern South America caused by the reorganzation of subduction geometry due to the three-fold increase in late Oligocene trench-normal plate convergence rates

    NASA Astrophysics Data System (ADS)

    Muñoz, J.; Farmer, G. L.; Stern, C. R.

    2001-12-01

    A regionally widespread episode of late Oligocene to Miocene extension thinned the crust below the proto-Central Valley in south-central Chile and generated sedimentary basins west of, within and east of the Main Andean Cordillera. The locus of Andean magmatic activity associated with this episode of extension expanded both well to the west and also well to the east of its previous location in the Main Andean Cordillera, generating the Mid-Tertiary Coastal Magmatic Belt, which outcrops in Chile as far west as the Pacific coast, and the Meseta Somuncura, which outcrops in Argentina almost as far east as the Atlantic coast. The initiation of this episode of extension and basin formation, and the expansion of the locus of Andean magmatic activity, coincides closely to the beginning, in the late Oligocene (27+/-2 Ma), of the current period of both high convergence rate (>10 cm/yr) and less oblique convergence, which together resulted in an approximately three-fold increase in trench normal convergence rate between the Nazca and South American plates. Some of the igneous rocks associated with this episode are chemically similar to modern Andean arc magmas, but others have ocean island basalt chemical affinities with lower Ba/La (<19), La/Nb (<1.6) and initial 87Sr/86Sr rations (<0.7035), and higher ? Nd values (>+5). The latter formed by melting of mantle uncontaminated by components derived from the dehydration of subducted oceanic lithosphere, possibly due to upwelling of mantle asthenosphere through a slab-window developed in response to changes in subduction geometry and an episode of invigorated asthenospheric wedge circulation caused by the increase in convergences rates. Extension might have resulted from westward trench migration and slab-rollback of the subducting Nazca plate induced by these changes in subduction geometry and asthenospheric circulation patterns. Extension and associated magmatic activity continued during an approximately 10 million year period after this three-fold increase in trench normal convergence rates. In the mid to late Miocene a new equilibrium subduction geometry was established as indicated by the return of the locus of magmatic activity to the Main Andean Cordillera and the uplift and deformation of the sediments deposited in the late Oligocene to early Miocene extensional basins. Similar transient changes in subduction geometry and asthenospheric wedge circulation patterns may be important events in the long-term evolution of other convergent plate boundary arcs as a result of changes in plate convergent rate due to either global plate reorganization or local reorganization associated with ridge subduction.

  11. The 3-D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu; Obana, Koichiro; Yamamoto, Yojiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-05-01

    waves at high frequencies (>1 Hz) show collapsed and broadened wave trains caused by multiple scattering in the lithosphere. This study analyzed the envelopes of direct S waves in southwestern Japan and on the western side of the Nankai trough and estimated the spatial distribution of random inhomogeneities by assuming a von Kármán type power spectral density function (PSDF). Strongly inhomogeneous media have been mostly imaged at shallow depth (0-20 km depth) in the onshore area of southwestern Japan, and their PSDF is represented as P(m) ? 0.05m-3.7 km3, with m being the spatial wave number, whereas most of the other area shows weak inhomogeneities of which PSDF is P(m) ? 0.005m-4.5 km3. At Hyuga-nada in Nankai trough, there is an anomaly of inhomogeneity of which PSDF is estimated as P(m) ? 0.01m-4.5 km3. This PSDF has the similar spectral gradient with the weakly inhomogeneous media, but has larger power spectral density than other offshore areas. This anomalous region is broadly located in the subducted Kyushu Palau ridge, which was identified by using velocity structures and bathymetry, and it shows no clear correlation with the fault zones of large earthquakes in past decades. These spatial correlations suggest that possible origins of inhomogeneities at Hyuga-nada are ancient volcanic activity in the oceanic plate or deformed structures due to the subduction of the Kyushu Palau ridge.

  12. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a Carboniferous back-arc basin formed as a result of slab rollback ascribed to northward subduction of the Niujuanzi oceanic lithosphere. Subduction of this back-arc basin probably took place in the early Carboniferous, generating the widespread arc-related granitoids including adakitic plutons, and overlapping earlier arc assemblages. The Beishan orogenic collage is not the eastern extension of the Chinese Central Tianshan, but it was generated by the same north-dipping subduction system separated by the Xingxingxia transform fault, as revealed by available regional data. This contribution implies that in addition to fore-arc accretion, back-arc accretion ascribed to opening and closure of a back-arc basin may also have been a common process in the construction of the CAOB, resembling that of the Mesozoic-Cenozoic subduction-accretion system in the SW pacific.

  13. New estimates of subducted water from depths of extensional outer rise earthquakes at the Northwestern Pacific subduction zones

    NASA Astrophysics Data System (ADS)

    Emry, E. L.; Wiens, D. A.

    2012-12-01

    The presence of water within the subducting slab mantle may have important implications for subduction zone water budgets, intermediate depth earthquakes, and transport of water into Earth's deep mantle. However, the amount of water stored in hydrous slab mantle rocks prior to subduction is not well constrained. Large extensional faults formed as the plate bends at the subduction zone outer rise are thought to be the main pathway by which water can travel into and hydrate the slab mantle; yet for many subduction zones accurate depths of extensional outer rise faulting are also not well known. Therefore, we attempt to identify the maximum observed depth of extensional faulting, and thereby identify the possible depth extent of slab mantle hydration, by accurately locating and determining depths for outer rise and trench axis earthquakes at Northern and Western Pacific subduction zones. For each region, we relocate all earthquakes seaward of the trench axis as well as forearc earthquakes within 60 km landward of the trench axis using ISC arrival times and the hypocentroidal decomposition relative location algorithm. We then model P- and SH- waveforms and their associated depth phases for all earthquakes with Mw 5.0+ since 1990 that exhibit good signal-to-noise ratios and do not have shallow-dipping thrust focal mechanisms, which are indicative of subduction zone plate interface earthquakes. In total, we redetermined epicenters and depths for over 70 earthquakes at the Alaskan, Aleutian, Kamchatka, Kuril, Japan, and Izu-Bonin-Mariana trenches. We find that at most Pacific subduction zones there is evidence for extensional faulting down to 10-15 km within the top of the oceanic plate mantle, and in total, 95% of our analyzed extensional outer rise events occur within the crust or top 15 km of the mantle. However some regions, such as the Bonin and Aleutian Islands, show evidence for extensional faulting as deep as 20 km below the base of the crust. If the mantle of the subducting slab is hydrated down to ~15 km (with ~2-3.5 wt. % water), and assuming published values for the amount of water in the slab crust [1], then we expect that ~10^10 Tg/Myr of water are input into Northwestern Pacific subduction zones. This value for only the Northwestern Pacific subduction zones is then 10 times larger than previous global estimates [1] and indicates a need to reevaluate recent subduction water flux calculations. [1] Van Keken et al (2011), JGR, 116, B01401.

  14. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  15. Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Hannah S.; Savage, Heather M.; Plank, Terry; Polissar, Pratigya J.; Kirkpatrick, James D.; Rowe, Christie D.

    2015-08-01

    We determine the trace element stratigraphy of Site C0019, drilled during the Japan Fast Trench Drilling Project (JFAST) International Ocean Discovery Program (IODP) Expedition 343, to illuminate the structure of the plate boundary following the Tohoku-Oki earthquake of 2011. The stratigraphic units at the JFAST site are compared to undeformed Western Pacific sediments from two reference sites (Ocean Drilling Program (ODP) Site 1149 and Deep Sea Drilling Project (DSDP) Site 436). The trace element fingerprints in these reference sedimentary units can be correlated to individual JFAST samples. At the JFAST site, we find that the accretionary wedge and downgoing plate sediments in the core are composed primarily of Holocene to Eocene sediments. There are several age reversals and gaps within the sequence, consistent with multiple faults in the bottom 15 m of the JFAST core. Our results point to several candidate faults that could have slipped during the 2011 Tohoku-Oki earthquake, in addition to the pelagic clay layer that has been proposed as the main décollement fault.

  16. Triangulation Scale Error as a Possible Cause for Overlooking Seismic Potential Along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Sagiya, T.; Matta, N.; Meneses, A.; Nomura, S.; Suzuki, S.; Ohta, Y.

    2012-12-01

    The 2011 M9.0 Tohoku earthquake was not anticipated before its occurrence. One of the reasons of this overlook was that crustal strain during the 20th century did not show significant strain accumulation associated with the subduction of the Pacific plate. On the other hand, GPS data after 1990's clearly showed E-W shortening of the Tohoku area with an average strain rate over 0.1 ppm/year. However, since no strain accumulation was observed for a longer term, it was expected that the short-term strain be released through aseismic processes like a slow slip or afterslip. The length scale of the triangulation network was determined by baseline surveys. 15 baselines with a length from 3 to 10 km were distributed over the national triangulation network and measured with a steel baseline rod. We found that one baseline, the Shionohara baseline (5172m) located in Yamagata prefecture of the Tohoku district, was measured in 1894, and the M7.0 Shonai earthquake occurred just after this survey. The Shonai earthquake was considered as a thrust type earthquake under E-W compression, and its hypocenter was located about 30 km west of the Shionohara baseline. Fault model calculation shows that the baseline could be coseismically elongated by as much as 10 ppm, causing a scale error for the triangulation network. The Shionohara baseline was the only baseline in the middle Tohoku area. So the triangulation network in the surrounding area might be isotropically downscaled. In addition to the absence of E-W contraction in the strain distribution for 100 years, significant N-S extension in the same area supports the existence of the scale bias.

  17. Seismic Imaging of Meta-stable Olivine Wedge in the Subducting Slab Beneath Japan via Vectorial Receiver Function

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.

    2008-12-01

    To image the subducting Pacific plate better, we have extended the treatment of Kawakatsu and Watada (2007, Science) in which they had corrected for the effect of a dipping interface on seismic receiver functions (RF) to image a low-velocity layer atop of the subducting slab. The dip angle of the Pacific plate estimated from seismicity is employed to correct the effect of the dipping interface. For each potential conversion point, only a P-S conversion which satisfies the Snell's law on the dipping interface is used for RF. Two horizontal component RFs are then rotated to the direction of expected polarization of P-S converted waves from the interface, and stacked at the conversion point in such a way that the amplitude corresponds to the possible S-wave velocity jump at the interface. This method is applied to Hi-net recording of teleseismic events from 2001 to the end of 2006. The total number of events analyzed is 681, and the number of RFs is more than 300,000. The results show a clear image of a bottom boundary of the subducting Pacific plate; the thickness of the plate is estimated to be ~80km (Tonegawa et al., 2006, EPSL). Below 350km right beneath central/southwestern Japan, there also exist signatures inside of the slab which we attribute to those originated from the postulated meta-stable olivine wedge (MOW; Iidaka and Suetsugu, 1992, Nature). We observe both velocity decrease (from shallow to deep) and increase corresponding respectively to the upper and lower edge of the MOW which is expected to have several percent slower seismic velocity relative to the surrounding normal slab (Kaneshima et al., 2007, EPSL). The catalogue seismicity by JMA indicates that deep earthquakes are located along the lower edge of the MOW. The detailed investigation of the relative locations of these features should give a tight constraint on the origin of deep earthquakes. The existence of the MOW indicates insignificant amount of water present in the subducting slab in the region (Hosoya et al., 2005, GRL); together with the observed deep depression (~40km) of the 660-km discontinuity in the same area, the effective Clapeylon slope of dry slab for the 660km discontinuity should be significantly steeper than those predicted by recent high-pressure experiments (e.g., Katsura et al., 2003, PEPI).

  18. Evolution and modulation of a poleward-propagating anticyclonic eddy along the Japan and Kuril-Kamchatka trenches

    NASA Astrophysics Data System (ADS)

    Kaneko, Hitoshi; Itoh, Sachihiko; Kouketsu, Shinya; Okunishi, Takeshi; Hosoda, Shigeki; Suga, Toshio

    2015-06-01

    To investigate the relationships between the movement of an eddy and its interior structure and water properties, four profiling floats were deployed in an anticyclonic eddy in the western North Pacific in 2013 (April-October). Daily float profiles showed rapid changes in temperature and salinity corresponding to strong interactions between eddies north of the subtropical Kuroshio Extension. After the first interaction with a warm-core eddy in April, the isolation of the winter mixed layer from the surface was observed, forming a subsurface remnant layer. Another interaction with a cold fresh eddy at middepths in May resulted in the formation of a multilayer structure. The eddy then moved poleward along the Japan and Kuril-Kamchatka trenches, indicating changes in its propagation pattern coupled to its interior structure. The eddy then moved northward (June-July), stalled (July-August), and moved eastward (August-October). In addition to a general declining trend, the properties of the warm saline core changed over a short time period, coinciding with changes in propagation. A density anomaly at middepths of the eddy changed location during the stalled period; however, denser waters were continuously observed in the southeast part of the eddy during its northward and eastward movement. This unidirectional density anomaly pattern was consistent with the structure of the poleward-propagating eddy, which interacted with the western topographic boundary. Meridional exchanges of heat and material were potentially elevated by the eddy's advection and movement, as well as by water modifications in the eddy associated with exchanges along its perimeter.

  19. In-Situ Observations of Earthquake-Driven Fluid Pulses within the Japan Trench Plate Boundary Fault Zone

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2014-12-01

    Fault valving and transient fluid flow has long been suspected to be an important process in the earthquake cycle, but has not previously been captured by direct measurements during an episode. In particular, earthquakes are thought to drive fluids in fault zones, but again, evidence has been limited to the geologic record. Here we report on the signature of fluid pumping events inside the Tohoku Fault associated with individual earthquakes. As part of the Japan Trench Fast Drilling Project (JFAST), a sub-seafloor temperature observatory was installed across the plate boundary fault zone that ruptured during the 2011 Mw 9.0 Tohoku-oki earthquake. The observatory consisted of 55 autonomous temperature sensing dataloggers extending up to 820 m below sea floor at a water depth of ~7 km. The temporary deployment recorded data from July 2012 through April 2013. In addition to measuring the frictional heat signal from the megathrust earthquake, the high-resolution temperature time series data reveal spatially coherent temperature transients following regional earthquakes. Temperature increases vertically upwards from a fracture zone and decreases downwards, which is consistent with the expected signature of a pulse entering the annulus from the fracture zone. The anomalies are a few hundredths of degree Celsius and occur repeatedly at depths that are independently interpreted to have higher fracture permeability. High-pass filtered data are spatially correlated in areas disturbed by transient fluid advection. Fluid pulses occur in response to over a dozen local earthquakes, including a Mw 5.4 on 14 October 2012, a Mw 5.5 on 11 November 2012, and a doublet of two very local Mw 7.2 intraplate earthquakes on 7 December 2012, along with its associated aftershocks. There does not appear to be a response to large far-field earthquakes such as the 28 October 2012 Mw 7.8 Haida Gwaii or 6 February 2013 Mw 8.0 Santa Cruz Islands earthquakes. These measurements provide the first in situ documentation of seismic pumping at fractured regions of the fault damage zone. Near fault measurements such as these may provide insight into drivers of earthquake occurrence. The redistribution of fluid pressures within fault zones, such as observed here in response to earthquakes, is a potential mechanism that may be involved in earthquake triggering.

  20. Paleostress analysis of a subduction zone megasplay fault - An example from the Nobeoka Thrust, Japan

    NASA Astrophysics Data System (ADS)

    Kawasaki, R.; Hamahashi, M.; Hashimoto, Y.; Otsubo, M.; Yamaguchi, A.; Kitamura, Y.; Kameda, J.; Hamada, Y.; Fukuchi, R.; Kimura, G.

    2014-12-01

    The megasplay faults in subduction zones, branching from plate boundary thrusts, are thought to have a potential to generate earthquakes and accompany tsunamis. Paleo-splay faults exposed on land often preserve clear deformation features of the seismogenic zone and provide information on the fault mechanisms at depth. One of the important information that can be obtained from exhumed faults is paleo-stress field. Here we investigated the Nobeoka Thrust, a fossilized megasplay fault in the Shimanto Belt in Kyushu, which consists of phyllite and sandstone-shale mélanges that have experienced maximum burial temperatures of ~250 -320°C, [Kondo et al., 2005, Tectonics 24.6(2005)]. Kondo et al. (2005) described two orientations of slickensides from the outcrop, suggesting the existence of flexural gentle fold in kilometer scale. The paleo-stress fields preserved in the Nobeoka Thrust is likely to represent multiple stages occurring during burial and uplift, enabling the reconstruction of fault motions along the fault. In this study, we analyzed paleo-stress from slip vectors on small faults observed in the drilled cores of the Nobeoka Thrust obtained from scientific drilling performed in 2011. Small faults are expected to be less-reactivated and their population is much larger than that of large faults, providing high statistical reliability. Multiple inverse method [MIM; Yamaji, 2000, Journal of Structural Geology, 22, 441-452] was applied to the small faults. K-means clustering [Otsubo et al. , 2006, Journal of Structural Geology, 28, 991-997] was applied to stress tensors detected by the MIM for estimating optimal solutions. The results reveal stress solution of four directions existing throughout the drilled range. The stress solution is applied to faults distributed among different lithology, and therefore the paleo-stress is thought to have acted on the whole cores. By drawing the stress polygon from the direction of the stress solution and the stress rate, we estimate the stress state of the Nobeoka Thrust and discuss potential insights to the fault stress evolution of megasplay fault in a subduction zone.

  1. Holocene Tsunami Deposits From Large Tsunamis Along the Kuril Subduction Zone, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Satake, K.; Soeda, Y.; Shigeno, K.

    2003-12-01

    Holocene tsunami deposits in eastern Hokkaido between Nemuro and Tokachi show that the Kuril subduction zone repeatedly produced earthquakes and tsunamis larger than those recorded in this region since AD 1804 (Nanayama et al., Nature, 424, 660-663, 2003). Twenty-two postulated tsunami sand layers from the past 9500 years are preserved on lake bottom near Kushiro City, and about ten postulated tsunami sand layers from the past 3000 years are preserved in peat layers on the coastal marsh of Kiritappu. We dated these ten tsunami deposits (named Ts1 to Ts10 from shallower to deeper) in peat layers by radiocarbon and tephrochronology, correlated them with historical earthquakes and tsunamis, and surveyed their spatial distribution to estimate the tsunamisO inland inundation limits. Ts10 and Ts9 are under regional tephra Ta-c2 (ca. 2.5 ka) and represent prehistorical events. Ts8 to Ts5 are between two regional tephra layers Ta-c2 and B-Tm (ca. 9th century). In particular, Ts5 is found just below B-Tm, so it is dated 9th century (Heian era). Ts4 is dated ca 13th century (Kamakura era), while Ts3, found just below Us-b and Ta-b (AD 1667-1663), is dated 17th century (Edo era). Ts2 is dated 19th century (Edo era) and may correspond to the AD 1843 Tempo Tokachi-oki earthquake (Mt 8.0) recorded in a historical document Nikkanki of Kokutai-ji temple at Akkeshi. Ts1 is inferred 20th century and may correspond to the tsunami from the AD 1960 Chilean earthquake (M 9.5) or the AD 1952 Tokachi-oki earthquake (Mt 8.2). Our detailed surveys indicate that Ts3 and Ts4 can be traced more than 3 km from the present coast line in Kirittapu marsh, much longer than the limits (< 1 km) of recent deposits Ts1 and Ts2 or documented inundation of the 19th and 20th century tsunamis. The recurrence intervals of great tsunami inundation are about 400 to 500 years, longer than that of typical interplate earthquakes along the Kuril subduction zone. The longer interval and the apparent large tsunami inundation indicate unusual origin of these tsunamis.

  2. Gravity anomalies, forearc morphology and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Das, S.

    2012-12-01

    We apply spectral averaging techniques to isolate and remove the long-wavelength large-amplitude trench-normal topographic and free-air gravity anomaly "high" and "low" associated with subduction zones. The residual grids generated illuminate the short-wavelength structure of the forearc. Systematic analysis of all subduction boundaries on Earth has enabled a classification of these grids with particular emphasis placed on topography and gravity anomalies observed in the region above the shallow seismogenic portion of the plate interface. The isostatic compensation of these anomalies is investigated using 3D calculations of the gravitational admittance and coherence. In the shallow region of the megathrust, typically within 100 km from the trench, isolated residual anomalies with amplitudes of up to 2.5 km and 125 mGal are generally interpreted as accreted/subducting relief in the form of seamounts and other bathymetric features. While most of these anomalies, which have radii < 50km, are correlated with areas of reduced seismicity, several in regions such as Japan and Java appear to have influenced the nucleation and/or propagation of large magnitude earthquakes. Long-wavelength (500 - >1000 km) trench-parallel forearc ridges with residual anomalies of up to 1.5 km and 150 mGal are identified in approximately one-third of the subduction zones analyzed. Despite great length along strike, these ridges are less than 100 km wide and several appear uncompensated. A high proportion of arc-normal structure and the truncation/morphological transition of trench-parallel forearc ridges is explained through the identification and tracking of pre-existing structure on the over-riding and subducting plates into the seismogenic portion of the plate boundary. Spatial correlations between regions with well-defined trench-parallel forearc ridges and the occurrence of large magnitude interplate earthquakes, in addition to the uncompensated state of these ridges, suggest links between the morphology of the forearc and the peak earthquake stress drop on the subduction megathrust. We present our classification of residual bathymetric and gravitational anomalies using examples from Sumatra, Kuril-Kamchatka, Mariana, Peru-Chile and the Tonga-Kermadec margin. We reassess proposed links between trench-parallel residual topography and gravity anomalies and subduction zone seismicity using global earthquake catalogs and a new compilation of published aftershock locations and distributed slip models from over 200 of the largest subduction zone earthquakes. Our results highlight the role of pre-existing structure in both the over-riding and subducting plates in modulating the along- and across-strike segmentation of subduction zones. Understanding the genesis of long-wavelength trench-parallel forearc ridges may provide further insights into links between forearc morphology, the rheology of the overriding and subducting plates and seismicity in subduction zones.

  3. Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone

    NASA Astrophysics Data System (ADS)

    Matsu'ura, Tabito

    2015-04-01

    Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.

  4. Shear Veins Under High Pore Pressure Condition Along Subduction Interface: Yokonami Mélange, Cretaceous Shimanto Belt, Shikoku, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Eida, M.

    2013-12-01

    Fluid pressure along subdcution interface is a key parameter to understand the fault strength, wedge geometry and seismogenic behavior. In this study, we focused on shear veins pervasively observed in exhumed accretionary complex, Yokonami mélange, Cretaceous Shiamanto Belt, Southwest Japan to examine paleo-stress, effective friction coefficient, fluid pressure ratio and fluid pressure along subduction interface. Lithology of the Yokonami mélange is mainly sandstones surrounded by foliated black shales with minor components of basalts, cherts, tuffs, and limestones, representing tectonic mélange textures. Shear veins cutting mélange foliations are pervasively observed. Shear veins are composed of quartz and calcite. Slicken lines and slicken steps are always observed on the surfaces of shear veins. Pressure-temperature conditions for shear veins are about 180MPa and about 200 degree C on the basis of fluid inclusion analysis. Since the distribution of shear veins are related to packages of ocean floor stratigraphy, formation of shear vein can be before underplating and after mélange formation along subduction interface. We conducted multiple inversion method using slip data of shear veins to examine paleo-stress. In the result, we obtained maximum shear stress horizontal to foliations with 0.3 of stress ratio that is defined as (sigma2-sigma3)/(sigma1-sigma3). Effective friction coefficient was estimated as about 0.10-0.22 by the lowest value of ratio of normal and shear stresses in the normalized Mohr's circle on each plane of shear vein. If we put friction coefficient under dry condition as 0.7 because shear veins cut lithified mélange through out, fluid pressure ratio is equivalent to 0.68-0.86. This is very high fluid pressure ratio along subduction plate interface. On the basis of this fluid pressure ratio and P-T conditions of shear veins from fluid inclusion analysis, 7-12km of depth and 20-30 degree C of geothermal gradient were estimated. The age of subducting plate in the Yokonami mélange was about 50-60Ma from the difference of depositional ages between chert and black shale. The geothermal gradient estimated from the slab age is consistent with from fluid pressure ratio and fluid inclusion analysis. This suggests that the low effective frictional coefficient and high fluid pressure ratio estimated from geological evidences are reasonable values for the formation of shear veins. Kitajima and Saffer (2012) revealed that very low frequency earthquakes (VLFs) occur in the high pore pressure area. Saito et al. (2013) found the quartz cemented fault rocks represent velocity weakening behavior and suggested that the quartz-rich shear veins in shallow accretionary complex might be a geological evidence of VLFs. Our result in this study can support this idea as a shear veins with high fluid pressure at the time of their formation.

  5. S-wave anisotropy estimated by seismic interferometry using ambient noise record in the Nankai Trough subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Mikada, H.; Araki, E.; Kitada, K.

    2013-12-01

    In the Nankai Trough subduction zone, located beneath the Pacific Ocean off the southeast coast of Japan, interplate earthquakes can be generated repeatedly in association with stress accumulation and release cycle. In this study, we aim to obtain the information of S-wave anisotropy beneath the seafloor, which could be interpreted as a proxy of stress and strain field above the subduction zone. For this purpose, we apply the seismic interferometry technique to ambient noise records acquired by seafloor and subseafloor seismometers deployed above the Nankai Trough subduction zone. In this area, we have twenty seafloor seismometers as a part of DONET (Dense Oceanfloor Network System for Earthquake and Tsunamis) and a borehole seismometer installed in the IODP (Integrated Ocean Drilling Program) C0002G observatory at the bottom of the borehole, 900 m below seafloor. Both observatories were designed and installed to monitor the seismic activity and the process of earthquake generation including the stress accumulation. In this study, we apply the seismic interferometry to ambient noise records observed by these DONET and C0002G seismometers. Seismic interferometry is a method to retrieve the impulse response by the cross-correlation of seismic records simultaneously acquired by the two seismometers. Because the horizontal components are dominated by S-wave energy, we expected that auto- and cross-correlation functions (ACF and CCF), calculated from the horizontal components of each seismometer, would provide us the knowledge of S-wave velocity and anisotropy beneath seafloor, as a proxy of strain and stress field, and fluid migration above the plate boundary. We obtained zero offset 4-C ACF and CCFs comprising V11, V12, V21, and V22, calculated form continuous ambient noise records observed by horizontal components of each seismometer. Vij are ACF and CCFs calculated from ambient noise record observed by i- and j-direction receiver components, and represents impulse response which has i-direction source and j-direction receiver of each seismometer. We used each 1 hour dataset for more than 6 months and obtained Vij as 30 s zero offset impulse responses for each seismometer. In the obtained ACF and CCFs, several coherent events are visible. However, the events in each component are not consistent with that of others. It might result from S-wave splitting affected by anisotropy. S-wave split into two orthogonal directions along anisotropy direction in propagating anisotropy media. We then applied the Alford rotation and the layer stripping method to the obtained 4-C ACF and CCFs to estimate S-wave anisotropy direction and amplitude beneath each seismometer in each layer, shallow sediment and accretionary prism above the plate boundary. Obtained results, including the azimuth and magnitude of anisotropy as functions of depth, show good agreement with S-wave anisotropy directions and principle shear stress directions estimated from two of the other methods, i.e., borehole breakout analysis in the IODP C0009 borehole, and P-S converted wave analysis using airgun OBS data. We expect that our method could make it possible to monitor temporal changes in the azimuth and the magnitude in anisotropy, as a proxy of stress field, using real-time ambient noise records in the subduction zone.

  6. Multiscale seismic imaging of the Western-Pacific subduction zone

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2011-12-01

    We used multiscale seismic tomography to determine the detailed 3-D structure of the crust and mantle under the Western-Pacific subduction zone. The subducting Pacific and Philippine Sea (PHS) slabs are imaged clearly from their entering the mantle at the oceanic trenches to their reaching the mantle transition zone and finally to the core-mantle boundary (CMB). High-resolution local tomography of Northeast Japan has imaged the shallow portion of the slab from the Japan Trench down to about 200 km depth under Japan Sea. The 3-D Vp and Vs structures of the forearc region under the Pacific Ocean are constrained by locating suboceanic events precisely with sP depth phases. Strong structural heterogeneity is revealed in the megathrust zone under the forearc region, and there is a good correlation between the heterogeneity and the distribution of large thrust earthquakes including the great 2011 Tohoku-oki earthquake (Mw 9.0). A joint inversion of local and teleseismic data imaged the subducting Pacific slab down to 670 km depth under the Japan Islands and the Japan Sea. The PHS slab is detected down to 500 km depth under SW Japan. A mantle upwelling is found under SW Japan that rises from about 400 km depth right above the Pacific slab up to the PHS slab. Regional and global tomography revealed the Pacific slab that is stagnant in the mantle transition zone under Eastern China. A big mantle wedge (BMW) has formed in the upper mantle above the stagnant slab. Convective circulations in the BMW and deep dehydration of the stagnant slab may have caused the intraplate volcanoes in NE Asia, such as the Changbai and Wudalianchi volcanoes. The active Tengchong volcanism in SW China is caused by a similar process in the BMW above the subducting Burma (or Indian) slab. Global tomography shows pieces of fast anomalies in the middle and lower mantle as well as in the D" layer above the CMB, suggesting that the stagnant slab finally collapses down to the lower mantle and CMB as a result of very large gravitational instability from phase transitions. Prominent slow anomalies are also revealed in the mantle under the subducting slabs, which may represent either mantle plumes or upwelling flows associated with the deep subduction of the slabs.

  7. Detailed structure of the Philippine Sea plate subducting along the Nankai Trough, western Japan, inferred from high-frequency seismic wave analysis

    NASA Astrophysics Data System (ADS)

    Furumura, T.; Padhy, S.; Maeda, T.

    2012-12-01

    A detailed structure of the subducting Philippine Sea plate (PHP) along the Nankai trough in western Japan was studied by analyzing waveforms recorded at dense Hi-net stations in Japan. It is well recognized that the waveforms from intraplate earthquakes dominate in high-frequency (f >1 Hz) signals due to the waveguide effect of the subducting slab (Furumura and Kennett, 2005; 2008). This results in distorted pattern of intensity and peak ground acceleration (PGA) above the hypocenter with a substantial elongation of isoseismic contours correlated with the configuration of the isodepth contours of the subducting PHP beneath western Japan. A detailed analysis of the dense Hi-net waveform data from the intermediate-depth PHP event shows that the high-frequency S-wave signals suddenly disappear as the waves propagate the zone away from the Kii Channel to the boundary of Hyogo and Okayama prefectures and large S-to-P conversion occurs before the arrival of S-wave. Such anomalies do not occur for shallow and deep earthquakes occurring outside the PHP. These observations support the recent debate on the complexities of the configuration of the PHP subducting beneath western Japan such as that shown by Shiomi et al. (2008) based on receiver function images and the PHP-split model beneath the Kii channel shown by Ide et al.(2010) based on the analysis of comprehensive geophysical data. In order to explain the observations associated with sudden lateral change in the PHP structure, we conducted finite difference method (FDM) simulations of seismic wave propagation taking the detailed PHP model into account. It is confirmed that high-frequency guided wave energy decouple from waveguide where the shape of the PHP is suddenly deformed, which results in dramatic attenuation of high-frequency signals associating with large S-to-P conversions developed at sharp plate boundary. The present results also support the recently proposed complicated PHP-split model, however, further analysis is necessary to confirm whether the PHP is split beneath the Kii Channel or not, which is very important to understand the linkage occurrence of the Nankai trough earthquakes and their tectonic and seismic implications.

  8. Large Trench-Parallel Gravity Variations Predict Seismogenic

    E-print Network

    Simons, Mark

    Large Trench-Parallel Gravity Variations Predict Seismogenic Behavior in Subduction Zones Teh with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA spatial variations in frictional properties on the plate interface control trench-parellel variations

  9. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia

  10. Mechanisms Behind Aseismic Slip Pulsing on the Northeast Japan Subduction Zone: Insights from Time-Dependent Modelling of GPS and Repeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Weston, J. M.; Shirzaei, M.

    2014-12-01

    Aseismic slip is a key component of the moment budget of subduction zones, in some cases it accounts for more than half the total slip. It has been suggested that the propagation of aseismic slip as slow slip sequences precedes large megathrust events, such as the Tohoku-oki earthquake, Mw 9.0, 11th March 2011. Complex patterns of aseismic slip in space and time have been observed using either GPS data or repeating earthquakes, yet the physical mechanisms driving this behaviour are still poorly understood and have implications for seismic hazard assessment. Therefore, in this study both these datasets are combined in a time-dependent inversion, to investigate the spatiotemporal distribution of aseismic slip in northeast Japan, during the interseismic period of 21st March 1996 to 29th October 2003. Daily displacements recorded by ~800 GEONET stations are associated with slip on the subducting plate interface using a time-dependent inverse modelling scheme. The bounds on slip are defined by the location and slip of repeating earthquakes. Initial results show significant slip heterogeneity along-strike and down-dip. The majority of the upper part of the plate, at depths of 5 - 30 km, is locked except for two patches at 37° and 40° latitude. At 30 - 70 km depth there are three regions of aseismic slip, which exhibit periodic acceleration and deceleration throughout the interseismic period; in the south near Tokyo, offshore Sendai, and the northernmost part of Honshu at 41.5° latitude. Within these regions, patches with an average velocity of 7 to 8 cm/yr show large fluctuations in velocity, which in some cases precede the smaller variations observed for patches with an average velocity of 2 to 4 cm/yr. These observations are discussed in terms of the changes in effective normal stress, and the heterogeneous frictional properties of the northeast Japan subduction zone.

  11. Relationship between temperatures and fault slips on the upper surface of the subducting Philippine Sea plate beneath the Kanto district, central Japan

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shoichi; Takagi, Rumi; Matsumoto, Takumi

    2015-05-01

    To elucidate the relationship between interplate temperatures and generation mechanisms for megathrust earthquakes and slow slip events (SSEs) in the Kanto district, central Japan, we performed numerical simulations on the thermal state. For this purpose, we newly developed a 2-D box-type thermal convection model that is able to handle the subduction of two oceanic plates: the young oceanic Philippine Sea (PHS) plate subducts following subduction of the old oceanic Pacific (PAC) plate beneath it. To constrain temperatures on the upper surface of the PHS plate, we used high-density Hi-net heat flow data on land. We found that low heat flow in the Kanto district was caused mostly by subduction of the cold PHS plate. To explain the heat flow distribution in the Kanto district in more detail, we needed to incorporate frictional heating at the plate interface on the seaward side of the corner of the mantle wedge, and temperature changes due to surface erosion and sedimentation associated with crustal deformation during the Quaternary on land into the models. The most suitable pore pressure ratio to explain the heat flow data was 0.98. The thermally estimated seismogenic zone corresponded well to the fault planes of the 1923 Taisho Kanto earthquake and the western half of the 1707 Genroku Kanto earthquake. The eastern half of the fault plane of the 1707 Genroku Kanto earthquake could be divided into two areas; the northwestern fault plane corresponded to the thermally estimated seismogenic zone, whereas the relationship between the southeastern fault plane and interplate temperatures was ambiguous. The off-Boso SSEs occurred on the plate interface at temperatures lower than approximately 250 °C, and the slipped region passed through the 150 °C isotherm, corresponding to the clay mineral phase transformation from smectite to illite. This might suggest that the SSEs occurred in relation to a dehydration process.

  12. Seismicity of the Earth 1900-2007, Japan and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley

    2010-01-01

    This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.

  13. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m.

    PubMed

    Yoshida, Mitsuhiro; Yoshida-Takashima, Yukari; Nunoura, Takuro; Takai, Ken

    2015-11-01

    Viruses play important roles in aquatic ecosystems, but deep-sea bacteriophages remain largely unexplored. A temperate bacteriophage (termed vB_PstS-1) was identified from the psychrotolerant gammaproteobacterium Pseudomonas stutzeri 1-1-1b, which was isolated from hadopelagic water (depth of 7000 m) of the Japan Trench in the Northwest Pacific Ocean. The genome size of PstS-1 was 48,666 bp; its genome displayed a 59.8% G + C content and a total of 79 coding sequences were identified in its genome. The PstS-1 phage belongs to the family Siphoviridae, but its genomic sequence and organization are distinct from those of any other well-known Siphoviridae phage. The mosaic genomic structure of PstS-1 suggests the occurrence of genetic exchange between distinct temperate phages in deep-sea Pseudomonas populations. The PstS-1 genome also harbors three distinct sequence regions corresponding to spacers within a single clustered regularly interspaced short palindromic repeat (CRISPR) locus in the rhizosphere-associated diazotrophic P. stutzeri A1501 genome. The extension of these spacers to the soil environment and the presence of many homologs of both the hadal deep-sea phage PstS-1 and terrestrial Pseudomonas phages suggest the early co-evolution of temperate phages and their host genus Pseudomonas prior to the divergence of their habitational and physiological adaptation. PMID:26025640

  14. Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench

    PubMed Central

    Vossmeyer, Antje; Deusner, Christian; Kato, Chiaki; Inagaki, Fumio; Ferdelman, Timothy G.

    2012-01-01

    The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.2 MPa. Samples without methane amendment stored at in situ pressure retained higher levels of sulfate reducing activity than samples stored at 0.1 MPa. Piezophilic SR showed distinct substrate specificity after hydrogen and acetate addition. SR activity in samples stored under methanic conditions was one order of magnitude higher than in non-amended samples. Methanic samples stored under low hydrostatic pressure exhibited no increased SR activity at high pressure even with the amendment of methane. These new insights into the effects of pressure on substrate specific sulfate reducing activity in anaerobic environmental samples indicate that hydrostatic pressure must be considered to be a relevant parameter in ecological studies of anaerobic deep-sea microbial processes and long-term storage of environmental samples. PMID:22822404

  15. Overriding Plate Controls on Subduction Zone Evolution

    NASA Astrophysics Data System (ADS)

    Sharples, W. K.; Jadamec, M. A.; Moresi, L. N.; Capitanio, F. A.

    2014-12-01

    Seismic data, rock deformation experiments, and geochemical studies indicate variability in the thickness, buoyancy, and strength of the lithosphere at plate boundaries. However, geodynamic models of subduction commonly either omit an overriding plate or do not investigate role of the variation in overriding plate properties on the subduction evolution. We present time-dependent numerical models of subduction that vary the overriding plate thickness, strength, and density and allow for a plate interface that evolves with time via an anisotropic brittle failure rheology. We examine the emergence of (a) asymmetric versus symmetric subduction, (b) trench retreat versus advance, (c) subduction zone geometry, (d) slab stagnation versus penetration into the lower mantle, and (e) flat slab subduction. The majority of the models result in sustained asymmetric subduction. The models demonstrate that trench retreat is correlated with a thin overriding plate, whereas, trench advance is correlated with a thick and/or strong overriding plate. Slab dip, measured at a depth below the plate boundary interface, has a negative correlation with an increase in overriding plate thickness. Overriding plate thickness exerts a first order control over slab penetration into the lower mantle, with penetration most commonly occurring in models with a thick overriding plate. Periods of flat slab subduction occur with thick, strong overriding plates producing strong plate boundary interface coupling. The results provide insight into how the overriding plate plays a role in establishing advancing and retreating subduction, as well as providing an explanation for the variation of slab geometry observed in subduction zones on Earth.

  16. Marine electromagnetics: A new tool for mapping fluids at subduction zones

    NASA Astrophysics Data System (ADS)

    Key, K.; Naif, S.; Constable, S.; Evans, R. L.

    2013-12-01

    The recent adoption of marine electromagnetic (EM) methods by the hydrocarbon exploration industry has driven technological innovations in acquisition hardware and modeling software that have created new opportunities for studying plate boundary structure at subduction zones. Because the bulk electrical resistivity measured by EM surveys is strongly dependent on crustal porosity and hence fluid content, EM data can provide valuable constraints on crustal hydration in the incoming oceanic plate, fluids released through sediment compaction and dehydration reactions occurring after the plate is subducted, and fluids escaping through the overlying forearc crust. Since water also plays an important role in regulating subduction earthquake processes and frictional behavior along the plate boundary, EM data have the potential to reveal new insights on the causes of large subduction zone earthquakes and their potential for generating tsunamis. As a demonstration of this novel technique, we present new results from the first controlled-source EM survey of a subduction zone, carried out at the Middle America Trench offshore Nicaragua in 2010. During this survey 50 seafloor EM receivers were deployed along a 280 km profile extending from the abyssal plain, across the trench and onto the forearc. Controlled-source EM signals were broadcast to the receivers by deep-towing a low-frequency electric dipole transmitter close to the seafloor along the entire survey profile, generating diffusive EM waves that traveled through the crust and uppermost mantle. Non-linear two-dimensional inversion of the data reveals a significant decrease in crustal resistivity with the onset of bending faults at the trench outer rise and images a continuous zone of low resistivity porous sediments being carried down with the subducting plate to at least 10 km down dip from the trench. Further landward at about 25 km from the trench, a sub-vertical low-resistivity zone extending from the plate boundary into the overlying forearc crust is consistent with the fluid release expected from the smectite-illite transformation and occurs directly beneath the location of known seafloor fluid seeps. Potential future surveys at other margins such as Cascadia, Alaska, New Zealand and Japan and integrated interpretation with other geophysical, geochemical and geological studies offers the chance for greatly enhancing our understanding of subduction processes.

  17. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Ikari, Matt J.; Kameda, Jun; Saffer, Demian M.; Kopf, Achim J.

    2015-02-01

    The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than ? 5km should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (< 1mm /s) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction ?s = 0.2- 0.26), in contrast to the much stronger wall rocks (?s > ? 0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.

  18. Tomography, Dynamical Modeling and the Geologic History of the Subduction Zone Around the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Honda, S.

    2014-12-01

    Since the subduction zone is one of the most geologically active regions in the world, it has attracted much attention from the various fields of the earth science. In this presentation, we try to combine the results and knowledge of seismic tomography, geodynamic modeling and the geologic history of the subduction zone around the Japanese Islands to constrain the nature of the subduction zone there. For this purpose, first, we estimate the cold temperature anomaly by converting the fast velocity anomaly of GAP_P4 model [Fukao & Obayashi, 2013] to the cold temperature anomaly using the recent estimate of d(ln Vp)/dT by Karato [2008]. The magnitude of the anomaly is constrained by the work on the relation between the theoretical estimate of temperature and the seismicity in the subducting slab [Emmerson & McKenzie, 2007]. We find that, although the velocity anomaly itself does not show a significant high velocity anomaly just below the stagnated slab, the estimated temperature shows rather continuous cold anomaly from the upper to the lower mantle. This continuous feature is consistent with the recent results of geodynamic modeling of the subduction zone. However, we still see a significant thinning or an absence of the slab just below the stagnated slab in the transition zone. This is more evident in other tomographic models. Geodynamical modeling of subduction, especially, the stagnation of the slab in the transition zone shows that the slab behavior strongly depends on the geological settings of subduction zone such as the rollback of trench. To understand the present feature of the slab revealed by the seismic tomography, we construct a simple half-kinematic model of subduction zone by taking into account the geological settings, that is, the opening of the Japan Sea. We find that the slab similar to the present image is obtained in terms of disruption of the slab suggesting that it occurred during the opening of the Japan Sea.

  19. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes from the slab to the mantle wedge. A low- Vs zone in the uppermost part of the subducting slab corresponds to the hydrous oceanic crust since its absolute velocity is about 4.0 km/s, comparable to that expected for the oceanic crust (Hacker et al., 2003). Dehydration reactions occur in the oceanic crust as temperature and pressure increase, and a relatively large amount of water is released at depths of about 80-100 km. The water generated by dehydration reactions could migrate upward and react peridotite at the base of the mantle wedge, forming a thin-serpentine layer there. Then, the layer is dragged by the subducting slab to deeper depths (e.g. Iwamori, 1998). Such water-transportation processes from the slab to the mantle wedge are partly constrained by a recent receiver function analysis (Kawakatsu and Watada, 2007). We further found an along-arc variation of the termination depth of the low-velocity oceanic crust, suggesting the along-arc variation in the amount of fluids released from the slab.

