Science.gov

Sample records for japonica rice cultivars

  1. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars.

    PubMed

    Yan, Jiali; Wang, Peitong; Wang, Peng; Yang, Meng; Lian, Xingming; Tang, Zhong; Huang, Chao-Feng; Salt, David E; Zhao, Fang Jie

    2016-09-01

    Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non-functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380(th) position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root-to-shoot Cd translocation and a shift in root Cd speciation from Cd-S to Cd-O bonding determined by synchrotron X-ray absorption spectroscopy. Our study has identified a new loss-of-function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain. PMID:27038090

  2. LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11.

    PubMed

    Zhang, Guang-Heng; Li, Shu-Yu; Wang, Li; Ye, Wei-Jun; Zeng, Da-Li; Rao, Yu-Chun; Peng, You-Lin; Hu, Jiang; Yang, Yao-Long; Xu, Jie; Ren, De-Yong; Gao, Zhen-Yu; Zhu, Li; Dong, Guo-Jun; Hu, Xing-Ming; Yan, Mei-Xian; Guo, Long-Biao; Li, Chuan-You; Qian, Qian

    2014-08-01

    The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the source-sink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resembling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety. PMID:24795339

  3. Identification of SNPs in closely-related temperate japonica rice cultivars using restriction enzyme-phased sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very low polymorphism in the germplasm typically used by breeding programs poses a significant bottleneck with regarding to molecular breeding and the exploitation of breeding materials for quantitative trait analyses. California rice varieties, derived from a very small base of temperate japonica g...

  4. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage.

    PubMed

    Zhang, Changquan; Zhou, Lihui; Zhu, Zhengbin; Lu, Huwen; Zhou, Xingzhong; Qian, Yiting; Li, Qianfeng; Lu, Yan; Gu, Minghong; Liu, Qiaoquan

    2016-05-25

    Temperature during the growing season is a critical factor affecting grain quality. High temperatures at grain filling affect kernel development, resulting in reduced yield, increased chalkiness, reduced amylose content, and poor milling quality. Here, we investigated the grain quality and starch structure of two japonica rice cultivars with good sensory properties grown at different temperatures during the filling stage under natural field conditions. Compared to those grown under normal conditions, rice grains grown under hot conditions showed significantly reduced eating and cooking qualities, including a higher percentage of grains with chalkiness, lower protein and amylose contents, and higher pasting properties. Under hot conditions, rice starch contained reduced long-chain amylose (MW 10(7.1) to 10(7.4)) and significantly fewer short-chain amylopectin (DP 5-12) but more intermediate- (DP 13-34) and long- (DP 45-60) chain amylopectin than under normal conditions, as well as higher crystallinity and gelatinization properties. PMID:27128366

  5. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  6. Rice tungro spherical virus resistance into photoperiod-insensitive japonica rice by marker-assisted selection.

    PubMed

    Shim, Junghyun; Torollo, Gideon; Angeles-Shim, Rosalyn B; Cabunagan, Rogelio C; Choi, Il-Ryong; Yeo, Un-Sang; Ha, Woon-Goo

    2015-09-01

    Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia. PMID:26366118

  7. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events. PMID:25300839

  8. Differentiation of rice cultivar for grain arsenic content associated with soil and water management in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduction of arsenic (As) in rice grains play an important role in improvement of food quality and minimization of any potential risk from dietary exposure. Twenty-one worldwide cultivars including both indica and japonica subspecies were grown under two water treatments, saturated soil and consiste...

  9. Golden Indica and Japonica rice lines amenable to deregulation.

    PubMed

    Hoa, Tran Thi Cuc; Al-Babili, Salim; Schaub, Patrick; Potrykus, Ingo; Beyer, Peter

    2003-09-01

    As an important step toward free access and, thus, impact of GoldenRice, a freedom-to-operate situation has been achieved for developing countries for the technology involved. Specifically, to carry the invention beyond its initial "proof-of-concept" status in a Japonica rice (Oryza sativa) cultivar, we report here on two transformed elite Indica varieties (IR64 and MTL250) plus one Japonica variety Taipei 309. Indica varieties are predominantly consumed in the areas with vitamin A deficiency. To conform with regulatory constraints, we changed the vector backbone, investigated the absence of beyond-border transfer, and relied on Agrobacterium tumefaciens-mediated transformation to obtain defined integration patterns. To avoid an antibiotic selection system, we now rely exclusively on phosphomannose isomerase as the selectable marker. Single integrations were given a preference to minimize potential epigenetic effects in subsequent generations. These novel lines, now in the T(3) generation, are highly valuable because they are expected to more readily receive approval for follow-up studies such as nutritional and risk assessments and for breeding approaches leading to locally adapted variety development. PMID:12970483

  10. Important sensory properties differentiating premium rice cultivars.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rice-consuming countries worldwide, specific cultivars are recognized as premium, “gold standard” cultivars, while others are recognized as being superior, but not the best. It has been difficult to ascertain whether preferences for premium rice cultivars are driven by discernable differences in...

  11. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  12. Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes

    PubMed Central

    2014-01-01

    Background Rice is considered a short day plant. Originally from tropical regions rice has been progressively adapted to temperate climates and long day conditions in part by modulating its sensitivity to day length. Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1) that code for florigens, are known as major regulatory genes of floral transition in rice. Both Hd3a and RFT1 are regulated by Early heading date 1 (Ehd1) and Days to heading on chromosome 2 (DTH2) while Heading date 1 (Hd1) also governs Hd3a expression. To investigate the mechanism of rice adaptation to temperate climates we have analyzed the natural variation of these five genes in a collection of japonica rice representing the genetic diversity of long day cultivated rice. Results We have investigated polymorphisms of Hd3a, RFT1, Ehd1, Hd1 and DTH2 in a collection of 57 japonica varieties. Hd3a and RFT1 were highly conserved, displaying one major allele. Expression analysis suggested that RFT1 rather than Hd3a could be the pivotal gene controlling flowering under long day conditions. While few alleles were found in the Ehd1 promoter and DTH2 coding region, a high degree of variation in Hd1, including non-functional alleles, was observed. Correlation analysis between gene expression levels and flowering periods suggested the occurrence of other factors, additionally to Ehd1, affecting RFT1 regulation in long day adapted cultivars. Conclusions During domestication, rice expansion was accompanied by changes in the regulatory mechanism of flowering. The existence of non-functional Hd1 alleles and the lack of correlation of their presence with flowering times in plants grown under long day conditions, indicate a minor role of this branch in this process and the existence of an alternative regulatory pathway in northern latitudes. Expression analysis data and a high degree of conservation of RFT1 suggested that this gene could be the main factor regulating flowering among japonica cultivars

  13. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress*

    PubMed Central

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-01-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures. PMID:26642184

  14. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  15. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release

    PubMed Central

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS*), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS* expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha−1. To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS* also can be a promising candidate gene in other species for developing glyphosate-tolerant crops. PMID:27625652

  16. Study on creep properties of Japonica cooked rice and its relationship with rice chemical compositions and sensory evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creep properties of four varieties japonica cooked rice were tested using a Dynamic Mechanical Analyser (DMA Q800). The creep curve was described by Burgers model. The creep process of japonica cooked rice mainly consisted of retarded elastic deformation, epsilonR and viscous flow deformation, epsil...