  20. Texture development in naturally compacted and experimentally deformed silty clay sediments from the Nankai Trench and Forearc, Japan

    NASA Astrophysics Data System (ADS)

    Schumann, Kai; Stipp, Michael; Leiss, Bernd; Behrmann, Jan H.

    2014-12-01

    The petrophysical properties of fine-grained marine sediments to a large extent depend on the microstructure and crystallographic preferred orientations (CPOs). In this contribution we show that Rietveld-based synchrotron texture analysis is a new and valuable tool to quantify textures of water-saturated fine-grained phyllosilicate-rich sediments, and assess the effects of compaction and tectonic deformation. We studied the CPO of compositionally almost homogeneous silty clay drillcore samples from the Nankai Accretionary Prism slope and the incoming Philippine Sea plate, offshore SW Japan. Basal planes of phyllosilicates show bedding-parallel alignment increasing with drillhole depth, thus reflecting progressive burial and compaction. In some samples calcite and albite display a CPO due to crystallographically controlled non-isometric grain shapes, or nannofossil tests. Consolidated-undrained experimental deformation of a suite of thirteen samples from the prism slope shows that the CPOs of phyllosilicate and calcite basal planes develop normal to the experimental shortening axis. There is at least a qualitative relation between CPO intensity and strain magnitude. Scanning electron micrographs show concurrent evolution of preferred orientations of micropores and detrital illite flakes normal to axial shortening. This indicates that the microfabrics are sensitive strain gauges, and contribute to anisotropic physical properties along with the CPO.

  1. Salty Trench

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a trench dug by the rover on its way toward the 'Columbia Hills.' Measurements taken of the soil contained in the trench by Spirit's alpha particle X-ray spectrometer showed the presence of sulfur and magnesium. Concentrations of those two elements varied in parallel at different locations in the trench, suggesting that they may be paired as a magnesium-sulfate salt. One possible explanation for these findings is that water percolated through underground material and dissolved out minerals, then as the water evaporated near the surface, it left concentrated salts behind.

  2. Japan.

    ERIC Educational Resources Information Center

    Geiger, Rita; And Others

    The document offers practical and motivating techniques for studying Japan. Dedicated to promoting global awareness, separate sections discuss Japan's geography, history, culture, education, government, economics, energy, transportation, and communication. Each section presents a topical overview; suggested classroom activities; and easily…

  3. Contrasting slip zone mineralogy of major thrusts in ancient subduction complexes: examples from the Pasagshak Point Thrust in Alaska and the Nobeoka Thrust in Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Fukuchi, R.; Fujimoto, K.; Ishikawa, T.; Kato, Y.; Nozaki, T.; Meneghini, F.; Rowe, C. D.; Moore, C. A.; Tsutsumi, A.; Kimura, G.

    2014-12-01

    Two well-studied Cretaceous-Tertiary accretionary complexes, the Kodiak complex in Alaska and the Shimanto complex in Japan, were formed by subduction of a relatively young oceanic plate, and have similar lithologies characterized by thick terrigenous sediments with rare pelagic sediments. However, the occurrences of fault rock types and fluid-rock interaction patterns along major thrust zone differ significantly, instead of similar background temperatures (~250°C). In this presentation we compare two representative fault zones showing contrasting mineralogy and water-rock interaction patterns. Ultrafine-grained black fault rocks (BFRs) comprise the principal slip zone of the Pasagshak Point Thrust of the Kodiak accretionary complex. The geochemistry of the BFRs is characterized by Li and Sr enrichment, Rb and Cs depletion, and a low 87Sr/86Sr ratio. These geochemical signatures are explained by fluid-rock interactions at >350°C, which result in preferential removal of Rb and Cs and formation of plagioclase under the presence of fluids with high Li and Sr concentrations and low 87Sr/86Sr ratios. In contrast to the Pasagshak Point Thrust, the fault core of the Nobeoka Thrust in the Shimanto accretionary complex is mineralogically characterized by breakdown of plagioclase and enrichment in clay and carbonate minerals. Values of illite crystallinity expressed as a full width at half maximum of the illite (001) peak in clay-fraction XRD increase within fault zones, showing the absence of significant temperature rise. Temperatures of fault plane during fluid-rock interaction may affect the difference in mineralogical characters of the two fault zones. Further mineralogical and geochemical investigations are necessary to explore the nature of fluids and its role in faulting along seismogenic subduction plate boundaries.

  4. Effects of Subduction Parameters on the Style of Dynamic Buckling of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Lee, C.; King, S. D.

    2011-12-01

    Buckling of subducting slabs has been suggested to explain the apparent thickening of the subducting slab in the shallow lower mantle, constrained by seismic tomography images. Previous analog/numerical model experiments show that the buckling of subducting slabs develops due to viscosity increases across the upper-lower mantle boundary and/or phase transformations. Our 2-d numerical model studies conducted before show that buckling of subducting slab is fairly consistent with the scaling laws derived for buckling of falling fluids. However, effects of diverse subduction parameters on the style of dynamic buckling of subducting slabs are still not well known. Therefore, we conduct a series of 2-d numerical model experiments allowing dynamic subduction to evaluate the effects of subduction parameters including: 1) viscosity increases across the upper-lower mantle boundary, 2) strength of subducting slab, 3) phase transformations from olivine to wadsleyite (~410 km depth) and from ringwoodite to perovskite plus magnesiowüstite (~660 km depth) in the mantle, 4) trench migrations/mantle wind, and 5) mantle compressibility. Results of the experiments can be summarized below; 1) Higher viscosity increases across the upper-lower mantle boundary create more cycles of slab buckling, slow subduction rate and longer subduction life. 2) Stronger subducting slab creates longer periods of slab buckling, slow subduction rate and longer subduction life. 3) The phase transformation from olivine to wadsleyite is crucial in development of slab buckling. However, the phase transformation from ringwoodite to perovskite plus magnesiowüstite only contributes a minor role in development of slab buckling. 4) Even low migration rate/mantle wind (~1cm/year) significantly reduces buckling of subducting slab. Stagnant slab is well established if higher migration rate/mantle wind is applied with phase transformations and/or higher viscosity increases across the upper-lower mantle boundary. 5) Mantle compressibility develops irregular buckling of subducting slab compared with the experiments without compressibility. However, the effect of mantle compressibility is minor. Most of the experiments which allow buckling of subducting slab are fairly consistent with the scaling laws. However, slab buckling is significantly reduced by trench migration/mantle wind. Since most of the subduction zones have been experiencing trench migration, slab buckling observed in the mantle implies that buckling of subducting slab results from relatively stable trench such as the Mariana subduction zone.

  5. Japan.

    PubMed

    1989-02-01

    Japan consists of 3900 islands and lies off the east coast of Asia. Even though Japan is one of the most densely populated nations in the world, its growth rate has stabilized at .5%. 94% of all children go to senior high school and almost 90% finish. Responsibility for the sick, aged, and infirmed is changing from the family and private sector to government. Japan was founded in 600 BC and its 1st capital was in Nara (710-1867). The Portuguese, the 1st Westerners to make contact with Japan in 1542, opened trade which lasted until the mid 17th century. US Navy Commodore Matthew Perry forced Japan to reopen in 1854. Following wars with China and Russia in the late 1800s and early 1900s respectively, Japan took part in World Wars I and II. In between these wars Japan invaded Manchuria and China. The US dropped an atomic bomb on Hiroshima and Nagasaki and the Japanese surrendered in September, 1945 ending World War II (WWII). Following, WWII, the Allied Powers guided Japan's establishment as a nonthreatening nation and a democratic parliamentary government (a constitutional monarchy) with a limited defense force. Japan remains one of the most politically stable of all postwar democracies. The Liberal Democratic Party's Noboru Takeshita became prime minister in 1987. Japan has limited natural resources and only 19% of the land is arable. Japanese ingenuity and skill combine to produce one of the highest per hectare crop yields in the world. Japan is a major economic power, and its and the US economies are becoming more interdependent. Its exports, making up only 13% of the gross national product, mainly go to Canada and the US. Many in the US are concerned, however, with the trade deficit with Japan and are seeking ways to make trade more equitable. Japan wishes to maintain good relations with its Asian neighbors and other nations. The US and Japan enjoy a strong, productive relationship. PMID:12178004

  6. Average slip rate at the transition zone on the plate interface in the Nankai subduction zone, Japan, estimated from short-term SSE catalog

    NASA Astrophysics Data System (ADS)

    Itaba, S.; Kimura, T.

    2013-12-01

    Short-term slow slip events (S-SSEs) in the Nankai subduction zone, Japan, have been monitored by borehole strainmeters and borehole accelerometers (tiltmeters) mainly. The scale of the S-SSE in this region is small (Mw5-6), and therefore there were two problems in S-SSE identification and estimation of the fault model. (1) There were few observatories that can detect crustal deformation associated with S-SSEs. Therefore, reliability of the estimated fault model was low. (2) The signal associated with the S-SSE is relatively small. Therefore, it was difficult to detect the S-SSE only from strainmeter and tiltmeter. The former problem has become resolvable to some extent by integrating the data of borehole strainmeter, tiltmeter and groundwater (pore pressure) of the National Institute of Advanced Industrial Science and Technology, tiltmeter of the National Research Institute for Earthquake Science and Disaster Prevention and borehole strainmeter of the Japan Meteorological Agency. For the latter, by using horizontal redundant component of a multi-component strainmeter, which consists generally of four horizontal extensometers, it has become possible to extract tectonic deformation efficiently and detect a S-SSE using only strainmeter data. Using the integrated data and newly developed technique, we started to make a catalog of S-SSE in the Nankai subduction zone. For example, in central Mie Prefecture, we detect and estimate fault model of eight S-SSEs from January 2010 to September 2012. According to our estimates, the average slip rate of S-SSE is 2.7 cm/yr. Ishida et al. [2013] estimated the slip rate as 2.6-3.0 cm/yr from deep low-frequency tremors, and this value is consistent with our estimation. Furthermore, the slip deficit rate in this region evaluated by the analysis of GPS data from 2001 to 2004 is 1.0 - 2.6 cm/yr [Kobayashi et al., 2006], and the convergence rate of the Philippine Sea plate in this region is estimated as 5.0 - 7.0 cm/yr. The difference between the slip deficit rate and the convergence rate is 2.4-6.0 cm/yr, and it is comparable to the average slip rate of S-SSE. Consequently, slow earthquakes such as S-SSEs and tremor that we can detect, roughly cover 50-100 % of quasi-static slip in this region.

  7. An approximately 9-yr-period variation in seismicity and crustal deformation near the Japan Trench and a consideration of its origin

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki

    2014-02-01

    It is well known that the statistical probability of earthquake occurrence changes over the course of a day due to periodic variations in the tidal stress acting on faults. However, periodicity on a decadal scale has been studied by relatively few researchers. It has been reported that an approximately 10-yr periodicity is observed globally for the seismicity of M-8-class large earthquakes. However, the mechanism underlying this periodicity has not yet been revealed. In this study, the decadal-scale periodicity of earthquakes along the Japan Trench is investigated. A new finding is presented that in northeast Japan, the probability of the occurrence of historical earthquakes with an M ? 6 that have occurred during the past 1000 yr has increased approximately every 9 yr. Periodicity becomes even more apparent for large earthquakes with an M > 7.5 and approximately half the recorded events intensively occurred within two successive years on a cycle of approximately 9 yr. This implies the presence of a periodic stress disturbance at an appreciably regular interval. The past strain and tilt observations conducted in Japan during the 1950s through the 1970s indicate that, nationwide, gradual compression repeated every 8-10 yr in the direction of relative plate motion. These compression periods are in accordance with the periods of higher seismic activity discussed above. As a first step in investigating the origin of earthquake periodicity, periods associated with lunar motion are considered. It is shown that long-term motion primarily governed by the period of the lunar perigee is synchronized with the cyclic variation in seismicity and crustal deformation described above. Decadal changes in tidal stress, as calculated using an ordinary theory of solid Earth tides, are too small to cause periodic variations in seismicity. Therefore, the conditions by which tidal stress is sufficiently amplified to trigger an earthquake are investigated. The results show that, if one assumes that a tidal force acts on a spherically asymmetric block-like upper mantle beneath the Pacific Plate, the computed phase and amplitude can explain the observations. Otherwise, it is difficult to consider direct tidal force alone as the main source of periodic variations in seismicity. Other possibilities should be considered, such as unknown interactions between the plate boundaries and the ocean/atmosphere with a period of approximately 9 yr or a resonance between the period of the tidal force and a recurrence period of slow slip events in the transition zone on the plate boundary. Apart from understanding the origin, the important fact confirmed in this study is that in some areas, the occurrence of large earthquakes, if considered as a group, appears to be strongly governed by a periodic stress disturbance rather than by completely random processes. Elucidating the wide-range approximately 9-yr mode helps us narrow a range in occurrence time in a probabilistic mid-term prediction of large interplate earthquakes.

  8. Subduction Initiation in Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    Subduction is often reported to be difficult to initiate, yet in the West Pacific and Eastern Indonesia there are many young subduction zones. Few theoretical or modelling studies consider such settings in which subduction commonly began close to boundaries between ocean crust and thickened crust of arc or continental origin. In Eastern Indonesia there are subduction zones at different stages of development. Some young examples such as the Banda Arc developed by propagation of an existing trench into a new area by tearing, probably along an ocean-continent boundary. This 'solves' the problem since the older subducted slab provides the driving force to drag down unsubducted ocean lithosphere. However, similar explanations cannot account for other subduction zones, such as North Sulawesi, nearby examples in which the subducted slab is not yet at 100 km depth, or troughs where subduction appears to be beginning. These examples show that subduction initiated at a point, such as a corner in an ocean basin, where there were very great differences in elevation between land and adjacent ocean floor. Depression of ocean crust by flow of arc/continent crust is associated with granitic magmatism and detachments within the upper crust. Once the oceanic corner reaches depths of c.100 km, eclogite formation may lead to slab pull that causes the new subduction zone to grow in both directions along strike; arc magmatism may or may not begin. The close relationship between subduction and extension in Eastern Indonesia links dramatic elevation of land, exhumation of deep crust, and spectacular subsidence of basins imaged by oil exploration seismic and multibeam data. Exhumed granites and high-grade metamorphic rocks at elevations up to 3 km, separated by Neogene alluvial sediments from carbonate reefs now at depths of 2 kilometres, imply vertical movements of several kilometres in a few million years. These observations raise the question of whether subduction is driving extension or vice versa.

  9. Japan.

    PubMed

    1987-02-01

    Japan is composed of 4 main islands and more than 3900 smaller islands and has 317.7 persons/square kilometer. This makes it one of the most densely populated nations in the world. Religion is an important force in the life of the Japanese and most consider themselves Buddhists. Schooling is free through junior high but 90% of Japanese students complete high school. In fact, Japan enjoys one of the highest literacy rates in the world. There are over 178 newspapers and 3500 magazines published in Japan and the number of new book titles issued each year is greater than that in the US. Since WW1, Japan expanded its influence in Asia and its holdings in the Pacific. However, as a direct result of WW2, Japan lost all of its overseas possessions and was able to retain only its own islands. Since 1952, Japan has been ruled by conservative governments which cooperate closely with the West. Great economic growth has come since the post-treaty period. Japan as a constitutional monarchy operates within the framework of a constitution which became effective in May 1947. Executive power is vested in a cabinet which includes the prime minister and the ministers of state. Japan is one of the most politically stable of the postwar democracies and the Liberal Democratic Party is representative of Japanese moderate conservatism. The economy of Japan is strong and growing. With few resources, there is only 19% of Japanese land suitable for cultivation. Its exports earn only about 19% of the country's gross national product. More than 59 million workers comprise Japan's labor force, 40% of whom are women. Japan and the US are strongly linked trading partners and after Canada, Japan is the largest trading partner of the US. Foreign policy since 1952 has fostered close cooperation with the West and Japan is vitally interested in good relations with its neighbors. Relations with the Soviet Union are not close although Japan is attempting to improve the situation. US policy is based on the following 3 principles: 1) the US views Japan as an equal trade partner, 2) that the relationship is global in scope, and 3) that Japan has become increasingly assertive in world matters and plays a greater international role. The combined efforts of the US and Japan will be utilized to promote world peace. PMID:12177912

  10. Oceanic Plate Bending Along the Manila Trench

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Zhan, W.

    2014-12-01

    We quantify along-trench variations in plate flexural bending along the Manila trench in the South China Sea. A 3-D interpreted flexural deformation surface of the subducting South China Sea Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 21 across-trench profile sections along the Manila trench and then calculated five best-fitting tectonic and plate parameters that control the flexural bending for each of the across-trench profile sections. Results of analysis revealed significant along-trench variations: The trench relief of the Manila trench varies from 0.8 to 2.2 km, trench-axis vertical loading (-V0) from -0.4x1012 to 1.21x1012 N/m, and axial bending moment (-M0) from 0.005x1017 to 0.6x1017 N. The effective elastic plate thickness seaward of the Manila outer-rise region (TeM) ranges from 30 to 40 km, while that trench-ward of the outer-rise (Tem) ranges from 11 to 30 km. This corresponds to a reduction in Te of 26-63% for the Manila trench. The transition from TeM to Tem occurs at a breaking distance of 50-120 km from the Manila trench axis. The axial vertical loading, bending moment, and the effective elastic thickness of the Manila trench are much smaller than the Mariana trench (Zhang et al., 2014). The contrast in the flexural bending between the Mariana and Manila trenches might be related to the difference in the ages of the subducting plates and other tectonic variables. Zhang, F., Lin, J., Zhan, W., 2014. Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett. 401, 206-214. doi: 10.1016/j.epsl.2014.05.032

  11. Japan.

    ERIC Educational Resources Information Center

    Jones, Savannah C.

    Materials for a secondary level, interdisciplinary social studies course on Japan are divided into introductory information, 14 classroom units, and study and evaluation materials. Introductory material includes lists of objectives and skills, an outline of Japanese history, and an explanation of Japan's name and flag. The units cover the…

  12. Seismicity, crustal structure, and morphology of the Louisville Ridge Tonga-Kermadec Trench collisional system

    E-print Network

    Watts, A. B. "Tony"

    Seismicity, crustal structure, and morphology of the Louisville Ridge ­ Tonga-Kermadec Trench-Kermadec island arc-deep sea trench system is the most linear, fastest converging, and seismically active of any of the world's subduction zones. At ~26° S, the trench is intersected by the Louisville Ridge, a 4500 km long

  13. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling

    E-print Network

    Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling the incoming Pacific plate at the Mariana subduction trench to understand stresses within the bending plate below the Moho. At the Southern Mariana Trench, extensional earthquakes continue to 5 km below the Moho

  14. ELSEVIER Tectonophysics 241 (1995) 259-277 Tectonic regime of the southern Kurile Trench

    E-print Network

    Cattin, Rodolphe

    1995-01-01

    ELSEVIER Tectonophysics 241 (1995) 259-277 Kglll~81g$ Tectonic regime of the southern Kurile Trench of trench fill and the relatively constant thickness of the subducted sediments on top of the oceanic Kula rift now intersects the western Aleutian Trench near 171°E (Lonsdale, 1988). According to De Mets

  15. Changes in seismicity and stress loading on subduction faults in the Kanto region, Japan, 2011-2014

    NASA Astrophysics Data System (ADS)

    Gardonio, Blandine; Marsan, David; Lengliné, Olivier; Enescu, Bogdan; Bouchon, Michel; Got, Jean-Luc

    2015-04-01

    Seismic activity has increased in the Kanto region, Japan, following the 2011 M9.0 Tohoku earthquake. We here reassess this increase up to June 2014, to show that normal, Omori-like relaxation characterizes the activity on crustal faults as well as on the Philippine Sea plate, but not on the deeper Pacific plate. There repeating earthquakes display a twofold rate of occurrence (still ongoing in June 2014) as compared to the pre-Tohoku rate, suggesting enhanced creep. We compute the Coulomb stress changes on the upper locked portion of the Philippine Sea plate, which last ruptured in 1923. We find that this fault was little affected by either the coseismic, the postseismic, the accelerated creep, or the 2011 Boso silent slip event.

  16. Aeromagnetic legacy of early Paleozoic subduction along the Pacific margin of Gondwana

    USGS Publications Warehouse

    Finn, C.; Moore, D.; Damaske, D.; Mackey, T.

    1999-01-01

    Comparison of the aeromagnetic signatures and geology of southeastern Australia and northern Victoria Land, Antarctica, with similar data from ancient subduction zones in California and Japan, provides a framework for reinterpretation of the plate tectonic setting of the Pacific margin of early Paleozoic Gondwana. In our model, the plutons in the Glenelg (south-eastern Australia) and Wilson (northern Victoria Land) zones formed the roots of continental-margin magmatic arcs. Eastward shifting of arc magmatism resulted in the Stavely (south-eastern Australia) and Bowers (northern Victoria Land) volcanic eruptions onto oceanic forearc crust. The turbidites in the Stawell (southeastern Australia) and Robertson Bay (northern Victoria Land zones) shed from the Glenelg and Wilson zones, respectively, were deposited along the trench and onto the subducting oceanic plate. The margin was subsequently truncated by thrust faults and uplifted during the Delamerian and Ross orogenies, leading to the present-day aeromagnetic signatures.

  17. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.; Yakiwara, H.; Asano, Y.; Shimizu, H.; Uchida, K.; Hirano, S.; Umakoshi, K.; Miyamachi, H.; Nakamoto, M.; Fukui, M.; Kamizono, M.; Kanehara, H.; Yamada, T.; Shinohara, M.; Obara, K.

    2015-05-01

    Detection of shallow slow earthquakes offers insight into the near-trench part of the subduction interface, an important region in the development of great earthquake ruptures and tsunami generation. Ocean-bottom monitoring of offshore seismicity off southern Kyushu, Japan, recorded a complete episode of low-frequency tremor, lasting for 1 month, that was associated with very-low-frequency earthquake (VLFE) activity in the shallow plate interface. The shallow tremor episode exhibited two migration modes reminiscent of deep tremor down-dip of the seismogenic zone in some other subduction zones: a large-scale slower propagation mode and a rapid reversal mode. These similarities in migration properties and the association with VLFEs strongly suggest that both the shallow and deep tremor and VLFE may be triggered by the migration of episodic slow slip events.

  18. Geophysics. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface.

    PubMed

    Yamashita, Y; Yakiwara, H; Asano, Y; Shimizu, H; Uchida, K; Hirano, S; Umakoshi, K; Miyamachi, H; Nakamoto, M; Fukui, M; Kamizono, M; Kanehara, H; Yamada, T; Shinohara, M; Obara, K

    2015-05-01

    Detection of shallow slow earthquakes offers insight into the near-trench part of the subduction interface, an important region in the development of great earthquake ruptures and tsunami generation. Ocean-bottom monitoring of offshore seismicity off southern Kyushu, Japan, recorded a complete episode of low-frequency tremor, lasting for 1 month, that was associated with very-low-frequency earthquake (VLFE) activity in the shallow plate interface. The shallow tremor episode exhibited two migration modes reminiscent of deep tremor down-dip of the seismogenic zone in some other subduction zones: a large-scale slower propagation mode and a rapid reversal mode. These similarities in migration properties and the association with VLFEs strongly suggest that both the shallow and deep tremor and VLFE may be triggered by the migration of episodic slow slip events. PMID:25954006

  19. Flexural Mechanics of Subduction

    NASA Astrophysics Data System (ADS)

    Ribe, N. M.; Li, Z. H.

    2014-12-01

    Deformation of subducting lithosphere is controlled by a balance of four forces: the negative buoyancy of the slab, its internal viscous resistance to stretching and bending, and the drag of the ambient mantle. To elucidate the complex dynamics of this system, we study a model in which a 3-D sheet of viscous fluid with thickness hh and viscosity ??1gammaeta_1 subducts in an ambient fluid with viscosity ?1eta_1 and depth DD. Numerical solutions for the sheet's evolution are obtained using a boundary element method, starting from an initial configuration comprising a short protoslab attached to a longer horizontal plate that is free to move laterally. The dynamics of the sheet are controlled by its dimensionless `stiffness' S??(h/?b)3Sequiv gamma (h/ell_b)^3, where the `bending length' ?bell_b is the sum of the lengths of the slab and of the flexural bulge. The slab's sinking speed is controlled by its own viscosity if S?1Sgg 1, and by that of the ambient fluid if S?1Sleq 1. Time-dependent solutions with passive tracers demonstrate a partial return flow around the leading edge of a retreating slab and return flow around its sides. A systematic investigation of the slab's interaction with the bottom boundary as a function of ?2/?1eta_2/eta_1 and D/hD/h delineates a rich regime diagram of subduction modes (trench retreating, slab folding, trench advancing, etc.) that agrees well with laboratory observations. The solutions show that mode selection is controlled by the dip of the slab's leading edge at the time when it first encounters the bottom boundary. We will discuss several geophysical applications of the model, including seismic evidence for slab folding, the radius-of-curvature constraint on the slab/mantle viscosity ratio ?2/?1eta_2/eta_1, and the distribution of seismic anisotropy around subducting slabs.

  20. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and trench retreat in the western Pacific readily result in the horizontal stagnation of the Pacific plate in the transition zone beneath eastern Asian continent [2]. Dehydration of this slab supplies water, which rises and results in 'basal hydration weakening' of the eastern China lithosphere and its thinning by converting it into weak material of asthenospheric property [3]. We note the proposal that multiple subduction zones with more water (i.e., subduction of the South China Block beneath the North China Craton, NCC; subduction of the Siberian/Mongolian block beneath the NCC) all contribute to the lithosphere thinning beneath the NCC [4]. However, 'South China-NCC' and 'Siberian/Mongolian-NCC' represent two collisional tectonics involving no trench retreat, causing no transition-zone slab stagnation, supplying no water, and thus contributing little to lithosphere thinning beneath the NCC. Furthermore, lithosphere thinning happened to the entire eastern China, not just limited to the NCC, emphasizing the effects of the western Pacific subduction system on eastern China geology. References: [1] Niu et al., 2003, Journal of Petrology, 44, 851-866. [2] Kárason & van der Hilst, R., 2000, Geophysical Monograph, 121, 277-288. [3] Niu, 2005, Geological Journal of China Universities, 11, 9-46. [4] Windley et al., 2010, American Journal of Science, 310, 1250-1293.

  1. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan

    NASA Astrophysics Data System (ADS)

    Loveless, John P.; Meade, Brendan J.

    2010-02-01

    Interseismic deformation in Japan results from the combined effects of tectonic processes including rotation of crustal blocks and the earthquake cycle process of elastic strain accumulation about upper plate faults and subduction zone interfaces. We use spherical linear block theory constrained by geodetic observations from densely spaced Global Positioning System (GPS) stations to estimate plate motions, fault slip rates, and spatially variable interplate coupling on the Japan-Kuril, Sagami, and Nankai subduction zones. The reference model developed in this paper consists of 20 blocks, produces a mean residual velocity magnitude of 1.84 mm/yr at 950 stations, and accounts for 96% of the observed interseismic deformation signal. We estimate fault slip rates in excess of 15 mm/yr along the Niigata-Kobe Tectonic Zone and Itoigawa-Shizuoka Tectonic Line through central Japan, confirming their hypothesized roles as major tectonic boundaries. Oblique convergence across the Nankai Trough is partitioned, with 3/4 of the ˜30 mm/yr of trench-parallel motion accommodated by strike-slip motion on the subduction interface and the remaining 1/4 accommodated by right-lateral slip on the Median Tectonic Line. In contrast, our models suggest negligible slip partitioning in eastern Hokkaido, where oblique slip on the Japan-Kuril subduction interface accommodates all of the trench-parallel component of relative plate motion. Inferred spatial variations in the rake and magnitude of slip deficit on subduction zone interfaces reflect the influences of megathrust geometry and earthquake cycle processes such as enhanced elastic strain accumulation about seismic asperities and coseismic sense fault motion indicative of silent slip events or afterslip following large earthquakes.

  2. Three-Dimensional Numerical Models of Subduction and Subduction-Induced Mantle Flow

    NASA Astrophysics Data System (ADS)

    Freeman, J.; Stegman, D. R.; Schellart, W. P.; Moresi, L.; May, D. A.; Turnbull, R.

    2004-12-01

    The kinematics of subduction and its influence on mantle convection and plate-scale deformation have been the focus of numerous geodynamic studies [e.g. Garfunkel et al., 1986; Gurnis and Hager, 1988; Zhong and Gurnis, 1995; Christensen, 1996; Olbertz et al., 1997; Conrad and Hager, 1999; Eberle et al., 2002]. Most geodynamic models have considered only two-dimensional aspects of subduction dynamics by incorporating the assumption that subduction zones are infinite in trench-parallel extent. However, natural subduction zones are intrinsically three-dimensional, due in part to their limited lateral extent. Lateral length scales of natural subduction zones vary from only a few hundred kilometres (e.g. the Calabrian, Hellenic and Scotia slabs) to several thousand kilometres (e.g. the Aleutian, Indonesian, Northwest Pacific and South American slabs). Here, we present results from three-dimensional numerical experiments that simulate lithospheric subduction and subduction induced mantle flow for slabs with a varying lateral extent.

  3. Trench Visualization

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows oblique views of NASA's Phoenix Mars Lander's trench visualized using the NASA Ames Viz software package that allows interactive movement around terrain and measurement of features. The Surface Stereo Imager images are used to create a digital elevation model of the terrain. The trench is 1.5 inches deep. The top image was taken on the seventh Martian day of the mission, or Sol 7 (June 1, 2008). The bottom image was taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair

    This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008).

    In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair.

    For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Sawai, Michiyo; Hirose, Takehiro; Kameda, Jun

    2014-12-01

    The 2011 Tohoku earthquake (Mw 9.0) produced a very large slip on the shallow part of a megathrust fault that resulted in destructive tsunamis. Although multiple causes of such large slip at shallow depths are to be expected, the frictional property of sediments around the fault, particularly at coseismic slip velocities, may significantly contribute to large slip along such faults. We have thus investigated the frictional properties of incoming pelagic sediments that will subduct along the plate boundary fault at the Tohoku subduction zone, in order to understand the rupture processes that can cause large slip in the shallow parts of subduction zones. Our experimental results on clayey sediment at the base of the sedimentary section on the Pacific Plate yield a low friction coefficient of <0.2 over a wide range of slip velocities (0.25 mm/s to 1.3 m/s), and extremely low fracture energy during slip weakening, as compared with previous experiments of disaggregated sediments under coseismic slip conditions. Integrated Ocean Drilling Program (IODP) Expedition 343 confirmed that the clay-rich sediment investigated here is identical to those in the plate boundary fault zone, which ruptured and generated the Tohoku earthquake. The present results suggest that smectite-rich pelagic sediment not only accommodates cumulative plate motion over interseismic periods but also energetically facilitates the propagation of earthquake rupture towards the shallow part of the Tohoku subduction zone.

  6. New Constraints on Mantle Flow in Subduction Systems

    NASA Astrophysics Data System (ADS)

    Fouch, M. J.; Lassak, T. M.; Roth, J. B.; Smith, C. M.; Hall, C. E.; Kaminski, E.; Anglin, D. K.

    2005-12-01

    From a compositional, dynamical, and structural standpoint, subduction zones are arguably Earth's most complex tectonic setting. Significant uncertainty remains regarding the extent of coupling between lithospheric plates and surrounding mantle, as well as the extent to which the mantle wedge is hydrated in subduction systems. A key observation used to address these issues is measurements of seismic anisotropy, which while generally straightforward to observe via shear wave splitting, are less straightforward to interpret particularly in regions of compositional and structural complexity. To this end, we have surveyed several Pacific subduction zones to provide new constraints on subduction zone seismic anisotropy. We have also performed numerical modeling to estimate the effects of hydration of the mantle wedge on observations of shear wave splitting in subduction systems. From an observational standpoint, we have obtained over 400 new shear wave splitting measurements from shear phases that sample the Japan, Izu-Bonin, and Cascadia subduction systems. Across the Japan and Izu-Bonin regions, fast polarization directions range from convergence-parallel to trench-parallel and suggest complex mantle deformation. We infer that the total strength of anisotropy is 1-2% and is generated primarily from the mantle wedge and the subducting lithospheric slab with a component of subslab anisotropy generated by diverted mantle flow beneath the Philippine Sea Plate. Conversely, fast polarization directions for southern Cascadia exhibit less variation and are generally close to convergence-parallel across the region. In this area, anisotropy appears to be stronger, on the order of 3-4%, and is located primarily in the mantle wedge and overriding plate. The observed shear wave splitting variations, combined with relative delay time measurements that will be presented separately in this session, are likely due a combination of mantle flow variations and the existence of a serpentinized and/or hydrous olivine wedge. From a modeling standpoint, we have examined the effects of high stress and hydration states to predict shear wave splitting as a result of mantle silicate lattice-preferred orientation (LPO) development in mantle flow models using a theory that incorporates the combined effects of intracrystalline slip and dynamic recrystallization on textural development. We utilize the resulting textures to predict shear wave splitting for populations of seismic raypaths traversing the model within the subduction zone. Results demonstrate that, using the combined observations of variations in fast polarization directions and splitting times, it is possible to resolve a shift from anhydrous to hydrous mantle in subduction zone settings when sampling of the mantle wedge is very good. The implications of these results suggest that new seismic experiments in subduction systems are required to fully evaluate potential competing effects between changes in mantle flow and hydration state in subduction zone mantle wedges.

  7. Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle

    NASA Astrophysics Data System (ADS)

    Bentham, H. L. M.; Rost, S.

    2014-06-01

    Small-scale heterogeneities in the mantle can give important insight into the dynamics and composition of the Earth's interior. Here, we analyse seismic energy found as precursors to PP, which is scattered off small-scale heterogeneities related to subduction zones in the upper and mid-mantle. We use data from shallow earthquakes (less than 100 km depth) in the epicentral distance range of 90°-110° and use array methods to study a 100 s window prior to the PP arrival. Our analysis focuses on energy arriving off the great circle path between source and receiver. We select coherent arrivals automatically, based on a semblance weighted beampower spectrum, maximizing the selection of weak amplitude arrivals. Assuming single P-to-P scattering and using the directivity information from array processing, we locate the scattering origin by ray tracing through a 1-D velocity model. Using data from the small-aperture Eielson Array (ILAR) in Alaska, we are able to image structure related to heterogeneities in western Pacific subduction zones. We find evidence for ˜300 small-scale heterogeneities in the region around the present-day Japan, Izu-Bonin, Mariana and West Philippine subduction zones. Most of the detected heterogeneities are located in the crust and upper mantle, but 6 per cent of scatterers are located deeper than 600 km. Scatterers in the transition zone correlate well with edges of fast features in tomographic images and subducted slab contours derived from slab seismicity. We locate deeper scatterers beneath the Izu-Bonin/Mariana subduction zones, which outline a steeply dipping pseudo-planar feature to 1480 km depth, and beneath the ancient (84-144 Ma) Indonesian subduction trench down to 1880 km depth. We image the remnants of subducted crustal material, likely the underside reflection of the subducted Moho. The presence of deep scatterers related to past and present subduction provides evidence that the subducted crust does descend into the lower mantle at least for these steeply dipping subduction zones. Applying the same technique to other source-receiver paths will increase our knowledge of the small-scale structure of the mantle and will provide further constraints on geodynamic models.

  8. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.

  9. A Crustal Structure Study of the Southern Ryukyu Subduction Zone by Using the Aftershock Data

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Lin, J.; Lee, C.

    2011-12-01

    The region along the Ryukyu subduction zone is known as a tsunami disaster zone. The biggest tsunami (85 m) of Japan history was recorded in the Ishigaki Island, Ryukyu, in 1771. The paleo-tsunami events show that it has a frequency of about 150 years. This thread makes the Ryukyu subduction zone as a concerned field for the earthquake studies. However, due to the long distance from the east coast of Taiwan, this is an area out of the effective earthquake detection zone from the Central Weather Bureau network. A main shock of M = 6.9 occurred near the Ishigaki Island in 2009 August 17. After this event, we quickly deployed the OBS and found many aftershocks with the magnitude greater than 5.0. The main shock was 240 km, NE direction from the Hualien city, Taiwan. If a tsunami occurred, it took only less than 15 minutes to arrive the coast. From the recorded data, we picked the P- and S-wave using the 1-D module (iasp91). There were 1500 recorded events during those time range, and most of the earthquakes were located around the Nanao Basin. Based on this, we study the southern Ryukyu subduction zone structure by using the results from focal mechanism solution. From the earthquake relocation it shows that two main groups of aftershocks. They tend in northwest - southeast with a left-lateral strike-slip fault. The left-lateral strike-slip fault is the main structures that link with the splay faults at the southern Ryukyu Trench. The stability and extension of the splay faults are one of the major concerns for the occurrence of mega earthquake. More than 500-km long of the splay fault, such as that in the Indonesia, Chile and Japan subduction zones, has attacked by mega earthquakes in the recent years. The second group of those aftershocks was located in the Gagua Ridge near the Ryukyu Trench. This group may represent the ridge structure relate to the Taitung canyon fault. The front of Ryukyu Trench was being as a locked subduction zone where it is easily to accumulate the earthquake stress. Because of these two earthquake groups are out of range of Taiwan Central Weather Bureau network and lack of information, it is worthwhile to focus our attentions on it.

  10. A critical assessment of viscous models of trench topography and corner flow

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Hager, B. H.; Raefsky, A.

    1984-01-01

    Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.

  11. A critical assessment of viscous models of trench topography and corner flow

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Hager, B. H.; Raefsky, A.

    1985-01-01

    Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.

  12. Subduction initiation: spontaneous and induced

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.

    2004-10-01

    The sinking of lithosphere at subduction zones couples Earth's exterior with its interior, spawns continental crust and powers a tectonic regime that is unique to our planet. In spite of its importance, it is unclear how subduction is initiated. Two general mechanisms are recognized: induced and spontaneous nucleation of subduction zones. Induced nucleation (INSZ) responds to continuing plate convergence following jamming of a subduction zone by buoyant crust. This results in regional compression, uplift and underthrusting that may yield a new subduction zone. Two subclasses of INSZ, transference and polarity reversal, are distinguished. Transference INSZ moves the new subduction zone outboard of the failed one. The Mussau Trench and the continuing development of a plate boundary SW of India in response to Indo-Asian collision are the best Cenozoic examples of transference INSZ processes. Polarity reversal INSZ also follows collision, but continued convergence in this case results in a new subduction zone forming behind the magmatic arc; the response of the Solomon convergent margin following collision with the Ontong Java Plateau is the best example of this mode. Spontaneous nucleation (SNSZ) results from gravitational instability of oceanic lithosphere and is required to begin the modern regime of plate tectonics. Lithospheric collapse initiates SNSZ, either at a passive margin or at a transform/fracture zone, in a fashion similar to lithospheric delamination. The theory of hypothesis predicts that seafloor spreading will occur in the location that becomes the forearc, as asthenosphere wells up to replace sunken lithosphere, and that seafloor spreading predates plate convergence. This is the origin of most boninites and ophiolites. Passive margin collapse is a corollary of the Wilson cycle but no Cenozoic examples are known; furthermore, the expected strength of the lithosphere makes this mode unlikely. Transform collapse SNSZ appears to have engendered new subduction zones along the western edge of the Pacific plate during the Eocene. Development of self-sustaining subduction in the case of SNSZ is signaled by the beginning of down-dip slab motion, causing chilling of the forearc mantle and retreat of the magmatic arc to a position that is 100-200 km from the trench. INSZ may affect only part of a plate margin, but SNSZ affects the entire margin in the new direction of convergence. INSZ and SNSZ can be distinguished by the record left on the upper plates: INSZ begins with strong compression and uplift, whereas SNSZ begins with rifting and seafloor spreading. Understanding conditions leading to SNSZ and how hinged subsidence of lithosphere changes to true subduction promise to be exciting and fruitful areas of future research.

  13. Subduction initiation: spontaneous and induced

    NASA Astrophysics Data System (ADS)

    2004-10-01

    The sinking of lithosphere at subduction zones couples Earth's exterior with its interior, spawns continental crust and powers a tectonic regime that is unique to our planet. In spite of its importance, it is unclear how subduction is initiated. Two general mechanisms are recognized: induced and spontaneous nucleation of subduction zones. Induced nucleation (INSZ) responds to continuing plate convergence following jamming of a subduction zone by buoyant crust. This results in regional compression, uplift and underthrusting that may yield a new subduction zone. Two subclasses of INSZ, transference and polarity reversal, are distinguished. Transference INSZ moves the new subduction zone outboard of the failed one. The Mussau Trench and the continuing development of a plate boundary SW of India in response to Indo Asian collision are the best Cenozoic examples of transference INSZ processes. Polarity reversal INSZ also follows collision, but continued convergence in this case results in a new subduction zone forming behind the magmatic arc; the response of the Solomon convergent margin following collision with the Ontong Java Plateau is the best example of this mode. Spontaneous nucleation (SNSZ) results from gravitational instability of oceanic lithosphere and is required to begin the modern regime of plate tectonics. Lithospheric collapse initiates SNSZ, either at a passive margin or at a transform/fracture zone, in a fashion similar to lithospheric delamination. The theory of hypothesis predicts that seafloor spreading will occur in the location that becomes the forearc, as asthenosphere wells up to replace sunken lithosphere, and that seafloor spreading predates plate convergence. This is the origin of most boninites and ophiolites. Passive margin collapse is a corollary of the Wilson cycle but no Cenozoic examples are known; furthermore, the expected strength of the lithosphere makes this mode unlikely. Transform collapse SNSZ appears to have engendered new subduction zones along the western edge of the Pacific plate during the Eocene. Development of self-sustaining subduction in the case of SNSZ is signaled by the beginning of down-dip slab motion, causing chilling of the forearc mantle and retreat of the magmatic arc to a position that is 100 200 km from the trench. INSZ may affect only part of a plate margin, but SNSZ affects the entire margin in the new direction of convergence. INSZ and SNSZ can be distinguished by the record left on the upper plates: INSZ begins with strong compression and uplift, whereas SNSZ begins with rifting and seafloor spreading. Understanding conditions leading to SNSZ and how hinged subsidence of lithosphere changes to true subduction promise to be exciting and fruitful areas of future research.

  14. The earliest mantle fabrics formed during subduction zone infancy

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Michibayashi, K.; Morishita, T.; Tani, K.; Dick, H. J.; Ishizuka, O.

    2013-12-01

    Harzburgites obtained from the oldest crust-mantle section in the Philippine Sea plate along the landward slope of the southern Izu-Ogasawara Trench in Izu-Bonin-Mariana arc, that explored by Dive 7K417 of the ROV Kaiko 7000II during R/V Kairei cruise KR08-07, and Dredge 31 of R/V Hakuho-Maru cruise KH07-02, operated by the Japan Agency for Marine-Earth Science and Technology. Harzburgites preserve mantle fabrics formed during the infancy of the subduction zone; that is during the initial stages of Pacific plate subduction beneath the Philippine Sea plate. The main constituent minerals of harzburgites are olivine (15.6%), orthopyroxene (Opx; 13.1%) and spinel (0.5%), along with serpentine (70.8%) as a secondary mineral. Microstructure shows inequigranular interlobate (or protogranular) textures. There is no secondary deformation such as porphyroclastic or fine-grained textures. The secondary serpentine shows undeformed mesh texture in the harzburgites. Harzburgites have crystal preferred orientation patterns in olivine (001)[100] and Opx (100)[001]. The mineral chemistry in harzburgites have high olivine forsterite (90.6-92.1 mol.%) and NiO (~0.4 wt%) contents, low Opx Al2O3 (<~1.5 wt%) and Na2O (<0.03 wt%), and high spinel Cr# (65-67). This has the characteristics of residual peridotites, whereas the dunites, obtained from the same location as the harzburgites, provide evidence for the earliest stages of arc volcanism during the inception of subduction. Therefore, we propose that the (001)[100] olivine patterns began forming in immature fore-arc mantle with an increase in slab-derived hydrous fluids during the initial stages of subduction in in situ oceanic island arc.