  17. Complexity of indica-japonica varietal differentiation in Bangladesh rice landraces revealed by microsatellite markers

    PubMed Central

    Wang, Mumu; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Fu, Yongcai; Sun, Chuanqing; Cai, Hongwei

    2013-01-01

    To understand the genetic diversity and indica-japonica differentiation in Bangladesh rice varieties, a total of 151 accessions of rice varieties mostly Bangladesh traditional varieties including Aus, Boro, broadcast Aman, transplant Aman and Rayada varietal groups were genotyped using 47 rice nuclear SSRs. As a result, three distinct groups were detected by cluster analysis, corresponding to indica, Aus and japonica rice. Among deepwater rice varieties analyzed some having particular morphological features that mainly corresponded to the japonica varietal group. Some small seeded and aromatic varieties from Bangladesh also corresponded to the japonica varietal group. This research for the first time establishes that the japonica varietal group is a prominent component of traditional varieties in Bangladesh, particularly in deepwater areas. PMID:23853518

  18. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica

    PubMed Central

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-01-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties. PMID:25054108

  19. KINETIC PROPERTIES OF MALIC DEHYDROGENASE FROM THREE CULTIVARS OF RICE

    EPA Science Inventory

    Temperature induced changes in the kinetics of the enzyme malic dehydrogenase (MON) were investigated in three cultivars of rice(Oryza sativa L.). Cultivars, included IR74, SWAT2, and N22. Plants were grown in a controlled environment chamber for 29 days, at 31 degrees C day/25 d...

  20. Development of Japonica mapping populations to validate GWAS in the rice diversity panel 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to validate associations identified in the Rice Diversity Panel 1 (RDP1) between SNP markers and 34 phenotypic traits, four bi-parental recombinant inbred line (RIL) populations were developed from Oryza sativa L. ssp. japonica accessions that were phenotypically and genotypically diverse. ...

  1. Registration of a rice gene mapping population of Lemont X Jasmine 85 recombinant inbred lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mapping population developed from a cross of rice (Oryza sativa L.) tropical japonica cultivar ‘Lemont’ and indica cultivar ‘Jasmine 85’ was developed to facilitate genetic studies for important agronomic traits. The indica- and japonica-based rice recombinant inbred line (RIL) mapping population ...

  2. Comparative analysis of seed transcriptomes of ambient ozone-fumigated 2 different rice cultivars.

    PubMed

    Cho, Kyoungwon; Shibato, Junko; Kubo, Akihiro; Kohno, Yoshihisa; Satoh, Kouji; Kikuchi, Shoshi; Sarkar, Abhijit; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-11-01

    High ozone (O3) concentrations not only damage plant life but also cause considerable losses in plant productivity. To screen for molecular factors usable as potential biomarkers to identify for O3-sensitive and -tolerant lines and design O3 tolerant crops, our project examines the effects of O3 on rice, using high-throughput omics approaches. In this study, we examined growth and yield parameters of 4 rice cultivars fumigated for a life-time with ambient air (mean O3: 31.4-32.7 ppb) or filtered air (mean O3: 6.6-8.3 ppb) in small open-top chambers (sOTCs) to select O3-sensitive (indica cv Takanari) and O3-tolerant (japonica cv Koshihikari) cultivars for analysis of seed transcriptomes using Agilent 4 × 44K rice oligo DNA chip. Total RNA from dry mature dehusked seeds of Takanari and Koshihikari cultivars was extracted using a modified protocol based on cethyltrimethylammonium bromide extraction buffer and phenol-chloroform-isoamylalcohol treatment, followed by DNA microarray analysis using the established dye-swap method. Direct comparison of Koshihikari and Takanari O3 transcriptomes in seeds of rice plants fumigated with ambient O3 in sOTCs successfully showed that genes encoding proteins involved in jasmonic acid, GABA biosynthesis, cell wall and membrane modification, starch mobilization, and secondary metabolite biosynthesis are differently regulated in sensitive cv Takanari and tolerant cv Koshihikari. MapMan analysis further mapped the molecular factors activated by O3, confirming Takanari is rightly classified as an O3 sensitive genotype. PMID:24025514

  3. Comparative analysis of seed transcriptomes of ambient ozone-fumigated 2 different rice cultivars

    PubMed Central

    Cho, Kyoungwon; Shibato, Junko; Kubo, Akihiro; Kohno, Yoshihisa; Satoh, Kouji; Kikuchi, Shoshi; Sarkar, Abhijit; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-01-01

    High ozone (O3) concentrations not only damage plant life but also cause considerable losses in plant productivity. To screen for molecular factors usable as potential biomarkers to identify for O3-sensitive and -tolerant lines and design O3 tolerant crops, our project examines the effects of O3 on rice, using high-throughput omics approaches. In this study, we examined growth and yield parameters of 4 rice cultivars fumigated for a life-time with ambient air (mean O3: 31.4–32.7 ppb) or filtered air (mean O3: 6.6–8.3 ppb) in small open-top chambers (sOTCs) to select O3-sensitive (indica cv Takanari) and O3-tolerant (japonica cv Koshihikari) cultivars for analysis of seed transcriptomes using Agilent 4 × 44K rice oligo DNA chip. Total RNA from dry mature dehusked seeds of Takanari and Koshihikari cultivars was extracted using a modified protocol based on cethyltrimethylammonium bromide extraction buffer and phenol-chloroform-isoamylalcohol treatment, followed by DNA microarray analysis using the established dye-swap method. Direct comparison of Koshihikari and Takanari O3 transcriptomes in seeds of rice plants fumigated with ambient O3 in sOTCs successfully showed that genes encoding proteins involved in jasmonic acid, GABA biosynthesis, cell wall and membrane modification, starch mobilization, and secondary metabolite biosynthesis are differently regulated in sensitive cv Takanari and tolerant cv Koshihikari. MapMan analysis further mapped the molecular factors activated by O3, confirming Takanari is rightly classified as an O3 sensitive genotype. PMID:24025514

  4. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies

    PubMed Central

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  5. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    PubMed

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  6. Indica and Japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding linkage block size and molecular mechanisms of recombination suppression is important for plant breeding. Previously large linkage blocks ranging from 14 megabases to 27 megabases were observed around the rice blast resistance gene Pi-ta in rice cultivars and backcross progeny involvi...

  7. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines

    PubMed Central

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-01-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs. PMID:27246799

  8. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines.

    PubMed

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-01-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs. PMID:27246799

  9. Identification of Drought Tolerance Markers in a Diverse Population of Rice Cultivars by Expression and Metabolite Profiling

    PubMed Central

    Degenkolbe, Thomas; Do, Phuc T.; Kopka, Joachim; Zuther, Ellen; Hincha, Dirk K.; Köhl, Karin I.

    2013-01-01

    Rice provides about half of the calories consumed in Asian countries, but its productivity is often reduced by drought, especially when grown under rain-fed conditions. Cultivars with increased drought tolerance have been bred over centuries. Slow selection for drought tolerance on the basis of phenotypic traits may be accelerated by using molecular markers identified through expression and metabolic profiling. Previously, we identified 46 candidate genes with significant genotype × environment interaction in an expression profiling study on four cultivars with contrasting drought tolerance. These potential markers and in addition GC-MS quantified metabolites were tested in 21 cultivars from both indica and japonica background that varied in drought tolerance. Leaf blades were sampled from this population of cultivars grown under control or long-term drought condition and subjected to expression analysis by qRT-PCR and metabolite profiling. Under drought stress, metabolite levels correlated mainly negatively with performance parameters, but eight metabolites correlated positively. For 28 genes, a significant correlation between expression level and performance under drought was confirmed. Negative correlations were predominant. Among those with significant positive correlation was the gene coding for a cytosolic fructose-1,6-bisphosphatase. This enzyme catalyzes a highly regulated step in C-metabolism. The metabolic and transcript marker candidates for drought tolerance were identified in a highly diverse population of cultivars. Thus, these markers may be used to select for tolerance in a wide range of rice germplasms. PMID:23717458

  10. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution.

    PubMed

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-05-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  11. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn

    2015-01-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  12. Screening Rice Cultivars for Resistance to Bacterial Leaf Blight.

    PubMed

    Fred, Agaba Kayihura; Kiswara, Gilang; Yi, Gihwan; Kim, Kyung-Min

    2016-05-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defenserelated genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals. PMID:26869604

  13. Gene expression profiling of flag leaves at the booting stage in the japonica hybrid rice Huayou14 and its parental lines by microarray.

    PubMed

    Huangwei, Chu; Fuan, Niu; Can, Cheng; Jihua, Zhou; Xinqi, Wang; Xiaojin, Luo; Qin, Yuan; Liming, Cao

    2015-09-01

    Gene expression profiling using microarray has contributed significantly to heterosis studies. Using the Affymetrix rice genome array, we investigated gene expression profiles in the flag leaves of the japonica hybrid rice Huayou14 and its parental cultivars Shen9A and Fan14 at the booting stage. A total of 2057 genes differentially expressed (fold change ≥2 or ≤0.5) between Huayou14 and its parents were identified. Functional classification of the differentially expressed genes by Gene Ontology (GO) analysis indicated the differentially expressed genes were significantly enriched in photosynthesis-related cellular component categories (e.g. photosystem Ⅰ, chloroplast membrane and chloroplast envelope), and biological process categories (e.g. chlorophyll catabolic, chlorophyll biosynthetic and carotenoid biosynthetic processes). These results suggest that the changes in the photosynthetic ability of the japonica hybrid rice Huayou14 may be related to heterosis. Metabolic pathway analysis indicated that differentially expressed genes were significantly enriched in photosynthesis-antenna proteins and starch and sucrose metabolic pathways, instead of photosynthesis and carbon fixation pathways as reported previously. These results suggest that different genes or metabolic pathways might contribute to the heterosis of different hybrid combinations. PMID:26399533

  14. Utilizing the genetic diversity within rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeding of rice emphasizes improvement in yield, disease resistance, and milling quality. Numerous other traits (e.g., bran carotenoids) that historically have not been selected for could provide added value in expanding niche markets, as well as be useful tools for understanding the genetic ...

  15. Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars.

    PubMed

    Wu, Liqin; Ma, Ke; Lu, Yahai

    2009-01-01

    The diversity and function of nitrogen-fixing bacteria colonizing rice roots are not well understood. A field experiment was conducted to determine the diversity of diazotrophic communities associated with roots of modern rice cultivars using culture-independent molecular analyses of nitrogenase gene (nifH) fragments. Experimental treatments included four modern rice cultivars (Oryza sativa, one Indica, one Japonica and two hybrid rice varieties) and three levels (0, 50, and 100 kg N ha(-1)) of N (urea) fertilizer application. Cloning and sequencing of 103 partial nifH genes showed that a diverse community of diazotrophs was associated with rice roots. However, the nifH gene fragments belonging to betaproteobacteria were dominant, accounting for nearly half of nifH sequences analyzed across the clone libraries. Most of them were similar to nifH fragments retrieved from wild rice and Kallar grass, with Azoarcus spp. being the closest cultured relatives. Alphaproteobacteria were also detected, but their relative abundance in the nifH gene pools was dramatically decreased with N fertilizer application. In addition, a high fraction of nifH gene pools was affiliated with methylotrophs and methane oxidizers. The sequence analysis was consistent with the terminal restriction fragment-length polymorphism (T-RFLP) fingerprinting of the nifH gene fragments, which showed three of four dominant terminal restriction fragments were mainly related to betaproteobacteria based on in silico digestion of nifH sequences. T-RFLP analyses also revealed that the effects of N fertilizer on the nifH gene diversity retrieved from roots varied according to rice cultivars. In summary, the present study revealed the prevalence of betaproteobacterial sequences among the proteobacteria associated with roots of modern rice cultivars. This group of diazotrophs appeared less sensitive to N fertilizer application than diazotrophic alphaproteobacteria. Furthermore, methylotrophs may also play a role

  16. Effect of organic materials and rice cultivars on methane emission from rice field.

    PubMed

    Khosa, Maninder Kaur; Sidhu, B S; Benbi, D K

    2010-05-01

    A field experiment was conducted for two years on a sandy loam (Typic Ustochrept) soil of Punjab to study the effect of organic materials and rice cultivars on methane emission from rice fields. The methane flux varied between 0.04 and 0.93 mg m(-2) hr(-1) in bare soil and transplanting of rice crop doubled the methane flux (0.07 to 2.06 mg m(-2) hr(-1)). Among rice cultivars, significantly (p < 0.05) higher amount of methane was emitted from Pusa 44 compared to PR 118 and PR 111. Application of organic materials enhanced methane emission from rice fields and resulted in increased soil organic carbon content. The greatest seasonal methane flux was observed in wheat straw amended plots (229.6 kg ha(-1)) followed by farmyard manure (111.6 kg ha(-1)), green manure (85.4 kg ha(-1)) and the least from rice straw compost amended plots (36.9 kg ha(-1)) as compared to control (21.5 kg ha(-1)). The differential effect of organic materials in enhancing methane flux was related to total carbon or C:N ratio of the material. The results showed that incorporation of humified organic matter such as rice straw compost could minimize methane emission from rice fields with co-benefits of increased soil fertility and crop productivity. PMID:21046997