  15. Political representation Trench warfare

    E-print Network

    Gelman, Andrew

    Political representation Trench warfare Rational voting Candidate positioning Recap Mathematical vs science #12;Political representation Trench warfare Rational voting Candidate positioning Recap Themes;Political representation Trench warfare Rational voting Candidate positioning Recap Themes Mathematical

  16. Trench Connection

    PubMed Central

    Jamieson, Alan J.; Fujii, Toyonobu

    2011-01-01

    Trench Connection’ was the first international symposium focusing primarily on the hadal zone (depths greater than 6000 m). It was held at the University of Tokyo's Atmosphere and Ocean Research Institute in November 2010. The symposium was successful in having attracted an international collective of scientists and engineers to discuss the latest developments in the exploration and understanding of the deepest environments on Earth. The symposium sessions were categorized into three themes: (i) new deep-submergence technology; (ii) trench ecology and evolution; and (iii) the physical environment. Recent technological developments have overcome the challenges of accessing the extreme depths, which have in turn prompted an international renewed interest in researching physical and biological aspects of the hadal ecosystems. This bringing together of international participants from different disciplines led to healthy discussions throughout the symposium, providing potential opportunities and realizations of where the future of unravelling hadal ecology lies. Hadal science is still at relatively rudimentary levels compared with those of shallower marine environments; however, it became apparent at the symposium that it is now an ever-expanding scientific field. PMID:21450723

  17. Interplate coupling along the central Ryukyu Trench inferred from GPS/acoustic seafloor geodetic observation

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Tadokoro, K.; Okuda, T.; Ando, M.; Watanabe, T.; Sugimoto, S.; Miyata, K.; Matsumoto, T.; Furukawa, M.

    2010-12-01

    The Ryukyu trench is a major convergent plate boundary where the Philippine Sea plate is subducting at a rate of about 8 cm/yr. Large earthquakes have not been reported along the Ryukyu subduction for the last 300 years. Because the rate of release of seismic moment in the Ryukyu Trench over the last 80 years is 5% in consideration of the plate convergence rate, interseismic coupling in the trench is assumed to be weak.The GPS measurements by Japan Geographical Survey Institute also show the southward motion (2.5 cm/yr) of Ryukyu arc relative to the Amurian plate, which is due to extensional rifting of Okinawa Trough. Backslip by the interplate coupling between the subducting Philippine Sea plate and the overriding Eurasian plate cannot have been detected in the GPS network along the Ryukyu Islands. We have started the GPS/acoustic seafloor observation to detect the inter-plate coupling in the central Ryukyu trench. For this measurement, we used a system capable of performing two main tasks: precise acoustic ranging between a ship station (observation vessel) and seafloor transponders, and kinematic GPS positioning of observation vessels. The seafloor reference point was set at about 33 km landward from the axis of the Ryukyu trench (southeast of Okinawa Island). A set of three acoustic transponders has been installed on the seafloor, at a depth of about 2900m. The transponders are placed to form a triangular. Five campaign observations were carried out for the period from January 2008 to November 2009. Each epoch consists of three observation days. The coordinates of the seafloor benchmark were calculated using the least-squares technique (Ikuta et al., 2008); this technique minimizes the square sum of acoustic travel-time residuals. The RMS of travel time residuals for each campaign analysis is about 70 micro-seconds. The result shows that the benchmark moved to northwest direction for two years at a rate of 4 cm/yr relative to the Amurian plate. Then we estimated the length and width of interplate coupling area using observed movement of the benchmark. The movements of the GPS stations on the Ryukyu Islands and the benchmark are described as the combination of the block rotation of the Ryukyu arc (Nakamura, 2004) and the displacement by the backslip in the coupled area. The results show that the estimated width of the interplate coupling area is 40-50 km from the Ryukyu trench. The results also show that the length of the coupled area is over 40 km. Since the calculated displacements are not sensitive to the change in the length of the coupled area, the accurate length is uncertain. These suggest that the interplate coupling occurs up-dip of the seismogenic zone in the Ryukyu subduction zone. The tsunami earthquake (M8.1) occurred near the south Ryukyu Trench in 1771. This suggests the interplate coupling near the Trench would be the cause of the tsunami earthquakes.

  18. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase I). Final technical report

    SciTech Connect

    Hilde, T.W.C.

    1984-08-01

    The objective was to determine the fate of sediments at convergent lithospheric plate boundaries. The study focuses on the structures of the Circum-Pacific trenches and shallow portions of the associated subduction zones. Sediment distribution and the nature of sediment deformation was defined through the various stages of plate convergence to determine if the sediments are subducted or accreted. The controlling factors for sediment subduction and/or accretion were determined. 50 figs. (ACR)

  19. Predicting trench and plate motion from the dynamics of a strong slab Claudio Faccenna a,, Arnauld Heuret b

    E-print Network

    Becker, Thorsten W.

    Predicting trench and plate motion from the dynamics of a strong slab Claudio Faccenna a,, Arnauld subduction velocities but the trench motion is not directly included in the computation. Here, using a recent compilation of a global data set, we found that the motion of trenches (either advancing or retreating

  20. Control of seafloor aging on the migration of the IzuBoninMariana trench Claudio Faccenna a,

    E-print Network

    Cattin, Rodolphe

    Control of seafloor aging on the migration of the Izu­Bonin­Mariana trench Claudio Faccenna a Editor: R.D. van der Hilst Keywords: subduction zone trenches Western Pacific numerical modelling Recent global kinematic studies reveal that most of the trenches roll back but a significant number of them

  1. The role of hydrous phases in the formation of trench parallel anisotropy: Evidence from Rayleigh waves in Cascadia

    E-print Network

    The role of hydrous phases in the formation of trench parallel anisotropy: Evidence from Rayleigh exhibiting trench parallel fast directions in subduction systems has been the subject of significant recent an unusually well-localized region of trench parallel fast directions in Rayleigh wave phase velocities near

  2. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry

    NASA Astrophysics Data System (ADS)

    ?ížková, Hana; Bina, Craig R.

    2015-11-01

    For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous and trench advance quite rare, largely due to rheological and ridge-push effects. Recently updated analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Marianas-Izu-Bonin arc. Thus, we explore conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry of the Philippine Sea region. In this subduction system, a slab-pull force from distal subduction is transmitted to the overriding plate at the Pacific trench. Our 2D modeling demonstrates that trench advance can occur for terrestrial rheologies in such special geometries. We observe persistent trench advance punctuated by two episodes of back-arc extension. Characteristic features of the model, such as time interval between extensional episodes, high back-arc heat flow, and stress state of Philippine plate correspond to processes recorded in the region.

  3. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  4. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Though there is no plate tectonics per se on Venus, recent Magellan radar images and topographic profiles of the planet suggest the occurrence of the plate tectonic processes of lithospheric subduction and back-arc spreading. The perimeters of several large coronae (e.g., Latona, Artemis, and Eithinoha) resemble Earth subduction zones in both their planform and topographic profile. The planform of arcuate structures in Eastern Aphrodite were compared with subduction zones of the East Indies. The venusian structures have radii of curvature that are similar to those of terrestrial subduction zones. Moreover, the topography of the venusian ridge/trench structures is highly asymmetric with a ridge on the concave side and a trough on the convex side; Earth subduction zones generally display the same asymmetry.

  5. Counter-intuitive Behavior of Subduction Zones: Weak Faults Rupture, Strong Faults Creep

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.; Bilek, S. L.; Brown, L. N.

    2014-12-01

    Subduction interfaces that produce great earthquakes are often said to be "strongly coupled", and those that creep are said to be "weakly coupled". However, the relation between the strength and seismogenic behavior of subduction faults is far from clear. Seismological and geodetic observations of earthquake rupture usually provide information only on stress change, not fault strength. In this study, we infer fault strength by calculating frictional heating along megathrusts and comparing results with heat flow measurements. We find that stick-slip megathrusts that have produced great earthquakes such as at Japan Trench and northern Sumatra have very low apparent friction coefficients (~ 0.02 - 0.03), but megathrusts that creep such as at Northern Hikurangi and Manila Trench have higher values (up to ~0.13). The differnce cannot be explained by coseismic dynamic weakening of the stick-slip megathrusts, because the average stress drop in great earthquakes is usually less than 5 MPa, equivalent to a coseismic reduction of apparent friction coefficient by less than ~0.01. Therefore our results indicate differences in the static strength of different subduction faults. Why are the creeping faults stronger? We think it is related to their creeping mechanism. Very rugged subducting seafloor tends to cause creep and hinder great earthquake rupture (Wang and Bilek, 2014). In contrast, all giant earthquakes have occurred at subduction zones with relatively smooth subducting seafloor. Large geometrical irregularities such as seamounts generate heterogeneous structure and stresses that promote numerous small and medium size earthquakes and aseismic creep. The creeping is a process of breaking and wearing of geometrical irregularities in a deformation zone and is expected to be against relatively large resistance (strong creep). This is different from the creeping of smooth faults due to the presence of weak fault gouge (weak creep) such as along the creeping segment of the San Andreas fault. The general correlation between subducting seafloor ruggedness, creeping, and greater heat dissipation, if further verified, provides a new perspective in assessing earthquake and tsunami hazards for risk mitigation. Wang, K., and S. L. Bilek. Tectonophysics 610, 1-24 (2014).

  6. Shallow very-low-frequency earthquakes around Japan: Recent studies and observation

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Obara, K.; Asano, Y.; Fujimoto, H.; Hino, R.; Ashi, J.; Tsuji, T.

    2008-12-01

    Very-low-frequency (VLF) earthquakes have been observed in three regions around Japan. (1) Deep VLF earthquakes have occurred in the down-dip part of the Nankai subduction zone [Ito et al., 2007]. (2) Shallow VLF earthquakes have occurred within the accretionary prism in the up-dip portion of the Nankai subduction zone [Obara and Ito, 2005; Ito and Obara, 2006]. The stress drops of these shallow VLF events were very low, in the range 0.1--10kPa; this corresponds to 0.1--1% of the range for ordinary earthquakes [Ito and Obara, 2006]. Ito and Obara [2006] suggested that the largest shallow VLF earthquake (MW 4.0) occurred on a circular fault of radius ~5--10 km. They proposed that the shallow VLF events were related to numerous reverse fault systems located in areas of high fluid pressure within the accretionary prism. (3) Shallow VLF earthquakes have occurred in the region off Tokachi, northern Japan, along the Japan Trench [Asano et al., 2008], where the Pacific Plate subducts beneath the Japanese land area. The occurrence of these shallow VLF earthquakes suggests that VLF events can occur on the plate boundary at depths shallower than that of the main seismogenic zone [Asano et al., EPS, 2008]. The megasplay faults in the Nankai subduction zone are observed to generate a reverse-polarity reflection on seismic reflection profiles [Park et al.,2002]; this may indicate the existence of an elevated fluid process in the fault zones [Shipley et al., 1994]. Hydrodynamics phenomena responsible for the seismic signals detected by ocean bottom seismometers were first reported by Brown et al. (2005) using osmotically-driven fluid flow meters (CAT meters); these meters were used to detect temporal changes in the rate of cold seepage of a shallow subduction system in the regions of the Costa Rica subduction zone. The Pacific plate is subducting beneath Tohoku, northeastern Japan, at the Japan Trench. An aseismic slip has been observed to occur as a post- seismic slip following the occurrence of large earthquakes. Tsunami earthquakes, a type of slow earthquakes, have also occurred in the vicinity of the Japan Trench; thus far, there have been no observations of non-volcanic tremors, VLF earthquakes, and short-term slow slips in NE Japan, and the lack of observations can be attributed to the difficulty in detecting slow earthquakes near the trench. Recently, we have deployed ocean bottom seismographs and have set up geodetic and hydraulic stations in northeastern Japan to detect and observe shallow slow earthquakes and the corresponding transient hydrotectonic processes. The CAT meters were installed on cold seeps that were discovered by diving surveys of the manned submersible SHINKAI 6500. We found Calyptogena, which suggested the existence of a cold seep, during the diving survey. The seeps are distributed near a splay fault that was detected from a seismic reflection image [Tsuji et al., 2008], suggesting that the fluid in the cold seeps migrates from the splay fault to the seafloor. The Calyptogena colonies are distributed along the strike of the landward slope. We have also developed a simplified ocean-bottom benchmark (SOBB) that comprises three types of sensors; short-period seismometers, broadband seismometers, and pressure gauges.

  7. Earthquake hazards on the cascadia subduction zone

    SciTech Connect

    Heaton, T.H.; Hartzell, S.H.

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M/sub w/) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M/sub w/ 8) or a giant earthquake (M/sub w/ 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M/sub w/ less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M/sub w/ up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis. 35 references, 6 figures.

  8. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis. PMID:17789780

  9. Subduction zone plate bending earthquakes and implications for the hydration of the downgoing plate

    NASA Astrophysics Data System (ADS)

    Emry, E. L.; Wiens, D. A.

    2011-12-01

    The greatest uncertainty in the amount of water input into the Earth at subduction zones results from poor constraints on the degree and depth extent of mantle serpentinization in the downgoing slab. The maximum depth of serpentinization is thought to be partly controlled by the maximum depth of tensional earthquakes in the outer rise and trench and is expected to vary from subduction zone to subduction zone or even along-strike for a single subduction zone. We explore the maximum depth of extensional faulting on the incoming plate for various subduction zones in order to gain insight into the possible extent of slab serpentinization. We relocate trench events at island arc subduction zones using hypocentroidal decomposition to determine which earthquakes occurred within the incoming plate. For earthquakes with Mw ~5.5+, we determine accurate depths and refine the CMT focal mechanism by inverting teleseismic P and SH waveforms. Results from the Mariana outer rise indicate that extensional earthquakes occur in the Pacific plate at depths ranging from 10-20 km beneath the top of the crust, with the character of trench seismicity changing significantly between the northern and southern portions of the subduction zone. In comparision, results from the Aleutian subduction zone show extensional trench earthquakes occurring from 5-30 km below the surface of the subducting slab. Compressional incoming plate earthquakes occur only near the Alaskan Peninsula, possibly due to stronger coupling between the slab and overriding plate in this region. Further results from oceanic arc subduction zones will be presented and differences between subduction zones as well as along-strike differences in the character of trench seismicity will be highlighted. If the presence of extensional faulting indicates subducting lithosphere hydration, then we expect that as much as the top 30 km of the slab may be hydrated and that the degree of slab serpentinization may vary significantly between subduction zones, potentially affecting arc geochemistry, intermediate depth seismicity, and the subduction zone water budget.

  10. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  11. Dynamic evolution in a Cretaceous high-P/T subduction channel evidenced by the juxtaposition of amphibolite blocks with different P-T paths: an example from the Kamuikotan belt, northern Japan

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Takeshita, T.

    2013-12-01

    A subduction channel developed at the boundary between a subducting oceanic plate and an overlying plate could be geologically defined as the place, where accretionary sediments were dragged down to great depth with an oceanic plate to suffer a high-P/T type metamorphism, and transformed to high-P/T metamorphic rocks (e.g. blueschist and eclogite). In the study area, while typical high-P/T metamorphic rocks (blueschist), which originated from Cretaceous accretionary sediments, amphibolites and metacherts also occur as tectonic blocks in mélange surrounded by either serpentinite or pelitic matrix, which originally suffered intermediate-P/T type metamorphism, but later the same high-P/T type metamorphism as the sediments did. In this research, we have analyzed mineral assemblages in these amphibolites and metacherts, and conducted micro-chemical analyses of compositional zoning in amphibole and garnet from these rocks with an EPMA. As a result, compositional zoning in some constituent amphibole can be divided into 3 types. Type I is a dominant type, where actinolite is overgrown by glaucophane, indicating pressure increase. Type II, which has been found in only one sample, is defined as the compositional zoning in amphibole consisting of magnesiohornblende, actinolite and glaucophane from core to rim. The compositional zoning shows a change of the temperature gradient from low-P/T (or intermediate-P/T) type to high-P/T type, which could reflect a cooling of the subduction channel with time from the onset of subduction to a steady state. Type III is characterized by the compositional zoning in amphibole from tschermakite to glaucophane-magnesioriebeckite. This also shows a cooling of the subduction channel with time. In this sample, garnet also shows a compositional zoning from a Mn-rich and Ca-poor inner core to a Mn-poor and Ca-rich outer core, which is surrounded by a Mn-rich rim, showing a compositional discontinuity across the core-rim boundary. The compositional zoning in garnet indicates an increase in both temperature and pressure during the initial growth, followed by temperature decrease during the later growth, comparable with the P-T paths inferred from the amphibole zoning. These different types of compositional zonings in amphibole and garnet show different P-T paths. Hence, these amphibolite tectonic blocks with different temperature-pressure-time paths could have been juxtaposed perhaps by large-scale ductile flow in the ancient subduction channel, which occurred during the initial stage of subduction from the onset to a steady state. This kind of dynamic evolution in subduction channel at the initial stage has now been reported from other well-known high-pressure terrains (e.g. Sambagawa, Japan; Samaná, Dominican Repúblic).

  12. Varying Structure and Physical Properties of the Lithosphere Subducting Beneath Indonesia, Consequences on the Subduction

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Dyment, J.

    2013-12-01

    We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in the seismogenic zone, and therefore the characteristics of the resulting earthquakes. Indeed the rough topography of a slow crust may offer more asperities, and therefore a more irregular slip, than the smooth topography of a fast crust. Conversely, the weak rheology of serpentines present in a slow crust would favor a regular slip, unlike the brittle magmatic rocks of the fast crust and the underlying dry olivine mantle. 3) Local features, including fracture zones and seamounts, may affect the seismic segmentation of the subduction zone. Many seamounts have been mapped in the Wharton Basin between 10°S and 15°S., their age decreasing from 136 Ma to the East to 47 Ma to the West, with anomalously younger ages in Christmas Island. Similar seamounts belonging to the same province may have existed further north and subducted in the Sunda Trench from southern Sumatra to Java and eastward. Conversely, the Roo Rise, a larger plateau located south of Eastern Java, may have more difficulty to enter the subduction, as suggested by the geometry of the Sunda Trench in this area, diverting from the regular arc by a maximum of 60 km. References Pesicek, J.D., C.H. Thurber, S. Widiyantoro, H. Zhang, H.R. DeShon, and E.R. Engdahl (2010), Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma, Geophys. J. Int., 182, 433-453.

  13. Great (?Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor

    USGS Publications Warehouse

    Scholl, David W.; Kirby, Stephe H.; von Huene, Roland; Ryan, Holly F.; Wells, Ray E.; Geist, Eric L.

    2015-01-01

    However, large Mw8.0–9.0 IPTs commonly (n = 23) nucleated at thin-sediment trenches. These earthquakes are associated with the subduction of low-relief ocean floor and where the debris of subduction erosion thickens the plate-separating subduction channel. The combination of low bathymetric relief and subduction erosion is inferred to also produce a smooth trench-parallel distribution of coupling posited to favor the characteristic lengthy rupturing of high-magnitude IPT earthquakes. In these areas subduction of a weak sedimentary sequence further enables rupture continuation.

  14. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous

    E-print Network

    Müller, Dietmar

    Sunda-Java trench kinematics, slab window formation and overriding plate deformation since along the 3200 km long Sunda-Java trench, one of the largest subduction systems on Earth. Combining window underlying the Java­South Sumatra region, and we propose that decreased mantle wedge viscosities

  15. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Watts, Anthony B.

    2015-05-01

    An ensemble averaging technique is used to remove the long-wavelength topography and gravity field from subduction zones. >200 residual bathymetric and gravimetric anomalies are interpreted within fore arcs, many of which are attributed to the tectonic structure of the subducting plate. The residual-gravimetric expression of subducting fracture zones extends >200 km landward of the trench axis. The bathymetric expression of subducting seamounts with height ?1 km and area ?500 km2 (N=36), and aseismic ridges (N>10), is largest near the trench (within 70 km) and above shallow subducting slab depths (SLAB1.0 <17 km). Subducting seamounts are similar in wavelength, amplitude, and morphology to unsubducted seamounts. Morphology, spatial distributions, and reduced levels of seismicity are considered inconsistent with mechanical models proposing wholesale decapitation, and the association of subducting seamounts with large-earthquakes. Subducting aseismic ridges are associated with uplift and steepening of the outer fore arc, a gradual reduction in residual bathymetric expression across the inner fore arc, and a local increase in the width and elevation of the volcanic-arc/orogen. These contrasting expressions reflect the influence of margin-normal variations in rigidity on where and how the upper plate deforms, both to accommodate subducting relief and in response to stresses transmitted across the plate interface. The outer fore arc and arc have lower rigidity due to fracturing and thermal weakening, respectively. Similar associations with complex earthquakes and fault creep suggest aseismic ridge subduction may also be accommodated by the development and evolution of a broad fracture network, the geometrical strength of which may exceed the locking strength of a smooth fault.

  16. Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake

    E-print Network

    Dunham, Eric M.

    Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake on seismic surveys of the Japan Trench. The fault obeys rate-and-state friction with standard logarithmic of the fault driving the rupture through the velocity- strengthening region to the trench. We validate

  17. The earthquake cycle in subduction zones

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Fleitout, L.

    1982-01-01

    A simplified model of a subduction zone is presented, which incorporates the mechanical asymmetry induced by the subducted slab to anchor the subducting plate during post-seismic rebound and thus throw most of the coseismic stream release into the overthrust plate. The model predicts that the trench moves with respect to the deep mantle toward the subducting plate at a velocity equal to one-half of the convergence rate. A strong extensional pulse is propagated into the overthrust plate shortly after the earthquake, and although this extension changes into compression before the next earthquake in the cycle, the period of strong extension following the earthquake may be responsible for extensional tectonic features in the back-arc region.

  18. Osmium Recycling in Subduction Zones

    PubMed

    Brandon; Creaser; Shirey; Carlson

    1996-05-10

    Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge. PMID:8662577

  19. Unrevealing the History of Earthquakes and Tsunamis of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Castillo-Aja, M. D. R.; Cruz, S.; Corona, N.; Rangel Velarde, V.; Lagos, M.

    2014-12-01

    The great earthquakes and tsunamis of the last decades in Sumatra, Chile, and Japan remind us of the need for expanding the record of history of such catastrophic events. It can't be argued that even countries with extensive historical documents and tsunami sand deposits still have unsolved questions on the frequency of them, and the variables that control them along subduction zones. We present here preliminary results of a combined approach using historical archives and multiple proxies of the sedimentary record to unrevealing the history of possible great earthquakes and their tsunamis on the Mexican Subduction zone. The Mexican subduction zone extends over 1000 km long and little is known if the entire subduction zone along the Middle American Trench behaves as one enormous unit rather than in segments that rupture at different frequencies and with different strengths (as the short instrumental record shows). We searched on historical archives and earthquake databases to distinguish tsunamigenic events registered from the 16th century to now along the Jalisco-Colima and Guerrero-Oaxaca coastal stretches. The historical data referred are mostly from the 19th century on since the population on the coast was scarce before. We found 21 earthquakes with tsunamigenic potential, and of those 16 with doubtful to definitive accompanying tsunami on the Jalisco-Colima coast, and 31 tsunamigenic earthquakes on the Oaxaca-Guerrero coast. Evidence of great earthquakes and their tsunamis from the sedimentary record are scarce, perhaps due poor preservation of tsunami deposits in this tropical environment. Nevertheless, we have found evidence for a number of tsunamigenic events, both historical and prehistorical, 1932 and 1400 AD on Jalisco, and 3400 BP, 1789 AD, 1979 ad, and 1985 AD on Guerrero-Oaxaca. We continue working and a number of events are still to be dated. This work would aid in elucidating the history of earthquakes and tsunamis on the Mexican subduction zone.

  20. Scattering of trapped P and S waves in the hydrated subducting crust of the Philippine Sea plate at shallow depths beneath the Kanto region, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Yoshimoto, Kazuo; Tonegawa, Takashi

    2015-12-01

    We performed a detailed analysis of seismograms obtained during intraslab earthquakes beneath the Kanto region and revealed a strong lateral variation in the waveforms of high-frequency trapped P and S waves propagating through the subducting crust of the Philippine Sea plate. Significantly distorted spindle-shaped trapped P and S waves with large peak delays were observed in areas where the Philippine Sea plate is at shallow depths beneath the Kanto region. In order to interpret these seismic observations, in relation to the structural properties of the crust of the Philippine Sea plate, we conducted finite difference method simulations of high-frequency seismic wave propagation using various possible heterogeneous velocity structure models. Our simulation successfully reproduced the observed characteristics of the trapped waves and demonstrated that the propagation of high-frequency P and S waves is significantly affected by small-scale velocity heterogeneities in the subducting crust. These heterogeneities can be traced to a depth of approximately 40 km, before disappearing at greater depths, a phenomenon that may be related to dehydration in the subducting crust at shallower depths.

  1. Digging a Paleoseismic Trench

    USGS Multimedia Gallery

    Tom Fumal and Jim Lienkamper of the USGS place shims inside the trench at Tule Pond in Fremont, CA. These shims will add support to the trenches walls and allow scientists to work inside it safely....

  2. Variability in forearc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter; Duarte, Joao

    2015-04-01

    In nature subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that impact the style of subduction and overriding plate deformation. Here we present 3D dynamic analogue models of subduction, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, with a special focus on overriding plate deformation. Our models indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of backarc basins (e.g., Tyrrhenian Sea, Aegean Sea, Scotia Sea) is generally expected to occur at a comparable location (300-500 km from the trench), irrespective of the boundary condition. Furthermore, our models indicate that the style of forearc deformation (shortening or extension) is determined by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed set-up is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature and accretionary wedge configuration. Furthermore, it provides explanation for the natural observations of both backarc extension in the Tyrrhenian Sea and forearc extension in the Calabria region, which have been active since the Miocene. We explain the observations as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting forced subduction to be accommodated almost entirely by slab rollback (not trenchward overriding plate motion), while trench retreat was accommodated almost entirely by backarc and forearc extension (not trenchward overriding plate motion), similarly to our SP-OP-Fixed model. This tectonic setting induced strong trench suction, which caused the forearc extension in Calabria.

  3. The Great 1933 Sanriku-oki Earthquake: Possible Compound Rupture of Outer Trench Slope and Triggered Interplate Seismicity

    NASA Astrophysics Data System (ADS)

    Uchida, N.; Kirby, S. H.; Umino, N.; Hino, R.; Okal, E. A.

    2013-12-01

    The 1933 Sanriku-oki earthquake offshore northern Honshu, Japan (Mw8.4) is the largest earthquake that occurred outer-rise/outer-trench-slope region. The spatial extent of the aftershocks and possibility of a triggered seismicity was estimated by using modern relocation method and velocity structure. Land-station based hypocenter determination by using 3D velocity structure was firstly applied to the off-Sanriku, near-trench region where systematic hypocenter shifts are recognized in the previous studies. The improvement of hypocenter locations near the trench were confirmed by examinations of recent earthquakes that are accurately located based on OBS data. The earthquakes after the 1933 Sanriku-oki earthquake are located about 200 km long region under the outer trench slope that is separated from the aftershock seismicity under the inner trench slope. The outer-trench-slope earthquakes are shallow (depth <=50km) and has V-shape distribution in the trench-normal cross-section. The aftershock distribution suggests shallow rupture area and possibly a compound rupture for the 1933 main shock. We found the V-shaped compound rupture model explains better the polarity of Tsunami waves at the Sanriku coast than a single west dipping fault. This indicates that the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks both in outer- and inner trench slope regions was confirmed by the investigation of dominant wave frequency which is seen in the recent precisely located earthquakes in the two regions (Gamage et al., 2009). The earthquakes under the inner trench slope were shallow (depth <=30km) and located where recent activity of interplate thrust earthquakes is high. This suggests the deformation of the 1933 outer-rise earthquake triggered the interplate earthquakes. Recent (2001-2012) seismicity around the source area by the same method show the seismicity at the outer trench-slope region of northern Honshu can be divided into several groups of earthquakes along the trench; one group roughly corresponds to the aftershock region of the 1933 earthquake. Comparison of the 1933 rupture dimension based on our relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited by the region where fault scarps are trench parallel and cross cutting seafloor spreading fabric. These suggest bending and structural segmentation largely controls the horizontal and vertical extent of the fault. The re-examined aftershock distribution in this study provides a constraint on the stress state of the subducting plate and water supply to deep earth. They also suggest triggered of interplate seismicity that imply the outer rise /outer trench slope earthquake is closely involved in the earthquake cycle of interplate earthquake.

  4. Upper Pleistocene uplifted shorelines as tracers of (local rather than global) subduction dynamics

    NASA Astrophysics Data System (ADS)

    Henry, Hadrien; Regard, Vincent; Pedoja, Kevin; Husson, Laurent; Martinod, Joseph; Witt, Cesar; Heuret, Arnauld

    2014-08-01

    Past studies have shown that high coastal uplift rates are restricted to active areas, especially in a subduction context. The origin of coastal uplift in subduction zones, however, has not yet been globally investigated. Quaternary shorelines correlated to the last interglacial maximum (MIS 5e) were defined as a global tectonic benchmark (Pedoja et al., 2011). In order to investigate the relationships between the vertical motion and the subduction dynamic parameters, we cross-linked this coastal uplift database with the “geodynamical” databases from Heuret (2005), Conrad and Husson (2009) and Müller et al. (2008). Our statistical study shows that: (1) the most intuitive parameters one can think responsible for coastal uplift (e.g., subduction obliquity, trench motion, oceanic crust age, interplate friction and force, convergence variation, dynamic topography, overriding and subducted plate velocity) are not related with the uplift (and its magnitude); (2) the only intuitive parameter is the distance to the trench which shows in specific areas a decrease from the trench up to a distance of ?300 km; (3) the slab dip (especially the deep slab dip), the position along the trench and the overriding plate tectonic regime are correlated with the coastal uplift, probably reflecting transient changes in subduction parameters. Finally we conclude that the first order parameter explaining coastal uplift is small-scale heterogeneities of the subducting plate, as for instance subducting aseismic ridges. The influence of large-scale geodynamic setting of subduction zones is secondary.

  5. Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Kodaira, Shuichi; No, Tetsuo; Nakamura, Yasuyuki; Fujiwara, Toshiya; Kaiho, Yuka; Miura, Seiichi; Takahashi, Narumi; Kaneda, Yoshiyuki; Taira, Asahiko

    2012-09-01

    Fault rupture during the 2011 Tohoku-oki earthquake, which generated a huge tsunami, is thought to have propagated to a shallow part of the subduction zone. This observation calls into question conceptual models that assume that the shallow part of the plate boundary interface in a seismogenic subduction zone slips aseismically. However, the available observations of the earthquake and tsunami do not have sufficient resolution near to the subduction trench to determine whether coseismic fault slip extended all the way to the trench axis. Here we use seismic reflection data to image the subduction trench axis seawards of the Tohoku-oki earthquake epicentre. We compare an image of a profile taken in 1999 with one acquired along the same profile 11 days after the earthquake. Before the earthquake, we observe a triangular wedge of sediments at the trench axis. After the earthquake, we observe a deformed upheaval structure in the sedimentary layer that is 3km long and 350m thick. We suggest that this remarkable deformation structure formed as a result of compression during coseismic slip on the shallow plate interface, implying that fault rupture during the Tohoku-oki earthquake did reach the sea floor at the trench axis. We conclude that the shallow plate interface at the subduction trench axis can slip seismically.

  6. Flexural ridges, trenches, and outer rises around coronae on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Flexural signatures outboard of Venusian coronal rims are examined with the purpose of inferring the thickness of the planet's elastic lithosphere. Topographic profiles of several prominent coronae which display clear trench and outer rise signatures are presented. Via a thin elastic plate flexure model to characterize the shape of the trench and outer rise, Venusian flexures are found to be similar in both amplitude and wavelength to lithospheric flexures seaward of subduction zones on earth. It is shown that circumferential fractures are concentrated in areas where the topography is curved downward, in good agreement with the high tensile stress predicted by the flexure models. Two scenarios for the development of the ridge-trench-outer rise flexural topography and circumferential fractures of coronae are presented. The first scenario involves reheating and thermal subsidence of the lithosphere interior to the corona, while the second involves expansion of the corona interior and roll back of the subducting lithosphere exterior to the corona.

  7. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 3

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    The objectives of this study represent a continuation and refinement of the objectives addressed in Phase 1. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study of selected trench regions in which data quality and/or quantity is exceptional. Phase 2 of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A major emphasis in our analysis of the data was to try and map the seaward-of-the-trench distribution of faults and associated surface roughness. Illustrations and an extensive bibliography are included in the report.

  8. Real feature of seismicity around Palau trench region, western Pacific: Is Palau trench aseismic silent plate boundary?

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Shito, A.; Tanaka, S.; Suetsugu, D.

    2012-12-01

    Palau islands locate around plate converging zone in the western Pacific region. In the east off the Palau islands, obvious trench topography is developed whose bathymetry reaches about 6000 meters. Palau trench locates at the west side of Yap trench. However tectonic activity is quite different in the both trenches. Yap trench has active seismic activity associate with subduction process. Plate motion model shows clear convergent relative motion between Pacific plate and Philippine Sea plate at Yap trench. On the other hand, Palau trench doesn't have active seismicity according to ISC catalogue. In ten years in 2000's, only three small earthquakes are reported in ISC catalogue. Historically any great earthquake also is not reported. Recent plate motion model shows very low convergent motion at Palau trench though developed trench structure. Our group operates broadband seismic station at Palau (station code: PALU) for about 15 years. In our instant monitoring, local earthquakes sometime are recognized. We operated additional stations in Palau islands for six months to detect local earthquake and to locate hypocenters. Our objective of the research is evaluation of real seismicity of Palau region and final major interest is to understand tectonic activity of Palau trench. We install minimum network for hypocenter locating in Koror and Babeldaob islands, Palau that its array dimension is about 20 km. We use broadband seismographs and high resolution data loggers with GPS clock and solar power generators. We succeeded continuous recording without any troubles and clips of mass position. By careful motoring, we pick up greater than 70 local earthquakes in only six months. And we also tried to read the P and S wave arrival times. We succeeded to locate 27 hypocenters. The number of seismic events is much higher than initial estimation. The hypocenters locate east coast side of Palau islands where is trench side. The overview of distribution is parallel to trench. Estimated depth is distributed from 20 to 30 km. The determination is inaccurate and sparse distributed, but simple seismograms mean that these are not shallow crustal event. P and S wave amplitude analysis says that dip-slip type fault mechanism is dominant. This seismic activity may be strongly related with subduction process. These earthquakes are magnitude of 2 to 3. Seismicity of Palau area is much higher than initial estimation based on earthquake catalogue. These results mean that Palau trench has latent active seismic process and suggest that the trench may have convergent plate process than general understanding.

  9. Spatial changes of inter-plate coupling inferred from sequences of small repeating earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Igarashi, Toshihiro

    2010-10-01

    We extract sequences of small repeating earthquakes to clarify inter-plate coupling of subducting plates over a large area of the Japanese Islands. As a result, many sequences are detected at the Philippine Sea plate subducting from the Ryukyu trench and Pacific plate subducting from the Kuril-Japan trench. The average slip-rates and standard deviations estimated from the sequences show substantial spatial changes of inter-plate coupling. The large deviations of slip-rates correspond to the occurrence of episodic slips such as after-slips following large earthquakes. Constant slip-rates approaching the relative plate motion indicate weak coupling areas. Slip deficits and sparse distributions of repeating groups suggest locked areas. In the Nankai trough, deep low-frequency earthquakes in the transition zone and burst-type repeating sequences within plates have not been located in the downdip direction of groups with slow slip-rates. This suggests that the space-time characteristics of inter-plate coupling affected these seismic events.

  10. Evolving force balance during incipient subduction

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael; Hall, Chad; Lavier, Luc

    2004-07-01

    Nearly half of all active subduction zones initiated during the Cenozoic. All subduction zones associated with active back arc extension have initiated since the Eocene, hinting that back arc extension may be intimately associated with an interval (several tens of Myr) following subduction initiation. That such a large proportion of subduction zones are young indicates that subduction initiation is a continuous process in which the net resisting force associated with forming a new subduction zone can be overcome during the normal evolution of plates. Subduction initiation is known to have occurred in a variety of tectonic settings: old fracture zones, transform faults, and extinct spreading centers and through polarity reversal behind active subduction zones. Although occurring within different tectonic settings, four known subduction initiation events (Izu-Bonin-Mariana (IBM) along a fracture zone, Tonga-Kermadec along an extinct subduction boundary, New Hebrides within a back arc, and Puysegur-Fiordland along a spreading center) were typified by rapid uplift within the forearc followed by sudden subsidence. Other constraints corroborate the compressive nature of IBM and Tonga-Kermadec during initiation. Using an explicit finite element method within a two-dimensional domain, we explore the evolving force balance during initiation in which elastic flexure, viscous flow, plastic failure, and heat transport are all considered. In order to tie theory with observation, known tectonic settings of subduction initiation are used as initial and boundary conditions. We systematically explore incipient compression of a homogeneous plate, a former spreading center, and a fracture zone. The force balance is typified by a rapid growth in resisting force as the plate begins bending, reaching a maximum value dependent on plate thickness, but typically ranging from 2 to 3 × 1012 N/m for cases that become self-sustaining. This is followed by a drop in stress once a shear zone extends through the plate. The formation of a throughgoing fault is associated with rapid uplift on the hanging wall and subsidence on the footwall. Cumulative convergence, not the rate of convergence, is the dominant control on the force balance. Viscous tractions influence the force balance only if the viscosity of the asthenosphere is >1020 Pa s, and then only after plate failure. Following plate failure, buoyancy of the oceanic crust leads to a linear increase with crustal thickness in the work required to initiate subduction. The total work done is also influenced by the rate of lithospheric failure. A self-sustaining subduction zone does not form from a homogeneous plate. A ridge placed under compression localizes subduction initiation, but the resisting ridge push force is not nearly as large as the force required to bend the subducting plate. The large initial bending resistance can be entirely eliminated in ridge models, explaining the propensity for new subduction zones to form through polarity reversals. A fracture zone (FZ) placed in compression leads to subduction initiation with rapid extension of the overriding plate. A FZ must be underthrust by the older plate for ˜100-150 km before a transition from forced to self-sustaining states is reached. In FZ models the change in force during transition is reflected by a shift from forearc uplift to subsidence. Subduction initiation is followed by trench retreat and back arc extension. Moderate resisting forces associated with modeled subduction initiation are consistent with the observed youth of Pacific subduction zones. The models provide an explanation for the compressive state of western Pacific margins before and during subduction initiation, including IBM and Tonga-Kermadec in the Eocene, and the association of active back arcs with young subduction zones. On the basis of our dynamic models and the relative poles of rotation between Pacific and Australia during the Eocene, we predict that the northern segment of the Tonga-Kermadec convergent margin would have initiated earlier with a progressive

  11. An elastic plate model for interseismic deformation in subduction Ravi V. S. Kanda1

    E-print Network

    Kanda, Ravi

    at the trench that are released continuously. Unlike the BSM, in which steady state deformation in both plates to that of the BSM if stresses related to plate flexure at the trench are released either continuously and completely. Introduction [2] At subduction plate boundaries, geodetic data from the interseismic period (decades

  12. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    PubMed

    Satake, Kenji

    2015-10-28

    Great (M?8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M?9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. PMID:26392616

  13. Variations in oceanic plate bending along the Mariana trench

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Jian; Zhan, Wenhuan

    2014-09-01

    We quantify along-trench variations in plate flexural bending along the Mariana trench in the western Pacific Ocean. A 3-D interpreted flexural deformation surface of the subducting Pacific Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 75 across-trench profile sections and calculated five best-fitting tectonic and plate parameters that control the flexural bending. Results of analysis revealed significant along-trench variations: the trench relief varies from 0.9 to 5.7 km, trench-axis vertical loading (-V0) from -0.73×1012 to 3.17×1012 N/m, and axial bending moment (-M0) from 0.1×1017 to 2.7×1017 N. The effective elastic plate thickness seaward of the outer-rise region (TeM) ranges from 45 to 52 km, while that trench-ward of the outer-rise (Tem) ranges from 19 to 40 km. This corresponds to a reduction in Te of 21-61%. The transition from TeM to Tem occurs at a breaking distance of 60-125 km from the trench axis, which is near the outer-rise and corresponds to the onset of observed pervasive normal faults. The Challenger Deep area is associated with the greatest trench relief and axial vertical loading, while areas with seamounts at the trench axis are often associated with more subtle trench relief, smaller axial vertical loading, and greater topographic bulge at the outer-rise.

  14. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    PubMed

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system. PMID:23591887

  15. Heterogeneous interplate coupling along the Nankai Trough, Japan, detected by GPS-acoustic seafloor geodetic observation

    NASA Astrophysics Data System (ADS)

    Yokota, Yusuke; Ishikawa, Tadashi; Sato, Mariko; Watanabe, Shun-ichi; Saito, Hiroaki; Ujihara, Naoto; Matsumoto, Yoshihiro; Toyama, Shin-ichi; Fujita, Masayuki; Yabuki, Tetsuichiro; Mochizuki, Masashi; Asada, Akira

    2015-12-01

    The recurring devastating earthquake that occurs in the Nankai Trough subduction zone between the Philippine Sea plate and the Eurasian plate has the potential to cause an extremely dangerous natural disaster in the foreseeable future. Many previous studies have assumed interplate-coupling ratios for this region along the trench axis using onshore geodetic data in order to understand this recursive event. However, the offshore region that has the potential to drive a devastating tsunami cannot be resolved sufficiently because the observation network is biased to the land area. Therefore, the Hydrographic and Oceanographic Department of Japan constructed a geodetic observation network on the seafloor along the Nankai Trough using a GPS-acoustic combination technique and has used it to observe seafloor crustal movements directly above the Nankai Trough subduction zone. We have set six seafloor sites and cumulated enough data to determine the displacement rate from 2006 to January 2011. Our seafloor geodetic observations at these sites revealed a heterogeneous interplate coupling that has three particular features. The fast displacement rates observed in the easternmost area indicate strong interplate coupling (>75%) around not only the future Tokai earthquake source region but also the Paleo-Zenisu ridge. The slow displacement rates near the trench axis in the Kumano-nada Sea, a shallow part of the 1944 Tonankai earthquake source region, show a lower coupling ratio (50% to 75%). The slow displacement rate observed in the area shallower than the 1946 Nankaido earthquake source region off Cape Muroto-zaki reflects weakening interplate coupling (about 50%) probably due to a subducting seamount. Our observations above the subducting ridge and seamount indicate that the effect of a subducting seamount on an interplate-coupling region depends on various conditions such as the geometry of the seamount and the friction parameters on the plate boundary.

  16. Three-dimensional dynamic models of subducting plate-overriding plate-upper mantle interaction

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Schellart, W. P.

    2013-02-01

    We present fully dynamic generic three-dimensional laboratory models of progressive subduction with an overriding plate and a weak subduction zone interface. Overriding plate thickness (TOP) is varied systematically (in the range 0-2.5 cm scaling to 0-125 km) to investigate its effect on subduction kinematics and overriding plate deformation. The general pattern of subduction is the same for all models with slab draping on the 670 km discontinuity, comparable slab dip angles, trench retreat, trenchward subducting plate motion, and a concave trench curvature. The narrow slab models only show overriding plate extension. Subduction partitioning (vSP? / (vSP? + vT?)) increases with increasing TOP, where trenchward subducting plate motion (vSP?) increases at the expense of trench retreat (vT?). This results from an increase in trench suction force with increasing TOP, which retards trench retreat. An increase in TOP also corresponds to a decrease in overriding plate extension and curvature because a thicker overriding plate provides more resistance to deform. Overriding plate extension is maximum at a scaled distance of ~200-400 km from the trench, not at the trench, suggesting that basal shear tractions resulting from mantle flow below the overriding plate primarily drive extension rather than deviatoric tensional normal stresses at the subduction zone interface. The force that drives overriding plate extension is 5%-11% of the slab negative buoyancy force. The models show a positive correlation between vT? and overriding plate extension rate, in agreement with observations. The results suggest that slab rollback and associated toroidal mantle flow drive overriding plate extension and backarc basin formation.