  17. A genome-wide microsatellite polymorphism database for the indica and japonica rice.

    PubMed

    Zhang, Zhonghua; Deng, Yajun; Tan, Jun; Hu, Songnian; Yu, Jun; Xue, Qingzhong

    2007-02-28

    Microsatellite (MS) polymorphism is an important source of genetic diversity, providing support for map-based cloning and molecular breeding. We have developed a new database that contains 52 845 polymorphic MS loci between indica and japonica, composed of ample Class II MS markers, and integrated 18 828 MS loci from IRGSP and genetic markers from RGP. Based on genetic marker positions on the rice genome (http://rise.genomics.org.cn/rice2/index.jsp ), we determined the approximate genetic distances of these MS loci and validated 100 randomly selected markers experimentally with 90% success rate. In addition, we recorded polymorphic MS positions in indica cv. 9311 that is the most important paternal parent of the two-line hybrid rice in China. Our database will undoubtedly facilitate the application of MS markers in genetic researches and marker-assisted breeding. The data set is freely available from www.wigs.zju.edu.cn/achievment/polySSR. PMID:17452422

  18. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm

    PubMed Central

    Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S

    2014-01-01

    Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments. PMID:24326293

  19. Changes in Physicochemical, Structural, and Sensory Properties of Irradiated Brown Japonica Rice during Storage.

    PubMed

    Chen, Yinji; Jiang, Weixin; Jiang, Zhongqing; Chen, Xia; Cao, Jun; Dong, Wen; Dai, Bingye

    2015-05-01

    Brown japonica rice was treated with (60)Co γ irradiation at doses of 0, 0.2, 0.5, 1.0, and 2.0 kGy immediately after harvesting. The effects of irradiation on physicochemical, structural, and sensory properties during long-term storage (18 months) were investigated. The study revealed that the pasting properties, including peak, through, breakdown, final, and setback viscosities, decrease considerably in a dose-dependent manner and vary differently during 18 months of storage. Irradiation reduced the free fatty acid (FFA) content in comparison with unirradiated brown rice with long-term storage (from 12 to 18 months). Scanning electron microscope (SEM) observation showed that the mean range and shape of starch granules did not vary significantly. However, dark spots developed among starch granules and the narrow cracks became wider with increasing irradiation dose and storage time. During sensory evaluation, extremely low scores for odor and overall acceptability were obtained for medium-dose irradiated rice (1.0 and 2.0 kGy); however, no significant difference was found in acceptability between low-dose irradiated rice (0.2 and 0.5 kGy) and the control rice (0 kGy). Overall, low-dose (0.5 kGy or below) irradiation seems to be a promising alternative treatment to increase brown rice shelf life, without affecting the physicochemical and structural characteristics and sensory acceptability. PMID:25879171

  20. [Effects of spacing on the yields and canopy structure of japonica rice at full heading stage].

    PubMed

    Li, Xiao-peng; Wang, Shu; Huang, Yuan-cai; Jia, Bao-yan; Wang, Yan; Zeng, Qun-yun

    2015-11-01

    With three panicle types of rice varieties and hybrids in Liaoning as entries, the effects of spacing of Japonica rice on light interception capacity, population light distribution, light conversion efficiency at full heading stage and yield were studied. The results showed that the leaf area indices at full heading stage, closely related to light interception, increased first and then decreased with the decrease of transplanting density. The extinction coefficient in one day increased first and then decreased, and the K value increased with the increase of planting density. Yield was positively correlated with canopy extinction coefficient and inclinations of the upper three leaves. In terms of energy efficiency, the yields were positively correlated to flag leaf stomatal conductance, intercellular CO2 concentration and transpiration rate. At the configuration of high (15 cm x 25 cm) and low (20 cm x 30 cm and 20 cm x 35 cm) densities, Japonica rice could increase light interception capability and optical conversion efficiency, but could not obtain high and stable yields due to limitation by lodging and panicles of per unit area, respectively. At the configurations of 15 cm x 30 cm and 20 cm x 25 cm, it was easy to get adequate panicles, optimize the structure of the canopy, reduce lodging risk, and obtain high yield. PMID:26915187

  1. A MULTI-YEAR COMPARISON OF RICE-BARNYARDGRASS ROOT INTERACTIONS IN WEED SUPPRESSIVE AND NON-SUPPRESSIVE RICE CULTIVARS USING STABLE 13C ISOTOPE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed-suppressive (primarily indica-based) rice cultivars can aid with the control of barnyardgrass (Echinochloa crus-galli) more effectively than do traditional long-grain rice cultivars in drill-seeded rice systems in the southern U.S. In earlier tests, weed-suppressive cultivars often have reduce...

  2. Comparative analysis of the 100 kb region containing the Pi-k(h) locus between indica and japonica rice lines.

    PubMed

    Kumar, S P; Dalai, V; Singh, N K; Sharma, T R

    2007-02-01

    We have recently cloned a pathogen inducible blast resistance gene Pi-k(h) from the indica rice line Tetep using a positional cloning approach. In this study, we carried out structural organization analysis of the Pi-k(h) locus in both indica and japonica rice lines. A 100 kb region containing 50 kb upstream and 50 kb downstream sequences flanking to the Pi-k(h) locus was selected for the investigation. A total of 16 genes in indica and 15 genes in japonica were predicted and annotated in this region. The average GC content of indica and japonica genes in this region was 53.15% and 49.3%, respectively. Both indica and japonica sequences were polymorphic for simple sequence repeats having mono-, di-, tri-, tetra-, and pentanucleotides. Sequence analysis of the specific blast resistant Pi-k(h) allele of Tetep and the susceptible Pi-k(h) allele of the japonica rice line Nipponbare showed differences in the number and distribution of motifs involved in phosphorylation, resulting in the resistance phenotype in Tetep. PMID:17572362

  3. Effect of rice cultivars on root-associated methanotrophic communities

    NASA Astrophysics Data System (ADS)

    Lüke, C.; Frenzel, P.

    2009-04-01

    Rice agriculture represents a major source of the greenhouse gas methane. However, a large amount of methane is oxidized by methanotrophic bacteria before being released to the atmosphere. Methanotrophs are characterized by their unique ability to use methane as sole source for carbon and energy. They are located at oxic-anoxic interfaces where methane and oxygen are present, such as the rhizosphere. Although they have been studied extensively in the past, only little is known about natural or anthropogenic factors influencing their large diversity. In this study, we investigated the effect of 20 different rice cultivars on methanotrophic communities associated with the roots of rice plants. The pmoA gene encoding a subunit of the particulate methane monooxygenase (catalyzing the first step of methane oxidation) was used as a functional and phylogenetic marker and analyzed using two different fingerprinting methods. The well established terminal restriction fragment length polymorphism (T-RFLP) analysis was compared to results obtained using a diagnostic pmoA microarray. Both methods indicated that type Ib (Methylococcus/Methylocaldum) and type II (Methylosinus/Methylocystis) were the predominat methanotrophs located on rice roots. Interestingly, analysis of pmoA transcripts suggested Methylobacter/Methylomonas (type Ia) to present the actively methane oxidizing population in this environment.