  17. Metamorphic Perspectives of Subduction Zone Volatiles Cycling

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.

    2008-12-01

    Field study of HP/UHP metamorphic rocks provides "ground-truthing" for experimental and theoretical petrologic studies estimating extents of deep volatiles subduction, and provides information regarding devolatilization and deep subduction-zone fluid flow that can be used to reconcile estimates of subduction inputs and arc volcanic outputs for volatiles such as H2O, N, and C. Considerable attention has been paid to H2O subduction in various bulk compositions, and, based on calculated phase assemblages, it is thought that a large fraction of the initially structurally bound H2O is subducted to, and beyond, subarc regions in most modern subduction zones (Hacker, 2008, G-cubed). Field studies of HP/UHP mafic and sedimentary rocks demonstrate the impressive retention of volatiles (and fluid-mobile elements) to depths approaching those beneath arcs. At the slab-mantle interface, high-variance lithologies containing hydrous phases such as mica, amphibole, talc, and chlorite could further stabilize H2O to great depth. Trench hydration in sub-crustal parts of oceanic lithosphere could profoundly increase subduction inputs of particularly H2O, and massive flux of H2O-rich fluids from these regions into the slab-mantle interface could lead to extensive metasomatism. Consideration of sedimentary N concentrations and ?15N at ODP Site 1039 (Li and Bebout, 2005, JGR), together with estimates of the N concentration of subducting altered oceanic crust (AOC), indicates that ~42% of the N subducting beneath Nicaragua is returned in the corresponding volcanic arc (Elkins et al., 2006, GCA). Study of N in HP/UHP sedimentary and basaltic rocks indicates that much of the N initially subducted in these lithologies would be retained to depths approaching 100 km and thus available for addition to arcs. The more altered upper part of subducting oceanic crust most likely to contribute to arcs has sediment-like ?15NAir (0 to +10 per mil; Li et al., 2007, GCA), and study of HP/UHP eclogites indicates retention of seafloor N signatures and, in some cases, enrichments in sedimentary N due to forearc metamorphic fluid-rock interactions (Halama et al., this session). A global estimate of C cycling, using seafloor inputs (carbonate and organic matter) and estimates of volcanic CO2 outputs, indicates ~40% return (with large uncertainty) of the subducting C in volcanic gases. This imbalance appears plausible, given the evidence for deep carbonate subduction, in UHP marbles, and the preservation of graphite in UHP metasediments, together seemingly indicating that large fractions of subducting C survive forearc-to-subarc metamorphism. Estimates of return efficiency in the Central America arc, based on data for volcanic gases, are lower and variable along strike (12-29%), quite reasonably explained by de Leeuw et al. (2007, EPSL) as resulting from incomplete decarbonation of subducting sediment and AOC, fluid flow patterns expected given sediment section thickness, and varying degrees of forearc underplating. The attempts to mass-balance C and N across individual arc-trench systems demonstrate valuable integration of information from geophysical, field, petrologic, and geochemical observations. Studies of subduction-zone metamorphic suites can yield constraints on the evolution of deeply subducting rocks and the physicochemical characteristics of fluids released in forearcs and contributing to return flux in arc volcanic gases.

  18. Elastic Properties of Subduction Zone Materials in the Large Shallow Slip Environment for the Tohoku 2011 Earthquake: Laboratory data from JFAST Core Samples

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2014-12-01

    The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica, Cascadia, and Barbados ridge subduction zones. We find that shallow subduction zone sediments in general have similarly low rigidity. These data provide important ground-truth values that can be used to parameterize fault slip models addressing the problem of shallow, tsunamigenic propagation of megathrust earthquakes.

  19. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    NASA Astrophysics Data System (ADS)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    We performed tsunami numerical simulations from various giant/great fault models along the Izu-Bonin trench in order to see the behavior of tsunamis originated in this region and to examine the recurrence pattern of great interplate earthquakes along the Nankai trough off southwest Japan. As a result, large tsunami heights are expected in the Ryukyu Islands and on the Pacific coasts of Kyushu, Shikoku and western Honshu. The computed large tsunami heights support the hypothesis that the 1605 Keicho Nankai earthquake was not a tsunami earthquake along the Nankai trough but a giant or great earthquake along the Izu-Bonin trench (Ishibashi and Harada, 2013, SSJ Fall Meeting abstract). The Izu-Bonin subduction zone has been regarded as so-called 'Mariana-type subduction zone' where M>7 interplate earthquakes do not occur inherently. However, since several M>7 outer-rise earthquakes have occurred in this region and the largest slip of the 2011 Tohoku earthquake (M9.0) took place on the shallow plate interface where the strain accumulation had considered to be a little, a possibility of M>8.5 earthquakes in this region may not be negligible. The latest M 7.4 outer-rise earthquake off the Bonin Islands on Dec. 22, 2010 produced small tsunamis on the Pacific coast of Japan except for the Tohoku and Hokkaido districts and a zone of abnormal seismic intensity in the Kanto and Tohoku districts. Ishibashi and Harada (2013) proposed a working hypothesis that the 1605 Keicho earthquake which is considered a great tsunami earthquake along the Nankai trough was a giant/great earthquake along the Izu-Bonin trench based on the similarity of the distributions of ground shaking and tsunami of this event and the 2010 Bonin earthquake. In this study, in order to examine the behavior of tsunamis from giant/great earthquakes along the Izu-Bonin trench and check the Ishibashi and Harada's hypothesis, we performed tsunami numerical simulations from fault models along the Izu-Bonin trench. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with Corioli's force (Satake, 1995, PAGEOPH) in the area of 130 - 145°E and 25 - 37°N. The 15-seconds gridded bathymetry data are used. The tsunami propagations for eight hours since the faulting of the various fault models were computed. As a result, large tsunamis from assumed giant/great both interplate and outer-rise earthquakes reach the Ryukyu Islands' coasts and the Pacific coasts of Kyushu, Shikoku and western Honshu west of Kanto. Therefore, the tsunami simulations support the Ishibashi and Harada's hypothesis. At the time of writing, the best yet preliminary model to reproduce the 1605 tsunami heights is an outer-rise steep fault model which extends 26.5 - 29.0°N (300 km of length) and with 16.7 m of average slip (Mw 8.6). We will examine tsunami behavior in the Pacific Ocean from this fault model. To examine our results, field investigations of tsunami deposits in the Bonin Islands and discussions on plate dynamics and seismogenic characteristics along the Izu-Bonin trench are necessary.

  20. Geochemical variations in Japan Sea back-arc basin basalts formed by high-temperature adiabatic melting of mantle metasomatized by sediment subduction components

    NASA Astrophysics Data System (ADS)

    Hirahara, Yuka; Kimura, Jun-Ichi; Senda, Ryoko; Miyazaki, Takashi; Kawabata, Hiroshi; Takahashi, Toshiro; Chang, Qing; Vaglarov, Bogdan S.; Sato, Takeshi; Kodaira, Shuichi

    2015-05-01

    The Yamato Basin in the Japan Sea is a back-arc basin characterized by basaltic oceanic crust that is twice as thick as typical oceanic crust. Two types of ocean floor basalts, formed during the opening of the Japan Sea in the Middle Miocene, were recovered from the Yamato Basin during Ocean Drilling Program Legs 127/128. These can be considered as depleted (D-type) and enriched (E-type) basalts based on their incompatible trace element and Sr-Nd-Pb-Hf isotopic compositions. Both types of basalts plot along a common mixing array drawn between depleted mantle and slab sediment represented by a sand-rich turbidite on the Pacific Plate in the NE Japan fore arc. The depleted nature of the D-type basalts suggests that the slab sediment component is nil to minor relative to the dominant mantle component, whereas the enrichment of all incompatible elements in the E-type basalts was likely caused by a large contribution of bulk slab sediment in the source. The results of forward model calculations using adiabatic melting of a hydrous mantle with sediment flux indicate that the melting conditions of the source mantle for the D-type basalts are deeper and hotter than those for the E-type basalts, which appear to have formed under conditions hotter than those of normal mid-oceanic ridge basalts (MORB). These results suggest that the thicker oceanic crust was formed by greater degrees of melting of a hydrous metasomatized mantle source at unusually high mantle potential temperature during the opening of the Japan Sea.

  1. From subduction to collision: results of French POP2 program on Taiwan-Philippine festoon

    SciTech Connect

    Blanchet, R.; Stephan, J.F.; Rangin, C.; Baladad, D.; Bouysse, Ph.; Chen, M.P.; Chotin, P.; Collot, J.Y.; Daniel, J.; Drouhot, J.M.; Marsset, B.; Pelletier, B.; Richard, M.; Tardy, M.

    1986-07-01

    A sea-beam, seismic, magnetic, and gravimetric survey was conducted with the R/V Jean-Charcot in three key regions off the Taiwan-Philippine festoon in the western Pacific: (1) Ryukyu active margin and its junction with Taiwan; (2) northern part of the Manila Trench and its junction with the Taiwan tectonic prism; and (3) southern termination of Manila Trench in front of Mindoro Island. Transitions between active subduction along the Manila Trench and collision of Taiwan and Mindoro, and relations between active subduction and extension in the Okinawa-Ryukyu and the northeastern Taiwan systems are particularly studied.

  2. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin

    2015-06-01

    The Wandashan Orogen of NE China is a typical accretionary orogen related to Paleo-Pacific subduction. The Raohe Complex, as a major part of the orogen, consists of mid-Triassic to mid-Jurassic radiolarian chert and intraoceanic igneous rocks in an accretionary prism overlain by weakly sheared terrestrial-sourced clastic trench slope sediments. Sensitive high-resolution ion microprobe U-Pb dating and LA-MC-ICPMS Hf isotopic analysis of detrital zircons from the terrestrial-sourced Yongfuqiao Formation sandstone show that most zircons are Phanerozoic (90%): 140-150 Ma (10%), 180-220 Ma (25%), 240-270 Ma (15%), 300-360 Ma (15%), 391-395 Ma (3%), and 450-540 Ma (20%), whereas 10% are Precambrian in age. About 90% of the zircons have ?Hf(t) values ranging from +11.1 to -12.8. This suggests that the major provenance of the trench slope sediments was from the adjacent eastern segment of the Central Asian Orogenic Belt and the Jiamusi Block. The age of the Yongfuqiao Formation is constrained to the earliest Cretaceous, which represents the accretion time of the mid-Triassic to mid-Jurassic oceanic complexes. When compared with the Mino Complex in Japan and the Tananao Complex in Taiwan, three different provenances are identified suggesting three ancient drainage systems which transported sediments from NE China, North China, and South China to the Paleo-Pacific subduction-accretion system.

  3. Subduction inputs within the NanTroSEIZE transect area: Results from Expedition 322 of the Integrated Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Underwood, M.; Saito, S.; Kubo, Y.

    2009-12-01

    One of the essential ingredients in any comprehensive study of a seismogenic subduction zone is a thorough characterization of subduction inputs, including both sedimentary strata and upper igneous basement. Initial conditions must be known in detail before we can determine how frictional, hydrogeological, thermal, and geochemical properties evolve in the down-dip direction. The fundamental purpose of Expedition 322 of the Integrated Ocean Drilling Program was to gather such information just seaward of the trench in the Kumano Transect area of Nankai Trough (offshore SW Japan). The Kumano region is highlighted by a series of large seamounts that formed on the subducting plate within the Shikoku Basin. Total sediment thickness above basement highs (e.g., Kashinosaki Knoll) has been significantly reduced, and the condensed section contains mostly hemipelagic mud deposited by suspension fall-out. In stark contrast, areas of smooth basement and the flanks of basement highs were sites of turbidite sedimentation, particularly during the Miocene. Contents of expandable clay minerals also change progressively as a function of depositional age (more smectite in older strata). The Miocene turbidites and basal smectite-rich mudstones pass beneath the frontal accretionary prism, so those units are keys to the behavior of the deep subduction system. Fluid production should be enhanced by dehydration of the smectite-rich mudstones, and the sandy intervals should provide pathways for focused fluid flow beneath the plate-boundary fault. As the NanTroSEIZE project progresses into the stage of ultra-deep riser drilling, results from Expedition 322 will provide the initial conditions of strata (pre-subduction) to compare against the in situ properties of correlative units just above, within, and below the seismogenic megasplay fault and the plate-boundary fault.

  4. Subduction Variability Along the Active Chilean Margin

    NASA Astrophysics Data System (ADS)

    Reichert, C. J.; Barckhausen, U.; Bartsch, H.; Block, M.; Boennemann, C.; Diaz-Naveas, J. L.; Flueh, E. R.; Delisle, G.; Gaedicke, C.; Kopp, H.; Krawczyk, C. M.; Kus, J.; Ladage, S.; Ranero, C.; Schreckenberger, B.; Stoll, J. B.; Urbina, O.; Wiedicke-Hombach, M.

    2002-12-01

    The presence of different subduction modes in the convergence process between the Nazca and South-American plates along the Chilean margin is known from previous investigations. In order to study this variability in detail a comprehensive combined off- and onshore geo-scientific survey (SPOC) was recently conducted between Coquimbo and Valdivia in collaboration between a number of German and Chilean institutions. Major focus was also put on the structure of the sedimentary forearc basins and the distribution of gas hydrates along the slope. SPOC is the successor project to a similar experiment named CINCA that was earlier performed in the far north of Chile between Arica and Taltal. The SPOC results clearly show a change in subduction mode at about 33 deg S where the Juan Fernandez Ridge presently strikes the margin. North of that latitude, structural features such as extensional fracturing of the continental slope, very little or almost no sedimentary trench fill, intensive block faulting of the oceanic crust, a missing accretionary wedge, a very narrow shelf and other facts provide evidence for subduction erosion in that region. South of 33 deg S, we observed significantly steeper frontal slope angles and much less inclination of the oceanic crust toward the trench. In general, the topography of the oceanic crust is relatively smooth with the exception of several seamounts and fracture zones. Moreover, the width of the trench and of the shelf significantly widens toward the south, and pronounced forearc basins developed. Compared to the thick sedimentary trench fill of up to 2 km a very narrow accretionary wedge was encountered. Preliminary mass balancing combined with the assumption that the high present convergence rate occurred also in the past suggests that the bulk of the trench sediments is removed by subduction. Thus, accretionary processes can play only a subordinate or intermittent role. Geological seafloor samples support the assumption that small- to medium-scale recycling mechanisms are involved which are still under debate. Besides the continuous southward shift of the collision contact between the Juan Fernandez Ridge and the Chilean margin, the abundant terrigenous sediment supply in the south due to the comparably persisting climatic differences between north and south Chile is thought to contribute to the change in subduction mode at 33 deg S.

  5. Trench Foot or Immersion Foot

    MedlinePLUS

    ... Weather Information on Specific Types of Emergencies Trench Foot or Immersion Foot DISASTER RECOVERY FACT SHEET Recommend on Facebook Tweet Share Compartir What is trench foot? Trench foot, also known as immersion foot, occurs ...

  6. A new seismically constrained subduction interface model for Central America

    E-print Network

    Frankel, Kurt L.

    -dimensional model for the subducting plate interface along the Middle America Trench between northern Nicaragua and geodynamic and tectonic development of convergent plate boundaries. 1. Introduction Convergent tectonic likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates

  7. Frictional properties of fault rocks along the shallow part of the Japan Trench décollement: insights from samples recovered during the Integrated Ocean Drilling Project Expedition 343 (the JFAST project)

    NASA Astrophysics Data System (ADS)

    Remitti, Francesca; Smith, Steven; Gualtieri, Alessandro; Di Toro, Giulio; Nielsen, Stefan

    2014-05-01

    The Japan Trench Fast Drilling Project (JFAST), Integrated Ocean Drilling Program (IODP) Expedition 343, successfully located and sampled the shallow slip zone of the Mw =9.0 Tohoku-Oki earthquake where the largest coseismic slip occurred (c. 50 m). Logging-while-drilling, core-sample observations and the analysis of temperature data recovered from a third borehole show that a thin (<5 m), smectite rich plate-boundary fault accommodated the large slip of the Tohoku-Oki Earthquake rupture, as well as most of the interplate motion at the drill site. Effective normal stress along the shallow plate-boundary fault is estimated to be c. 7 MPa. Single-velocity and velocity-stepping rotary-shear friction experiments on fault material were performed with the Slow to HIgh Velocity Apparatus (SHIVA) installed at INGV in Rome. Quantitative phase analysis using the combined Rietveld and R.I.R. method indicates that the starting material is mainly composed of smectite (56 wt%) and illite/mica (21 wt%) and minor quartz, kaolinite, plagioclase and K-feldspar. The amount of amorphous fraction has also been calculated and it is close to the detection limit. Each experiment used 3.5 g of loosely disaggregated gouge, following sieving to a particle size fraction <1 mm. Experiments were performed either 1) "room-dry" (40-60% humidity) at 8.5 MPa normal stress (one test at 12.5 MPa), or 2) "water-dampened" (0.5 ml distilled water added to the gouge layers) at 3.5 MPa normal stress. Slip velocities ranged over nearly seven orders of magnitude (10-5 - 3 m s-1). Total displacement is always less than 1 m. The peak and steady-state frictional strengths of the gouges are significantly lower under water-dampened conditions, with mean steady-state friction coefficients (?, shear stress/normal stress) at all investigated velocities of 0.04 0.1 m s-1. Instead, under water-dampened conditions, the gouge is velocity-neutral to velocity-weakening at all investigated velocities. In other words, the intermediate-velocity strengthening, which would probably act as a "barrier" to rupture propagation in the dry gouges, disappears in water-dampened gouges. This result is compatible with propagation of the Tohoku rupture to the trench, and also with large coseismic slip at shallow depths. Quantitative phase analysis using the combined Rietveld and R.I.R. method has been performed also on six post-experiment gouges for the determination of both the crystalline and amorphous fractions. Preliminary results show that the mineralogical assemblage is basically the same after the experiments, with both smectite and illite phases preserved, this suggests that the weakening mechanism operating in this material is active at low temperature.

  8. Structural interpretation and physical property estimates based on COAST 2012 seismic reflection profiles offshore central Washington, Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Webb, S. I.; Tobin, H. J.; Everson, E. D.; Fortin, W.; Holbrook, W. S.; Kent, G.; Keranen, K. M.

    2014-12-01

    The Cascadia subduction zone has a history of large magnitude earthquakes, but a near-total lack of plate interface seismicity, making the updip limit of the seismogenic zone difficult to locate. In addition, the central Cascadia accretionary prism is characterized by an extremely low wedge taper angle, landward vergent initial thrusting, and a flat midslope terrace between the inner and outer wedges, unlike most other accretionary prisms (e.g. the Nankai Trough, Japan). The Cascadia Open Access Seismic Transect (COAST) lines were shot by R/V Marcus Langseth in July of 2012 off central Washington to image this subduction zone. Two trench-parallel and nine trench-perpendicular lines were collected. In this study, we present detailed seismic interpretation of both time- and depth-migrated stacked profiles, focused on elucidating the deposition and deformation of both pre- and syn-tectonic sediment in the trench and slope. Distribution and timing of sediments and their deformation is used to unravel the evolution of the wedge through time. Initially, interpretation of the time-sections is carried out to support the building of tomographic velocity models to aid in the pre-stack depth migration (PSDM) of selected lines. In turn, we use PSDM velocity models to estimate porosity and pore pressure conditions at the base of the wedge and across the basal plate interface décollement where possible, using established velocity-porosity transforms. Interpretation in this way incorporates both accurate structural relationships and robust porosity models to document wedge development and present-day stress state, in particular regions of potential overpressure. Results shed light on the origin and evolution of the mid-slope terrace and the low taper angle for the forearc wedge. This work may shed light ultimately on the position of the potential updip limit of the seismogenic zone beneath the wedge.

  9. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 1

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    This is volume one of three volumes. The objectives of this study represent a continuation and refinement of the objectives addressed in Phase I. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study of selected trench regions in which data quality and/or quantity is exceptional. Phase II of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A discussion is included on forearc petroleum and natural gas hydrate resource potential. 128 figs.

  10. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase 2): Volume 2

    SciTech Connect

    Payne, J.; Bandy, B.; Altis, S.; Lee, M.C.; Dwan, S.F.; Ku, K.; Hilde, T.W.C.

    1989-02-01

    The objectives of this study represent a continuation and refinement of the objectives addressed in Phase 1. This study focuses on trying to define the tectonics of sediment subduction at the trench axis through the use of accepted plate tectonic principles and the application of new subduction theory. The fundamental methods include: (1) compilation of all available bathymetric data from our Global Marine Geophysical Data Collection for all major ocean trenches, (2) generation of stacked bathymetric profiles and corresponding navigational maps, and structural maps, (3) selection and analysis of appropriate seismic reflection and refraction profiles and additional supporting data such as side-scan sonar, SEABEAM, magnetic, gravity and drilling data, and (4) detailed study study of selected trench regions in which data quality and/or quantity is exceptional. Phase 2 of this project represents a unique compilation and synthesis of existing data for the world's deep ocean trenches. The analysis of data and discussion of results in the context of current literature aids our understanding of the sediment distribution and nature of sediment deformation through various stages of plate convergence, the determination of whether sediments are subducted or accreted, and the evaluation of the controlling factors for sediment subduction and/or accretion. A discussion on petroleum and natural gas hydrate resource potential is included.

  11. Very low frequency earthquakes off the Pacific coast of Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Takanori; Asano, Youichi; Obara, Kazushige

    2015-06-01

    We found very low frequency earthquakes (VLFEs) at a shallow subduction zone close to the Japan Trench off the Pacific coast of Tohoku, Japan. Centroid moment tensor solutions of VLFEs showed reverse fault mechanisms with a compression axis in the east-west direction. A cross-correlation analysis of seismograms with template events between 2005 and 2013 revealed three major VLFE clusters and their temporal evolution. A VLFE cluster in the central off-Tohoku region located in the large slip area of the 2011 Tohoku earthquake was detectable only before the Tohoku earthquake. However, VLFEs in the northern and southern off-Tohoku regions at the rim of the large slip area were activated after the Tohoku earthquake. The change in the activity may reflect the stress redistribution by the coseismic and/or afterslip processes of the Tohoku earthquake.

  12. Spirit Digs a Trench

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A view from the front hazard avoidance camera of NASA's Spirit rover on its 47th sol shows a trench excavated by the rover's left front wheel within the 'Laguna Hollow' area. The trench, dubbed 'Road Cut,' is 7 centimeters (3 inches) deep. The soil at this location is more cohesive than the material where Spirit's twin, Opportunity, dug its first trench at Meridiani. Spirit made 11 back-and-forth passes to dig this trench, and still did not produce as deep a hole as Opportunity dug in 6 passes. Scientists and engineers plan to begin up-close inspection of the soil in this trench on sol 48 by placing the microscopic imager on the floor and the walls before conducting Moessbauer and alpha particle x-ray spectrometer readings on some of the same points.

  13. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, U.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.

  14. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (? 0.1 m) released by slab dehydration evolve towards high-salinity (? 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  15. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.

  16. Mega-asperity model for the 2011 Tohoku-Oki earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Pulido Hernandez, N. E.; Fukuyama, E.; Aoi, S.

    2011-12-01

    We performed moment tensor inversion of the 2011 Mw 9.0 Tohoku-Oki earthquake using regional seismic waveforms, which indicates that the earthquake can be approximated by a point source. We used strong-motion seismograms from a nationwide broadband seismic network of the F-net installed and operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). At each F-net station, a velocity-type strong-motion seismometer is installed at the end of a 30-50 m long vault to record strong motions up to +-2 m/s. We selected five F-net stations with the hypocentral distances more than several hundred kilometers. We used a waveform inversion method that assumes a double-couple focal mechanism for a point source [Nakano et al., 2008, GJI]. Our inversion using the strong-motion seismograms band-pass filtered between 0.006 and 0.02 Hz indicates that the best-fit source location was obtained at 38.25 N, 143.25 E at a depth of 30 km, at which the normalized residual was 0.13. The estimated mechanism and moment magnitude (Mw = 9.0) are consistent with those estimated from global broadband seismographic network data by the global CMT project and the National Earthquake Information Center (NEIC) of the U.S. Geological Survey. We fitted the omega-square model to amplitude spectra of observed vertical displacement seismograms, which resulted in the corner frequency of around 0.017 Hz. This implies average slip of roughly 70 m over a circular fault with radius of 70 km. These results suggest that a strongly localized asperity (mega asperity) was ruptured during the earthquake. For the northeastern Japan subduction zone, where the old Pacific Sea plate subducts along the Japan Trench, the seismic coupling was believed to be very small. The occurrence of the mega earthquake is apparently not compatible with weak seismic coupling. However, as suggested by Scholz and Small [1997, Geology], the subduction of a large seamount increases the normal stress across the subduction interface, which produces local seismic coupling in decoupled plates. If we consider a subducted seamount as the mega asperity at the source of the Tohoku-Oki earthquake, the occurrence of the mega earthquake in the decoupled plates is reasonably explained. Asano et al. [2011, EPS] indicated that all the CMT solutions of aftershocks above the source region of the Tohoku-Oki earthquake were characterized by normal faulting. A similar aftershock pattern was observed during the 1994 Java earthquake (Mw7.6). This earthquake occurred in a weakly coupled plate interface and its large slip area was coincident with a well identified seamount in this region. We can find a velocity anomaly near the source region of the Tohoku-Oki earthquake in the velocity model of Miura et al. [2005, Tectonophyics], which was obtained from a seismic line experiment off-Miyagi perpendicular to the trench. This velocity anomaly may be related with the subduction process of a seamount at this region. Further extensive refraction and reflection seismic surveys along the Japan Trench would contribute to verify our mega-asperity model and to evaluate seismic and tsunami hazards along the Japan Trench.

  17. Formation of Ore Deposits Triggered by Aseismic Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Giles, D.; Betts, P.; Saxon, M.; Weinberg, R.; Duboz, C.

    2005-12-01

    Magmatic-hydrothermal ore deposits in suprasubduction environments are abundant in the Andes, where they are associated with the eastward subduction of the Nazca plate beneath the continental South American plate during the last 200 Ma. These deposits do not seem to correspond with progressive subduction processes but are concentrated at distinct regions that experienced pulses of intense metallogenic activity. An example is the Miocene metallogenic belt in the central Andes that was formed during a relatively short period between 15-5 Ma, and is characterised by clusters of mineral deposits in northern Peru and in central Chile. We propose that a key factor for the occurrence of metallogenic episodes during progressive subduction is related to bathymetric heterogeneities within the subducting oceanic plate. Such heterogeneities are manifested by the subduction of topographic anomalies that affected the whole dynamics of the subduction system and triggered metallogenic processes. Our study shows that the spatial and temporal distribution of Miocene ore deposits in the Peruvian Andes correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with aseismic ridge subduction, (i.e. a change in the state of stress, flattening of the subducting slab, temporal quiescence in the volcanic activity and partial melting of the subducting slab) may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments.

  18. Mid mantle seismic anisotropy around subduction zones

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2014-02-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modelling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating portions of the subducted Pacific plate.

  19. Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions

    NASA Astrophysics Data System (ADS)

    Goes, S.; Capitanio, F. A.; Morra, G.; Seton, M.; Giardini, D.

    2011-01-01

    The dynamics of plate tectonics are strongly related to those of subduction. To obtain a better understanding of the driving forces of subduction, we compare relations between Cenozoic subduction motions at major trenches with the trends expected for the simplest form of subduction. i.e., free subduction, driven solely by the buoyancy of the downgoing plate. In models with an Earth-like plate stiffness (corresponding to a plate-mantle viscosity contrast of 2-3 orders of magnitude), free plates subduct by a combination of downgoing plate motion and trench retreat, while the slab is draped and folded on top of the upper-lower mantle viscosity transition. In these models, the slabs sink according to their Stokes' velocities. Observed downgoing-plate motion-plate-age trends are compatible with >80% of the Cenozoic slabs sinking according to their upper-mantle Stokes' velocity, i.e., subducting-plate motion is largely driven by upper-mantle slab pull. Only in a few cases, do young plates move at velocities that require a higher driving force (possibly supplied by lower-mantle-slab induced flow). About 80% of the Cenozoic trenches retreat, with retreat accounting for about 10% of the total convergence. The few advancing trench sections are likely affected by regional factors. The low trench motions are likely encouraged by low asthenospheric drag (equivalent to that for effective asthenospheric viscosity 2-3 orders below the upper-mantle average), and low lithospheric strength (effective bending viscosity ˜2 orders of magnitude above the upper-mantle average). Total Cenozoic trench motions are often very oblique to the direction of downgoing-plate motion (mean angle of 73°). This indicates that other forces than slab buoyancy exert the main control on upper-plate/trench motion. However, the component of trench retreat in the direction of downgoing plate motion (? slab pull) correlates with downgoing-plate motion, and this component of retreat generally does not exceed the amount expected for free buoyancy-driven subduction. High present-day slab dips (on average about 70°) are compatible with largely upper-mantle slab-pull driven subduction of relatively weak plates, where motion partitioning and slab geometry adjust to external constraints/forces on trench motion.

  20. Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern

    E-print Network

    Lee, Jian-Cheng

    to the converging Ryukyu trench subduction and back-arc opening along the Chinese continental margin. Station-Pleistocene oblique collision between the north­south trending Luzon island arc of the Philippine Sea plate subducting plate under the Ryukyu arc and the Eurasian continental margin. The boundary of the polarity

  1. A Model for the Termination of the Ryukyu Subduction Zone against Taiwan A Triple Junction of Collision, Subduction/Separation and Subduction Boundaries

    NASA Astrophysics Data System (ADS)

    Wu, F. T.; Liang, W.; Lee, J. C.

    2006-12-01

    In the vicinity of Taiwan, the Philippine Sea plate moves in the direction of N50^{O}W to collide with the Eurasian continent and at the same time subducts toward the north along the Ryukyu subduction zone. The geometry of the junction between the Ryukyu subduction and Taiwan is obscured by intense deformation near the island. Based on tomographic velocity images for the subduction zone and relocated seismicity the junction is determined to be near the Longitudinal Valley at the latitude of about 23.7^{O}N, i.e., the northern part of the Coastal Range overlies the subduction zone. North of this latitude the subduction becomes deeper and only the portion of the Eurasian lithosphere that is in contact with the subduction zone is engaging in collision. Above the subduction zone the Eurasian plate undergoes stretching due to the shortening of the plate on the Taiwan side and the lack of shortening of the Eurasian plate above the subducting Philippine Sea plate. When the subducting Philippine Sea reaches the depths of the lower part of the lithosphere or asthenosphere then the Eurasian plate is no longer under compression and a bight in the surface structure is created. Adding to these actions is the opening of the Okinawa Trough and the resulting southward migration of the Ryukyu Trench. Because of the opening of Okinawa this junction is a dynamically changing triple junction that involves collision between about 23^{O}N and 23.7^{O}N, collision and separation, with normal and strike-slip motion along the boundary, to its north and subduction along the Ryukyu Trench. The triple junction migrates southward with time. The plate configuration in this junction resembles that in the eastern syntaxis of Himalaya where the Indian plate moves northwestward to collide along the Himalayan front and subducts under Northeastern India and Myanmar. While the Taiwan collision began about four million years the Indian collision has probably gone on for at least a few tens of million years. The Taiwan situation can provide a scenario of the earlier development of the Indian/Eurasian collision regime.

  2. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction regimes are generated primarily as a product of two mechanisms. The first mechanism is that of the competition between the weight of the slab and the strength of the plate, which can be understood in terms of the applied bending moment, and this competition results in a particular radius of curvature (for which we provide a simple scaling theory). The second mechanism is the interaction between the slab and the more viscous lower mantle, which produces each regime's distinct slab morphology. Thus, the emergence of five distinct styles of subduction is a direct consequence of the presence of the modest barrier to flow into the lower mantle. Although only 2 of these styles presently operate on Earth, the possibility exists that other modes may have been the predominant mode in the past. Based on these models, we propose that the lithosphere is the primary factor in describing key elements of the plate tectonics system over time, rather than the convecting mantle. We discuss the various factors that may have influenced secular changes in Earth's tectonic behavior, some of which may have interesting consequences for the geochemical evolution of the Earth.

  3. Precise hypocenter distribution and earthquake generating and stress in and around the upper-plane seismic belt in the subducting Pacific slab beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.

    2007-12-01

    1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in the slab should correspond to the difference of the spatial distribution of the hydrated minerals and their dehydration reactions. In the upper slab crust, the upper-plane seismic belt is found because the hydrated minerals could be distributed homogeneously and the dehydration reaction (from jadeite lawsonite blueschist to lawsonite amphibole eclogite [Hacker et al., 2003b]) occurs perhaps largely at depth of 70-100km. Our result also suggests that in the lower portion of the slab crust and/or the uppermost portion of the slab mantle, the hydrated minerals could be inhomogeneously distributed and the seismicity occurs at depths around 65km, where another dehydration reaction may exist. 4. Characteristics of the focal mechanisms We examined the stress distribution within the slab by using focal mechanisms of the upper plane, interplane and lower plane events. From the plate interface to about 20 km below it, downdip-compressional (DC) type events are dominant. Below 20km from the plate interface, downdip-tensional (DT) type events are dominant. Many of interplane events have DC type focal mechanisms because of their locations in the uppermost portions of the slab mantle. These results indicate that the stress neutral plane from the DC type to DT type could be located at depth of about 20km from the plate interface.

  4. Collapse of the northern Jalisco continental slope:Subduction erosion, forearc slivering, or subduction beneath the Tres Marias escarpment?

    NASA Astrophysics Data System (ADS)

    Bandy, W. L.; Mortera-Gutierrez, C. A.; Ortiz-Zamora, G.; Ortega-Ramirez, J.; Galindo Dominguez, R. E.; Ponce-Núñez, F.; Pérez-Calderón, D.; Rufino-Contreras, I.; Valle-Hernández, S.; Pérez-González, E.

    2010-12-01

    The Jalisco subduction zone exhibits several interesting characteristics. Among these is that convergence between the Rivera and North American plate is highly oblique, especially north of 20N, the obliquity progressively increasing to the NW. By analogy to other better studied subduction zones, this distribution of forces should produce a NW-SE extension in the overriding plate, especially north of 20N. This has led to the proposal that the trench perpendicular Bahia de Banderas is an expression of this extension [Kostoglodov and Bandy, JGR, vol. 100, 1995]. To further investigate this proposal, multibeam bathymetric data and seafloor backscatter images, seismic reflection sub-bottom profiles and marine magnetic data were collected during the MORTIC08 campaign of the B.O. EL PUMA in March 2009. The bathymetric data provides for 100% coverage (20 to 200 meter spacing of the actual measured depth value depending on the water depth) of the continental slope and trench areas north of 20N. These data indicate that a marked change occurs in the morphology of the continental slope at 20N. To the north the slope consists of a broad, fairly flat plain lying between a steep lower inner trench slope to the west and a steep, concave seaward, escarpment to the east. In contrast, to the south the continental slope exhibits a more gradual deepening until the steep lower inner trench slope. A prominent submarine canyon deeply incises the continental slope between these two morphotectonic domains. This canyon appears to represent the boundary between two NW-SE diverging forearc blocks or slivers, consistent with the presence of oblique convergence. In contrast, the broad, fairly flat plain is better explained by subsidence induced by subduction erosion (i.e. erosion of the base of the overriding plate underneath the continental slope area). The shoaling of the trench axis northward towards the Puerto Vallarta Graben and subsequent deepening may be related to subduction of the Rivera Plate beneath the Tres Marias Escarpment.

  5. Oceanic plate weakened by flexural bending-induced faulting in the outer rise region of the Mariana subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Zhan, W.

    2013-12-01

    Strong flexural bending near trenches could significantly weaken oceanic plates through development of trench-parallel extensional normal faults. We assessed the oceanic plate weakening near the outer rise region of the Mariana subduction zone by analyzing and modeling the plate deformation caused by flexural bending. We first obtained a 3-D deformation surface of the subducting plate by removing from seafloor bathymetry the topographic effects of sediments, seamounts, and age-related thermal subsidence. We then calculated theoretical models of plate deformation and inverted for along-trench changes in the vertical force and bending moment at the trench axis, as well as spatial variations in the effective elastic thickness of the subducting plate, that best explain the observations. We found that to replicate simultaneously the observed steep slope of the seafloor near the trench axis and the long-wavelength flexural profiles seaward of the outer rise region, the effective elastic thickness of the plate must change significantly. The best-fitting models reveal that the effective elastic thickness is about 45-55 km seaward of the outer rise (TeMax), but is reduced to only 19-40 km trench-ward of the outer rise region (TeMin); the transition from TeMax to TeMin occurs at Xr =70-120 km away from the trench axis. The resultant reduction in the calculated effective elastic thickness, i.e., 1 - (TeMin /TeMax), is in the range of 20-60%, being the greatest near the Challenger Deep area, where the plate deforms significantly within a narrow distance from the trench axis and the trench axis is the deepest. Our results revealed that reduction in Te along the Mariana trench does not exceed 60%, implying that an elastic core remains in the subducting plate despite pervasive faulting caused by flexural bending near the trench axis.

  6. Subduction Initiation Along the Macquarie Ridge Complex?

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Meckel, T. P.; Meckel, T. P.; Mosher, S.; Mosher, S.; Massell, C.; Daczko, N.; Daczko, N.; Wertz, K.; Wertz, K.; Bernadel, G.; Symonds, P.

    2001-12-01

    The Macquarie Ridge Complex (MRC) extends for ca. 1500 km between New Zealand's South Island and the Indian-Antarctic-Pacific triple junction, and comprises the boundary between the Australian (Indian) and Pacific plates. Motion along this boundary has changed from divergence to dominantly strike slip, with areas of transpression and transtension, since ca. 10 Ma. The arcuate MRC displays unique bathymetry among submarine ridges worldwide, with four distinct segments (from north to south, Puysegur, McDougall, Macquarie, and Hjort) characterized by alternating ridge-trough polarity. A major fault zone on the crest or flank of the bathymetric ridge is continuous along the entire length of the MRC. Intermediate depth earthquakes, compressional focal mechanisms, and a single, small calc-alkaline volcano (Solander Island) suggest that subduction may be initiating in southernmost New Zealand (Fiordland) and the Puysegur region. Marine geophysical data show one or more major thrust faults along the Puysegur trough in addition to the strike slip fault along the Puysegur ridge, implying strain partitioning. The McDougall and Macquarie segments are characterized by shallow focus earthquakes and strike slip focal mechanisms; the ridges and troughs may be explained by past thrust faulting, but any evidence for subduction or initiation thereof is absent. In the Hjort region, a well-developed trench complements the crestal fault zone, again implying strain partitioning, although all earthquakes appear to be shallow. Unsampled seamounts paralleling the Hjort trench and ridge may be related to subduction, or may have been produced by hotspot activity. The morphology of the MRC integrates the changes in relative motion between the Australian (Indian) and Pacific plates since ca. 10 Ma, and the MRC presents a case study for possible models of subduction initiation.

  7. Estimation of Interplate Coupling in the Central and Eastern of Java trench from CGPS Observation

    NASA Astrophysics Data System (ADS)

    Irwan, Meilano; Endra, Gunawan; Susilo, Susilo; Joni, Effendi; Hasanuddin Z., Abidin; Dina, Sarsito

    2015-04-01

    We used three-component surface velocities in the Central and Eastern Java to estimate plate coupling on the subduction interface at the Java subduction zone. The observation period starting from 2009 to 2013 with more than 40 CGPS observation stations. The results show a heterogeneous distribution of interplate coupling from Central to the East of Java trench. Strong coupling at a depth of 10-30 km with rate 3-4 cm/yr is estimated at the south of East Java. The downdip limits of the coupled areas is estimated at 50km. This slip deficit on subduction interface has important implication for seismic hazard of Java Island.

  8. Intrinsic and Extrinsic Factors in Subduction Dynamics

    NASA Astrophysics Data System (ADS)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have a strong effect on the rate of subduction and small-scale buckling and folding of the slab. These studies suggest that the evolution of slabs can differ significantly from more simplified models, and therefore a better understanding of the underlying physical controls on slab dynamics requires more realistic models.

  9. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NASA Astrophysics Data System (ADS)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-10-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flow force the OP to deform. We present results of 3-D dynamic laboratory models of subduction that include an OP. We introduce new interplate materials comprising homogeneous mixtures of petrolatum and paraffin oil to achieve progressive subduction. The rheology of these mixtures is characterized by measurements using a strain rate controlled rheometer. The results show that the strength of the mixture increases with petrolatum content, which can be used as a proxy for the degree of mechanical coupling along the subduction interface. Results of subduction experiments are presented with different degrees of mechanical coupling and the influence this has on the dynamics and kinematics of subduction. The modelling results show that variations in the degree of mechanical coupling between the plates have a major impact on subduction velocities, slab geometry and the rate of OP deformation. In all experiments the OP is displaced following trench migration and experiences overall extension localized in the plate interior. This suggests that OP deformation is driven primarily by the toroidal component of subduction-related mantle return flow. The subduction rate is always very slow in experiments with medium mechanical coupling, and subduction stops prematurely in experiments with very high coupling. This implies that the shear forces along the plate interface in natural subduction zone systems must be relatively low and do not vary significantly. Otherwise a higher variability in natural subduction velocities should be observed for mature, non-perturbed subduction zones. The required low shear force is likely controlled by the rheology of highly hydrated sedimentary and basaltic rocks.

  10. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Track-and-Trench

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the tracks and trench marks made by the Mars Exploration Rover Opportunity at Meridiani Planum, Mars. The rover can be seen to the lower left of the lander. The trench is visible to the upper left of the rover, which has traveled a total of 35.3 meters (116 feet) since leaving the lander on sol 7 (January 31, 2004). On sol 23 (February 16, 2004), the rover used one of its wheels to dig a trench measuring approximately 10 centimeters (4 inches) deep, 50 centimeters (20 inches) long, and 20 centimeters (8 inches) wide. This vertically projected image was created using a combination of images from the rover's navigation camera and hazard-avoidance cameras.

  12. Phoenix's Snow White Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A soil sample taken from the informally named 'Snow White' trench at NASA's Phoenix Mars Lander work site produced minerals that indicate evidence of past interaction between the minerals and liquid water.

    This image was taken by the Surface Stereo Imager on Sol 103, the 103rd day since landing (Sept. 8, 2008).

    The trench is approximately 23 centimeters (9 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  13. Core-log integration for rock mechanics using borehole breakouts and rock strength experiments: Recent results from plate subduction margins

    NASA Astrophysics Data System (ADS)

    Saito, S.; Lin, W.

    2014-12-01

    Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.

  14. Snow White 5 Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera on the 35th Martian day of the mission, or Sol 34 (June 29, 2008), after the May 25, 2008, landing. This image shows the trench informally called 'Snow White 5.' The trench is 4-to-5 centimeters (about 1.5-to-1.9 inches) deep, 24 centimeters (about 9 inches) wide and 33 centimeters (13 inches) long.

    Snow White 5 is Phoenix's current active digging area after additional trenching, grooming, and scraping by Phoenix's Robotic Arm in the last few sols to trenches informally called Snow White 1, 2, 3, and 4. Near the top center of the image is the Robotic Arm's Thermal and Electrical Conductivity Probe.

    Snow White 5 is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The digging site has been named 'Wonderland.'

    This image has been enhanced to brighten shaded areas.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Nationwide tsunami hazard assessment project in Japan

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.

    2014-12-01

    In 2012, we began a project of nationwide Probabilistic Tsunami Hazard Assessment (PTHA) in Japan to support various measures (Fujiwara et al., 2013, JpGU; Hirata et al., 2014, AOGS). The most important strategy in the nationwide PTHA is predominance of aleatory uncertainty in the assessment but use of epistemic uncertainty is limited to the minimum, because the number of all possible combinations among epistemic uncertainties diverges quickly when the number of epistemic uncertainties in the assessment increases ; we consider only a type of earthquake occurrence probability distribution as epistemic uncertainty. We briefly show outlines of the nationwide PTHA as follows; (i) we consider all possible earthquakes in the future, including those that the Headquarters for Earthquake Research Promotion (HERP) of Japanese Government, already assessed. (ii) We construct a set of simplified earthquake fault models, called "Characterized Earthquake Fault Models (CEFMs)", for all of the earthquakes by following prescribed rules (Toyama et al., 2014, JpGU; Korenaga et al., 2014, JpGU). (iii) For all of initial water surface distributions caused by a number of the CEFMs, we calculate tsunamis by solving a nonlinear long wave equation, using FDM, including runup calculation, over a nesting grid system with a minimum grid size of 50 meters. (iv) Finally, we integrate information about the tsunamis calculated from the numerous CEFMs to get nationwide tsunami hazard assessments. One of the most popular representations of the integrated information is a tsunami hazard curve for coastal tsunami heights, incorporating uncertainties inherent in tsunami simulation and earthquake fault slip heterogeneity (Abe et al., 2014, JpGU). We will show a?PTHA along the eastern coast of Honshu, Japan, based on approximately 1,800 tsunami sources located within the subduction zone along the Japan Trench, as a prototype of the nationwide PTHA. This study is supported by part of the research project on research on evaluation of hazard and risk of natural disasters, under the direction of the HERP of Japanese Government.

  16. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    USGS Publications Warehouse

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  17. Trench migration and upper plate strain over a convecting mantle

    NASA Astrophysics Data System (ADS)

    Husson, Laurent

    2013-04-01

    Trench motion and upper plate deformation ultimately respond to mantle flow. Herein I build upon the mantle flow model results of Conrad and Behn (2010) and compute the drag forces underneath all plates, and show that they control the dynamics of plates and plate boundaries. The small misfit angle between between the traction azimuths of mantle traction and absolute plate motion corroborates the idea that convective mantle drag is a prominent driver of plate tectonics. Less intuitive is the fact that the interplay between the drag forces from the upper and lower plates, that amounts to -5 to 8.5 TN/m (per unit trench length), dictates both trench migration rates and upper plate deformation. At odds with the classic view that assigns the prime role to the idiosyncrasies of subduction zones (slab age, interplate friction, water content etc), I find that the intrinsic properties of subduction zones in fact only modulate this behavior. More specifically, the mean value of the integrated trenchward mantle drag force from the lower and upper plates (from -2 to 6.5 TN/m) controls upper plate deformation. Conversely, it is the difference between the lower and upper plates mantle drag forces (from -3 to 10 TN/m) that controls trench migration rates. In addition, I find that a minimum trenchward force of ~2.5 TN/m must be supplied by mantle drag before trenches can actually advance, and before upper plates undergo compression. This force results from the default tendency of slabs to rollback when solely excited by their own buoyancy, and is thus the effective tensional force that slab pull exerts on the plate interface.

  18. Trench migration and upper plate strain over a convecting mantle

    NASA Astrophysics Data System (ADS)

    Husson, Laurent

    2012-12-01

    Trench motion and upper plate deformation ultimately respond to mantle flow. Herein I build upon the mantle flow model results of Conrad and Behn (2010) and compute the drag forces underneath all plates, and show that they control the dynamics of plates and plate boundaries. The small misfit angle between between the traction azimuths of mantle traction and absolute plate motion corroborates the idea that convective mantle drag is a prominent driver of plate tectonics. Less intuitive is the fact that the interplay between the drag forces from the upper and lower plates, that amounts to -5 to 8.5 × 1012 N m-1 (per unit trench length), dictates both trench migration rates and upper plate deformation. At odds with the classic view that assigns the prime role to the idiosyncrasies of subduction zones (slab age, interplate friction, water content etc), I find that the intrinsic properties of subduction zones in fact only modulate this behavior. More specifically, the mean value of the integrated trenchward mantle drag force from the lower and upper plates (from -2 to 6.5 × 1012 N m-1) controls upper plate deformation. Conversely, it is the difference between the lower and upper plates mantle drag forces (from -3 to 10 × 1012 N m-1) that controls trench migration rates. In addition, I find that a minimum trenchward force of ˜2.5 × 1012 N m-1 must be supplied by mantle drag before trenches can actually advance, and before upper plates undergo compression. This force results from the default tendency of slabs to rollback when solely excited by their own buoyancy, and is thus the effective tensional force that slab pull exerts on the plate interface.

  19. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Kido, M.; Osada, Y.; Fujimoto, H.; Hino, R.; Ito, Y.

    2011-12-01

    Seafloor geodetic measurements using the GPS/acoustic technique just above the rupture area of the 2011 Tohoku-Oki earthquake revealed strong trench-normal variation in the horizontal crustal displacement associated with the earthquake. One set of observations, at a site only 50 km away from the trench, yielded the most trench-ward data ever reported with an accuracy better than 1 m. It showed a coseismic displacement of up to 31 m, whereas another set of observations 100 km away from the trench showed a 15-m displacement. These horizontal data, as well as vertical data from pressure gauges and tsunami observations, strongly indicate that the seismic slip reached the trench. They are also likely to contribute quantitatively to further investigations that reveal the coseismic behavior of the frontal wedge of the overriding plate in the source region along the Japan Trench.

  20. Opening and closing slab windows in congested subduction zones

    NASA Astrophysics Data System (ADS)

    Moresi, Louis

    2013-04-01

    Subduction zones often try to swallow buoyant material which is embedded in the oceanic lithosphere: plume material or hotspot residues, oceanic plateaux, and fragments of continental material. This often results in the formation of a slab window and it has been shown (Mason et al, 2010; Betts et al, 2012) that this window strongly influences the subsequent evolution of the slab and the advance/retreat rate of the trench. The buoyant material typically pushes the trench into a local state of advance, and the creation of the slab window allows the rest of the trench to retreat as the mantle behind the slab flows in through the window. This situation is inherently unstable: if the buoyancy anomaly is finite in size, then the retreating trench will soon move behind the anomaly and juxtapose negatively buoyant oceanic lithosphere with active subduction. This creates the potential to close the slab window and, in doing so, transfer the buoyant material to the over-riding plate. Models show that this closure of the window initially occurs through a lateral rollback process followed by a catastrophic re-initiation of subduction behind the colliding buoyant anomaly. This rollback leaves a characteristic, tightly rolled remnant in the mantle and significant rotation in the over-riding plate and the newly-docked block. The over-riding plate is thrown into extension perpendicular to the original orientation of the trench. This same situation applies at the late-stages of a closing ocean due to the passive margin geometry and the presence of debris collected from the closing ocean floor and it seems likely that these models can also be applied to the complicated geometry of subduction in such environments. Mason, W. G.; Moresi, L.; Betts, P. G. & Miller, M. S. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones Tectonophysics, 2010, 483, 71-79 P. Betts, W. Mason, L. Moresi, The influence of mantle plumes on subduction zone dynamics, Geology, 40, 739-742 (2012)

  1. Water-rich bending faults at the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.

    2015-09-01

    The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.

  2. An ocean bottom seismometer study of shallow seismicity near the Mid- America Trench offshore Guatemala ( Pacific).

    USGS Publications Warehouse

    Ambos, E.L.; Hussong, D.M.; Holman, C.E.

    1985-01-01

    Five ocean bottom seismometers recorded seismicity near the Mid-America Trench offshore Guatemala for 27 days in 1979. The array was emplaced in the lower slope region, just above the topographic trench. Approximately 170 events were recorded by 3 or more seismometers, and almost half were located with statistical hypocentral errors of <10 km. Most epicenters were located immediately landward of the trench axis, and many were further confined to a zone NW of the array. In terms of depth, most events were located within the subducting Cocos plate rather than in the overlying plate or at the plate-plate boundary. Most magnitudes ranged between 3.0 and 4.0 mb, and the threshold magnitude of locatable events was about 2.8 mb. Two distinct composite focal mechanisms were determined. One appears to indicate high- angle reverse faulting in the subducting plate, in a plane parallel to trench axis strike. The other, constructed for some earthquakes in the zone NW of the array, seems to show normal faulting along possible fault planes oriented quasi-perpendicular to the trench axis. Projection of our seismicity sample and of well-located WWSSN events from 1954 to 1980 onto a plane perpendicular to the trench axis shows a distinct gap between the shallow seismicity located by our array, and the deeper Wadati-Benioff zone seismicity located by the WWSSN. We tentatively ascribe this gap to inadequate sampling.-from Authors

  3. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future earthquakes.

  4. Phoenix's La Mancha Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This false color image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, was taken on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). The image shows color variations of the trench, informally named 'La Mancha,' and reveals the ice layer beneath the soil surface. The trench's depth is about 5 centimeters deep.

    The color outline of the shadow at the bottom of the image is a result of sun movement with the combined use of infrared, green, and blue filters.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix's 'Dodo' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was taken by NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The center of the image shows a trench informally called 'Dodo' after the second dig. 'Dodo' is located within the previously determined digging area, informally called 'Knave of Hearts.' The light square to the right of the trench is the Robotic Arm's Thermal and Electrical Conductivity Probe (TECP). The Robotic Arm has scraped to a bright surface which indicated the Arm has reached a solid structure underneath the surface, which has been seen in other images as well.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. On the importance of plumes to initiate subduction and plate tectonics

    NASA Astrophysics Data System (ADS)

    Davaille, Anne

    2015-04-01

    Understanding the details of plate failure and the initiation of subduction remains a challenge due to the complexity of mantle rocks. We carried out experiments on convection in aqueous colloidal dispersions heated from below, and dried and cooled from above. The rheology of these fluids depends strongly on solid particle fraction fp, being Newtonian at low fp, and presenting memory, yield stress, elasticity, and brittle properties as fp increases. Such a behaviour is analogue to the rheology of mantle rocks as temperature decreases. When drying is sufficiently rapid in the laboratory, a visco-elasto-plastic skin ("lithosphere") forms on the fluid surface. Depending on its rheology, and on the different scales of convection existing in our laboratory mantle, we observed different modes of one-sided subduction initiation. However, not all of them lead to continuous plate tectonics. If subduction is definitely a necessary condition for plate tectonics, it is not sufficient. Amongst the different modes of subduction initiation, we observed two of them where one-sided subduction was induced by the impingement of a hot plume under the skin, the trench being localized on the rim of the plume impingement zone under the lithosphere. Then depending on the lithospheric rheology, the nascent subduction can then either stop as the result of subducted plate necking, or continue to sink smoothly. Due to the brittle character of the skin, the subduction trench will never describe a complete circle, but several tears and/or transform faults will develop as subduction and roll back proceed. Inspection of the geological record on Earth suggests that such a strong association between plumes and subduction may have been instrumental in the nucleation and growth of cratons, the onset of continuous plate tectonics, and present-day initiation of subduction around some large oceanic plateaus.

  7. Snow White Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 25th Martian day of the mission, or Sol 24 (June 19, 2008), after the May 25, 2008, landing. This image shows the trenches informally called 'Snow White 1' (left) and 'Snow White 2' (right). The trench is about 5 centimeters (2 inches) deep and 30 centimeters (12 inches) long.

    'Snow White' is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.'

    This image has been enhanced to brighten shaded areas.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Effect of time-evolving age and convergence rate of the subducting plate on the Cenozoic adakites and boninites

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Mi; Lee, Changyeol

    2014-12-01

    Partial melting of subducting oceanic crust expressed as high-Mg volcanic rocks such as adakites and boninites has been actively studied for decades, and Lee and King (2010) reported that time-evolving subduction parameters such as the age and the subduction rate of the converging oceanic plate play important roles in transient partial melting of the subducting oceanic crust (e.g., Aleutians). However, few subduction model experiments have considered time-evolving subduction parameters, posing problems for studies of transient partial melting of subducting oceanic crust in many subduction zones. Therefore, we constructed two-dimensional kinematic-dynamic subduction models for the Izu-Bonin, Mariana, Northeast Japan, Kuril, Tonga, Java-Sunda, and Aleutian subduction zones that account for the last 50 Myr of their evolution. The models include the time-evolving age and convergence rate of the incoming oceanic plate, so the effect of time-evolving subduction parameters on transient partial melting of oceanic crust can be evaluated. Our model calculations revealed that adakites and boninites in the Izu-Bonin and Aleutian subduction zones resulted from transient partial melting of oceanic crust. However, the steady-state subduction model using current subduction parameters did not produce any partial melting of oceanic crust in the aforementioned subduction zones, indicating that time-evolving subduction parameters are crucial for modeling transient eruption of adakites and boninites. Our model calculations confirm that other geological processes such as forearc extension, back-arc opening, mantle plumes and ridge subduction are required for partial melting of the oceanic crust in the Mariana, Northeast Japan, Tonga, and southeastern Java-Sunda subduction zones.

  9. Velocities of Subducted Sediments and Continents

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.

  10. Reactivation of an old plate interface as a strike-slip fault in a slip-partitioned system: Median Tectonic Line, SW Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Kato, Naoko; Abe, Susumu; Van Horne, Anne; Takeda, Tetsuya

    2015-03-01

    In models for strain-partitioning at obliquely-convergent plate boundaries, trench-parallel slip occurs on a vertical fault. Trench-parallel slip at the Nankai subduction zone, SW Japan, is mapped along the Median Tectonic Line (MTL) which dips approximately 40°N. To understand its structural context and how the MTL functions in this slip-partitioned system, we collected a set of three seismic profiles in the Kii peninsula south of Osaka, using a multi-scale acquisition strategy that provides increasingly fine resolution. To understand its fault kinematics, we analyzed microseismic activity in two locations on the fault, using source data from Japan's Hi-net monitoring network. Structural details suggest that the MTL functioned as a megathrust during subduction of the Cretaceous Sanbagawa HP metamorphic belt. Its current pattern of microseismicity shows that it behaves as a strike-slip fault with no indication of a vertical fault at or around its surface trace. Thus, trench-parallel slip at the Nankai is now accommodated on an inclined fault plane in an unusual form of partitioning. This system appears to have developed out of a two-phase tectonic history in which a thrust structure that formed under initial-phase compressive stresses has been reactivated as a strike-slip fault under subsequent-phase shear stresses. Its unusual kinematics show that shear failure can occur on an existing non-vertical fault plane at a regional scale in preference to the rupture of a new ideal (vertical) fault plane.

  11. Spirit Shadow over Laguna Trench

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit casts a shadow over the trench that the rover is examining with tools on its robotic arm. Spirit took this image with its front hazard-avoidance camera on Feb. 21, 2004, during the rover's 48th martian day, or sol. It dug the trench with its left front wheel the preceding sol. Plans call for Spirit to finish examining the trench on sol 50.

  12. Trench Left By Sampler Scoop

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A shallow 12-inch-long trench was dug by Viking 2 s surface sampler scoop yesterday (September 12) on Mars. The trench is difficult to see in this photo because it is in the shadow of a rock (out of view to the right). The sampler scoop stopped operating sometime after soil was excavated from the trench and delivered to Viking 2 s biology instrument.

  13. What controls along-strike variation in the depth of interseismic coupling and slow slip events at the Hikurangi subduction margin, New Zealand?

    NASA Astrophysics Data System (ADS)

    Wallace, L. M.; Fagereng, A.; Ellis, S. M.

    2010-12-01

    At the Hikurangi subduction margin, New Zealand, pronounced along-strike changes in the depth to the down-dip limit of interseismic coupling and slow slip events (SSEs) correspond to observed changes in several other fundamental subduction margin characteristics. The southern Hikurangi margin has interseismic coupling at the full rate of relative plate motion to depths of 25-40 km and deep (25-60 km) SSEs, well-developed tectonic accretion, a thick (3-6 km) package of sediment on the incoming plate, low accretionary wedge taper angle (4-6°), and 20-40 mm/yr convergence rate at the trench. Although there is a lack of great (Mw > 8.0), megathrust earthquakes in New Zealand’s short historical record (~170 years), interseismic strain accumulation suggests that the southern Hikurangi margin does produce Mw 8.0-8.5 events. In distinct contrast, the northern Hikurangi margin exhibits partial interseismic coupling at shallow depths and shallow SSEs (<15 km depth), subduction erosion and seamount subduction, a thinner (~1 km-thick) package of sediment on the incoming plate, high wedge taper angle (7-10°) and a much higher convergence rate (40-60 mm/yr). The northern Hikurangi margin has produced moderate subduction thrust earthquakes in historical times, including two “tsunami” earthquakes in 1947 (Mw 6.9-7.1) with locations near the trench. Despite the observed along-strike changes in subduction margin tectonics, we cannot explain the abrupt changes in the spatial extent of interseismic coupling and slow slip events at the Hikurangi margin in terms of one or two simple parameters. In particular, thermal models show that the temperature at the interface cannot explain the abrupt change in the depth of interseismic coupling and SSEs that we observe (McCaffrey et al., 2008; Fagereng and Ellis, 2009). It is notable that the sudden along-strike change in depth of interseismic coupling and SSEs also occurs where there is an abrupt along-strike change from back-arc extension to contraction in the upper plate. Fagereng and Ellis (2009) suggested that this change in interseismic coupling depth is determined by an along-strike change in upper plate fluid pressure state, which may in turn be controlled by the change from upper plate extension to upper plate contraction and associated variation in structural permeability. We further assess this as a possible control on the depth of interseismic coupling and slow slip events using additional data from the Hikurangi margin. We also present similar correlations between along-strike changes from shallow to deep interseismic coupling and a shift from back-arc extension to back-arc contraction that occur at other subduction margins, including southwest Japan and the New Hebrides Trench.

  14. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    USGS Publications Warehouse

    Gamage, S.S.N.; Umino, N.; Hasegawa, A.; Kirby, S.H.

    2009-01-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ???30?? at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the earthquakes that currently occur just beneath or oceanwards of the Japan Trench are probably its aftershocks, suggesting that aftershock activity continues to the present day, 70 years after the main shock. ?? 2009 The Authors, Journal compilation ?? 2009 RAS.

  15. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    NASA Astrophysics Data System (ADS)

    Gamage, Shantha S. N.; Umino, Norihito; Hasegawa, Akira; Kirby, Stephen H.

    2009-07-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ~30° at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the earthquakes that currently occur just beneath or oceanwards of the Japan Trench are probably its aftershocks, suggesting that aftershock activity continues to the present day, 70 years after the main shock.

  16. The potential for a great earthquake along the southernmost Ryukyu subduction zone

    E-print Network

    Simons, Mark

    eastern Taiwan and Yonaguni Island (123 E, Figure 1). Along the Ryukyu Trench, the Philippine Sea Plate at the southern Ryukyu Islands ($123.6 E) [Nishimura et al., 2004]. Given the convergence rate of about 80­ 85 mmThe potential for a great earthquake along the southernmost Ryukyu subduction zone Ya-Ju Hsu,1

  17. Multi-beam surveys of the Michelson Ridge guyots: Subduction or obduction

    NASA Astrophysics Data System (ADS)

    Christian Smoot, N.

    1983-12-01

    This is the first graphic presentation of the Michelson Ridge in its entirety from a total coverage, multi-beam survey. The ridge splits the Izu and Bonin Trenches, is comprised of four guyots, and is anomalous to the strike of all other ridges heretofore discovered in the Pacific Ocean. The ridge is obducting/offscraping onto the Philippine plate instead of subducting.

  18. Earth Planets Space, 62, 665673, 2010 Construction of semi-dynamic model of subduction zone

    E-print Network

    Tackley, Paul J.

    of subduction, such as the change in plate boundaries and trench curvature with time (Schellart et al., 2007 and in a small three-dimensional region around the shallow plate boundary while below this region, the slab plate rotation on a sphere. The velocity imposed in the region around the plate boundary is determined

  19. Plate bending at subduction zones: Consequences for the direction of plate motions

    E-print Network

    between plate bending and various sources of friction at plate boundaries and in the interior toward the trench, especially when the downgoing plate has a distribution of ages [10], and hencePlate bending at subduction zones: Consequences for the direction of plate motions Bruce A. Buffett

  20. Seismic velocity structure and deformation due to the collision of the Louisville Ridge with the Tonga-Kermadec Trench

    NASA Astrophysics Data System (ADS)

    Stratford, W.; Peirce, C.; Paulatto, M.; Funnell, M.; Watts, A. B.; Grevemeyer, I.; Bassett, D.

    2015-03-01

    New marine geophysical data recorded across the Tonga-Kermadec subduction zone are used to image deformation and seismic velocity structures of the forearc and Pacific Plate where the Louisville Ridge seamount chain subducts. Due to the obliquity of the Louisville Ridge to the trench and the fast 128 mm yr-1 south-southwest migration of the ridge-trench collision zone, post-, current and pre-seamount subduction deformation can be investigated between 23°S and 28°S. We combine our interpretations from the collision zone with previous results from the post- and pre-collision zones to define the along-arc variation in deformation due to seamount subduction. In the pre-collision zone the lower-trench slope is steep, the mid-trench slope has ˜3-km-thick stratified sediments and gravitational collapse of the trench slope is associated with basal erosion by subducting horst and graben structures on the Pacific Plate. This collapse indicates that tectonic erosion is a normal process affecting this generally sediment starved subduction system. In the collision zone the trench-slope decreases compared to the north and south, and rotation of the forearc is manifest as a steep plate boundary fault and arcward dipping sediment in a 12-km-wide, ˜2-km-deep mid-slope basin. A ˜3 km step increase in depth of the middle and lower crustal isovelocity contours below the basin indicates the extent of crustal deformation on the trench slope. At the leading edge of the overriding plate, upper crustal P-wave velocities are ˜4.0 km s-1 and indicate the trench fill material is of seamount origin. Osbourn Seamount on the outer rise has extensional faulting on its western slope and mass wasting of the seamount provides the low Vp material to the trench. In the post-collision zone to the north, the trench slope is smooth, the trench is deep, and the crystalline crust thins at the leading edge of the overriding plate where Vp is low, ˜5.5 km s-1. These characteristics are attributed to a greater degree of extensional collapse of the forearc in the wake of seamount subduction. The northern end of a seismic gap lies at the transition from the smooth lower-trench slope of the post-collision zone, to the block faulted and elevated lower-trench slope in the collision zone, suggesting a causative link between the collapse of the forearc and seismogenesis. Along the forearc, the transient effects of a north-to-south progression of ridge subduction are preserved in the geomorphology, whereas longer-term effects may be recorded in the ˜80 km offset in trench strike at the collision zone itself.

  1. Strong mechanical coupling along the central Andes: implications for trench curvature, shortening, and topography

    NASA Astrophysics Data System (ADS)

    Funiciello, F.; Iaffaldano, G.; di Giuseppe, E.; Corbi, F.; Faccenna, C.; Bunge, H.

    2010-12-01

    The Andean system, where the Nazca plate undergoes continental South America, is often regarded as the archetype of convergent margin where spatial and temporal correlations between the development of trench curvature, shortening of the overriding plate, and topography uplift stand out from the geologic record. Despite the large amount of observations available, the details of those links are still matter of debate. There are, nevertheless, distinctive evidences suggesting that the degree of mechanical coupling between converging plates - that is the amount of resistive force mutually transmitted between plates and opposite to their respective motions - may significantly vary along the Andean margin at present-day. Here we present laboratory experiments of analog subduction that for the first time explicitly relate trench curvature, shortening, and the distribution of topographic volume along the convergent margins to lateral variations in mechanical coupling between subducting and overriding plates. The ability of the overriding plate to slide above the subducting one is significantly inhibited by strong mechanical coupling. This inference applies in particular to the central Andean margin as opposed to its northern and southern limbs. Consequently, the South American plate shortens more, and the trench advances less than elsewhere along the margin, generating the peculiar shape observed along Andes at present-day. The presence of the overriding plate and its degree of coupling with the subducting slab impact the evolution of convergent systems perhaps more that previously thought.

  2. Scientists Examine Challenges and Lessons From Japan's Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    A week after the magnitude 9.0 great Tohoku earthquake and the resulting tragic and damaging tsunami of 11 March struck Japan, the ramifications continued, with a series of major aftershocks (as Eos went to press, there had been about 4 dozen with magnitudes greater than 6); the grim search for missing people—the death toll was expected to approximate 10,000; the urgent assistance needed for the more than 400,000 homeless and the 1 million people without water; and the frantic efforts to avert an environmental catastrophe at Japan's damaged Fukushima Daiichi Nuclear Power Station, about 225 kilometers northeast of Tokyo, where radiation was leaking. The earthquake offshore of Honshu in northeastern Japan (see Figure 1) was a plate boundary rupture along the Japan Trench subduction zone, with the source area of the earthquake estimated at 400-500 kilometers long with a maximum slip of 20 meters, determined through various means including Global Positioning System (GPS) and seismographic data, according to Kenji Satake, professor at the Earthquake Research Institute of the University of Tokyo. In some places the tsunami may have topped 7 meters—the maximum instrumental measurement at many coastal tide gauges—and some parts of the coastline may have been inundated more than 5 kilometers inland, Satake indicated. The International Tsunami Information Center (ITIC) noted that eyewitnesses reported that the highest tsunami waves were 13 meters high. Satake also noted that continuous GPS stations indicate that the coast near Sendai—which is 130 kilometers west of the earthquake and is the largest city in the Tohoku region of Honshu—moved more than 4 meters horizontally and subsided about 0.8 meter.

  3. Tectonic development in the regions around Japan since latest Miocene

    NASA Astrophysics Data System (ADS)

    Tokuyama, Hidekazu; Honza, Eiichi; Kimura, Masaaki; Kuramoto, Shin-Ichi; Ashi, Juichiro; Okamura, Nobuyuki; Arato, Hiroyuki; Ito, Yasuto; Soh, Wonn; Hino, Ryota; Nohara, Tsuyoshi; Abe, Hironobu; Sakai, Shin-Ichi; Mukaiyama, Kenjiro

    We propose the guideline to identify fault in offshore region mainly based on MCS profiles, combining high resolution bathymetric maps and geological data such as bore hole results. Based on the guideline we distinguished total 776 faults developing around Japan since the latest Miocene and 753 faults out of total numbers of faults are interpreted to have been active by Quaternary. Together with distinguishment of fault we examined the attributes of each faults such as surface and vertical distribution, criteria of offset, age of movement, certainty of a fault and so on. The results of the distinguishment and examination of the fault leads to the conclusion that the ongoing tectonic framework around Japan characterized by 1) oblique Subduction along the Nankai Trough, 2) rifting at the Okinawa Trough, 3) E-W compressionl regeme along the Japan Sea margin, 4) E-W compressionl regeme along southwestern margin of the Okhotsk Sea and off southern Hokkaido, 5) E-W compressionl regeme along the Japan Trench, 6) rifting in the central arc of the Izu-Ogasawara Arc has been established since 3 Ma, at the earliest 6 Ma. We utilized high resolution data set which we enable to access. Tow big problems, however, still remain in terms of reliability of fault recognition. Those are 1) age of fault movement and 2) spatial distribution of fault. To solve the first one, new technique is required in order to obtain core samples which provide critical evidence to determine age of fault movement. As is second problem concerned, new intensive seismic survey is indispensable to make a precise fault distribution map, especially in the boundary area between land and sea.

  4. Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia

    NASA Astrophysics Data System (ADS)

    Jacob, Jensen; Dyment, Jérôme; Yatheesh, V.

    2014-01-01

    the subduction processes along the Sunda Trench requires detailed constraints on the subducting lithosphere. We build a detailed tectonic map of the Wharton Basin based on reinterpretation of satellite-derived gravity anomalies and marine magnetic anomalies. The Wharton Basin is characterized by a fossil ridge, dated ~36.5 Ma, offset by N-S fracture zones. Magnetic anomalies 18 to 34 (38-84 Ma) are identified on both flanks, although a large part of the basin has been subducted. We analyze the past plate kinematic evolution of the Wharton Basin by two-plate (India-Australia) and three-plate (India-Australia-Antarctica) reconstructions. Despite the diffuse plate boundaries within the Indo-Australian plate for the last 20 Ma, we obtain finite rotation parameters that we apply to reconstruct the subducted Wharton Basin and constrain the thickness, buoyancy, and rheology of the subducting plate. The lower subductability of younger lithosphere off Sumatra has important consequences on the morphology, with a shallower trench, forearc islands, and a significant inward deviation of the subduction system. This deviation decreases in the youngest area, where the Wharton fossil spreading center enters subduction: The discontinuous magmatic crust and serpentinized upper mantle, consequences of the slow spreading rates at which this area was formed, weaken the mechanical resistance to subduction and facilitate the restoration of the accretionary prism. Deeper effects include the possible creation of asthenospheric windows beneath the Andaman Sea, in relation to the long-offset fracture zones, and east of 105°E, as a result of subduction of the spreading center.

  5. Elastic thickness structure of the Andaman subduction zone: Implications for convergence of the Ninetyeast Ridge

    NASA Astrophysics Data System (ADS)

    Ratheesh Kumar, R. T.; Windley, B. F.; Rajesh, V. J.; Santosh, M.

    2013-12-01

    We use the Bouguer coherence (Morlet isostatic response function) technique to compute the spatial variation of effective elastic thickness (Te) of the Andaman subduction zone. The recovered Te map resolves regional-scale features that correlate well with known surface structures of the subducting Indian plate and the overriding Burma plate. The major structure on the India plate, the Ninetyeast Ridge (NER), exhibits a weak mechanical strength, which is consistent with the expected signature of an oceanic ridge of hotspot origin. However, a markedly low strength (0 < Te < 3 km) in that region, where the NER is close to the Andaman trench (north of 10°N), receives our main attention in this study. The subduction geometry derived from the Bouguer gravity forward modeling suggests that the NER has indented beneath the Andaman arc. We infer that the bending stresses of the viscous plate, which were reinforced within the subducting oceanic plate as a result of the partial subduction of the NER buoyant load, have reduced the lithospheric strength. The correlation, Te < Ts (seismogenic thickness) reveals that the upper crust is actively deforming beneath the frontal arc Andaman region. The occurrence of normal-fault earthquakes in the frontal arc, low Te zone, is indicative of structural heterogeneities within the subducting plate. The fact that the NER along with its buoyant root is subducting under the Andaman region is inhibiting the subduction processes, as suggested by the changes in trench line, interrupted back-arc volcanism, variation in seismicity mechanism, slow subduction, etc. The low Te and thinned crustal structure of the Andaman back-arc basin are attributed to a thermomechanically weakened lithosphere. The present study reveals that the ongoing back-arc spreading and strike-slip motion along the West Andaman Fault coupled with the ridge subduction exerts an important control on the frequency and magnitude of seismicity in the Andaman region.

  6. Snow White Trench (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the evolution of the trench called 'Snow White' that NASA's Phoenix Mars Lander began digging on the 22nd Martian day of the mission after the May 25, 2008, landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is found in real subduction zones when the radius of curvature is compared with near-trench overriding lithospheric thickness. We suggest that the thickness of the overriding plate, through controlling the depth extent of the slab suction caused by the strong overriding plate, exerts a primary control on the curvature of subducting lithosphere.

  8. Abrupt Change in Convergence Rate as a Mechanism to Induce Extension in Highly Coupled Subduction Zones

    NASA Astrophysics Data System (ADS)

    Contreras, J.

    2009-05-01

    I here present model results that bring into light a new mechanism for continental extension in convergent margins. The model is motivated by observations in the Trans-Mexican volcanic belt, a volcanic arc built above the Middle America subduction zone, that apparently contradict the current understanding of the dynamics of subduction zones. This volcanic arc is dissected along its axis by several arrays of active normal faults with a combined length of 450 km and up to 1.5 km of throw. Previous observations worldwide indicate that continental extension in convergent margins takes place where (i) the upper plate moves away from the trench, and (ii) the subduction zone is only weakly coupled. In western Mexico, neither of these phenomena is observed; North America moves toward the trench and the subduction zone is fully coupled. Moreover, extension is usually observed in the backarc, in Mexico is intra-arc. The model shows that in the case the oceanic slab sinks into the mantle at a steep angle, periods of rapid subduction lead to an increase of suction force under the forearc. This causes the over-riding plate to bend downward building up tensional stress inside the continent, 150-250 km away from the trench, resulting in failure of the associated volcanic arc.

  9. Seafloor Geodesy for Approaching Great Earthquakes Around Japan

    NASA Astrophysics Data System (ADS)

    Fujita, M.; Sato, M.; Ishikawa, T.; Watanabe, S. I.; Yokota, Y.

    2014-12-01

    Seafloor geodesy has been developed as an application of space geodetic technique for the purpose of investigating geodynamic phenomena having their major information in offshore regions. One of such targets is the occurrence of disastrous earthquakes in plate subduction areas. Japan, among others, has repeatedly experienced offshore megathrust earthquakes because of its tectonic location, where multiple plates interact with each other. Most recently, an earthquake of M9.0 occurred off the Pacific coast of east Japan in 2011 with a subsequent huge tsunami, which totally devastated coastal areas and claimed nearly 20,000 lives including those still missing. We, the group of Japan Coast Guard (JCG), have developed a seafloor geodetic technique combining the GPS positioning and underwater acoustic ranging, which is able to measure the position of the seafloor reference point consisting of multiple acoustic transponders with a precision of a few centimeters. We have deployed our seafloor reference points over two regions on the Pacific side of Japan; one is the region along the Japan trench off the eastern coast where the huge 2011 event occurred and another is the region along the Nankai Trough off the southern coast where earthquakes of around M8 have repeated every 100-150 years. With these measurements, we have so far successfully obtained important results providing exclusive information for elucidating the plate boundary behavior causing huge earthquakes. In particular, in the region off east Japan, we have revealed different phases of seafloor movements during the period between several years before and after the 2011 event. They include linear intraplate movements with several centimeters per year before the event, which were the first significant offshore geodetic signals detected around Japan, as well as the coseismic displacements of unprecedentedly huge amount over 20 m close to the epicenter and subsequent postseismic movements with various characteristics depending on the area. These seafloor data contribute to the understandings of physical processes relevant to the event beneath the seafloor in this region, which are unable to be clarified only by the terrestrial data. The presentation summarizes efforts in the field of seafloor geodesy in Japan with a focus on the results obtained by the JCG group.

  10. Mw 8.6 Sumatran earthquake of 11 April 2012: rare seaward expression of oblique subduction

    USGS Publications Warehouse

    Ishii, Miaki; Kiser, Eric; Geist, Eric L.

    2013-01-01

    The magnitude 8.6 and 8.2 earthquakes off northwestern Sumatra on 11 April 2012 generated small tsunami waves that were recorded by stations around the Indian Ocean. Combining differential travel-time modeling of tsunami waves with results from back projection of seismic data reveals a complex source with a significant trench-parallel component. The oblique plate convergence indicates that ~20-50 m of trench-parallel displacement could have accumulated since the last megathrust earthquake, only part of which has been taken up by the Great Sumatran fault. This suggests that the remaining trench-parallel motion was released during the magnitude 8.6 earthquake on 11 April 2012 within the subducting plate. The magnitude 8.6 earthquake is interpreted to be a result of oblique subduction as well as a reduction in normal stress due to the occurrence of the Sumatra-Andaman earthquake in 2004.

  11. TABLE OF CONTENTS Excavation and Trenching

    E-print Network

    US Army Corps of Engineers

    EM 385-1-1 30 Nov 14 25-i Section 25 TABLE OF CONTENTS Excavation and Trenching Section: Page 25.A .................................................................................. 25-14 25-2 ­ Trench Shields ............................................................................................. 25-20 25-3 ­ Trench Jacks

  12. Exploring a Link Between Great and Giant Megathrust Earthquakes and Relative Thickness of Sediment and Eroded Debris in the Subduction Channel to Roughness of Subducted Relief

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.; Kirby, S. H.; von Huene, R.

    2011-12-01

    SEDIMENT SUBDUCTION AND SEISMICITY: At sediment-nourished (>1-2 km) subduction zones (SZs), instrumentally recorded great and giant earthquakes (Eqs) plus the geologically well-vetted Cascadia's Mw9.0 of 1700, corresponds to the occurrence of: 52 percent of Mw8.0 and larger (12 of 23), 57 percent of Mw8.3 and larger (8 of 14), 67 percent of Mw8.5 and larger (8 of 12), 71 percent of Mw8.8 and larger (5 of 7), 67 percent of Mw9.0 and larger (4 of 6), and 100 percent of Eqs larger than Mw9.0 (3 of 3). The implications of this observation were first explored by Ruff (1989, Pure and Applied Geophysics, v. 129, p. 263-282). SIGNIFICANT EXCEPTIONS: A significant percentage of powerful megathrust Eqs have nucleated at poorly sedimented trenches (<1.0-0.5 km). For example, the 1952 Kamchatka Mw9.0 event, and the horrendous March 11, 2011 Tohoku-Oki Mw9.0 megathrust. Other great megathrust ruptures have also torn the Peru-Chile SZ opposite the sediment-starved trench sectors of southern Peru (2001 Mw8.4) and northern Chile (1922 Mw8.3), and probably at higher magnitudes in the pre-instrumental 19th century. RELATIVE THICKNESS AND THE SMOOTHNESS CONJECTURE: Ruff (1989) surmised that excess sediment (i.e., at least 1-2 km thick) entering a subduction zone constructs a laterally homogenous layer within the plate-separating subduction channel where seismogenic rupturing occurs. The layer of subducted sediment works to even the trench-parallel distribution of coupling strength (asperities) by smothering the roughness or rugosity of subducted sea-floor relief. In doing so sediment subduction contributes to the lengthy (>300-500 km) rupturing of great and giant megathrust Eqs. Larger Mw Eqs do not correlate with increasing thickness of subducted sediment. We add here the observation that great and giant Eqs occurring along sediment-poor SZs are typically underthrust by wide sectors of seafloor of low average bathymetric relief, in particular that caused by seamounts and fracture zones. These SZs also exhibit evidence of active basal subduction erosion and the progressive tilting of the margin downward toward the trench and the consequent shedding of avalanche and slide debris to the trench floor. Pilling of material along the landward side of trench buries underthrusting relief, including that of horst and graben bathymetry. Frontal subduction erosion and sediment subduction convey this material into the subduction channel. As documented by von Huene et al (1994, JGR v. 99, n. B11, p. 22, 349), these inferred megathrust-conditioning processes and an exceptionally smooth underthrusting oceanic plate are applicable to the Tohoku-Oki rupture area. We conjecture that at sediment-poor SZs tectonic erosion and mass wasting can thicken the subduction channel adequately to overwhelm and smother low underthrusting bathymetric roughness and thus contribute favorably to lengthy megathrusting rupturing.

  13. Subducted sedimentary serpentinite mélanges: Record of multiple burial-exhumation cycles and subduction erosion

    NASA Astrophysics Data System (ADS)

    Wakabayashi, John

    2012-09-01

    Serpentinite matrix mélanges give insight into large-scale convergent plate margin processes, particularly because of the derivation of the serpentinite from oceanic mantle. Similar to shale-matrix mélanges, a field geologist may easily recognize the sedimentary origins of little-deformed serpentinite matrix mélanges, but mélanges within accretionary prisms have undergone significant deformation and recrystallization of matrix. Serpentinite mélanges of the Franciscan subduction complex of California have a seemingly intact and foliated matrix. Such exposures contrast sharply with the granular undeformed sedimentary serpentinite mélanges of the coeval Great Valley Group (GVG) forearc basin deposits that depositionally overlie Coast Range Ophiolite (that structurally overlies the Franciscan). Nonetheless, Franciscan serpentinite mélanges display evidence of sedimentary origins, including sedimentary breccia composed of exotic block material (Tolay Ridge), sedimentary serpentinite breccia (Panoche Pass Road), basal serpentinite conglomerate with exotic clasts (Sunol Regional Wilderness), and serpentinite sandstones and conglomerates, including a basal conglomerate overlying coherent metagraywacke (Tiburon Peninsula). These examples record two burial-exhumation cycles to blueschist facies depths. In addition, a mélange/breccia in the Panoche Pass area may have components that record three burial-exhumation cycles to blueschist (or greater) depth. Exhumation rates for various cycles ranged from about 1.2 to 10 mm/year. The Tiburon Peninsula serpentinite mélange occupies the structurally highest horizon in the Franciscan of the San Francisco Bay area, and regional field relationships indicate deposition at ca. 100 Ma. Apparently, about 65 Ma of subduction erosion/non accretion followed initiation of Franciscan subduction in this region. The oldest Franciscan serpentinite mélanges are at least 35 Ma younger than sedimentary serpentinites of the GVG. Subduction erosion may have facilitated reworking of forearc sedimentary serpentinite deposits into the trench. Evidence of multiple-burial exhumation cycles indicates reworking of subduction complex material, consistent with existence of clastic units that have fossils indicative of significantly older ages than detrital zircon ages.

  14. Dynamic coupling of sedimentation and convergence tectonics in Peru-Chile trench and outer Andean margin

    SciTech Connect

    Kulm, L.D.; Thornburg, T.M.

    1988-02-01

    The convergence rate and sediment supply to the trench control the evolution of trench deposits as well as the subduction processes of accretion and erosion along the adjacent margin. South of 41/degrees/S latitude, where Pleistocene cordilleran glaciation was severe, turbidity current deposition and unchannelized, producing sheeted basin deposits. Between 41/degrees/S and 33/degrees/S, trench fans (/approximately/ 20 km wide) exhibit both depositional and erosional morphologies in response to dynamic tectonism within a prevailing axial gradient. An outboard axial channel transports massive quantities of remobilized sediments to the north. Subsurface lenticular bodies seen on seismic reflection profiles represent buried channel deposits. SeaMARC-II records show complex dispersal patterns and erosional features on the fans, extensional structures on the descending plate, and anastomosed accreted ridges on the inner trench wall. Lithofacies include channel (amalgamated laminated to massive sand), levee (rhythmic thin-bedded graded sand and silt), and basin (low-energy graded and laminated silt) deposits. At 33/degrees/S, San Antonio canyon feeds an axial sediment lobe at the base of a 1400-m vertical discontinuity in the subducting slab. The canyon captures littoral sands and represents the last major source of sediment supply. North of 33/degrees/S, the trench consists of small basins ponded within block-faulted depressions on the oceanic plate. Lithofacies include contourite (winnowed silt and sand laminae) and basin deposits. Large offsets in the descending plate, a steep inner trench wall and the lack of slope basins indicate the northern Chile margin is undergoing subduction erosion.

  15. Stress states at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery (ASR) data in the basement basalt and overlying sediments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuzuru; Lin, Weiren; Oda, Hirokuni; Byrne, Timothy; Yamamoto, Yuhji

    2013-07-01

    The three-dimensional orientations of stress and stress magnitudes in the basement basalt and overlying sediments at the subduction input site, IODP Site C0012, have been determined using anelastic strain recovery (ASR) analyses. The ASR results in the sedimentary sequence indicate that ?1 is nearly vertical. The magnitudes of ?2 and ?3 are very similar, indicating that the stress state in the sedimentary sequence is "at rest". On the other hand, ASR analyses in the basement basalt show that ?1 is nearly horizontal and oriented NE-SW, almost parallel (or slightly oblique) to the trench axis. ?3 plunges moderately to the NW. The stress state of the basement basalts suggests a strike-slip or thrust (reverse fault) regime, which is very different from a "state at rest" condition, which is the theoretical stress condition for the ocean floor far from a subduction zone. The basement basalt at the subduction input site (C0012) has experienced trench-parallel compression and trench-normal extension, consistent with the focal mechanisms of earthquakes in the vicinity. The estimated stress magnitudes show only small variations between the principal stresses, implying that the directions of principal stress could be easily rotated in association with any tectonically induced local stress variation. The stress orientation in the basement basalt seems to be the result of hinge extension during bending of the Philippine Sea Plate, either in association with subduction or with the formation of an anticline during intraoceanic thrusting.