  4. Forty eight years of rice improvement in Texas since the release of cultivar Bluebonnet in 1944

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the contribution of Texas rice breeding to changes in cultivars released during the 50 years since its first cultivar release in 1942. Twenty-three cultivars were evaluated in three environments and two N levels. Days to heading, plant height, whole and t...

  5. Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae)

    PubMed Central

    Li, Yunhe; Zhang, Xiaojie; Chen, Xiuping; Romeis, Jörg; Yin, Xinming; Peng, Yufa

    2015-01-01

    As a pollen feeder, Propylea japonica would be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic rice fields. The effect of Cry1C- or Cry2A-containing transgenic rice pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, larval developmental time of P. japonica was significantly longer when fed pollen from Bt rice lines rather than control pollen but other life table parameters were not significantly affected. In the second experiment, P. japonica was not affected when fed a rapeseed pollen-based diet containing purified Cry1C or Cry2A at concentrations that were >10-times higher than in pollen, but P. japonica was affected when the diet contained E-64 as a positive control. In both experiments, the stability and bioactivity of the Cry proteins in the food sources and the uptake of the proteins by P. japonica were confirmed. The results show that P. japonica is not sensitive to Cry1C or Cry2A proteins; the effect observed in the first experiment was likely attributable to unknown differences in the nutritional composition of Bt rice pollen. Overall, the data indicate that the growing of Cry1C- or Cry2A-transgenic rice should pose a negligible risk to P. japonica. PMID:25567127

  6. Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae).

    PubMed

    Li, Yunhe; Zhang, Xiaojie; Chen, Xiuping; Romeis, Jörg; Yin, Xinming; Peng, Yufa

    2015-01-01

    As a pollen feeder, Propylea japonica would be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic rice fields. The effect of Cry1C- or Cry2A-containing transgenic rice pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, larval developmental time of P. japonica was significantly longer when fed pollen from Bt rice lines rather than control pollen but other life table parameters were not significantly affected. In the second experiment, P. japonica was not affected when fed a rapeseed pollen-based diet containing purified Cry1C or Cry2A at concentrations that were >10-times higher than in pollen, but P. japonica was affected when the diet contained E-64 as a positive control. In both experiments, the stability and bioactivity of the Cry proteins in the food sources and the uptake of the proteins by P. japonica were confirmed. The results show that P. japonica is not sensitive to Cry1C or Cry2A proteins; the effect observed in the first experiment was likely attributable to unknown differences in the nutritional composition of Bt rice pollen. Overall, the data indicate that the growing of Cry1C- or Cry2A-transgenic rice should pose a negligible risk to P. japonica. PMID:25567127

  7. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 x temperature interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  8. Volatile profile of aromatic and non-aromatic rice cultivars using SPME/GC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) is enjoyed by many people as a staple food because of its flavor and texture. Some cultivars, like scented rice, are preferred over others due to their distinctive aroma and flavor. The volatile profile of rice has been explored by many investigators, some of whom have deter...

  9. Volatile profile of aromatic and non-aromatic rice cultivars using SPME/GC-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) is enjoyed by many people as a staple food because of its flavor and texture. Some cultivars, like scented rice, are preferred over others due to their distinctive aroma and flavor. The volatile profile of rice has been explored by many investigators, some of whom have also ...

  10. Water management affects arsenic and cadmium accumulation in different rice cultivars.

    PubMed

    Hu, Pengjie; Huang, Jiexue; Ouyang, Younan; Wu, Longhua; Song, Jing; Wang, Songfeng; Li, Zhu; Han, Cunliang; Zhou, Liqiang; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2013-12-01

    Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution. PMID:23719663

  11. Phytochemical content, antioxidants and cell wall metabolism of two loquat (Eriobotrya japonica) cultivars under different storage regimes.

    PubMed

    Goulas, V; Minas, I S; Kourdoulas, P M; Vicente, A R; Manganaris, G A

    2014-07-15

    Changes in quality, phytochemical content and cell wall metabolism of two loquat cultivars (Eriobotrya japonica cvs. 'Morphitiki', 'Karantoki') under different storage regimes were studied. The fruit were harvested at commercial maturity stage and analyzed after 1, 3, 5, 7, and 11 days maintenance at room temperature (RT, ∼ 20°C) or after cold storage (14 days at 4°C) and additional ripening at RT for 1, 3 and 5 days, respectively. Compositional analysis revealed substantial cultivar differences; the 'Morphitiki' fruit was more acidic and showed higher contents of total phenolics, flavonoids and hydroxycinnamic acid-derivatives as well as greater antioxidant potency. Although firmness did not change markedly during storage, the cell wall exhibited extensive remodeling. Greater changes were observed in the pectin backbones than in polyuronide side chains and cross-linking glycans. Polygalacturonase (PG) showed better association with cell wall solubilization at RT than the enzymes involved in arabinan or galactan disassembly. During postharvest ripening after harvest, 'Karantoki' showed more extensive pectin solubilization than 'Morphitiki'. Interestingly, cold storage inhibited the cell wall disassembly in 'Karantoki' but not in 'Morphitiki', suggesting that the cultivars may differ in their susceptibility to chilling-related wall disorders. Low temperature-induced alterations in wall disassembly may impact juice and phytochemical release upon consumption. PMID:24594179

  12. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    PubMed Central

    Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M.; Condamine, Pascal; Close, Timothy J.

    2006-01-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users. PMID:17160619

  13. Factors affecting variation in CH4 emission from paddy soils grown with different rice cultivars: A pot experiment

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira; Kimura, Makoto

    1998-08-01

    The growth of rice plants greatly influences CH4 emission from paddy fields through the supply of organic materials such as root exudates and sloughed tissues, the release of oxygen to the root environment, and the transfer of CH4 from the rhizosphere into the atmosphere through the aerenchyma. In the present pot experiments, the effects of the release of water-soluble organic substances from roots, the air space in roots, and the CH4-oxidizing capacity of roots on intervarietal differences in CH4 emission were examined using three Japonica type cultivars (Norin 25, Nipponbare, and Aoinokaze), which differ in morphological properties. The CH4 emission rates varied among the cultivars from mid-July (tillering stage) to the beginning of September (heading stage).Total CH4 emission throughout the rice growth period was largest for Norin 25, followed by Nipponbare, and Aoinokaze. In August, the rate of release of water-soluble organic substances from roots was largest for Norin 25. The air space in roots was also largest in Norin 25 and least in Aoinokaze. The stable carbon isotopic ratios (δ13C) of CH4 in roots were 3-10‰ higher than those in soil in August. The difference in δ13C values of CH4 between roots and soil was largest for Aoinokaze and smallest for Norin 25. In September, the difference in δ13C values of CH4 between roots and soil became small (2-3‰). These findings suggest that the proportion of CH4 oxidation in the rhizosphere was largest in the cultivar which emitted the smallest amount of CH4 and that the proportion became smaller with continued plant growth.