  16. Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Satriano, Claudio; Dionicio, Viviana; Miyake, Hiroe; Uchida, Naoki; Vilotte, Jean-Pierre; Bernard, Pascal

    2014-10-01

    The 2011 Tohoku megathrust earthquake ruptured a vast region of the northeast Japan Trench subduction zone in a way that had not been enough anticipated by earthquake and tsunami risk scenarios. We analyzed the Tohoku rupture combining high-frequency back-projection analysis with low frequency kinematic inversion of the co-seismic slip. Results support the to-day well-accepted broadband characteristics of this earthquake. Most of the seismic moment is released during the first 100 s, with large co-seismic slip (up to 55 m) offshore Miyagi in a compact region on the landward side of the trench. Coherent high-frequency radiation areas and relatively low co-seismic slip are a distinctive signature of the slab-mantle interface. The broadband characteristics of the Tohoku rupture are interpreted, integrating the seismic activity and structure information on the NE Japan forearc region, as a signature of along-dip segmentation and segment interactions, that result from thermal structure, plate geometry, material composition and fracture heterogeneities along the plate boundary interface. Deep mantle corner flow and low dehydration rates along the cold subduction slab interface lead to an extended seismogenic slab-mantle interface, with strong bi-material contrast controlling larger propagation distance in the downdip preferred rupture direction. Off Miyagi, plate bending below the mantle wedge, ?142.3°E at ?25 km depth, is associated with the eastern limit of the deep M7-8-class thrust-earthquakes, and of the strongest coherent high-frequency generation areas. The region of the slab-crust interface between the mantle wedge limit, ?142.7°E at ?20 km depth, and a trenchward plate bending, ?143.2°E at ?15 km, acted as an effective barrier resisting for many centuries to stress-loading gradient induced by deep stable sliding and large earthquakes along the slab-mantle interface. The 2011 Tohoku earthquake, whose hypocenter is located on the east side of the mantle wedge limit, released the accumulated stress in this region and succeeded to overcome the plate bending, driving the upper plate boundary interface to slip co-seismically, regardless its frictional property, thanks to a combination of dynamic effects associated with bi-material rupture directivity and stress changes induced by reflection from the surface of waves released by the unstable slip. This conceptual framework provides elements for reappraisal of long-term seismic activity and occurrence of rare and extreme tsunamigenic megathrust in other subduction zones, like those of North-Central Lesser Antilles, Central and Northern Chile.

  17. Dynamic buckling of subducting slabs reconciles geological and geophysical observations

    NASA Astrophysics Data System (ADS)

    Lee, Changyeol; King, Scott D.

    2011-12-01

    Ever since the early days of the development of plate tectonic theory, subduction zones have been engrained in geological thinking as the place where steady, linear slabs descend into the mantle at a constant, uniform dip angle beneath volcanic arcs. However, growing evidence from geological and geophysical observations as well as analog and numerical modeling indicates that subducting slabs buckle in a time-dependent manner, in contrast to the steady-state, linear cartoons that dominate the literature. To evaluate the implication of time-dependent slab buckling of geological events, we conduct a series of 2-D numerical dynamic/kinematic subduction experiments by varying the viscosity increase across the 660 km discontinuity and the strength of the subducting slab. Our results show that slab buckling is a universal figure in all the experiments when rate of the trench migration ( Vtrench) is relatively slow ( Vtrench| < 2 cm/a) and viscosity increases across the 660 km discontinuity are greater than a factor of 30. Slab buckling is expressed as alternate shallowing and steepening dip of the subducting slab (from ~ 40 to ~ 100°) which is correlated with increasing and decreasing convergent rate of the incoming oceanic plate toward the trench. Further, the slab buckling in our experiments is consistent with the previously developed scaling laws for slab buckling; using reasonable parameters from subducted slabs the buckling amplitude and period are ~ 400 km and ~ 25 Myr, respectively. The slab buckling behavior in our experiments explains a variety of puzzling geological and geophysical observations. First, the period of slab buckling is consistent with short periodic variations (~ 25 Myr) in the motions of the oceanic plates that are anchored by subduction zones. Second, the scattered distributions of slab dips (from ~ 20 to ~ 90°) in the upper mantle are snapshots of time-dependent slab dip. Third, the current compressional and extensional stress environments in back-arcs are well correlated with shallowing and steeping slab dip resulting from slab buckling. Fourth, the temporal evolution of stress environments in the Andes is well correlated with alternate slab dip. These correlations indicate that time-dependent slab buckling is a major factor controlling subduction zone dynamics.

  18. Influence of subduction history on South American topography

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Gurnis, Michael; Müller, R. Dietmar; Bower, Dan J.; Husson, Laurent

    2015-11-01

    The Cenozoic evolution of South American topography is marked by episodes of large-scale uplift and subsidence not readily explained by lithospheric deformation. The drying up of the inland Pebas system, the drainage reversal of the Amazon river, the uplift of the Sierras Pampeanas and the uplift of Patagonia have all been linked to the evolution of mantle flow since the Miocene in separate studies. Here we investigate the evolution of long-wavelength South American topography as a function of subduction history in a time-dependent global geodynamic model. This model is shown to be consistent with these inferred changes, as well as with the migration of the Chaco foreland basin depocentre, that we partly attribute to the inboard migration of subduction resulting from Andean mountain building. We suggest that the history of subduction along South America has had an important influence on the evolution of the topography of the continent because time-dependent mantle flow models are consistent with the history of vertical motions as constrained by the geological record at four distant areas over a whole continent. Testing alternative subduction scenarios reveals flat slab segments are necessary to reconcile inferred Miocene shorelines with a simple model paleogeography. As recently suggested, we find that the flattening of a subduction zone results in dynamic uplift between the leading edge of the flat slab segment and the trench, and in a wave of dynamic subsidence associated with the inboard migration of the leading edge of flat subduction. For example, the flattening of the Peruvian subduction contributed to the demise of Pebas shallow-water sedimentation, while continental-scale tilting also contributed to the drainage reversal of the Amazon River. The best correlation to P-wave tomography models for the Peruvian flat slab segment is obtained for a case when the asthenosphere, here considered to be 150 km thick and 10 times less viscous than the upper mantle, is restricted to the oceanic domain.

  19. Strength and survival of subducted lithosphere during the Laramide orogeny

    SciTech Connect

    Spencer, J.E. )

    1993-04-01

    The strength of subducted ocean lithosphere is influenced primarily by two competing processes. During subduction brittle rock strength increases because of increasing compressive stress across fracture surfaces which increases frictional resistance to sliding. The strength of rocks hot enough to be in the plastic deformation regime decreases primarily because of heat conducted from the overriding plate and the asthenosphere. A one-dimensional finite-element heat-flow program was used to simulate subduction in two dimensions where conductive heat flow parallel to the slab and to the upper plate could be neglected. Temperatures determined with this method, and pressures based on depth, were then used to calculate the form of the brittle-plastic failure envelope for subducted lithosphere. An olivine flow law and strain rate of 10[sup [minus]15] s[sup [minus]1] were used for the plastic part of the failure envelope. The failure envelope was then used to calculate slab-parallel compressive strength and maximum sustainable bending moment. Modeling of Maramide subduction beneath southwestern North America, using slab ages and subduction rates for the Farallon plate from Engebretson et al., suggests that the subducted slab will not retain much strength beyond 1,000 to 1,200 km inland unless the thickness of the North American lithosphere, and depth to the top of the slab, are significantly less than 200 km. Slab survival for distances of 1000 km seems assured. Survival for much greater distances is possible. The slab is predicted to have been up to several times stronger beneath southwestern North America than at the trench because much rock remains in the brittle regime and is under high confining pressure.

  20. Geoid anomalies in the vicinity of subduction zones

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.

    1980-01-01

    The regional geoid of the southwest Pacific is matched reasonably well by results from a model of the upper mantle density structure (including slabs) associated with subduction zones of the region. Estimates of the geoid are obtained from Geos-3 and Seasat radar altimeter data. These data are very well suited to the task of detecting intermediate wavelength (600-4000 km) geopotential variations. Actually, subducting slabs can be expected to produce primarily intermediate and longer wavelength variations. Gravimetric profiles across trench/island arc complexes resolve primarily short wavelengths. The model represents subducting slabs as thin surfaces of anomalous mass per unit area. These surfaces are positioned using published seismicity results which detail the configuration of the Benioff zones. Crustal effects are ignored. Effects due to the contrast between the young thermal lithosphere of the behind-arc regions (marginal basins) and the older lithosphere seaward of the trench are modelled. Results indicate that the New Hebrides slab possesses an average areal density anomaly of about 300,000 gm/sq cm. This is about three times that which is estimated for the Tonga-Kermadec slab. Additional modelling suggests that slabs worldwide may be an important source of large, long wavelength gravity highs; i.e., they may contribute substantially to geopotential power of harmonic degree as low as three or four up to twenty or more.

  1. Seismic properties of the Nazca oceanic crust in southern Peruvian subduction system

    NASA Astrophysics Data System (ADS)

    Kim, YoungHee; Clayton, Robert W.

    2015-11-01

    The horizontal Nazca slab, extending over a distance of ?800 km along the trench is one of enigmatic features in Peruvian subduction zone. Increased buoyancy of the oceanic lithosphere alone due to the subduction of Nazca Ridge is insufficient to fully explain such a lengthy segment. We use data from the recent seismic experiment in southern Peru to find that the subduction-related hydration plays a major role in controlling shear wave velocities within the upper part of the oceanic crust and overlying materials. We observe substantial velocity reductions of ?20-40% near the top plate interface along- and perpendicular-to the trench from ?40-120 km depths. In particular, significant shear wave velocity reductions and subsequently higher P-to-S velocity ratio (exceeding 2.0) at the flat slab region suggest that the seismically probed layer is fluid-rich and mechanically weak. The dominant source of fluid comes from metasediments and subducted crust (Nazca Ridge). Long-term supply of fluid from the southward migrating Nazca Ridge provides additional buoyancy of the subducting oceanic lithosphere and also lowers the viscosity of the overlying mantle wedge to drive and sustain the flat plate segment of ?800 km along the trench. Also, by comparing calculated seismic velocities with experimentally derived mineral physics data, we additionally provide mechanical constraints on the possible changes in frictional behavior across the subduction zone plate interface. Observed low seismic velocities in the seismogenic zone suggest a presence of low strength materials that may be explained by overpressured pore fluids (i.e., accreted sediment included in the subduction channel).

  2. Tracing slab inputs along the Izu-Bonin-Marianas subduction zone: results from volatile emissions

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Hilton, D. R.; Shaw, A. M.; Hauri, E. R.; Kazahaya, K.; Mitchell, E.; Shimizu, A.; de Moor, M.; Sharp, Z. D.

    2005-12-01

    The Izu-Bonin-Mariana (IBM) arc system extends 2800 km from the island of Honshu, Japan to Guam and is a type example of an intra-oceanic convergent margin. Subduction began 45 Ma ago and IBM subducts the oldest seafloor on Earth. A number of parameters vary systematically along the strike of the arc: the slab is steeply plunging in the S and gently dipping in the N; the age of the subducted crust varies from Mid-Jurassic in the S to Mid-Cretaceous in the N. Other parameters remain constant: crustal thickness (~20 km); no accretionary prism; no sediment fill in the trench. The sediment outboard of the arc is characterized based on ODP sites 801 (Marianas) and 1149 (Izu islands). 200 m of volcaniclastics are overlain by a 100 m of pelagic clay and chert in the S. In the N, volcaniclastics are lacking and the 400 m sediment sequence is dominated by 200 m of cherts, overlain by 40 m of pelagic clay and 120 m of volcanic ash and diatom/radiolarian clay. There is also a distinct layer (3 m) of hydrothermally altered MORB in the S. Thus, the IBM system is an ideal location to study the inputs and outputs of the subduction factory and to understand the processes occurring within the factory itself. We collected hydrothermal gas samples from 4 volcanic centers in the Marianas (Alamagan, Pagan, Agrigan, Uracas) and 6 centers in the Izu arc (Aogashima, Hachijojima, Niijima, Shikinejima, Oshima, Hakone). With the exception of Uracas (140C) and a well on Hachijojima (170C), all gas discharges were at or below the boiling temperature of water. As is typical for arc-related samples, the major gases are dominated by H2O, CO2 and S species. We see the following variations in N2/Ar and N2/He ratios of non-air contaminated samples along the arc: Agrigan clearly shows a mantle wedge signature of low N2/Ar (70) and N2/He (210) and negative ?15N (- 2.0 ‰). All other centers have N2/He ratios characteristic of that resulting from the addition of N from subducted sediments (1000 to 2500). Most Izu samples also show N2/Ar ratios higher than air (up to 210). Helium isotopes of Mariana samples are MORB-like (7.4 to 7.9 RA), whereas CO2/3He varies from 10.1 to 10.7 x 109 with ?13C between -0.5 to - 0.7 permil. Based on N-CO2-He-Ar sytematics, the Izu section of the arc has a signature characteristic of subducted sediment derived fluids. The Mariana section (Agrigan in particular), shows a volatile signature that suggests contribution dominantly from the altered oceanic basement. This is in contrast to studies based on trace elements and radiogenic isotopes that identify Agrigan as the `sediment endmember' of the Mariana arc. Analyses of stable and noble gas isotopes of the samples are currently underway to further constrain the source of volatiles discharging along the arc.

  3. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    NASA Astrophysics Data System (ADS)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    Based on the Centennial earthquake catalog, the revised 1964-2007 EHB hypocenters catalog and the 1976-2007 CMT Harvard catalog, we have extracted the hypocenters, nodal planes and seismic moments of worldwide subduction earthquakes for the 1900-2007 period. For the 1976-2007 period, we combine the focal solutions provided by Harvard and the revised hypocenters from Engdahl et al. (1998). Older events are extracted from the Centennial catalogue (Engdahl and Villasenor, 2002) and they are used to estimate the cumulated seismic moment only. The selection criteria for the subduction earthquakes are similar to those used by Mc Caffrey (1994), i.e., we test if the focal mechanisms are consistent with 1/ shallow thrust events (depth > 70 km, positive slips, and at least one nodal plane gets dip < 45°), and, 2/ the plate interface local geometry and orientation (one nodal plane is oriented toward the volcanic arc, the azimuth of this nodal plane ranges between ± 45° with respect to the trench one, its dip ranges between ± 20° with respect to the slab one and the epicentre is located seaward of the volcanic arc). Our study concerns segments of subduction zones that fit with estimated paleoruptures associated with major events (M > 8). We assume that the seismogenic zone coincides with the distribution of 5.5 < M < 7 subduction earthquakes. We provide a map of the interplate seismogenic zones for 80% of the trench systems including dip, length, downdip and updip limits, we revisit the statistical study done by Pacheco et al. (1993) and test some empirical laws obtained for example by Ruff and Kanamori (1980) in light of a more complete, detailed, accurate and uniform description of the subduction interplate seismogenic zone. Since subduction earthquakes result from stress accumulation along the interplate and stress depends on plates kinematics, subduction zone geometry, thermal state and seismic coupling, we aim to isolate some correlations between parameters. The statistical analysis reveals that: 1- vs, the subduction velocity is the first order controlling parameter of seismogenic zone variability, both in term of geometry and seismic behaviour; 2- steep dip, large vertical extent and narrow horizontal extent of the seismogenic zone are associated to fast subductions, and cold slabs, the opposite holding for slow subductions and warm slabs; the seismogenic zone usually ends in the fore-arc mantle rather than at the upper plate Moho depth; 3- seismic rate (?) variability is coherent with the geometry of the seismogenic zone: ? increases with the dip and with the vertical extent of the seismogenic zone, and it fits with vs and with the subducting plate thermal state; 4- mega-events occurrence determines the level of seismic energy released along the subduction interface, whatever ? is; 5- to some extent, the potential size of earthquakes fits with vs and with the seismogenic zone geometry, but second order controlling parameters are more difficult to detect; 6- the plate coupling, measured through Upper Plate Strain, is one possible second order parameter: mega-events are preferentially associated to neutral subductions, i.e. moderate compressive stresses along the plate interface; high plate coupling (compressive UPS) is thought to inhibit mega-events genesis by enhancing the locking of the plate interface and preventing the rupture to extend laterally. This research was supported as part of the Eurohorcs/ESF — European Young Investigators Awards Scheme (resp. F.F.), by funds from the National Research Council of Italy and other National Funding Agencies participating in the 3rd Memorandum of Understanding, as well as from the EC Sixth Framework Programme.

  4. Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Tackley, Paul J.

    2015-05-01

    Recent advances in numerical modeling allow global models of mantle convection to more realistically reproduce the behavior at convergent plate boundaries; in particular, the inclusion of a free surface at the outer boundary has been shown to facilitate self-consistent development of single-sided subduction. This allows for a more extensive study of subduction in the context of global mantle convection, as opposed to commonly used regional models. Our first study already indicated important differences between mantle convection with single-sided subduction and mantle convection with double-sided subduction. Here we further investigate the effect of various physical parameters and complexities on inducing Earth-like plate tectonics and its evolution in time. Results reinforce the previous finding that using a free surface instead of a free-slip outer boundary dramatically changes subduction style, with free surface cases displaying many episodes of single-sided subduction, which leads to more realistic slab dip, stress state, trench retreat rate, and slab-induced mantle flow. Longevity of single-sided subduction is promoted by a layer of hydrated crust with a low yield strength to lubricate the subduction channel, a low-viscosity asthenosphere, and a high strength of the slab (determined by a combination of high-diffusion creep viscosity and intermediate friction coefficient), although its effective viscosity is in the observationally constrained range in the bending region. The time evolution displays interesting events including subduction polarity reversals, subduction shut-off, and slab break-off.

  5. Chapter 8 -Trenching and Excavation Excavation Operations

    E-print Network

    Tullos, Desiree

    140 Chapter 8 - Trenching and Excavation Excavation Operations The most serious hazard of trenches is cave-in due to improper shoring and sloping of the trench. Other injuries are caused by work activities performed in the trench. These hazards include accidents due to falling materials, machinery, and exposure

  6. Continental Subduction and Subduction Initiation Leading to Extensional Exhumation of Ultra-High Pressure Rocks During Ongoing Plate Convergence in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Buck, W. R.; Petersen, K. D.

    2014-12-01

    Subduction of continental rocks is necessary to produce ultra-high pressure (UHP) rocks but the mechanism bringing them to the surface is disputed. A major question is whether this involves fairly small diapirs of crust that move up through the mantle or it involves an entire subducted plate that undergoes coherent 'reverse subduction' (sometimes called 'eduction'). Both mechanisms have been invoked to explain the only known region of on-going exhumation of UHP rocks, on the D'Entrecasteaux Islands of Papua New Guinea. Ductile flow fabrics in the island rocks have been used to argue for a diapiric model while constraints on the plate kinematics of the region require relatively large (>100 km) amounts of recent (>6 Myr) extension, supporting eduction as a primary mechanism. A self-consistent thermo-mechanical model of continental subduction shows that eduction can be accompanied by some ductile flow within the crust. Also we show, that subduction and stacking of continental crust can cause a subduction zone to lock up and lead to subduction initiation elsewhere. When this happens the region of earlier continental subduction can reverse direction causing exhumation of rocks from depth of ~100 km followed by localized extension and plate spreading. This can occur even if a region is in overall convergence. Applied to New Guinea our results are consistent with earlier suggestions that extension of the Woodlark Basin was caused by the initiation of the New Britain Trench, as indicated on the attached figure. We suggest that this subduction initiation event triggered eduction that led to exposure of the D'Entrcasteaux Islands and exhumation of the UHP rocks there. Our numerical results are broadly consistent with the recently refined seismic structure of the region around the islands. The model implies that the present-day basement of the ~70 km wide Goodenough Bay, south of the islands, was subducted then exhumed. This can be tested by drilling.

  7. Varying mechanical coupling along the Andean margin: Implications for trench curvature, shortening and topography

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Di Giuseppe, E.; Corbi, F.; Funiciello, F.; Faccenna, C.; Bunge, H.-P.

    2012-03-01

    Convergent margins often exhibit spatial and temporal correlations between trench curvature, overriding plate shortening and topography uplift that provide insights into the dynamics of subduction. The Andean system, where the Nazca plate plunges beneath continental South America, is commonly regarded as the archetype of this class of tectonics systems. There is distinctive evidence that the degree of mechanical coupling between converging plates, i.e. the amount of resistive force mutually transmitted in the direction opposite to their motions, may be at the present-day significantly higher along the central Andean margin compared to the northern and southern limbs. However quantitative estimates of such resistance are still missing and would be desirable. Here we present laboratory models of subduction performed to investigate quantitatively how strong lateral coupling variations need to be to result in trench curvature, tectonic shortening and distribution of topography comparable to estimates from the Andean margin. The analogue of a two-layers Newtonian lithosphere/upper mantle system is established in a silicone putty/glucose syrup tank-model where lateral coupling variations along the interface between subducting and overriding plates are pre-imposed. Despite the simplicity of our setup, we estimate that coupling in the central margin as large as 20% of the driving force is sufficient to significantly inhibit the ability of the experimental overriding plate to slide above the subducting one. As a consequence, the central margin deforms and shortens more than elsewhere while the trench remains stationary, as opposed to the advancing lateral limbs. This causes the margin to evolve into a peculiar shape similar to the present-day trench of the Andean system.

  8. 'Dodo' and 'Baby Bear' Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the middle, called 'Ice Man,' is about 30 centimeters (12 inches) long and 3 centimeters (1 inch) deep. The trench on the right, called 'La Mancha,' is about 31 centimeters (12 inches) and 5 centimeters (2 inches) deep.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Phoenix Deepens Trenches on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil.

    The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.'

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Control of paleoshorelines by trench forebulge uplift, Loyalty Islands

    NASA Astrophysics Data System (ADS)

    Dickinson, William R.

    2013-07-01

    Unlike most tropical Pacific islands, which lie along island arcs or hotspot chains, the Loyalty Islands between New Caledonia and Vanuatu owe their existence and morphology to the uplift of pre-existing atolls on the flexural forebulge of the New Hebrides Trench. The configuration and topography of each island is a function of distance from the crest of the uplifted forebulge. Both Maré and Lifou are fully emergent paleoatolls upon which ancient barrier reefs form highstanding annular ridges that enclose interior plateaus representing paleolagoon floors, whereas the partially emergent Ouvea paleoatoll rim flanks a drowned remnant lagoon. Emergent paleoshoreline features exposed by island uplift include paleoreef flats constructed as ancient fringing reefs built to past low tide levels and emergent tidal notches incised at past high tide levels. Present paleoshoreline elevations record uplift rates of the islands since last-interglacial and mid-Holocene highstands in global and regional sea levels, respectively, and paleoreef stratigraphy reflects net Quaternary island emergence. The empirical uplift rates vary in harmony with theoretical uplift rates inferred from the different positions of the islands in transit across the trench forebulge at the trench subduction rate. The Loyalty Islands provide a case study of island environments controlled primarily by neotectonics.

  12. Seismicity of the Incoming Plate at the Mariana Trench Located Using an Ocean Bottom Seismograph Array

    NASA Astrophysics Data System (ADS)

    Jasperson, H.; Wiens, D. A.; Lizarralde, D.

    2014-12-01

    We locate earthquakes occurring near the Mariana Trench using an ocean bottom seismograph (OBS) array to study the role of incoming plate seismicity in hydrating the mantle as well as to constrain seismicity at the updip end of the Mariana subduction thrust. The array consisted of 20 broadband OBSs, and 5 temporary broadband seismographs deployed on nearby islands from February 2012 to February 2013. The OBS water depths were limited to 6 km or less, so they were deployed surrounding the trench and 5 hydrophones were deployed in the water column near the trench axis. Preliminary results indicate that seismicity in the incoming plate begins about 120 km west of the trench axis, with the highest seismicity levels found near the trench axis itself. Many of the incoming plate earthquakes locate near large fault scarps identified in seafloor bathymetry. In the forearc, Mariana shallow thrust seismicity begins where the plate interface is at 15-20km depth. There is a strong contrast in velocity structure across the trench, which causes difficulty in determining precise locations and depths. Further work will clarify the depths and focal mechanisms of the recorded earthquakes.

  13. Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling

    NASA Astrophysics Data System (ADS)

    Chemenda, A.; Lallemand, S.; Bokun, A.

    2000-03-01

    Physical modeling of oblique subduction is performed to study the mechanism of strain partitioning. The model is two-layer and includes the elasto-plastic lithosphere (the overriding and subducting plates) and the low-viscosity liquid asthenosphere. The subduction is driven by a push force from a piston and a pull force when the density contrast ?? between the subducting plate and the asthenosphere is positive. We vary both ?? and the interplate friction (frictional stresses). Slip partitioning is obtained only in the models with high interplate friction and only when the overriding plate contains a weak zone. This zone in the models corresponds either to locally thinned lithosphere or to cut (fault). The horizontal, trench-normal component of the interplate friction force |Fph| can be comparable with the absolute value of the horizontal component of the nonhydrostatic interplate pressure force |Fph | in the subduction zone. Ffh is always negative (compression), while Fph can be either negative (compressional subduction regime) or positive (extensional regime). High friction, which promotes partitioning, can completely cancel the extensional (suction) force Fph. Back arc tension and strike-slip faulting appear thus as conflicting processes, although they can coexist in the same subduction zone, depending on the relative values of relevant forces. It appears that high friction can exist only in compressional subduction zones where partitioning should develop more easily. This conclusion is supported by the comparison of two oblique subduction zones, having similar geometry: the compressional southern Kurile zone (strong partitioning) and extensional southern Ryukyu zone (no lithospheric-scale partitioning). Other factors controlling the strain partitioning are the length of the oblique subduction zone, the boundary conditions at the transverse limits of the forearc sliver, and of course, the obliquity of subduction.

  14. Deformation of Forearcs during Aseismic Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Zeumann, S.; Hampel, A.

    2014-12-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To identify the crucial parameters for forearc deformation we created 3D finite-element models representing both erosive and accretive forearcs as well as migrating and non-migrating ridges. As natural examples we choose the Cocos ridge subducting stationary beneath the erosive margin of Costa Rica and the Nazca and Gagua Ridges that migrate along the erosive Peruvian margin and the accretive accretive Ryukyu margin, respectively. A series of models show that the deformation of the forearc depends on the ridge shape (height, width), on the frictional coupling along the plate interface and the mechanical strength of the forearc. The forearc is uplifted and moved sideward during ridge subduction. Strain components show domains of both, shortening and extension. Along the ridge axis, extension occurs except at the ridge tip, where shortening prevails. The strain component normal to the ridge axis reveals extension at the ridge tip and contraction above the ridge flanks. Shortening and extension increase with increasing ridge height. Higher friction coefficients lead to less extension and more shortening. Accretive wedges show larger indentation at the model trench. For stationary ridges (Cocos Ridge) the deformation pattern of the forearc is symmetric with respect to the ridge axis whereas for migrating ridges (Nazca Ridge, Gagua Ridge) the oblique convergence direction leads to asymmetric deformation of the forearc. In case of ridge migration, uplift occurs at the leading flank of the ridge and subsidence at the trailing flank, in agreement with field observations and analogue models. For a model with a 200-km-wide and 1500-m-high ridge (i.e. similar to the dimensions of the Nazca Ridge), the modelled uplift rate at the southern ridge flank of the ridge is ~1 mm/a, which agrees well with uplift rates of ~0.7 mm/a derived from the elevation of marine terraces in southern Peru.

  15. New Insights of the Rivera and Cocos Plates Subduction Beneath the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Gutierrez Pena, Q. J.; Ochoa, J.; Nunez-Cornu, F. J.; Barba, D. C., Sr.

    2014-12-01

    The subduction of the Rivera and Cocos Plate is a complex tectonic process that involves the limits between these two plates, changes in subduction angle and the transition between convergent and divergent tectonics settings. To obtain new insights of the Rivera and Cocos Plates geometry we analyze earthquakes recorded from 2006 to 2008 by the Mapping the Riviera Subduction Zone (MARS) as well as earthquakes recorded by the Jalisco Seismic Network (RESAJ). To obtain better results and definition of the subduction geometry we manually performed the detection and phase picking of the earthquakes. We also analyzed results from the Seismic Experiment to Characterize the Seismic and Tsunami Risk Associated to the Rivera Plate and Jalisco Block Structure (TSUJAL), this results include refraction-reflection lines perpendicular to the trench. We present seismicity maps along with a focal mechanism analysis of several earthquakes, as well as seismic refraction and reflection preliminary profile.

  16. SUBDUCTION ZONES Robert J. Stern

    E-print Network

    Stern, Robert J.

    SUBDUCTION ZONES Robert J. Stern Geosciences Department University of Texas at Dallas Richardson December 2002. [1] Subduction zones are where sediments, oceanic crust, and mantle lithosphere return to and reequilibrate with Earth's mantle. Subduction zones are interior ex- pressions of Earth's 55,000 km

  17. Opportunity Trenches Martian Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom left corner) approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. Opportunity's lander is in the center of the image, and to the left is the rock outcrop lining the inner edge of the small crater that encircles the rover and lander. This mosaic image is made up of data from the rover's navigation and hazard-avoidance cameras.

  18. Crustal deformation at the southernmost part of the Ryukyu subduction (East Taiwan) as revealed by new marine seismic experiments

    E-print Network

    Cattin, Rodolphe

    Elsevier B.V. All rights reserved. 1. Introduction The Ryukyu Subduction zone between Kyushu Island (JapanCrustal deformation at the southernmost part of the Ryukyu subduction (East Taiwan) as revealed 19 March 2012 Accepted 11 April 2012 Available online xxxx Keywords: Passive experiment RATS (Ryukyu

  19. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench

    NASA Astrophysics Data System (ADS)

    Nakanishi, Masao; Hashimoto, Jun

    2011-12-01

    Data from three bathymetric surveys by R/V Kairei using a 12-kHz multibeam echosounder and differential GPS were used to create an improved topographic model of the Challenger Deep in the southwestern part of the Mariana Trench, which is known as the deepest seafloor in the world. The strike of most of the elongated structures related to plate bending accompanied by subduction of the Pacific plate is N70°E and is not parallel to the trench axis. The bending-related structures were formed by reactivation of seafloor spreading fabric. Challenger Deep consists of three en echelon depressions along the trench axis, each of which is 6-10 km long, about 2 km wide, and deeper than 10,850 m. The eastern depression is the deepest, with a depth of 10,920 ± 5 m.

  20. Sedimentation and deformation in the Amlia Fracture Zone sector of the Aleutian Trench

    USGS Publications Warehouse

    Scholl, D. W.; Vallier, T.L.; Stevenson, A.J.

    1982-01-01

    A wedge-shaped, landward thickening mass of sedimentary deposits composed chiefly of terrigenous turbidite beds underlies the west-south west-trending Amlia sector (172??20???-173??30???W) of the Aleutian Trench. Pacific oceanic crust dips northward beneath the sector's sedimentary wedge and obliquely underthrusts (30?? off normal) the adjacent Aleutian Ridge. The trench floor and subsurface strata dip gently northward toward the base of the inner trench slope. The dip of the trench deposits increases downsection from about 0.2?? at the trench floor to as much as 6-7?? just above basement. The wedge is typically 2-2.5 km thick, but it is thickest (3.7-4.0 km) near the base of the inner slope overlying the north-trending Amlia Fracture Zone and also east of this structure. Slight undulations and relatively abrupt offsets of the trench floor reflect subsurface and generally west-trending structures within the wedge that are superimposed above ridges and swales in the underlying oceanic basement. The southern or seaward side of some of these structures are bordered by high-angle faults or abrupt flexures. Across these offsets the northern side of the trench floor and underlying wedge is typically upthrown. West-flowing turbidity currents originating along the Alaskan segment of the trench (1200 km to the east) probably formed the greater part of the Amlia wedge during the past 0.5 m.y. The gentle northward or cross-trench inclination of the trench floor and underlying wedge probably reflects regional downbending of the oceanic lithosphere and trench-floor basement faulting and rotation. Much of the undulatory flexuring of the trench wedge can be attributed to differential compaction over buried basement relief. However, abrupt structural offsets attest to basement faulting. Faulting is associated with extensional earthquakes in the upper crust. The west-trending basement offsets are probably normal faults that dip steeply south or antithetic to the north dip of the subducting oceanic crust. Up-to-arc extensional faulting can be attributed to the downbending of the Pacific plate into the Aleutian subduction zone. The rupturing direction and dip is controlled by zones of crustal weakness that parallel north Pacific magnetic anomalies, which were formed south of a late Cretaceous-early Tertiary spreading center (Kula-Pacific Ridge). The strike of these anomalies is fortuitously nearly parallel to the Amlia sector. The up-to-arc fracturing style may locally assist in elevating blocks of trench deposits to form the toe of the trench's landward slope, which is in part underlain by a compressionally thickened accretionary mass of older trench deposits. Compressional structures that can be related to underthrusting are only indistinctly recorded in the turbidite wedge that underlies the trench floor. ?? 1982.

  1. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones

    E-print Network

    Demouchy, Sylvie

    5, France b Dip. Scienze Geologiche, Università degli Studi « Roma TRE », Largo S.Leonardo Murialdo­6]. However, a recent global study which considered all present-day oceanic subduction zones has shown of the overriding plate (V Y OP) [8,9]. Trench Earth and Planetary Science Letters 256 (2007) 473­483 www

  2. Neural network interpretation of LWD data (ODP Leg 170) conrms complete sediment subduction at the Costa Rica

    E-print Network

    Bornholdt, Stefan

    structure of a convergent plate boundary was the focus of ODP Leg 170 in 1996 at the subduction zone off by correlating the reference section Site 1039, which is situated in front of the trench on the Cocos Plate presently no lower-plate sediments are transferred to the upper plate by accretion. To supplement

  3. Seismicity and Geometry Properties of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Papadimitriou, E. E.; Karakostas, V. G.; Vallianatos, F.; Makropoulos, C.; Drakatos, G.

    2014-12-01

    Recent seismicity and fault plane solutions of earthquakes that occurred along the Hellenic Arc-Trench system are engaged for approximating the geometry of the subducted oceanic plate. Seismicity and focal mechanisms confirm the gentle subduction (~15o-20o) of the oceanic crust reaching a depth of 20 km at a distance of 100 km from the trench. The slab is then bending at larger angles, and in particular at ~45o up to the depth of 80 km and at ~65o up to the depth of 180 km, when seismicity ceased. This geometry of the slab is shown in a bunch of cross sections normal to the convergence strike, up to ~25o (east Crete Island). To the east the sparse inslab seismicity reveals an almost vertical dipping of the lower part (from 80 km downdip) of the descending slab. The slab interface that accommodates hazardous earthquakes is clearly nonplanar with the main seismic moment release taking place on its up-dip side. The fore-arc, upper plate seismicity, is remarkably low in comparison with both subduction and back arc seismicity, and confined inside a seismogenic layer having a width not exceeding the 20km. Offshore seismicity is spatially variable forming distinctive streaks thus revealing that parts of the oceanic crust are probably slipped aseismically. This observation along with the fact that coupling in the Hellenic arc is only about a tenth of the plate motion, imply the presence of areas of lower and higher coupling across the subduction interface. Areas of high coupling imply areas of the slab interface subjected to high normal forces and correlate with earthquake asperities. Although asperity distributions vary substantially through time, identification of such characteristics in the seismogenesis can have a significant impact in the seismic hazard assessment. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  4. Future directions in subduction modeling

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2011-12-01

    During the last four decades, subduction remained one of the most challenging and captivating geodynamic processes investigated with numerical techniques. While significant progress has been made toward deciphering the diverse array of subduction zone observations within the context of modeled physical processes, numerous questions remain regarding multiple aspects of subduction zone dynamics. A review of recent numerical studies highlights a number of open topics that subduction modeling can provide significant insight into in the future: Resolving the controversy of subduction initiation. Constraining robust high-resolution models of terrestrial plate tectonics. Understanding deep slab processes in the mantle. Constraining crustal growth and differentiation in magmatic arcs. Modeling of fluid and melt transport in subduction zones. Deciphering evolution of high- and ultrahigh-pressure rock complexes. Developing geochemical-thermo-mechanical models of subduction. Coupling of subduction models with volcanic and seismic risk assessment. Understanding the onset of plate tectonics on Earth. Progress in subduction modeling will require strong input from other disciplines (rheology, phase petrology, seismic tomography, geochemistry, numerical analysis, etc.). Indeed, due to the intrinsic complexity of terrestrial subduction processes, the role of geodynamic modeling will inevitably grow and provide an integrative basis for conducting quantitative cross-disciplinary subduction studies combining natural observations, laboratory experiments and modeling.

  5. Plate Tectonics: From Initiation of Subduction to Global Plate Motions (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael

    2013-04-01

    Plates are driven by buoyancy forces distributed in the mantle, within cooling oceanic plates (ridge push) and within subducted slabs. Although the case is often made that subducted slabs provide the principle driving force on plate motion, consensus has not been achieved. This is at least partially due to the great difficulty in realistically capturing the role of slabs in observationally-constrained models as slabs act to drive and resist plate motions through their high effective viscosity. Slab buoyancy acts directly on the edge of the plate (slab pull), while inducing mantle flow that tends to drag both subducting and overriding plates toward the trench. While plates bend during subduction they undergo a form of 'plastic failure' (as evident through faulting, seismicity and reduction of flexural parameters at the outer trench wall). The birth of a new subduction zone, subduction initiation, provides important insight into plate motions and subduction dynamics. About half of all subduction zones initiated over the Cenozoic and the geophysical and geological observations of them provide first order constraints on the mechanics of how these margins evolved from their preexisting tectonic state to self-sustaining subduction. We have examples of subduction initiation at different phases of the initiation process (e.g. early versus late) as well as how margins have responded to different tectonic forcings. The consequences of subduction initiation are variable: intense trench roll back and extensive boninitic volcanism followed initiation of the Izu-Bonin-Mariana arc while both were absent during Aleutian arc initiation. Such differences may be related to the character of the preexisting plates, the size of and forces on the plates, and how the lithosphere was initially bending during initiation. I will address issues associated with the forces driving plate tectonics and initiating new subduction zones from two perspectives. A common thread is the origin and evolution of intense back arc spreading and rapid roll back associated with some ocean-ocean subduction zones. I will look at the dynamics driving global plate motions and the time-dependence of trench rollback regionally. Capitalizing on advances in adaptive mesh refinement algorithms on parallel computers with individual plate margins resolved down to a scale of 1 kilometer, observationally constrained, high-resolution models of global mantle flow now capture the role of slabs and show how plate tectonics is regulated by the rheology of slabs. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. I will then describe regional, time-dependent models, address the causes and consequences of subduction initiation, and show that most back arc extension follows subduction initiation. Returning to the global models, inverse models using the full adjoint of the variable viscosity, Stokes equation are now possible and allow an even greater link between present-day geophysical observations and the dynamics from local to global scales.

  6. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  7. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    USGS Publications Warehouse

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  8. The fate of the downgoing oceanic plate: Insight from the Northern Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Miller, Meghan S.

    2014-12-01

    In this study, we use teleseismic receiver function analysis to image the seismic structure of the Juan de Fuca oceanic plate during its subduction beneath the North American plate. Seismic data have been recorded at 58 seismic stations deployed along the northern Cascadia subduction zone. Harmonic decomposition of the receiver function data-set along a trench-normal profile allows us to image both the isotropic and the anisotropic structure of the plate (slab). Our images highlight the presence of a highly anisotropic region at 40-70 km depths across the Cascadia subduction zone. The detected seismic anisotropy is interpreted to be related to both metamorphic facies (e.g. blueschists) and fluid released during the dehydration of the subducting mantle. The processes of dehydration and metamorphism produce the variations of the seismic properties within each lithologic unit that constitutes the subducted slab, i.e. basalts, gabbro layer and upper mantle, as the oceanic plate sinks in the upper mantle. Such variations make it almost impossible to recognize the “plate boundary” as a characteristic “velocity-jump” at depth (neither positive nor negative) along the Cascadia subduction zone. Based on the comparative interpretation of both the isotropic and the anisotropic structures retrieved, we propose a 4-stage model of the evolution of the Juan de Fuca oceanic plate during its subduction beneath the North American plate.

  9. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.

  10. Time-dependent evolution of slab geometry and trench-parallel flow due to non-uniform overriding plates. Results from numerical modeling. (Invited)

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J.; Billen, M. I.; Negredo, A. M.

    2013-12-01

    The direction of mantle flow, as inferred from observations of seismic anisotropy measurements, shows a poor correlation with plate tectonic motion near subduction zones. Below the slab seismic anisotropy is aligned parallel to the trench in the central region and perpendicular near the edges. Above the slab it has a complex pattern, often showing abrupt transitions between trench-parallel and trench-perpendicular fast directions and sharp changes in intensity. Previous models have shown that overriding plate thermal state influences the slab dip and variations in slab dip can cause trench-parallel flow above the slab. This suggests a causal link between overriding plate structure, slab geometry and mantle flow in subduction zones. We implement generic 3D time dependent thermo mechanical numerical models of buoyancy driven subduction to study the effect of overriding plate structure on the evolution of slab geometry and induced mantle flow. We find that along-strike variation in thermal thickness of the overriding plate causes increased hydrodynamic suction and shallower slab dip beneath the colder portion of the overriding plate; the variation in slab geometry drives strong trench-parallel flow beneath the slab and a complex flow pattern above the slab. The location and strength of trench-parallel flow vary with the time-dependent evolution of the slab, suggesting that the global variability in seismic anisotropy observations in subduction zones is in part due to the non-steady-state behavior of these systems. This new mechanism for driving trench-parallel flow provides a good explanation for seismic anisotropy observations from the Middle and South America subduction zones, where both slab dip and overriding plate thermal state are strongly variable. Slab-induced mantle flow. a. Model A with a uniform overriding plate; b. Model B with a non-uniform overriding plate. Vertical trench-perpendicular cross-sections showing the model predictions after 4.4 Myr of evolution showing the trench-parallel component of the velocity (colors; red and blue indicate north- and south-directed flow respectively) and vertical projection of the velocity field (arrows). The location of the slab is indicated by the 1000°C isotherm (gray line). Due to the variations of the slab dip, Model B shows larger regions of trench-parallel flow both above and below the slab.

  11. Track-and-Trench 2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the tracks and trench marks made by the Mars Exploration Rover Opportunity at Meridiani Planum, Mars. The rover can be seen to the lower left of the lander. The trench is visible to the upper left of the rover, which has traveled a total of 35.3 meters (116 feet) since leaving the lander on sol 7 (January 31, 2004). On sol 23 (February 16, 2004), the rover used one of its wheels to dig a trench measuring approximately 10 centimeters (4 inches) deep, 50 centimeters (20 inches) long, and 20 centimeters (8 inches) wide. This polar-projected image showing the horizon was created using a combination of images from the rover's navigation camera and hazard-avoidance cameras.

  12. [Adrian Stokes and 'trench jaundice'].

    PubMed

    Wever, Peter C

    2015-01-01

    On the day that Great Britain declared war on Germany in 1914, the Irish physician and bacteriologist Adrian Stokes travelled to London to volunteer. One week later he left for France with the first British troops as an officer with the Royal Army Medical Corps. He spent most of the First World War attached to No. 1 Mobile Bacteriological Laboratory at the Remy Siding British-Canadian field hospital in Flanders. In April 1916, he was confronted with an outbreak of trench jaundice, also known as epidemic jaundice (Weil's disease). Conditions in the trenches contributed to the hundred cases identified by Stokes in a short period. In 1917, he was the first to publish (in The Lancet) the finding that the bacterium Spirochaeta icterohaemorrhagiae, the causative agent of epidemic jaundice, could be isolated from the kidneys of rats. A subsequent rat control campaign in the trenches successfully curbed the disease. PMID:25804113

  13. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  14. Tectonic erosion along the Japan and Peru convergent margins

    E-print Network

    Cattin, Rodolphe

    Tectonic erosion along the Japan and Peru convergent margins R. VON HUENE U.S. Geological Survey, M erosion can be estimated quantita- tively if the position of the volcanic arc, the position the Japan and Peru Trenches indicate rates of erosion comparable to well-known rates of accretion. Proposed

  15. The subduction reference framework

    NASA Astrophysics Data System (ADS)

    Seton, M.; Müller, D.; Gurnis, M.; Flament, N.; Whittaker, J.