  14. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting107Cd tracer

    PubMed Central

    2011-01-01

    Background Rice is a major source of dietary intake of cadmium (Cd) for populations that consume rice as a staple food. Understanding how Cd is transported into grains through the whole plant body is necessary for reducing rice Cd concentrations to the lowest levels possible, to reduce the associated health risks. In this study, we have visualized and quantitatively analysed the real-time Cd dynamics from roots to grains in typical rice cultivars that differed in grain Cd concentrations. We used positron-emitting107Cd tracer and an innovative imaging technique, the positron-emitting tracer imaging system (PETIS). In particular, a new method for direct and real-time visualization of the Cd uptake by the roots in the culture was first realized in this work. Results Imaging and quantitative analyses revealed the different patterns in time-varying curves of Cd amounts in the roots of rice cultivars tested. Three low-Cd accumulating cultivars (japonica type) showed rapid saturation curves, whereas three high-Cd accumulating cultivars (indica type) were characterized by curves with a peak within 30 min after107Cd supplementation, and a subsequent steep decrease resulting in maintenance of lower Cd concentrations in their roots. This difference in Cd dynamics may be attributable to OsHMA3 transporter protein, which was recently shown to be involved in Cd storage in root vacuoles and not functional in the high-Cd accumulating cultivars. Moreover, the PETIS analyses revealed that the high-Cd accumulating cultivars were characterized by rapid and abundant Cd transfer to the shoots from the roots, a faster transport velocity of Cd to the panicles, and Cd accumulation at high levels in their panicles, passing through the nodal portions of the stems where the highest Cd intensities were observed. Conclusions This is the first successful visualization and quantification of the differences in whole-body Cd transport from the roots to the grains of intact plants within rice

  15. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses.

    PubMed

    Shankar, Rama; Bhattacharjee, Annapurna; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major environmental factors that affect rice productivity. Comparative transcriptome analysis between tolerant and sensitive rice cultivars can provide insights into the regulatory mechanisms involved in these stress responses. In this study, the comparison of transcriptomes of a drought-tolerant [Nagina 22 (N22)] and a salinity-tolerant (Pokkali) rice cultivar with IR64 (susceptible cultivar) revealed variable transcriptional responses under control and stress conditions. A total of 801 and 507 transcripts were exclusively differentially expressed in N22 and Pokkali rice cultivars, respectively, under stress conditions. Gene ontology analysis suggested the enrichment of transcripts involved in response to abiotic stress and regulation of gene expression in stress-tolerant rice cultivars. A larger number of transcripts encoding for members of NAC and DBP transcription factor (TF) families in N22 and members of bHLH and C2H2 TF families in Pokkali exhibited differential regulation under desiccation and salinity stresses, respectively. Transcripts encoding for thioredoxin and involved in phenylpropanoid metabolism were up-regulated in N22, whereas transcripts involved in wax and terpenoid metabolism were up-regulated in Pokkali. Overall, common and cultivar-specific stress-responsive transcripts identified in this study can serve as a helpful resource to explore novel candidate genes for abiotic stress tolerance in rice. PMID:27029818

  16. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses

    PubMed Central

    Shankar, Rama; Bhattacharjee, Annapurna; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major environmental factors that affect rice productivity. Comparative transcriptome analysis between tolerant and sensitive rice cultivars can provide insights into the regulatory mechanisms involved in these stress responses. In this study, the comparison of transcriptomes of a drought-tolerant [Nagina 22 (N22)] and a salinity-tolerant (Pokkali) rice cultivar with IR64 (susceptible cultivar) revealed variable transcriptional responses under control and stress conditions. A total of 801 and 507 transcripts were exclusively differentially expressed in N22 and Pokkali rice cultivars, respectively, under stress conditions. Gene ontology analysis suggested the enrichment of transcripts involved in response to abiotic stress and regulation of gene expression in stress-tolerant rice cultivars. A larger number of transcripts encoding for members of NAC and DBP transcription factor (TF) families in N22 and members of bHLH and C2H2 TF families in Pokkali exhibited differential regulation under desiccation and salinity stresses, respectively. Transcripts encoding for thioredoxin and involved in phenylpropanoid metabolism were up-regulated in N22, whereas transcripts involved in wax and terpenoid metabolism were up-regulated in Pokkali. Overall, common and cultivar-specific stress-responsive transcripts identified in this study can serve as a helpful resource to explore novel candidate genes for abiotic stress tolerance in rice. PMID:27029818

  17. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction.

    PubMed

    Wang, Diane R; Bunce, James A; Tomecek, Martha B; Gealy, David; McClung, Anna; McCouch, Susan R; Ziska, Lewis H

    2016-07-01

    High CO2 and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis-related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification of INDICA/INDICA-like and JAPONICA populations. Overall, we find that the productivity of plants grown under elevated [CO2 ] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2 ] across this diversity panel. We report differential response to CO2 × temperature interaction for INDICA/INDICA-like and JAPONICA rice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation. PMID:26959982

  18. Effect of nitrogen rate and the environment on physicochemical properties of selected high amylose rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic marker haplotypes for the Waxy and alk genes are associated with amylose content and gelatinization temperature, respectively, and are used by breeders to develop rice cultivars that have physicochemical properties desired by the parboiling and canning industries. Cultivars that provide cons...

  19. Differential rice grain Arsenic in cultivars associated with soil and water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduction and methylation of arsenic (As) in rice are important processes that contribute to food quality and minimization of any potential risk from dietary exposure, primarily because of the considerably lower toxicity of methyl As compared to inorganic As species. Twenty-one rice cultivars from ...

  20. Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars

    NASA Astrophysics Data System (ADS)

    Sun, Xing; Liu, Qin; Gu, Jie; Chen, Xiang; Zhu, Keya

    2016-01-01

    Rice is a well-known silicon accumulator. During its periods of growth, a great number of phytoliths are formed by taking up silica via the plant roots. Concurrently, carbon in those phytoliths is sequestrated by a mechanism of long-term biogeochemical processes within the plant. Phytolith occluded C (PhytOC) is very stable and can be retained in soil for longer than a millennium. In this study, we evaluated the carbon biosequestration within the phytoliths produced in rice seed husks of 35 rice cultivars, with the goal of finding rice cultivars with relatively higher phytolith carbon sequestration efficiencies. The results showed that the phytolith contents ranged from 71.6 mg•g‒1 to 150.1 mg•g‒1, and the PhytOC contents ranged from 6.4 mg•g‒1 to 38.4 mg•g‒1, suggesting that there was no direct correlation between the PhytOC content and the content of rice seed husk phytoliths (R = 0.092, p>0.05). Of all rice cultivars, six showed a higher carbon sequestration efficiency in phytolith seed husks. Additionally, the carbon biosequestration within the rice seed husk phytoliths was approximately 0.45‒3.46 kg-e-CO2•ha‒1•yr‒1. These rates indicate that rice cultivars are a potential source of carbon biosequestration which could contribute to the global carbon cycle and climate change.

  1. Whole-Genome Analysis Revealed the Positively Selected Genes during the Differentiation of indica and Temperate japonica Rice

    PubMed Central

    Sun, Xinli; Jia, Qi; Guo, Yuchun; Zheng, Xiujuan; Liang, Kangjing

    2015-01-01

    To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93–11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I. PMID:25774680

  2. Use of SSR markers to discern reciprocal outcrossing rates between weedy red rice types and rice cultivars having different degrees of flowering synchronization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A broad range of flowering synchronization between red rice and rice was established by planting rice cultivars that flowered earlier, similar to, or later than red rice. Five SSR markers were used to identify hybrids. Outcrossing rates differed greatly depending on the degree of synchronization a...

  3. Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel

    PubMed Central

    Courtois, Brigitte; Audebert, Alain; Dardou, Audrey; Roques, Sandrine; Ghneim- Herrera, Thaura; Droc, Gaëtan; Frouin, Julien; Rouan, Lauriane; Gozé, Eric; Kilian, Andrzej; Ahmadi, Nourollah; Dingkuhn, Michael

    2013-01-01

    Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs) than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r2>0.6, on average, for 20 kb mean distances between markers). The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth) root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates. PMID:24223758

  4. Identification of quantitative trait loci conferring blast resistance in Bodao, a japonica rice landrace.

    PubMed

    Huan, J; Bao, Y M; Wu, Y Y; Zeng, G Y; He, W W; Dang, L L; Wang, J F; Zhang, H S

    2014-01-01

    Bodao, a japonica landrace from the Taihu Lake region of China, is highly resistant to most Chinese isolates of Magnaporthe oryzea, a form of rice blast. To effectively dissect the influence of genetics on this blast resistance, a population of 155 recombinant inbred lines (F2:8) derived from a cross of Bodao x Suyunuo was inoculated with 12 blast isolates. Using a quantitative trait locus (QTL) mapping approach, 13 QTL on chromosomes 1, 2, 9, 11, and 12 were detected from Bodao. Five QTL, including qtl11-1-1, qtl11-3-7, qtl11-4-9, qtl12-1-1, and qtl12-2-3, have not been previously reported. The qtl11-3-7 and qtl11-4-9 may be the two main effective QTL and resistant to 7 and 9 isolates, respectively. The results of the present study will be valuable for the fine mapping and cloning of these two new resistance genes. PMID:25501185

  5. [Genetic analysis of blast resistance in japonica rice landrace heikezijing from Taihu region].

    PubMed

    Wang, Jian-Fei; He, Xin-Jian; Zhang, Hong-Sheng; Chen, Zhi-Yi

    2002-09-01

    Japonica rice landrace Heikezijing (HKZJ) from Taihu region is highly resistant to several Chinese and Japanese differential strains of Magnaporthe grisea. The F1, F2 and RIL populations from the cross between the resistant variety Heikezijing and the susceptible variety Lijiangxintuanheigu (LJXTHG) were inoculated by spray with two strains of Ken 54-04 and Hoku 1 in seedling stages. Based on the R:S ratios of segregation in F1, F2 and RIL populations it was showed that there were two independent dominant genes in Heikezijing in responsible for resistance to strain Ken 54-04 and one dominant R gene to strain Hoku 1 which is the same to one of the two genes resistant to Ken 54-04. The allelic test indicated that the gene with resistance to both Hoku 1 and Ken 54-04 is non-allelic to loci of Pi-k, Pi-z, Pi-ta, Pi-b and Pi-t, also neither Pi-i nor Pi-a gene. It is necessary to confirm whether it is an unknown gene. PMID:12561228

  6. Retrogenes in Rice (Oryza sativa L. ssp. japonica) Exhibit Correlated Expression with Their Source Genes

    PubMed Central

    Sakai, Hiroaki; Mizuno, Hiroshi; Kawahara, Yoshihiro; Wakimoto, Hironobu; Ikawa, Hiroshi; Kawahigashi, Hiroyuki; Kanamori, Hiroyuki; Matsumoto, Takashi; Itoh, Takeshi; Gaut, Brandon S.

    2011-01-01

    Gene duplication occurs by either DNA- or RNA-based processes; the latter duplicates single genes via retroposition of messenger RNA. The expression of a retroposed gene copy (retrocopy) is expected to be uncorrelated with its source gene because upstream promoter regions are usually not part of the retroposition process. In contrast, DNA-based duplication often encompasses both the coding and the intergenic (promoter) regions; hence, expression is often correlated, at least initially, between DNA-based duplicates. In this study, we identified 150 retrocopies in rice (Oryza sativa L. ssp japonica), most of which represent ancient retroposition events. We measured their expression from high-throughput RNA sequencing (RNAseq) data generated from seven tissues. At least 66% of the retrocopies were expressed but at lower levels than their source genes. However, the tissue specificity of retrogenes was similar to their source genes, and expression between retrocopies and source genes was correlated across tissues. The level of correlation was similar between RNA- and DNA-based duplicates, and they decreased over time at statistically indistinguishable rates. We extended these observations to previously identified retrocopies in Arabidopsis thaliana, suggesting they may be general features of the process of retention of plant retrogenes. PMID:22042334

  7. Impact of single and dual modifications on physicochemical properties of japonica and indica rice starches.

    PubMed

    Lee, Su-Jin; Hong, Joo Yeon; Lee, Eun-Jung; Chung, Hyun-Jung; Lim, Seung-Taik

    2015-05-20

    The japonica (JR) and indica (IR) rice starches were modified by acetylation, hydroxypropylation, cross-linking, and dual modification (cross-linked acetylation and cross-linked hydroxypropylation) and the effects of single and dual chemical modifications of JR and WR on the physicochemical properties were investigated. The JR had a greater substitution degree of acetyl or hydroxypropyl groups than IR. The dual-modified JR showed broader gelatinization temperature range than corresponding single-modified starches, but narrower it in IR. The dual-modified JR and IR showed higher pasting temperature and lower breakdown than their corresponding single-modified starches. The dual modification with JR and IR induced significant increase in gel hardness as compared to the corresponding unmodified and single-modified starches. The dual-modified JR had a greater hardness, gumminess, and chewiness than the dual-modified IR. The different impact of single and dual modification with JR and IR on the physicochemical properties could be due to the differences in the location and distribution of substituent groups on the starch molecules. PMID:25817645

  8. Agronomic potential of southern rice cultivars under organic management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic rice production is expanding in the United States as a result of increasing market demand. Although acreage of conventional produced rice has declined in Texas over the last twenty years, organic rice production has increased to almost ten percent of the Texas rice acreage. Organic growers ...