    2010-12-01

    Plate tectonic reconstructions are essential for determining the spatial and temporal context for geological and geophysical data and help distinguish competing models for regional plate kinematic histories and the relationships between tectonic features and events. Plate reconstructions, a series of relative plate motions anchored to an absolute reference frame via a plate circuit, can act as surface boundary constraints for mantle convection models, allowing us to link surface processes to the deep earth. One of the limitations in global plate motion models has been to accurately determine the positions of plates through time. Traditionally, this has been based on either palaeomagnetic or hotspot reference frames, however both these methodologies have some shortcomings. Palaeomagnetic reference frames can determine latitudes but not longitudes, with additional inaccuracies due to true polar wander. Hotspot reference frames can only be confidently tied back to about 130 Ma and there is evidence that mantle plumes have moved relative to each other. New “hybrid” reference frames are emerging, which consist of fixed or moving hotspot reference frames merged with true polar wander (TPW) corrected palaeomagnetic reference frames. We have devised a methodology to link plate reconstructions to mantle convection back to Pangaea breakup time to converge on a solution that correctly aligns slab material in the mantle to the locations of subduction zones in the past. We aim to construct a “Subduction Reference Frame” for plate motions since 200 Ma by iteratively matching forward geodynamic models with tomographically imaged slabs in the mantle. Our forward models involve coupling global plate kinematics, the thermal structure of the oceanic lithosphere and slab assimilation to a spherical mantle convection code, CitcomS. Preliminary results have been obtained for a plate motion model using a moving hotspot reference frame to 100 Ma and a TPW corrected reference frame for times prior to 100 Ma. Focussing on the Farallon slab and the palaeo-subduction east of Australia, we find that our models reasonably reproduce the present-day location of the Farallon slab. However, there is a mismatch between the slab east of Australia and the predicted location of subduction based on the TPW-corrected reference frame. Further models will allow us to test new alternative reference frames to achieve a correct alignment with the location of slabs imaged in the mantle and the location of subduction along continental margins in the past.

  16. Tonga Trench gabbros and peridotites: A suit of temporal and spatial forearc materials

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Shinkai, Y.; Tani, K.; Uehara, S.; Harigane, Y.; Ishii, T.; Bloomer, S. H.

    2012-12-01

    The Tonga trench is one of the deepest oceanic regions in the world (10,866 m). Various types of rocks have been dredged and drilled at several localities on the landward slopes of the trench during Boomerang Leg8 in 1996. In particular, very pristine peridotites outcrop at the most deep landward trench slope. We show that the trench can be divided into two regions: southern region and northern region. The peridotites in the southern region have high-Cr# (0.46-0.83) which were typical of forearc peridotites, whereas the peridotites in the northern region have evidences of the reaction with magma during partial melting. Olivine fabrics are characterized by E-type and D-type. Although E-type and D-type are no clear relationship of mineral composition, grain size and equilibrium temperature, the only difference between E-type and D-type were fabric intensities: D-type has higher fabric intensity than that for E-type. Geochronological study revealed that the gabbros in the southern region have the oldest ages of ~52 Ma that are as old as the oldest rocks in the Izu-Bonin-Mariana arc recording the subduction infancy (e.g., Ishizuka et al., 2011 EPSL). We argue that the southern region preserves the oldest mantle fabrics that took place during the subduction infancy, where pristine and serpentinized peridotites have been deformed in the region where high strain field occurred due to the dragged flow. Eventually, they expose in a very neat condition (i.e. active tectonic erosion and fast ascent rate) resulting from an unique tectonic setting including fast subducting plate (24 cm/yr), fast spreading plate (15 cm/yr) and slab rollback.

  17. Slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1) along the Kuril Trench deduced from tsunami waveform inversion

    USGS Publications Warehouse

    Hirata, K.; Geist, E.; Satake, K.; Tanioka, Y.; Yamaki, S.

    2003-01-01

    We inverted 13 tsunami waveforms recorded in Japan to estimate the slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1), which occurred southeast off Hokkaido along the southern Kuril subduction zone. The previously estimated source area determined from tsunami travel times [Hatori, 1973] did not coincide with the observed aftershock distribution. Our results show that a large amount of slip occurred in the aftershock area east of Hatori's tsunami source area, suggesting that a portion of the interplate thrust near the trench was ruptured by the main shock. We also found more than 5 m of slip along the deeper part of the seismogenic interface, just below the central part of Hatori's tsunami source area. This region, which also has the largest stress drop during the main shock, had few aftershocks. Large tsunami heights on the eastern Hokkaido coast are better explained by the heterogeneous slip model than previous uniform-slip fault models. The total seismic moment is estimated to be 1.87 ?? 1021 N m, giving a moment magnitude of Mw = 8.1. The revised tsunami source area is estimated to be 25.2 ?? 103 km2, ???3 times larger than the previous tsunami source area. Out of four large earthquakes with M ??? 7 that subsequently occurred in and around the rupture area of the 1952 event, three were at the edges of regions with relatively small amount of slip. We also found that a subducted seamount near the edge of the rupture area possibly impeded slip along the plate interface.

  18. A new seismically constrained subduction interface model for Central America

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Newman, A. V.; Thomas, A. M.; Moore-Driskell, M.; Farmer, G. T.

    2015-08-01

    We provide a detailed, seismically defined three-dimensional model for the subducting plate interface along the Middle America Trench between northern Nicaragua and southern Costa Rica. The model uses data from a weighted catalog of about 30,000 earthquake hypocenters compiled from nine catalogs to constrain the interface through a process we term the "maximum seismicity method." The method determines the average position of the largest cluster of microseismicity beneath an a priori functional surface above the interface. This technique is applied to all seismicity above 40 km depth, the approximate intersection of the hanging wall Mohorovi?i? discontinuity, where seismicity likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates the slab surface. Because of station proximity to the interface, this model provides highest precision along the interface beneath the Nicoya Peninsula of Costa Rica, an area where marked geometric changes coincide with crustal transitions and topography observed seaward of the trench. The new interface is useful for a number of geophysical studies that aim to understand subduction zone earthquake behavior and geodynamic and tectonic development of convergent plate boundaries.

  19. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust

    NASA Astrophysics Data System (ADS)

    Spikings, Richard; Simpson, Guy

    2014-05-01

    Understanding the causes of rock and surface uplift is important because they control the location of mountain building, depocenters, and drainage characteristics and can influence climate. Here we combine previous thermochronological data with field observations to determine the amount of exhumation, rock, and surface uplift that occurs in the upper plate of Central and South American subduction zones during the collision, accretion, and subduction of oceanic plateaus and aseismic ridges. The collision of buoyant and topographically prominent oceanic plateaus and ridges can drive at least 5 km of rock uplift within 2 Ma. Uplift appears to be an immediate response to collision and is generally independent of the slab dip. The amount of rock uplift is controlled mainly by excess topography associated with the ridge (ultimately linked to buoyancy) and erosion, while it is also influenced by the strength of the subduction interface related to the presence of volcanic asperities and overpressured sediments in the subduction channel. The quantity of exhumation is strongly dependant on climate-induced erosion and the lifespan over which the topography is uplifted and supported. Sediment draining into the trench may leave the elevated ridge axis sediment starved, increasing the shear stresses at the ridge subduction interface, leading to positive feedback between ridge subduction, rock uplift, and exhumation. Trench-parallel variations in exhumation have a direct impact on exploration paradigms for porphyry-related metalliferous deposits, and it is likely that porphyry systems are completely eroded by the impingement of plateaus and aseismic ridges within temperate and tropical climates.

  20. Trench Gate Power MOSFET: Recent Advances

    E-print Network

    Kumar, M. Jagadesh

    Trench Gate Power MOSFET: Recent Advances and Innovations Raghvendra Sahai Saxena and M. Jagadesh Kumar Raghavendra S. Saxena and M. Jagadesh Kumar, "Trench Gate Power MOSFET: Recent Advances, Inc. 400 Oser Avenue, Suite 1600, Hauppauge, NY 11788, USA, pp:1-23, 2012. #12;Chapter 1 Trench Gate

  1. Photoluminescence of carbon nanotubes grown over trench

    E-print Network

    Maruyama, Shigeo

    Photoluminescence of carbon nanotubes grown over trench Shinya Iwasaki 1 , Yutaka Ohno 2 , Yoichi_iwasa@echo.nuee.nagoya-u.ac.jp The optical properties of single-walled carbon nanotubes (SWNTs) grown over trench are sensitive to environ- mental atmosphere [1, 2]. We have compared E11 and E22 of the SWNTs over trench

  2. Why subduction zones are curved

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Bendick, R.; Liang, Haiyi

    2010-12-01

    We give an explanation for the polarity, localization, shape, size, and initiation of subduction zones on Earth. By considering a soft, thin, curved lithospheric cap with either elastic or viscous rheology supported by a thick, nearly incompressible mantle, we find two different characteristic subduction geometries arise depending on boundary conditions: (1) plate boundaries where subduction results primarily from the gravitational body force (free subduction) have characteristic plate lengths and form arc-shaped dimpled segments resulting from the competition between bending and stretching in edge buckling modes of thin spherical shells, and (2) subduction zones due to localized applied loads that push one slab of thin, positively buoyant lithosphere beneath an overriding plate (forced subduction) form localized straight segments, consistent with the deformation of indented spherical shells. Both types of subduction are nonlinear subcritical instabilities, so small perturbations in the mechanical properties of the lithosphere have pronounced effects on subduction initiation and evolution. Yet in both cases, geometric relationships determined by the shape of the Earth itself play the most critical role in controlling the basic morphology and characteristic length scales of subduction zones.

  3. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    SciTech Connect

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L. ); Underwood, M.B. )

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench. The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.

  4. Mantle plume-subduction zone interactions over the past 60 Ma

    NASA Astrophysics Data System (ADS)

    Fletcher, Michael; Wyman, Derek A.

    2015-09-01

    A variety of mantle plume types have been proposed and there is a wide range of ways that these plumes might interact with subduction zone arcs. This study looks at the frequency of interaction between previously catalogued plumes and subduction zones while also assessing the potential role of slab windows to either generate false plume signals or contribute to genuine examples of mantle plume-subduction zone interactions. Of the plumes included in several widely cited catalogues, 29% have moved within 1000 km of a subduction zone and 17% have moved within 500 km of a subduction zone over the past 60 Ma, assuming that the plume life span extended over this period. Of the plumes that moved within 1000 km of a subduction zone, 56% are rated as either a deep or mid-mantle plume by an author of at least one of the catalogues. The 44% of interacting plumes that are not rated as mid-mantle or deep by at least one author are the most likely to be related to "top-down" plate tectonic processes. This study shows that they were never coincident with a slab window, although they have often interacted within distances of 1000 km. The manner of interaction between plumes and slab windows depends on the relative positions of the plume, ridge, and slab window. Of the plumes that interact over a 1000 km circular "Zone of Potential Interaction" (ZPI), 28% are no longer interacting today, but have survived that process. While most plumes interact in the form of a ZPI moving over a trench from either behind or in front of the trench, several plumes do cross the trench, demonstrating that plumes can survive even that interaction. Plume-trench interaction occurs in clusters in the northeast and southwest Pacific with limited events in the northwest and southeast Pacific. The presence of clusters in the northeast and southwest Pacific may be caused by the closer proximity of mid-mantle and deep plumes to a subduction zone in these areas. Whereas some deeper plumes may be modified by slab related mantle flow, the coincidence of shallow plumes with changes in plate boundaries suggests an origin related to sites of weakness or extension in the oceanic crust.

  5. A new model of slab tear of the subducting Philippine Sea Plate associated with Kyushu-Palau Ridge subduction

    NASA Astrophysics Data System (ADS)

    Cao, Lingmin; Wang, Zhi; Wu, Shiguo; Gao, Xiang

    2014-12-01

    We suggest that the Kyushu-Palau Ridge (KPR) plays a key role in the subduction process of the Philippine Sea Plate (PSP) and the origin of the Abu volcano in the southwestern Japan. The 3-D P-wave velocity structure was imaged to approximately 300 km beneath the Abu volcano using a large number of P-wave arrivals from local earthquakes and teleseismic events. Our results indicate that a high-velocity anomaly beneath the Abu volcano is associated with the subducting PSP; however, the anomaly is not continuous, being interrupted apparently by a low-velocity anomaly zone extending northwestwards from 80 km to great depth. The PSP appears to be tearing and then forms a 'slab window' corresponding to KPR subduction at ca. 2 Ma. The low-velocity anomaly may indicate hot upper mantle material rising through the slab window and causing partial melting both of the lower crust of the overriding plate and the oceanic crust of the subducted KPR. A new model is presented for slab tearing of the PSP associated with the subduction of the buoyant, wide and thick KPR and directional change in the motion of the plate, contributing to better understanding of the Abu volcanism.

  6. Seismic evidence for a slab tear at the Puerto Rico Trench

    USGS Publications Warehouse

    Meighan, Hallie E.; Pulliam, Jay; Brink, Uri ten; López-Venegas, Alberto M.

    2013-01-01

    The fore-arc region of the northeast Caribbean plate north of Puerto Rico and the Virgin Islands has been the site of numerous seismic swarms since at least 1976. A 6 month deployment of five ocean bottom seismographs recorded two such tightly clustered swarms, along with additional events. Joint analyses of the ocean bottom seismographs and land-based seismic data reveal that the swarms are located at depths of 50–150 km. Focal mechanism solutions, found by jointly fitting P wave first-motion polarities and S/P amplitude ratios, indicate that the broadly distributed events outside the swarm generally have strike- and dip-slip mechanisms at depths of 50–100 km, while events at depths of 100–150 km have oblique mechanisms. A stress inversion reveals two distinct stress regimes: The slab segment east of 65°W longitude is dominated by trench-normal tensile stresses at shallower depths (50–100 km) and by trench-parallel tensile stresses at deeper depths (100–150 km), whereas the slab segment west of 65°W longitude has tensile stresses that are consistently trench normal throughout the depth range at which events were observed (50–100 km). The simple stress pattern in the western segment implies relatively straightforward subduction of an unimpeded slab, while the stress pattern observed in the eastern segment, shallow trench-normal tension and deeper trench-normal compression, is consistent with flexure of the slab due to rollback. These results support the hypothesis that the subducting North American plate is tearing at or near these swarms. The 35 year record of seismic swarms at this location and the recent increase in seismicity suggest that the tear is still propagating.

  7. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  8. The variations of long time period slow slip events along the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Tu, Y. T.; Heki, K.

    2014-12-01

    Slow slip events (SSEs) are a type of slow earthquakes that can be observed with Global Positioning System (GPS) networks in the world. Those events are detected on intensely coupled plate boundaries such as Cascadia subduction zone (Dragert et al., 2001), western North America, Mexico (Kostoglodov et al., 2003), Alaska (Ohta et al., 2007) and Tokai and Boso areas (Ozawa et al., 2002, 2003), central Japan and are considered to have relations to large subduction thrust earthquakes. However, in southwestern Ryukyu trench where most of researchers believe that it should be a decoupled plate boundary, SSEs recur regularly and are located at a patch that is as deep as 20 to 40 km (Heki and Kataoka, 2008). For comprehending the characteristics and time variations of SSEs in this area, the GEONET GPS data of 16 years are used in this study. During 1997 to 2014, more than thirty SSEs are identified near Hateruma Island, Ryukyu. The average recurrence interval is calculated to be 6.3 months and release seismic moment is Mw 6.6 on average. However, the values of recurrence interval are not invariable. From 1997 to 2002, interval period of SSEs is 7.5 months, but during 2002 to 2008, the interval period decreases suddenly to 5.5 months. After 2008, the value restores to 7.2 months again. Furthermore, the slip amount of SSEs in this area varies with time. From 1997 to 2002, the slip is 9.5 cm/year; and during 2002 to 2008, the value slightly increases to 10.5 cm/year. However, in 2008 to 2013, the slip drops to 6.6 cm/year, but accord to the trend of cumulative slip, the slip value would increase in 2014. Considering these data, we find the slip values increase conspicuously in 2002 and 2013. Coincidentally, one Mw 7.1 thrust earthquake occurred in 2002 and earthquake swarm activity started in the Okinawa trough approximately 50km north of the SSE patch. In 2013, another earthquake swarm activity occurred in nearly the same area as the 2002 activity. This suggests that the slip amount varies due to the earthquake swarm activities in Okinawa trough; the external stress perturbations such as magma injection and the Mw 7.1 earthquake could accelerate the slip amount of SSEs.

  9. IODP Expedition 322 Drills Two Sites to Document Inputs to The Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Underwood, M. B.; Saito, S.; Kubo, Y.; IODP Expedition 322 Scientists, the

    2010-09-01

    The primary goals during Expedition 322 of the Integrated Ocean Drilling Program were to sample and log the incoming sedimentary strata and uppermost igneous basement of the Shikoku Basin, seaward of the Nankai Trough (southwestern Japan). Characterization of these subduction inputs is one piece of the overall science plan for the Nankai Trough Seismogenic Zone Experiment. Before we can assess how various material properties evolve down the dip of the plate interface, and potentially change the fault's behavior from stable sliding to seismogenic slip, we must determine the initial pre-subduction conditions. Two sites were drilled seaward of the trench to demonstrate how facies character and sedimentation rates responded to bathymetric architecture. Site C0011 is located on the northwest flank of a prominent basement high (Kashinosaki Knoll), and Site C0012 is located near the crest of the seamount. Even though significant gaps remain in the coring record, and attempts to recover wireline logs at Site C0012 failed, correlations can be made between stratigraphic units at the two sites. Sedimentation rates slowed down throughout the condensed section above the basement high, but the seafloor relief was never high enough during the basin's evolution to prevent the accumulation of sandy turbidites near the crest of the seamount. We discovered a new stratigraphic unit, the middle Shikoku Basin facies, which is typified by late Miocene volcaniclastic turbidites. The sediment-basalt contact was recovered intact at Site C0012, giving a minimum basement age of 18.9 Ma. Samples of interstitial water show a familiar freshening trend with depth at Site C0011, but chlorinity values at Site C0012 increase above the values for seawater toward the basement contact. The geochemical trends at Site C0012 are probably a response to hydration reactions in the volcaniclastic sediment and diffusional exchange with seawater-like fluid in the upper igneous basement. These data are important because they finally establish an authentic geochemical reference site for Nankai Trough, unaffected by dehydration reactions, and they provide evidence for active fluid flow within the upper igneous crust. Having two sets of geochemical profiles also shows a lack of hydrogeological connectivity between the flank and the crest of the Kashinosaki Knoll. doi:10.2204/iodp.sd.10.02.2010

  10. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the trench east of the Amlia Fracture Zone, which is being subducting beneath the arc at Seguam Island. Mixing trends between mantle wedge and sediment end members become flatter in Hf-Nd isotope space at locations further west along the arc, indicating that the sediment end member in the west has either higher Nd/Hf or is more radiogenic in Hf compared to Nd. This pattern is interpreted to reflect an increase in pelagic clay relative to the terrigenous subducted sedimentary component westward along the arc. Results of this study imply that Hf does not behave as a conservative element in the Aleutian subduction system, as has been proposed for some other arcs.

  11. India-Asia convergence driven by the subduction of the Greater Indian continent

    NASA Astrophysics Data System (ADS)

    Capitanio, F. A.; Morra, G.; Goes, S.; Weinberg, R. F.; Moresi, L.

    2010-02-01

    The most spectacular example of a plate convergence event on Earth is the motion of the Indian plate towards Eurasia at speeds in excess of 18cmyr-1 (ref. 1), and the subsequent collision. Continental buoyancy usually stalls subduction shortly after collision, as is seen in most sections of the Alpine-Himalayan chain. However, in the Indian section of this chain, plate velocities were merely reduced by a factor of about three when the Indian continental margin impinged on the Eurasian trench about 50million years ago. Plate convergence, accompanied by Eurasian indentation, persisted throughout the Cenozoic era, suggesting that the driving forces of convergence did not vanish on continental collision. Here we estimate the density of the Greater Indian continent, after its upper crust is scraped off at the Himalayan front, and find that the continental plate is readily subductable. Using numerical models, we show that subduction of such a dense continent reduces convergence by a factor similar to that observed. In addition, an imbalance between ridge push and slab pull can develop and cause trench advance and indentation. We conclude that the subduction of the dense Indian continental slab provides a significant driving force for the current India-Asia convergence and explains the documented evolution of plate velocities following continental collision.

  12. A continuum model of continental deformation above subduction zones - Application to the Andes and the Aegean

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.; England, Philip

    1989-01-01

    A continuum model of continental deformation above subduction zones was developed that combines the viscous sheet and the corner flow models; the continental lithosphere is described by a two-dimensional sheet model that considers basal drag resulting from the viscous asthenosphere flow underneath, and a corner flow model with a deforming overlying plate and a rigid subducting plate is used to calculate the shear traction that acts on the base of the lithosphere above a subduction zone. The continuum model is applied to the Andes and the Aegean deformations, which represent, respectively, compressional and extensional tectonic environments above subduction zones. The models predict that, in a compressional environment, a broad region of uplifted topography will tend to develop above a more steeply dippping slab, rather than above a shallower slab, in agreement with observations in the various segments of the central Andes. For an extensional environment, the model predicts that a zone of compression can develop near the trench, and that extensional strain rate can increase with distance from the trench, as is observed in the Aegean.

  13. Dynamic topography in subduction zones: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    The topography in subduction zones can exhibit very complex patterns due to the variety of forces operating this setting. If we can deduce the theoretical isostatic value from density structure of the lithosphere, the effect of flexural bending and the dynamic component of topography are difficult to quantify. In this work, we attempt to measure and analyze the topography of the overriding plate during subduction compared to a pure shortening setting. We use analog models where the lithospheres are modeled by thin-sheet layers of silicone putty lying on low-viscosity syrup (asthenosphere). The model is shorten by a piston pushing an oceanic plate while a continental plate including a weak zone to localize the deformation is fixed. In one type of experiments, the oceanic plate bends and subducts underneath the continental one; in a second type the two plates are in contact without any trench, and thus simply shorten. The topography evolution is monitored with a laser-scanner. In the shortening model, the elevation increases progressively, especially in the weak zone, and is consistent with expected isostatic values. In the subduction model, the topography is characterized, from the piston to the back-wall, by a low elevation of the dense oceanic plate, a flexural bulge, the trench forming a deep depression, the highly elevated weak zone, and the continental upper plate of intermediate elevation. The topography of the upper plate is consistent with isostatic values for very early stages, but exhibits lower elevations than expected for later stages. For a same amount of shortening of the continental plate, the thickening is the same and the plate should have the same elevation in both types of models. However, comparing the topography at 20, 29 and 39% of shortening, we found that the weak zone is 0.4 to 0.6 mm lower when there is an active subduction. Theses values correspond to 2.6 to 4 km in nature. Although theses values are high, there are of the same order as dynamic topography and could represent the dynamic effect of the slab sinking into the asthenosphere and lowering the elevation of the upper plate.

  14. The Southern Mariana Forearc: An Active Subduction Initiation (SI) Analogue

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Bloomer, S. H.; Brounce, M. N.; Ishii, T.; Ishizuka, O.; Kelley, K. A.; Martinez, F.; Ohara, Y.; Pujana, I.; Reagan, M. K.; Ribeiro, J.

    2014-12-01

    It is important to understand how new subduction zones form. Some subduction zones begin spontaneously, with sinking of dense oceanic lithosphere adjacent to a lithospheric weakness. The Eocene evolution of the Izu-Bonin-Mariana convergent margin is the type example of this process, with an increasingly well-documented evolution including results from IODP 352 drilling. A lack of any active examples of spontaneous SI hinders our understanding, but our studies of the evolution of the southernmost Mariana convergent margin provides important insights. Here the Mariana Trough backarc basin terminates against the Challenger Deep trench segment, where it has opened ~250 km in the past ~4 Ma. This corresponds to GPS opening rate of ~4.5cm/y at the latitude of Guam (Kato et al., 2003). This newly formed and rapidy widening margin faces the NW-converging Pacific plate and causes it to contort and tear. Pacific plate continues to move NW but the upper plate response is illustrative of a newly formed subduction zone. Slab-related earthquakes can be identified to ~200 km deep beneath this margin; with convergence rate of 3cm/yr, this may reflect no more than 7 Ma of subduction. The usual well-defined magmatic arc is missing; its position ~100 km above the subducted slab is occupied by the magma-rich (inflated) Malaguana-Gadao Ridge (MGR), and hydrous MORB-like basalts with ~2 wt. % H2O have erupted unusually close to the trench where they overly mantle peridotites ~6 km water depth. HMR-1 sonar backscatter mapping reveals a chaotic fabric that is at a high angle to the trend of the MGR to the east but is concordant to the west. This unusual spreading fabric may have formed by chaotic upper plate extension in response to rapid rollback of the short, narrow Pacific slab in a manner similar to that thought to occur during SI. Further interdisciplinary studies are needed to understand this rapidly-evolving tectono-magmatic province and what it can teach us about SI.

  15. 3-D simulation of temporal change in tectonic deformation pattern and evolution of the plate boundary around the Kanto Region of Japan due to the collision of the Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Furuya, H.; Tsumura, N.; Kameo, K.; Yamamoto, S.

    2010-12-01

    The Kanto region of Japan is in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands, which is considered to be a significant effect on the tectonics of Kanto. To reveal the present crustal structure and the present internal stress fields in such a complex tectonic setting, it is essential to comprehend them through the long-term tectonic evolution process. In this study, we estimate the temporal change in tectonic deformation pattern along with the geometry of the plate boundary around Kanto by numerical simulation with a kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend because of its buoyancy. This can be represented by giving slip-rate deficit. When crustal deformation occurs, it also causes change in geometry of the plate boundary itself. This geometry change sensitively affects mechanical interaction at the plate boundary. Then the renewed plate-to-plete interaction alters crustal deformation rates. This feedback system has a large effect on collision zones. Indeed, the plate boundary around the Izu peninsula, the northernmost end of the Izu-Bonin arc, intends landward as large as 100 km. Iterating this effect sequentially backward in time, we numerically simulated the evolution of the deformation rates in Kanto. The result shows uplifts in the Akaishi and the Kanto ranges ahead of the Izu-Bonin arc and subsidence in the center of the Kanto plane. This result is consistent with the topography, the free-air gravity anomaly and the height of paleo-shorelines in this area.

  16. Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation

    NASA Astrophysics Data System (ADS)

    Petersen, Kenni Dinesen; Buck, W. Roger

    2015-09-01

    The controversy over the exhumation of ultrahigh-pressure (UHP) rocks centers on whether it involves rising of pieces of crust detached from subducted continental lithosphere or an entire subducted plate that undergoes "eduction," i.e., reverse subduction. We present a new thermomechanical model of continental subduction showing that these apparently contrasting mechanisms can occur together: crust subducted deep enough is heated and weakened, causing limited diapiric rise, while crust subducted to shallower depths retains strength and is exhumed only by eduction. The model also shows for the first time how eduction followed by seafloor spreading can occur in a zone of regional convergence. This occurs spontaneously when subduction of buoyant crust causes a subduction zone to "lock up" in one place causing a new subduction zone to form in another. The model is consistent with many features of the youngest region of UHP rock exhumation on earth: the D'Entrecasteaux Islands. UHP exhumation and the amount of regional extension, as well as the seismic structure around the islands, can be explained by eduction. Ductile flow fabrics, seen on the islands, would result from exhumation of the most deeply subducted crust heated enough to undergo partial melting. Reversal of motion on the north-dipping continental subduction zone, required by this model, was likely triggered by initiation of the New Britain Trench, as suggested previously. Our model implies that the crust of Goodenough Basin, south of the islands, was exhumed by eduction in the last 5 Ma and this hypothesis can be tested by drilling.

  17. Modeling of Mantle Convection in 3D Subduction Zones

    NASA Astrophysics Data System (ADS)

    Bengtson, A. K.; van Keken, P. E.; Lin, S.; Kneller, E. A.

    2010-12-01

    The influence of 3D subduction zone geometries on mantle convection patterns is not well characterized. Subducting plates with complex 3D geometries often exhibit seismological signatures that cannot be explained by 2D flow patterns [Hoernle et al. Nature 2008/2009; Long and Silver Science 2008; Kneller et al. Nature 2007]. We use finite element methods to study the lateral transport and thermal structure in 3D subduction zones and their evolution over time. Realistic 3D geometries were created from seismological observations for both the Marianas and Central America, building upon the work of Kneller et al. [Nature 2007; Geochem. Geophys. Geosyst. 2008]. Highly refined meshes were created using spherical geometry on a Cartesian mesh, and slab motion was prescribed in a kinematic manner. The finite element code Sepran was used to solve the Stokes and heat equations using diffusion creep laws for viscosity. We present the velocities, temperatures, and pressures in the mantle wedge for the Marianas and Central America regions. Comparisons are made between 2D and 3D flow patterns to test the dependence of flow on 3D geometries, in addition to dependence of flow on plate direction. Resulting thermal and lateral structures are important for understanding mantle and slab mineralogy and seismic signatures. We find the lateral transport is particularly important in regions of strong obliquity and trench curvature.

  18. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    PubMed

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes. PMID:17831621

  19. Subduction in the Southern Caribbean

    NASA Astrophysics Data System (ADS)

    Levander, A.; Schmitz, M.; Bezada, M.; Masy, J.; Niu, F.; Pindell, J.

    2012-04-01

    The southern Caribbean is bounded at either end by subduction zones: In the east at the Lesser Antilles subduction zone the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west under the Southern Caribbean Deformed Belt accretionary prism, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Masy et al, 2009). The El Pilar system forms at the southeastern corner of the Antilles subduction zone by the Atlantic tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate tears, its southernmost element subducting at shallow angles under northernmost Colombia and then rapidly descending to transition zone depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The southern edge of the nonsubducting Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the underthrust Caribbean plate supports the coastal mountains, and controls continuing deformation.

  20. 'Snow White' Trench After Scraping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the trench informally named 'Snow White.' This image was taken after a series of scrapings by the lander's Robotic Arm on the 58th Martian day, or sol, of the mission (July 23, 2008). The scrapings were done in preparation for collecting a sample for analysis from a hard subsurface layer where soil may contain frozen water.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide and about 60 centimeters (24 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. GPS determined eastward Sundaland motion with respect to Eurasia confirmed by earthquakes slip vectors at Sunda and Philippine trenches

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, N.; Le Pichon, X.

    1999-12-01

    GPS measurements acquired over Southeast Asia in 1994 and 1996 in the framework of the GEODYSSEA program revealed that a large piece of continental lithosphere comprising the Indochina Peninsula, Sunda shelf and part of Indonesia behaves as a rigid `Sundaland' platelet. A direct adjustment of velocity vectors obtained in a Eurasian frame of reference shows that Sundaland block is rotating clockwise with respect to Eurasia around a pole of rotation located south of Australia. We present here an additional check of Sundaland motion that uses earthquakes slip vectors at Sunda and Philippine trenches. Seven sites of the GEODYSSEA network are close to the trenches and not separated from them by large active faults (two at Sumatra Trench, three at Java Trench and two at the Philippine Trench). The difference between the vector at the station and the adjacent subducting plate vector defines the relative subduction motion and should thus be aligned with the subduction earthquake slip vectors. We first derive a frame-free solution that minimizes the upper plate (or Sundaland) motion. When corrected for Australia-Eurasia and Philippines-Eurasia NUVEL1-A motion, the misfit between GPS and slip vectors azimuths is significant at 95% confidence, indicating that the upper plate does not belong to Eurasia. We then examine the range of solutions compatible with the slip vectors azimuths and conclude that the minimum velocity of Sundaland is a uniform 7-10 mm/a eastward velocity. However, introducing the additional constraint of the fit of the GEODYSSEA sites with the Australian IGS reference ones, or tie with the NTUS Singapore station, leads to a much narrower range of solutions. We conclude that Sundaland has an eastward velocity of about 10 mm/a on its southern boundary increasing to 16-18 mm/a on its northern boundary.

  2. Slab Roll-Back and Trench Retreat As Controlling Factor for Island-Arc Related Basin Evolution: A Case Study from Southern Central America

    NASA Astrophysics Data System (ADS)

    Brandes, C.; Winsemann, J.

    2014-12-01

    Slab roll-back and trench retreat are important factors for basin subsidence, magma generation and volcanism in arc-trench systems. From the sedimentary and tectonic record of the Central American island-arc it is evident that repeated slab roll-back and trench retreats occurred since the Late Cretaceous. These trench retreats were most probably related to the subduction of oceanic plateaus and seamounts. Evidence for trench retreats is given by pulses of uplift in the outer-arc area, followed by subsidence in both the fore-arc and back-arc basins. The first slab roll-back probably occurred during the Early Paleocene indicated by the collapse of carbonate platforms, and the re-deposition of large carbonate blocks into deep-water turbidites. At this time the island-arc was transformed from an incipient non-extensional stage into an extensional stage. A new pulse of uplift or decreased subsidence, respectively during the Late Eocene is attributed to subduction of rough crust, a subsequent slab detachment and the establishment of a new subduction zone further westward. Strong uplift especially affected the outer arc of the North Costa Rican arc segment. In the Sandino Fore-arc basin very coarse-grained deep-water channel-levee complexes were deposited. These deposits contain large well-rounded andesitic boulders and are rich in reworked shallow-water carbonates pointing to uplift of the inner fore-arc. Evidence for the subsequent trench retreat is given by an increased subsidence during the early Oligocene in the Sandino Fore-arc Basin and the collapse of the Barra Honda platform in North Costa Rica. Another trench retreat might have occurred in Miocene times. A phase of higher subsidence from 18 to 13 Ma is documented in the geohistory curve of the North Limon Back-arc Basin. After a short pulse of uplift the subsidence increased to approx. 300 m/myr.

  3. Incoming plate faulting in the Northern and Western Pacific and implications for subduction zone water budgets

    NASA Astrophysics Data System (ADS)

    Emry, Erica L.; Wiens, Douglas A.

    2015-03-01

    The greatest uncertainty in the amount of water input into the Earth at subduction zones results from poor constraints on the degree of mantle serpentinization in the incoming plate. Recent studies suggest that the depth of serpentinization within the incoming plate mantle is likely controlled by the depth of extensional faulting caused by lithospheric bending at the outer rise and trench. We explore the maximum depth of extension within the incoming plate at Northwestern Pacific subduction zones in order to estimate the depth limit of serpentinization and to identify any significant variation between subduction zone segments. We relocate trench earthquakes to identify which events occurred within the incoming plate and determine accurate depths for 63 incoming plate earthquakes occurring during 1988-2011 by inverting teleseismic broadband P and SH waveforms. We observe that the top 10-15 km of the incoming plate mantle experiences extensional faulting at all of the subduction zones with a reasonable sample of earthquakes; 60% of the total number of extensional earthquakes occur at crustal depths or within the top 5 km of the incoming plate mantle, 80% occur above 10 km within the mantle, and 95% occur above 15 km. There is evidence for variation throughout the different regions of study, for example extensional earthquakes occur down to 20 km below the crust in the western Aleutians and Izu-Bonin. We propose that the incoming plate mantle is most strongly hydrated in the upper 5 km, and that partial serpentinization exists regionally within the incoming plate mantle to ?15 km. Making reasonable assumptions about the degree of serpentinization and incorporating previous estimates of crustal water, we calculate that the total water carried into the Northern and Western Pacific subduction zones is generally higher than previous estimates, and is approximately 4- 6 ×108 Tg /Myr, or ? 45- 70 ×103 Tg /Myr per kilometer of subduction zone.

  4. Recent Results of Hadal Investigations in the Southern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.; Hellebrand, E.; Sharma, S. K.; Acosta-Maeda, T.; Jicha, B. R.; Cameron, J.

    2014-12-01

    The deepest parts of the southern Mariana Trench have variously been interpreted to 1) indicate strike-slip motion along the trench, 2) contain a series of 3 sediment ponds at greater than 10,900 m depth separated from one another by fault-controlled ridges on the subducting plate, and 3) have an even deeper feature in the western-most pond (Vitiaz Deep). Recent lander deployments in all three ponds and the Deepsea Challenger submersible dive by J. Cameron in 2012 showed that the deepest ponds within the Challenger Deep area have nearly unbroken, flat surfaces. One point explored showed veined serpentinite at a depth of 10,800+ m. The potential for active serpentinite-hosted seeps and vent communities was demonstrated for the Shinkai Vent Field at 5,800m depth. Rocks collected using the Wood Hole Oceanographic Institution's hybrid remotely operated vehicle, Nereus, in 2009 from deep (10,879 m) on the incoming plate south of the Challenger Deep, were recovered from the base of a fault scarp where large, columnar-jointed blocks are draped with sediment. Optical microscopy, electron-microprobe and Raman analysis show that they are partially altered massive diabase with altered interstitial glass and containing microbial tubules in vug-filling secondary phases. The chain of seamounts striking NNW, colinear with the Lyra Trough, has been interpreted as a boundary between the Pacific Plate and the seafloor north of the Caroline Ridge. Sediments, drilled from above postulated basement north of the Caroline Ridge are no older that Oligocene. Ar/Ar age dates completed for one rock collected by Nereus in 2009 give a weighted mean plateau age, based on two experiments, of 24.6 +/- 3.2 Ma. Thus, the igneous basement of the subducting plate south of the Challenger Deep is, far younger than the Jurassic Pacific Plate subducting further east. This represents a previously unidentified tectonic plate. With new vehicles and technologies the future for hadal exploration is ripe.

  5. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration. PMID:17784486

  6. Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Wookey, J.; Kaneshima, S.; Inoue, H.; Yamashina, T.; Harjadi, P.

    2010-02-01

    The tectonic context of south-east Asia is dominated by subduction. One such major convergent boundary is the Java-Sunda trench, where the Australian-Indian plates are being subducted beneath the Eurasian plate. We measure shear-wave splitting in local and teleseismic data from 12 broadband stations across Sumatra and Java to study the anisotropic characteristics of this subduction system, which can provide important constraints on dynamical processes involved. Splitting in S-waves from local earthquakes between 75 and 300 km deep show roughly trench parallel fast directions, and with time-lags 0.1-1.3 s (92% ?0.6 s). Splitting from deeper local events and SKS, however, shows larger time-lags (0.8-2.0 s) and significant variation in fast direction. In order to infer patterns of deformation in the slab we apply a hybrid modelling scheme. We raytrace through an isotropic subduction zone velocity model, obtaining event to station raypaths in the upper mantle. We then apply appropriately rotated olivine elastic constants to various parts of the subduction zone, and predict the shear-wave splitting accrued along the raypath. Finally, we perform grid searches for orientation of deformation, and attempt to minimise the misfit between predicted and observed shear-wave splitting. Splitting from the shallow local events is best explained by anisotropy confined to a 40 km over-riding plate with horizontal, trench parallel deformation. However, in order to explain the larger lag times from SKS and deeper events, we must consider an additional region of seismic anisotropy in or around the slab. The slab geometry in the model is constrained by seismicity and regional tomography models, and many SKS raypaths travel large distances within the slab. Models placing anisotropy in the slab produce smaller misfits than those with anisotropy outside for most stations. There is a strong indication that inferred flow directions are different for sub-Sumatran stations than for sub-Javanese, with >60 ° change over ˜375 km. The former appear aligned with the subduction plate motion, whereas the latter are closer to perpendicular, parallel to the trench direction. There are significant differences between the slab being subducted beneath Sumatra, and that beneath Java: age of seafloor, maximum depth of seismicity, relative strength of the bulk sound and shear-wave velocity anomaly and location of volcanic front all vary along the trench. We speculate, therefore, that the anisotropy may be a fossilised signature rather than due to contemporary dynamics.

  7. Fluid-mechanical Representation of Plate Boundaries - Trench-Ridge System -

    NASA Astrophysics Data System (ADS)

    Takaku, M.; Fukao, Y.

    2005-12-01

    Seismic tomography models have been used extensively to simulate mantle convection driven by density heterogeneity. Such simulation to date has been unsuccessful to reconcile itself with the most obvious convection-related phenomenon of plate motions. Here we present a theoretical framework for tomography-based convection modeling to include the plates as an integral part of the mantle convection. We model the lithosphere as a highly viscous, incompressible, Newtonian fluid layer and plate boundaries as faults across which tangential velocities are discontinuous. Fluid-mechanical expressions of such faults have their exact analogies in the seismic source representation theory and can be derived by referring to it. We test this idea against the simplest two-dimensional case with only trench and ridge as plate boundaries, and with only subducting slab as mass anomaly. We model ridge (trench) as the horizontal (vertical) tensile fault that comprises of a conjugate pair of 45-degree dip normal (reverse) faults extending over the entire thickness of the surface layer. The system comprises of three elementary convections, slab mass-driven convection, trench fault-driven convection and ridge fault-driven convection. Flow due to the slab excess mass imposes vertical tensile stress on trench, which is released by flow driven by trench faulting. This faulting converts efficiently the vertical tensile stress to the horizontal tensile stress, which can transmit to extreme distances through the surface viscous layer. This horizontal tensile stress is relieved by flow driven by ridge faulting. The three elementary convections are thus coupled through the stress minimum conditions at ridge and trench. The resultant coupled flow is very plate-like in the surface viscous layer. In this system the horizontal surface velocity depends little on the relative distance between the ridge and trench and depends mostly on the excess weight of the subducting slab. The horizontal speed can be compared to the actual plate velocities for a lithosphere-asthenosphere system with a viscosity ratio of more than 10**3. The system is operated on the whole in a state of minimal stress.

  8. Supraslab earthquakes above the Pacific-plate slab in NE Japan: A possible graveyard of detached seamounts and volcanic ridges?

    NASA Astrophysics Data System (ADS)

    Kirby, S.; Okada, T.; Uchida, N.; Hasegawa, A.; Matsuzawa, T.; Hino, R.

    2005-12-01

    Double-difference relocations of interplate thrust and intraslab earthquakes at depths greater than 35 km under NE Japan indicate that many clusters of earthquakes occur above the interplate thrust zone and hence are no longer part of the sinking Pacific-plate slab. The best examples of such clusters are found at depths of 40 to 60 km near the depth limit of interplate thrust earthquake activity and near the intersection of the forearc Moho with the plate interface. In some clusters, small repeating earthquakes occur on the plate interface below the supraslab clusters. The largest of these clusters have earthquakes that are as much as 25 km shallower than the plate boundary and extend as much as several tens of km in the down-dip direction. Offshore multi-beam sonar bathymetry shows seafloor relief that is dominated by seamounts and guyots, representing Cretaceous intraplate volcanic activity. The Japan inner trench slope is marked by many re-entrants that record past seamount-forearc collisions. Supraslab earthquake clusters may represent earthquake activity inside seamounts that have detached from the underlying Pacific plate along the original sedimented seafloor on which these intraplate shield volcanoes were built. If this interpretation is correct, then supraslab earthquakes may represent a unique cumulative record of past seamount subduction.

  9. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution

    SciTech Connect

    Bloomer, S.H.

    1983-09-10

    The landward slope of the Mariana Trench is composed largely of igneous rocks. Serpentinites and serpentinized ultramafic rocks occur at nearly all structural levels on the slope from depths of 8000 to 1200 m. Seamountlike features on the trench slope break are the surface expression of serpentinite diapirs. Cumulate and massive gabbros are found; several varieties of volcanic rocks are common including boninites, altered and metamorphosed basalts, andesites, and dacites. The chemical characteristics of the volcanic rocks indicate that nearly all are products of island arc volcanism. Together with the gabbros, these volcanic rocks represent what is probably a late Eocene arc complex. These rocks were probably the first volcanic products to result from the subduction of the Pacific plate beneath the Phillippine Sea plate; their exposure on the trench slope today implies a significant amount of tectonic erosion of the landward slope since Eocene time. Most of this removal of material appears to have occurred during the early stages of subduction. There are isolated occurrences on the landward slope of rock assemblages including alkalic basalts, chert, hyaloclastites, upper Cretaceous siliceous sediments, and shallow water limestones. These assemblages are very similar to rocks dredged from seamounts on the offshore flank of the trench, and their presence on the landward slope suggests that since the cessation of vigorous tectonic erosion, there has been episodic accretion of seamount fragments to the landward slope.

  10. The role of subducting bathymetric highs on the oceanic crust to deformation of accretionary wedge and earthquake segmentation in the Java forearc

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Mukti, M.; Deighton, I.

    2014-12-01

    Stratigraphic and structural observations of newly acquired seismic reflection data along the offshore south Java reveal the structural style of deformation along the forearc and the role of subducting bathymetric highs to the morphology of the forearc region. The forearc region can be divided in to two major structural units: accretionary wedge and forearc and forearc basin where a backthrust marks the boundary between the accretionary wedge and the forearc basin sediments. The continuous compression in the subduction zone has induced younger landward-vergent folds and thrusts within the seaward margin of the forearc basin sediments, which together with the backthrust is referred as the Offshore South Java Fault Zone (OSJFZ), representing the growth of the accretionary wedge farther landward. Seaward-vergent imbricated thrusts have deformed the sediments in the accretionary wedge younging seaward, and have developed fold-thrust belts in the accretionary wedge toward trench. Together with the backthrusts, these seaward-vergent thrusts characterize the growth of accretionary wedge in South of Java trench. Based on these new results, we suggest that accretionary wedge mechanic is not the first order factor in shaping the morphology of the accretionary wedge complex. Instead the subducting bathymetric highs play the main role in shaping the forearc that are manifested in the uplift of the forearc high and intense deformation along the OSJFZ. These subducting highs also induce compression within the accretionary sediments, evident from landward deflection of the subduction front at the trench and inner part of accretionary wedge in the seaward margin of the forearc basin. Intense deformation is also observed on the seaward portion of the accretionary wedge area where the bathymetric highs subducted. We suggest that these subducted bathymetric features define the segment boundaries for megathrust earthquakes, and hence reducing the maximum size of the earthquakes in the Java subduction zone.

  11. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences the subduction of the oceanic crust in terms of subduction velocity and subduction angle over time. We develop scaling laws combining the subduction velocity and angle depending on the mantle environment (and thus time). These laws can then be applied to continental growth simulations with 1D parameterized models (Höning et al., in press) or 2D/3D subduction zone simulations at specific geological times (using the correct subduction zone setting). References: Quinquis, M. et al. (in preparation). A comparison of thermo-mechanical subduction models. In preparation for G3. Noack, L., Van Hoolst, T., Dehant, V., and Breuer, D. (2013). Relevance of continents for habitability and self-consistent formation of continents on early Earth. XIII International Workshop on Modelling of Mantle and Lithosphere Dynamics, Hønefoss, Norway, 31. Aug. - 5. Sept. 2013. Höning, D., Hansen-Goos, H., Airo, A., and Spohn, T. (in press). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science.

  12. Ridge Subduction Beneath the Americas: Synthesis and New Research on Anomalous Tectonism and Magmatism

    NASA Astrophysics Data System (ADS)

    Thorkelson, D. J.; Madsen, J. K.; Breitsprecher, K.; Groome, W. G.; Sluggett, C.

    2006-12-01

    The west coast of the Americas has been repeatedly affected by ridge-trench interactions from Mesozoic to Recent time. Beneath North America, subduction of the Kula-Farallon, Kula-Resurrection and Farallon- Resurrection spreading ridges resulted in anomalous and time-transgressive forearc to backarc magmatism and related tectonism from the Late Cretaceous to the Eocene. Following consumption and redistribution of the Kula and Resurrection plates, the Neogene Farallon-Pacific ridge system intersected the North American trench in two locations - western Canada and northwestern Mexico / southwestern United States - causing pronounced magmatic and tectonic effects that continue to the present. Beneath Central America, divergent subduction of the Nazca and Cocos plates led to development of a slab window, with a present location beneath Panama and a probable pre-Pliocene position beneath Columbia or Ecuador. Patagonia has been the site of localized ridge subduction from the Eocene to the Recent, with the Phoenix-Farallon ridge subducting from the Eocene to the early Miocene, and the Nazca-Antarctic ridge from the Miocene to the present. Antarctica experienced diverging Antarctic-Phoenix plate subduction from the Eocene to the Pliocene. In all cases, normal arc magmatism was interrupted or eliminated by anomalous igneous activity ranging in signature from adakitic to intraplate. Our current research involves geochemical, tectonic, and thermal modeling of slab window environments. A new geochemical analysis on the effects of Miocene to Recent subduction of the northern segment of the Farallon (Juan de Fuca)-Pacific ridge is underway. A symmetrical arc-intraplate-arc geochemical pattern is evident in a transect from the northern Cascade Arc, through the volcanic fields of British Columbia, Yukon and eastern Alaska, and into the Aleutian Arc. This pattern can be explained by Neogene displacement of the arc-metasomatized mantle wedge caused by upwelling oceanic-type asthenosphere, as predicted by slab window models. A new analysis of spreading ridge subduction in the Patagonia-Antarctic Peninsula region is also being carried out, and initial results suggest that spreading within the Scotia plate may have been augmented by upwelling related to slab window formation. Theoretical thermal effects on the forearc before, during and after ridge subduction are being investigated with computer modeling. 3-D models support empirical studies that call for forearc melting in response to ridge subduction.

  13. Crust and subduction zone structure of Southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Suhardja, Sandy Kurniawan; Grand, Stephen P.; Wilson, David; Guzman-Speziale, Marco; Gomez-Gonzalez, Juan Martin; Dominguez-Reyes, Tonatiuh; Ni, James

    2015-02-01

    Southwestern Mexico is a region of complex active tectonics with subduction of the young Rivera and Cocos plates to the south and widespread magmatism and rifting in the continental interior. Here we use receiver function analysis on data recorded by a 50 station temporary deployment of seismometers known as the MARS (MApping the Rivera Subduction zone) array to investigate crustal structure as well as the nature of the subduction interface near the coast. The array was deployed in the Mexican states of Jalisco, Colima, and Michoacan. Crustal thickness varies from 20 km near the coast to 42 km in the continental interior. The Rivera plate has steeper dip than the Cocos plate and is also deeper along the coast than previous estimates have shown. Inland, there is not a correlation between the thickness of the crust and topography indicating that the high topography in northern Jalisco and Michoacan is likely supported by buoyant mantle. High crustal Vp/Vs ratios (greater than 1.82) are found beneath the trenchward edge of magmatism including below the Central Jalisco Volcanic Lineament and the Michoacan-Guanajuato Volcanic Field implying a new arc is forming closer to the trench than the Trans Mexican Volcanic Belt. Elsewhere in the region, crustal Vp/Vs ratios are normal. The subducting Rivera and Cocos plates are marked by a dipping shear wave low-velocity layer. We estimate the thickness of the low-velocity layer to be 3 to 4 km with an unusually high Vp/Vs ratio of 2.0 to 2.1 and a drop in S velocity of 25%. We postulate that the low-velocity zone is the upper oceanic crust with high pore pressures. The low-velocity zone ends from 45 to 50 km depth and likely marks the basalt to eclogite transition.

  14. Ophiolites of the deep-sea trenches of the western Pacific

    SciTech Connect

    Chudaev, O.

    1990-06-01

    Igneous and metamorphic rocks of ophiolites are widespread in the basement of the Izu-Bonin, Volcano, Mariana, Philippine, Yap, Palau, New Hebrides, West Melanesian, Tonga, and Mussau trenches. Ophiolite in the trenches includes (1) metamorphic rocks ranging from low-T and low P to high-T and moderate P; (2) serpentinites after harzburgite; (3) ultramafic-mafic layered series; (4) tholeiitic basalts, dolerites, and their metamorphosed varieties; and (5) rocks of the boninitic series. Two geodynamic stages could be distinguished in the formation of the ophiolites of the Western Pacific. At the rifting stage, mantle diapir ascended during rifting and magmatic series were formed. In this period, rocks underwent intense low-temperature metasomatic alterations in the zones of heated seawater circulation. At the compression stage (subduction zone) regional pressure metamorphism of the ophiolites superimposed on the low-temperature metasomatic processes.

  15. New seafloor map of the Puerto Rico Trench helps assess earthquake and tsunami hazards

    USGS Publications Warehouse

    ten Brink, Uri S.; Danforth, William; Polloni, Christopher; Andrews, Brian D.; Llanes Estrada, Pilar; Smith, Shepard; Parker, Eugene; Uozumi, Toshihiko

    2004-01-01

    The Puerto Rico Trench, the deepest part of the Atlantic Ocean, is located where the North American (NOAM) plate is subducting under the Caribbean plate (Figure l). The trench region may pose significant seismic and tsunami hazards to Puerto Rico and the U.S.Virgin Islands, where 4 million U.S. citizens reside. Widespread damage in Puerto Rico and Hispaniola from an earthquake in 1787 was estimated to be the result of a magnitude 8 earthquake north of the islands [McCann et al., 2004]. A tsunami killed 40 people in NW Puerto Rico following a magnitude 7.3 earthquake in 1918 [Mercado and McCann, 1998]. Large landslide escarpments have been mapped on the seafloor north of Puerto Rico [Mercado et al., 2002; Schwab et al., 1991],although their ages are unknown.

  16. Dynamic Linkages Between the Transition Zone & Surface Plate Motion in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2014-12-01

    Subduction zones exhibit a wide range of behavior, from slab stagnation at 660 km to direct penetration into the lower mantle. Due to uncertainties in the tectonic history of individual subduction zones, such as trench velocities, potential mechanisms for controlling slab behavior in the transition zone are explored using numerical models. Numerical simulations have utilized a range of assumptions to improve computational efficiency, such as ignoring latent heat, ignoring compositional effects or fixing the trench location: the net effect of these assumptions resulting modeled dynamics remains unclear. Additionally the eight major, composition-dependent, phase transitions for pyrolite, harzburgite and eclogite may be an important influence on subducting slab dynamics due to the additional forces that are dependent on depth and compositional layering within the slab (e.g., Ricard et al., 2005). With the goal of developing more complete, self-consistent, and less idealized simulations, we test the importance of various factors on slab behavior: the presence of shear, adiabatic and latent heating, compositional layering, composition-dependent phase transitions and explicit plate speeds versus dynamically evolving plate and trench velocities. Preliminary results indicate that individual components have a relatively minor effect, but produce large changes when combined together. The extent of slab folding and stagnation is overestimated by only modeling the 410 and 660 km phase transitions. Dynamic models with all seven composition-dependent phase transitions are very sensitive to the plate strength and weak zone viscosity, causing large changes in plate speed and slab detachment. Changes to the overriding plate buoyance and strength investigate the origin and influence of trench movement on slab deformation. These feedbacks and parameter-sensitive behavior indicate that the wide range of observed slab behavior may result from subtle differences in plate and plate boundary properties. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.

  17. Seismic structure of subducted Philippine Sea plate beneath the southern Ryukyu arc by receiver function and local earthquakes tomography

    NASA Astrophysics Data System (ADS)

    Nakamura, M.

    2012-12-01

    Seismic coupling of the Ryukyu subduction zone is assumed to be weak from the lack of historical interplate large earthquakes. However, recent investigation of repeating slow slip events (Heki & Kataoka, 2008), shallow low frequency earthquakes (Ando et al., 2012), and source of 1771 Yaeyama mega-tsunami (Nakamura, 2009), showed that the interplate coupling is not weak in the south of Ryukyu Trench. The biannually repeating SSEs (Mw=6.5) occur at the depth of 20-40 km on the upper interface of the subducted Philippine Sea plate beneath Yaeyama region, where earthquake swarm occurred on 1991 and 1992. To reveal the relation among the crustal structure, earthquake swarms, and occurrence of slow slip events (SSE), local earthquake tomography and receiver function (RF) analysis was computed in the southwestern Ryukyu arc. A tomographic inversion was used to determine P and S wave structures beneath Iriomote Island in the southwestern Ryukyu region for comparison with the locations of the SSE. The seismic tomography (Thurber & Eberhart-Phillips, 1999) was employed. The P- and S- wave arrival time data picked manually by Japan Meteorological Agency (JMA) are used. The 6750 earthquakes from January 2000 to July 2012 were used. For the calculation of the receiver function, the 212 earthquakes whose magnitudes are over 6.0 and epicentral distances are between 30 and 90 degrees were selected. The teleseicmic waveforms observed at two short-period seismometers of the JMA, and one broadband seismometer of F-net of National Research Institute for Earth Science and Disaster Prevention were used. The water level method (the water level is 0.01) is applied to original waveforms. Assuming that each later phase in a RF is the wave converted from P to S at a depth, I transformed the time domain RF into the depth domain one along each ray path in a reference velocity model. The JMA2001 velocity model is used in this study. The results of tomography show that the low Vp and high Vp/Vs anomalies are distributed along the hypocenters in the subducted slab. The plate interface is about 10 km above the slab earthquakes from the trace of negative RF amplitude. The slab earthquakes are distributed along the trace of positive RF amplitude. Therefore the slab earthquakes occur near the oceanic Moho of the PHS. The fault depth of the SSEs corresponds to the plate interface within 5 km. The fault-planes of the SSE are located above the low Vp and high Vp/Vs zone. Assuming that the difference between high Vp/Vs and low Vp/Vs originates to the fluid contents, this would be interpreted that the fluids from the subducted oceanic crust cannot be transported upward and is trapped at the plate interface. The observed strong S-wave reflector (Nakamura, 2001) in the upper interface of the subducted plate also supports the idea. The top of the faults of the SSEs connects to the cluster of earthquake swarms in the lower crust. This suggests that the trapped fluids are transported upward along the faults, accumulates in the lower crust, and induce the swarm of micro-earthquakes in the lower crust.

  18. Plate interaction in the NE Caribbean subduction zone from continuous GPS observations

    USGS Publications Warehouse

    ten Brink, Uri S.; Lopez-Vegas, Alberto M.

    2012-01-01

    Kinematic similarities between the Sumatra and Puerto Rico Trenches highlight the potential for a mega-earthquake along the Puerto Rico Trench and the generation of local and trans-Atlantic tsunamis. We used the horizontal components of continuous GPS (cGPS) measurements from 10 sites on NE Caribbean islands to evaluate strain accumulation along the North American (NA) - Caribbean (CA) plate boundary. These sites move westward and slightly northward relative to CA interior at rates ?2.5 mm/y. Provided this motion originates in the subduction interface, the northward motion suggests little or no trench-perpendicular thrust accumulation and may in fact indicate divergence north of Puerto Rico, where abnormal subsidence, bathymetry, and gravity are observed. The Puerto Rico Trench, thus, appears unable to generate mega-earthquakes, but damaging smaller earthquakes cannot be discounted. The westward motion, characterized by decreasing rate with distance from the trench, is probably due to eastward motion of CA plate impeded at the plate boundary by the Bahamas platform. Two additional cGPS sites in Mona Passage and SW Puerto Rico move to the SW similar to Hispaniola and unlike the other 10 sites. That motion relative to the rest of Puerto Rico may have given rise to seismicity and normal faults in Mona Rift, Mona Passage, and SW Puerto Rico.

  19. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline.

    PubMed

    Capitanio, F A; Faccenna, C; Zlotnik, S; Stegman, D R

    2011-12-01

    The building of the Andes results from the subduction of the oceanic Nazca plate underneath the South American continent. However, how and why the Andes and their curvature, the Bolivian orocline, formed in the Cenozoic era (65.5?million years (Myr) ago to present), despite subduction continuing since the Mesozoic era (251.0-65.5?Myr ago), is still unknown. Three-dimensional numerical subduction models demonstrate that variations in slab thickness, arising from the Nazca plate's age at the trench, produce a cordilleran morphology consistent with that observed. The age-dependent sinking of the slab in the mantle drives traction towards the trench at the base of the upper plate, causing it to thicken. Thus, subducting older Nazca plate below the Central Andes can explain the locally thickened crust and higher elevations. Here we demonstrate that resultant thickening of the South American plate modifies both shear force gradients and migration rates along the trench to produce a concave margin that matches the Bolivian orocline. Additionally, the varying forcing along the margin allows stress belts to form in the upper-plate interior, explaining the widening of the Central Andes and the different tectonic styles found on their margins, the Eastern and Western Cordilleras. The rise of the Central Andes and orocline formation are directly related to the local increase of Nazca plate age and an age distribution along the margin similar to that found today; the onset of these conditions only occurred in the Eocene epoch. This may explain the enigmatic delay of the Andean orogeny, that is, the formation of the modern Andes. PMID:22113613

  20. Subduction Processes Off Chile: Preliminary Geophysical Results of Sonne Cruise So-161(2+3)

    NASA Astrophysics Data System (ADS)

    Reichert, Chr.; Spoc Scientific Shipboard Party, The

    Within the scope of the multi-disciplinary SPOC project (Subduction Processes Off Chile) some 8.700 km were recently acquired using marine magnetic, gravity and swath bathymetric methods whereof 5.200 km were surveyed with multi-channel seismics, including three seismic lines with simultaneous onshore observations. The goal of the project is to identify the variety of subduction features and accompanying conditions along the Central Chile segment of the collision zone between the Nazca and S-American plates, i.e. between Coquimbo and Valdivia. An additional line was achieved just south of Chiloe Island entering the submerged Central Valley. The present status of data allows the following observations: the oceanic crust is seg- mented by features like the Juan Fernandez Ridge, the Mocha and Valdivia Fracture Zones, accumulations of seamounts and by distinct parallel fault patterns with various azimuths. From north to south the subduction-induced inclination of the oceanic crust toward the trench decreases while the trench proper widens and the margin slope an- gle increase significantly. In the north clearly extensional normal faulting occurs on the upper and middle slopes, very similar to that observed off North Chile where sub- duction erosion is active. While in the north no bottom simulating reflectors could be observed they occur in the south as local patches. The slope area in the south is over- printed by a faint lineation pattern with a dominant azimuth of some 120 degrees that neatly fits with a mapped pattern onshore with the same azimuth. The pronounced forearc basins in the south are often accompanied by outer arc highs and strikingly narrow accretionary wedges. The latter are in contrast with the high convergence rate of more than 8 cm/yr and the relatively thick trench filling of up to more than 2.000 m. Thus, a non-accretionary subduction type is suggested, here.

  1. Optimized trench MOSFET technologies for power devices

    NASA Astrophysics Data System (ADS)

    Shenai, Krishna

    1992-06-01

    An account is given of low-voltage silicon-trench power MOSFETs whose forward conductivities approach the silicon limit. Optimum device performance was obtained via trench-processing technology involving an improved reactive-ion etching process for the definition of scaled vertical Si trenches, as well as Si trench sidewall clearing to reduce surface damage and a novel polysilicon gate-planarization technique which employs a sequential oxidation/oxide etchback process. Measured performance is in excellent agreement with 2D simulations and analytical model calculation results.

  2. Trench Excavated By Viking 1 Surface Sampler

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This image, received today, shows the trench excavated by Viking 1 surface sampler. The trench was dug by extending the surface sampler collection head in a direction from lower right toward the upper left and then withdrawing the surface sampler collector head. Lumpy piles of material at end of trench at lower right was pulled by plowing from trench by the backhoe which will be used to dig trenches later in the mission. Area around trench has ripple marks produced by Martian wind. The trench which was dug early on Sol 8, is about 3 inches wide, 2 inches deep and 6 inches long. Steep dark crater walls show the grains of the Martian surface material stick together (have adhesion). The doming of the surface at far end of the trench show the granular material is dense. The Martian surface material behaves somewhat like moist sand on Earth. Evidence from the trench indicate a sample was collected and delivered to the experiments after repeated tries. The biology experiment level full indicator indicates a sample was received for analysis. The X-Ray fluorescence experiment has no indication to show it received a sample. The GCMS experiment level full indicator suggests no sample was received but this matter is being investigated.

  3. Subduction initiation at relic arcs

    NASA Astrophysics Data System (ADS)

    Leng, Wei; Gurnis, Michael

    2015-09-01

    Although plate tectonics is well established, how a new subduction zone initiates remains controversial. Based on plate reconstruction and recent ocean drilling within the Izu-Bonin-Mariana, we advance a new geodynamic model of subduction initiation (SI). We argue that the close juxtaposition of the nascent plate boundary with relic oceanic arcs is a key factor localizing initiation of this new subduction zone. The combination of thermal and compositional density contrasts between the overriding relic arc, and the adjacent old Pacific oceanic plate promoted spontaneous SI. We suggest that thermal rejuvenation of the overriding plate just before 50 Ma caused a reduction in overriding plate strength and an increase in the age contrast (hence buoyancy) between the two plates, leading to SI. The computational models map out a framework in which rejuvenated relic arcs are a favorable tectonic environment for promoting subduction initiation, while transform faults and passive margins are not.

  4. Subduction erosion and Quaternary lamprophyres in western Mexico

    NASA Astrophysics Data System (ADS)

    Cai, Y. M.; Savov, I.; Goldstein, S. L.; Langmuir, C. H.

    2008-12-01

    Ultra-potassic basalts and andesites (lamprophyres) have erupted contemporaneously with normal arc calc- alkaline magmas in western Mexico since the Pleistocene. The lamprophyres have the typical arc geochemical signatures such as low Nb/La and enriched fluid mobile elements (Ba, B, Rb, etc). Due to their high K content, Sr/Y and La/Yb, these rocks are long believed to be partial melts of phlogopite and apatite bearing "veins" embedded in the mantle that were created by fluids or melts from the subducting slab (e.g. Luhr 1997, Carmichael et. al. 1996, Vigouroux et. al. 2008). These studies also argue that the lamprophyres represent the "essence of subduction contribution" with little melt contribution from the depleted mantle wedge, while the normal arc calc-alkaline magmas preferentially sample the depleted mantle wedge. We tested this hypothesis using new trace element and Sr-Nd-Pb-Hf-B isotope compositions of calc-alkaline magmas and lamprophyres from the Colima Graben in western Mexico. The lamprophyres have 4 times higher LREE-MREE content than the calc-alkaline magmas but similar LREE/MREE. Their positive B isotope ratios and high Mg number argue against shallow level crustal assimilation. However their Sr-Nd-Hf-Pb isotope ratios reflect greater time-integrated incompatible element enrichment than the calc-alkaline lavas. Petrogenetic modeling suggest that partial melting of phlogopite bearing "veins" in the mantle wedge formed by addition of slab derived fluids cannot generate the trace element and isotope compositions of the lamprophyres. Addition of low degree sediment melt to the mantle wedge or ancient mantle "veins" created by slab derived partial melt during prior subduction events that generated Sierra Madre Occidental also fail to explain the geochemical signature of the lamprophyres. Instead, our results suggest that the geochemical signatures of the lamprophyres could be attributed to subduction erosion processes, which introduce metamorphosed crustal material into the mantle wedge during subduction. The lamprophyres from the Colima Graben can be modeled as partial melts of the mantle wedge plus high extent partial melts of lower crust material. Our results further suggest that less abundant ultra- potassic magmatism in central and eastern Mexico compared to western Mexico may be explained by the longer distance between the volcanic arc front and the trench eastward, which reduces the possibility for subduction erosional material to reach the mantle melting regime under the current volcanic front.

  5. Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur

    E-print Network

    Seno, Tetsuzo

    Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur Tetsuzo Seno Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan a b earthquake Asperity Scaling relation Pore fluid pressure ratio Seismic coupling I propose a hypothesis

  6. Digging in 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 44th Martian day of the mission, or Sol 43 (July 7, 2008), after the May 25, 2008, landing, showing the current sample scraping area in the trench informally called 'Snow White.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate starts in the middle or late part of the cycle, depending on position. This result suggests that the negligible or small contraction measured on the Shumagin Islands, Alaska, during 1980 to 1991, may not invalidate an interpretation of that region as being a moderately coupled subduction zone. In contrast, mantle relaxation causes only modest temporal nonuniformity of uplift rates in the overriding plate and of extensional stress rates in the subducting plate, even when the Maxwell time is an order of magnitude less than the recurrence interval.

  8. Subduction hinge migration: The backwards component of plate tectonics

    NASA Astrophysics Data System (ADS)

    Stegman, D.; Freeman, J.; Schellart, W.; Moresi, L.; May, D.

    2005-12-01

    There are approximately 50 distinct segments of subduction zones in the world, of which 40% have oceanic lithosphere subducting under oceanic lithosphere. All of these ocean-ocean systems are currently experiencing hinge-rollback, with the exception of 2 (Mariana and Kermadec). In hinge-rollback, the surface trace of the suduction zone (trench) is moving in the opposite direction as the plate is moving (i.e. backwards). Coincidentally, the fastest moving plate boundary in the world is actually the Tonga trench at an estimated 17 cm/yr (backwards). Although this quite important process was recognized soon after the birth of plate tectonic theory (Elsasser, 1971), it has received only a limited amount of attention (Garfunkel, 1986; Kincaid and Olson, 1987) until recently. Laboratory models have shown that having a three dimensional experiment is essential in order to build a correct understanding of subduction. We have developed a numerical model with the neccessary 3-D geometry capable of investigating some fundamental questions of plate tectonics: How does hinge-rollback feedback into surface tectonics and mantle flow? What can we learn about the forces that drive plate tectonics by studying hinge-rollback? We will present a quantatitive analysis of the effect of the lateral width of subduction zones, the key aspect to understanding the nature of hinge-rollback. Additionally, particular emphasis has been put on gaining intuition through the use of movies (a 3-D rendering of the numerical models), illustrating the time evolution of slab interactions with the lower mantle as seen in such fields as velocity magnitude, strain rate, viscosity, as well as the toroidal and poloidal components of induced flow. This investigation is well-suited to developing direct comparisons with geological and geophysical observations such as geodetically determined hinge retreat rates, geochemical and petrological observations of arc volcanics and back-arc ridge basalts, timing and distribution of metamorphic core complexes in backarc basins under extension, paleostress observables such surface movements and block rotations, observations of seismic anistropy determined by shear wave splitting, and the emerging studies of regional tomographic models of seismic anistropy.

  9. 3D P-wave velocity structure around the rupture area of the 2003 Tokachi-oki earthquake (Mw=8.0) in the margin of the Kuril trench

    NASA Astrophysics Data System (ADS)

    Machida, Y.; Takanami, T.; Murai, Y.; Shinohara, M.; Yamada, T.; Kanazawa, T.; Hirata, N.; Sakai, S.; Mochizuki, K.; Shiobara, H.; Hino, R.; Nishino, M.; Shimizu, H.; Uehira, K.; Kaneda, Y.; Suyehiro, K.; Watanabe, T.; Takahashi, N.; Sato, T.; Araki, E.; Mikada, H.; Uhira, K.

    2006-12-01

    We determined the three dimensional P-wave velocity structure in the rupture area of the 2003 Tokachi-oki earthquake (Mw=8.0) by using P-wave travel time data of the aftershocks and relocated the hypocenters simultaneously. In the area off the southeastern coast of Hokkaido, Japan, the large earthquakes occurred repeatedly because the Pacific plate is subducting beneath Hokkaido island in the North American plate. After Yamanaka and Kikuchi (2003), the 2003 Tokachi-oki earthquake re-ruptured the same asperity on September 26, 2003, as the 1952 Tokachi-oki earthquake (Mw=8.1). In order to investigate the aftershock activity in the rupture area, we deployed 47 Ocean Bottom Seismometers (OBSs) immediately after the main earthquake. By using the travel time data from the OBS network, the accurate aftershock distribution was obtained [Shinohara et al (2004), Yamada et al (2005)]. In this study, we picked P arrival times of the aftershocks selected carefully as the best data set for a seismic tomographic inversion. And then we estimated 3D P-wave velocity structure by applying the P travel time data to the simultaneous inversion method [Thurber (1983, 1993), Eberhart-Phillips (1986, 1990)]. Although we couldn't image the overall structure of the subducting Pacific plate because of the shallow seismicity, the subducting plate is imaged as velocity anomalies dipping toward northwest. It is suggested from the result of the hypocenters relocated in the consequence of the inversion that the dip angle of the subducting plate increases at around the distance of 100km from the trench axis. It is also suggested that the dip angle is larger at the northeastern part than the southwestern part of the study area. The fault slip distribution of the 2003 Tokachi-oki earthquake seems to be unrelated to the P-wave velocity (Vp) structure obtained here. In the meantime, S-wave velocity (Vs) structure was not obtained because of the ambiguous S-wave forms and the undefined S-wave arrival times due to the surficial unconsolidated sedimentary layers at the stations. Vp/Vs structure in the rupture area is considered to be related to the source process of the large earthquake. In order to obtain Vp/Vs structure, we need to merge the arrival data of the OBSs with those of the land stations to lessen influence of sedimentary layers.

  10. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  11. Overriding plate deformation and its energy dissipation in three-dimensional subduction models

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter; Duarte, Joao

    2015-04-01

    Analogue and numerical models of subduction have been used to investigate overriding plate deformation during subduction. However, most models either exclude an overriding plate or impose an external force/velocity. Here, we present three-dimensional buoyancy-driven laboratory subduction models including an overriding plate to study the progressive deformation of the overriding plate during subduction. Considering there is uncertainty in the effective viscosity ratio between the subducting plate and sub-lithospheric upper mantle (?SP/?UM), a variability in overriding plate thickness (TOP), and complexity of the far-field plate boundary conditions in natural subduction zones, we investigate models in which we vary ?SP/?UMfrom 157 to 560, TOP from 1.0 cm to 2.5 cm (scaling to 50-125 km in nature), and far-field plate boundary conditions of the overriding plate and subducting plate. Our results show that the variability of these three parameters has an influence on the patterns of overriding plate deformation. Furthermore, we have used the subduction models to quantify the force (FOPD) that drives overriding plate deformation and the involved energy dissipation rate (?OPD) during such deformation, and we compare them with the negative buoyancy (FBU) and the total potential energy release rate (?BU) of the subducted slab, respectively. In our models of narrow subduction zones (15 cm in experiment, scaling to 750 km in nature) the overriding plate always experiences overall extension during trench retreat. Overall, FOPD/FBU has average values of 0.5-2.5%, with a maximum of 5.0% and ?OPD/?BUhas average values of 0.10-0.30%, with a maximum of 0.70%, which indicate that only a small portion of the negative buoyancy of the subducted slab is used to deform the overriding plate and an even smaller percentage of the slab's potential energy is consumed during overriding plate deformation. In addition, our results show that 2-30% of the overriding plate energy dissipation is dissipated in the forearc region and 14-42% in the region of maximum backarc extension. Finally, our calculated force to deform overriding plate is of comparable magnitude as the ridge push force in nature.

  12. Back-arc strain in subduction zones: Statistical observations versus numerical modeling

    NASA Astrophysics Data System (ADS)

    Arcay, D.; Lallemand, S.; Doin, M.-P.

    2008-05-01

    Recent statistical analysis by Lallemand et al. (2008) of subduction zone parameters revealed that the back-arc deformation mode depends on the combination between the subducting (vsub) and upper (vup) plate velocities. No significant strain is recorded in the arc area if plate kinematics verifies vup = 0.5 vsub - 2.3 (cm/a) in the HS3 reference frame. Arc spreading (shortening) occurs if vup is greater (lower) than the preceding relationship. We test this statistical law with numerical models of subduction, by applying constant plate velocities far away from the subduction zone. The subducting lithosphere is free to deform at all depths. We quantify the force applied on the two converging plates to sustain constant surface velocities. The simulated rheology combined viscous (non-Newtonian) and brittle behaviors, and depends on water content. The influence of subduction rate vs is first studied for a fixed upper plate. After 950 km of convergence (steady state slab pull), the transition from extensional to compressive stresses in the upper plate occurs for vs ˜ 1.4 cm/a. The effect of upper plate velocity is then tested at constant subduction rate. Upper plate retreat (advance) with respect to the trench increases extension (compression) in the arc lithosphere and increases (decreases) the subducting plate dip. Our modeling confirms the statistical kinematic relationship between vsub and vup that describes the transition from extensional to compressive stresses in the arc lithosphere, even if the modeled law is shifted toward higher rates of upper plate retreat, using our set of physical parameters (e.g., 100 km thick subducting oceanic plate) and short-term simulations. Our results make valid the choice of the HS3 reference frame for assessing plate velocity influence on arc tectonic regime. The subduction model suggests that friction along the interplate contact and the mantle Stokes reaction could be the two main forces competing against slab pull for upper mantle subductions. Besides, our simulations show that the arc deformation mode is strongly time dependent.

  13. Middle Tertiary near-trench volcanism from ridge-trench collisions along west-central California: Implications from Nd, Sr-isotopic and REE data

    SciTech Connect

    Cole, R.B.; Basu, A.R. . Dept. of Geological Sciences)

    1992-01-01

    Early Miocene near-trench bimodal volcanism in the Santa Maria Province (SMP) of west-central California occurred when segments of the East Pacific Rise collided with a subduction zone along western North America. These ridge-trench interactions resulted in the transition from subduction to transform tectonic regimes along the California continental margin. The Nd, Sr-isotopic and trace element geochemical data for the SMP volcanic rocks indicate a depleted mantle (mid-ocean ridge basalt/MORB) source of magma. The basalts are mildly enriched in light rare earth elements (LREE) with La/Ce (n) = 0.9 to 1.2 and Ce/Yb (n) = 1.8 to 2.6. Basaltic andesites show moderate LREE enrichment with La/Ce (n) = 1.0 to 1.4 and Ce/Yb (n) = 2.2 to 3.4, and rhyolites/dacites exhibit strong LREE enrichment of La/Ce (n) = 1.1 to 1.3 and Ce/Yb (n) = 3.8 to 7.1. These data for the SMP volcanic rocks are analogous to MORB isotopic signatures from modern and young oceanic spreading ridges, including the East Pacific Rise, and indicate a MORB source of magma. This magma erupted to form basalts and also assimilated and partially melted local Jurassic-Cretaceous sedimentary and metasedimentary basement rocks to form rhyolites and dacites. The data indicates that SMP volcanism occurred when a depleted mantle reservoir of MORB was juxtaposed beneath the continental margin with the approach of the East Pacific Rise and was rapidly erupted during a phase of crustal extension/transtension and basin development. The results of this study clearly document that mid-ocean ridge and trench interactions can provide a unique tectonomagmatic setting for plate margin volcanism.

  14. Could a Sumatra-like megathrust earthquake occur in the south Ryukyu subduction zone?

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Yi; Sibuet, Jean-Claude; Hsu, Shu-Kun; Wu, Wen-Nan

    2014-12-01

    A comparison of the geological and geophysical environments between the Himalaya-Sumatra and Taiwan-Ryukyu collision-subduction systems revealed close tectonic similarities. Both regions are characterized by strongly oblique convergent processes and dominated by similar tectonic stress regimes. In the two areas, the intersections of the oceanic fracture zones with the subduction systems are characterized by trench-parallel high free-air gravity anomaly features in the fore-arcs and the epicenters of large earthquakes were located at the boundary between the positive and negative gravity anomalies. These event distributions and high-gravity anomalies indicate a strong coupling degree of the intersection area, which was probably induced by a strong resistance of the fracture features during the subduction. Moreover, the seismicity distribution in the Ryukyu area was very similar to the pre-seismic activity pattern of the 2004 Sumatra event. That is, thrust-type earthquakes with a trench-normal P-axis occurred frequently along the oceanward side of the mainshock, whereas only a few thrust earthquakes occurred along the continentward side. Therefore, the aseismic area located west of 128°E in the western Ryukyu subduction zone could have resulted from the strong plate locking effect beneath the high gravity anomaly zone. By analogy with the tectonic environment of the Sumatra subduction zone, the occurrence of a potential Sumatra-like earthquake in the south Ryukyu arc is highly likely and the rupture will mainly propagate continentward to fulfill the region of low seismicity (approximately 125° E to 129° E; 23° N to 26.5° N), which may generate a hazardous tsunami.

  15. Postseismic deformation after Maule earthquake and the mechanical properties of the asthenosphere and subduction interface

    NASA Astrophysics Data System (ADS)

    Klein, Emilie; Fleitout, Luce; Vigny, Christophe

    2015-04-01

    The interseismic and postseismic deformations preceding and following the large subduction earthquake of Maule (Chile, Mw8.8, 2010) have been closely monitored with GPS from 70 km up to 2000 km away from the trench. Post-seismic deformations exhibit a behavior generally similar to that already observed after the Aceh and Tohoku-Oki earthquakes: vertical uplift is observed on the oceanward side of the volcanic arc. A moderate large scale subsidence is associated with sizeable horizontal deformation in the far-field (500-2000km from the trench). In addition, near-field data (70-200km from the trench) feature a rather complex deformation pattern. A 3D FE code (Zebulon Zset) is used to relate these deformations to the mechanical properties of the mantle and of the subduction interface. The mesh features a spherical shell-portion from the core-mantle boundary to the Earth's surface, extending over more than 60 degrees in latitude and longitude. The overridding and subducting plates are elastic, and the asthenosphere is viscoelastic. We test the presence and shape of two low viscosity areas in the mantle : a low viscosity wedge (LVW) above the subducting plate extending beneath the volcanic arc, and a narrow low viscosity channel (LVCh) along the lower part of the subduction interface, and potentially deeper. All the viscoelastic regions feature a Burgers rheology and we invert for their mechanical properties and geometrical characteristics. Our best fitting models present, (i) an asthenosphere extending down to 270km, with a 'long-term' viscosity of the order of 3.1018Pa.s; (ii) a LVCh along the plate interface extending from depths of 50 to 150 km with viscosities slightly below 1018 Pa.s; (iii) a LVW restricted to the base of the lithosphere below the volcanic arc, with viscosities of a few 1018 Pa.s. Increased horizontal velocities are due to relaxation in both the asthenosphere and the LVCh. A deep channel is necessary to produce enough uplift in the middle-field (200-500km from the trench). Some additional slip on the plate interface, at shallow depth, is also necessary to explain all the characteristics of the near-field displacements.

  16. Sediment and Rock Samples Recovered from the Challenger Deep, Southern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Fryer, P. B.

    2013-12-01

    Sediments collected with push cores during Nereus hybrid-ROV traverses within the trench axis of the Challenger Deep were squeezed onboard ship (R/V Kilo Moana) to extract pore fluids. The squeeze-cakes were analyzed by XRD, SEM, Raman spectroscopy and electron microprobe. The analysis reveals an assemblage of clays, and volcanic ash that contains plagioclase, clino-pyroxene, opaques and, glass. Chlorite is present as are hydrated iron oxides and fragments of diatoms. The sediment is predominantly very fine-grained and video from both the Nereus traverses across the Challenger Deep in 2009 and from the Deepsea Challenger submersible dive by James Cameron in 2012 indicate recent resurfacing of the trench axis. This is consistent with the high degree of deformation and frequency of earthquakes in the southern Mariana forearc north of the trench. An apron of self-derived talus blankets the lower part of the inner trench slope and fines from submarine landslides are the likely source of the trench axis sediment. Rock samples collected using Nereus from deep (10,879 m) on the incoming plate south of the Challenger Deep are partially altered microgabbros with interstitial glass containing microtubules similar to those observed in a variety of marine settings in lavas and hypabyssal igneous rocks. The tubules are presumed to be caused by tunneling of lithoautotrophic microbes into the glass. The rocks were collected from a site at the base of a fault scarp where large columnar-jointed blocks are draped with sediment. The igneous basement of the subducting plate south of the Challenger Deep is, as yet, undated, but it may be younger than the Jurassic Pacific Plate subducting beneath the southeastern Mariana forearc. There is the suggestion of a boundary between and the Pacific Plate and the shallower sea floor (Caroline plate?) subducing beneath the southernmost arm of the Mariana Trench. Early interpretations by Hegarty and Weissel (1988) and more recently by Lee (2004) are that the chain of seamounts striking NNW, colinear with the Lyra Trough, might mark such a boundary. Age dating of the microgabbro recovered with Nereus should help to solve this question.

  17. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington

    SciTech Connect

    Goedert, J.L. ); Squires, R.L. )

    1990-12-01

    Densely populated communities of soft-bottom-dwelling taxa similar to those found today along subduction zones off the coasts of Japan and Oregon have been discovered in very localized deep-water limestones of late middle to late Eocene age along the southwestern margin of Washington. Subduction was prevalent in this area during this time, and compressive forces squeezed subsurface methane-rich waters onto the ocean floor, where opportunistic bivalves (especially Modiolus, Calyptogena, and Thyasira), vestimentiferan tube worms, serpulid tube worms, siliceous sponges, very small limpets, trochid and turbinid archaeogastropods, and other macrobenthos colonized. These assemblages are the earliest recorded biologic communities formed in response to methane seeps in subduction zones.

  18. Shallow velocity structure of the Alaska Peninsula subduction zone and implications for controls on seismic behavior

    NASA Astrophysics Data System (ADS)

    Li, J.; Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike variations in the seismic behavior of subduction zone megathrust faults are thought to be strongly controlled by changes in the material properties along the plate boundary. Roughness and hydration of the incoming plate, fluid pressure and lithology in the subducting sediment channel are likely to control the distribution of shallower rupture. Here, we focus on the subduction zone offshore of the Alaska Peninsula. In 2011, the ALEUT program acquired deep penetration multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data across the apparently freely sliding Shumagin Gap, the locked Semidi segment that last ruptured in 1938 M8.2 earthquake, and the locked western Kodiak asperity, which ruptured in the 1964 M9.2 earthquake. Seismic reflection data from the ALEUT cruise reveal significant variability in the thickness of sediment on the incoming plate and entering the trench, and the roughness and degree of hydration of the incoming plate. Oceanic crust entering the trench in the Shumagin gap is rugged with extensive faults and only a thin layer of sediment (<0.5 km thick). Farther east in the Semidi segment, the subducting plate has a smoother surface with thicker sediments (~1 km thick) and less faulting/hydration. To better constrain the properties of the accretionary prism and shallow part of the plate boundary, we are undertaking travel time tomography using reflection/refraction phases in OBS and MCS data, and constraints on the interface geometry from MCS images to estimate the detailed shallow velocity structure, with particular focus on properties within the shallow subduction channel. We observe refractions and reflections in OBS data from the shallow part of the subduction zone in both the Shumagin Gap and Semidi segment, including reflections off the top and base of what appears to be a layer of subducting sediment, which can be used for this work. We plan to present initial models of the shallow part of the subduction zone from both segments and discuss comparisons between the two.

  19. Mesozoic spreading kinematics: consequences for Cenozoic Central and Western Mediterranean subduction

    NASA Astrophysics Data System (ADS)

    Capitanio, F. A.; Goes, S.

    2006-06-01

    The highly complex tectonics of Central and Western Mediterranean subduction are well documented, but there is significant debate about the responsible dynamics. The motions of the main plates, Africa including Adria, Europe and Iberia, imposed initial and boundary conditions on the evolution of subduction that are often not considered. To quantitatively evaluate these conditions, we make a set of reconstructions from Mesozoic opening through Cenozoic closing of the Alpine Tethys, using main-plate kinematic data from several authors. Geologic and tectonic information are only added to constrain the location of the break-up boundary and a single plate-margin rearrangement at the end of the opening phase. Otherwise, the plates remain undeformed. This rigid-plate approach illustrates the context in which surface deformation and subduction occurred and provides estimates (with uncertainties) of the amount of material that should be accounted for in orogens or documented seismically in the mantle. Full tectonic reconstructions should satisfy such constraints. Opening led to alternating domains of predominantly oceanic lithosphere formed by normal spreading and domains dominated by transform motion, floored mainly by extended continental lithosphere. The transform domain structures provide logical decoupling zones to allow Penninic, Ligurian and Pyrenean basins to start subducting independently. The complex buoyancy in the transform domain linking Ligurian and Penninic basins, and obliquity between directions of opening and closing may account for a number of the oceanic basins and continental slivers often invoked to explain Alpine geology. The significant proportion of continental lithosphere in the Alboran would have favoured delamination of mantle lithosphere over subduction. The almost completely subducted Penninic slab obstructed subduction of the Ligurian domain in the direction of Africa-Europe convergence, possibly forcing the rollback of the Appeninic/Calabrian trench.

  20. Mid-mantle seismic anisotropy patterns around subduction zones predicted by numerical modelling