  9. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment

    PubMed Central

    2014-01-01

    Background Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance. Results The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars. Conclusion Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress. PMID:24920972

  10. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil.

    PubMed

    Shi, Jing; Li, Lianqing; Pan, Genxing

    2009-01-01

    Enhanced Cd uptake and Zn depletion in rice grains and high potential for food Cd exposure by the high-yielding hybrid cultivars of China had been addressed. A field experiment was conducted in 2006 to determine the difference in grain Cd and Zn between cultivars. Total 110 cultivars including super rice and common hybrid rice cultivars were grown on a single paddy soil (Entic Haplaquept) with a neutral reaction and low total Cd content. Grain Cd and Zn concentrations were determined with graphite atomic adsorption spectrophotometer (GFAAS) and flame atomic adsorption spectrophotometer (AAS) respectively. Wide variation of Cd content in grain was found in a range of 0.004-0.057 mg/kg, while the Zn content in a range of 10.25-30.06 mg/kg among the cultivars. Higher Cd but lower Zn concentration in grains of super rice cultivars was observed compared to the common hybrid ones. A highly significant positive linear correlation of grain Cd/Zn with grain Cd was found for super rice and common hybrid cultivars, meanwhile much higher slope for these hybrid cultivars than the reported non-hybrid cultivars was also observed. Using the limit value of the Chinese chemical guidelines for foods (MOHC and SSC, 2005), calculated potential risk of food Cd exposure with "Zn hungry" through diet intake was prominent with all the studied 110 hybrid rice cultivars, possessing high potential health problems for rice production in South China using the super rice cultivars. Breeding of genotypes of rice cultivars with low grain Cd and low Cd/Zn ratio is needed for rice production in acidic red soils where Cd bioavailability is prevalently high. PMID:19402417

  11. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature.

    PubMed

    Morsy, Mustafa R; Almutairi, Abeer M; Gibbons, James; Yun, Song Joon; de Los Reyes, Benildo G

    2005-01-01

    Rice (Oryza sativa L.) is sensitive to chilling particularly at early stages of seedling establishment. Two closely related genes (OsLti6a, OsLti6b), which are induced by low temperature during seedling emergence were isolated from a cold tolerant temperate japonica rice cultivar. These genes are closely related to the Arabidopsis rare cold-inducible (RCI2) and barley low-temperature-inducible (BLT101) genes. Based on direct biochemical and indirect physiological evidence and similarity with a conserved protein domain in the Cluster of Orthologous Groups (COG) database (e.g., yeast PMP3), the rice genes belong to a class of low-molecular-weight hydrophobic proteins involved in maintaining the integrity of the plasma membrane during cold, dehydration and salt stress conditions. Both genes exhibit a genotype-specific expression signature characterized by early and late stress-inducible expression in tolerant and intolerant genotypes, respectively. The differences in temporal expression profiles are consistent with cultivar differences in cold-induced membrane leakiness and seedling vigor. The presence of CRT/DRE promoter cis-elements is consistent with the synchronized expression of OsLti6 genes with the C-repeat binding factor/drought responsive element-binding protein (CBF/DREB) transcriptional activator. The present results indicate that the Oslti6 genes are part of a battery of cold stress defense-related genes regulated by a common switch. PMID:15656983

  12. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.

    PubMed

    Lu, Ying; Dong, Fei; Deacon, Claire; Chen, Huo-Jun; Raab, Andrea; Meharg, Andrew A

    2010-05-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. PMID:20045585

  13. Growth characteristics of a weed-suppressive indica x non-suppressive tropical japonica rice mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The indica rice cultivar, PI 312777, can be highly productive as well as suppressive to C4 grass species such as barnyardgrass (Echinochloa crus-galli). A recombinant inbred line (RIL) mapping population was developed using single seed descent from a cross between ‘Katy’ (non-weed-suppressive) and ...

  14. Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet.

    PubMed

    Ye, X X; Sun, B; Yin, Y L

    2012-04-01

    Human exposure to toxic heavy metals via the food chain is of increasing concern. In the present study, the effects of soil type and genotype on variation in arsenic (As) concentrations of different organs were investigated by using nine rice cultivars grown in two soils, with two levels of As contamination. There were significant genotypic differences (P<0.05) in As concentrations of all organs, and As concentrations of polished grain were significantly affected by genotype and soil type. The As concentration in polished grain was higher in red paddy soil under As treatment, with range from 0.24 to 1.03 mg kg(-1), and the As concentration of three cultivars exceeded the concentration of Chinese Food Hygiene Standard (0.7 mg kg(-1)). The As concentrations in stems, leaves and polished grain were all significantly and positively correlated. The As concentrations in polished grain were positively and significantly (P<0.01) correlated with As root-grain translocation factor. The results indicated that As concentration in grain was partially governed by As uptake and the transfer of As from root to grain. The grain As concentration of the nine cultivars was significantly correlated between the two soil types at different levels of As contamination. Some genotypes, such as japonica rice (e.g. Ning jing 1 and Nan jing 32) had consistently low grain As concentrations. The results suggest the possibility of breeding the As rice cultivars to produce grain for safe consumption from soils with slight and moderate levels of As. PMID:22221666

  15. Oryza nivara, a wild relative of cultivated rice, is a source of genes for improving seedling vigor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) wild relatives are a potential source of genetic diversity for cultivated rice improvement. An advanced backcross population was derived from the U.S. temperate japonica rice variety, M-202, a medium grain commercial cultivar grown in California, crossed with O. nivara Sharma...

  16. A Relative Resistance Ratio for Evaluation of Mexican Rice Borer (Lepidoptera: Crambidae) Susceptibility Among Sugarcane Cultivars.

    PubMed

    Wilson, Blake E; VanWeelden, Matthew T; Beuzelin, Julien M; Reagan, Thomas E; Way, Michael O; White, William H; Wilson, Lloyd T; Showler, Allan T

    2015-06-01

    The Mexican rice borer, Eoreuma loftini (Dyar), is a major pest of sugarcane (hybrids of Saccharum spp.) in Louisiana and Texas. Resistance to E. loftini was evaluated in 51 commercial and experimental cultivars of sugarcane, energycane (hybrids of Saccharum spp.), and sorghum [Sorghum bicolor (L.) Moench and hybrids of Sorghum spp.] in four replicated small plot field experiments from 2009 to 2012. A relative resistance ratio was developed to compare levels of susceptibility among cultivars based on the percentage of bored internodes and survival to adulthood. This index was able to separate cultivars into five resistance categories and provides a new method for comparing levels of resistance among cultivars. E. loftini pest pressure in 2009 was among the highest recorded with injury ranging from 55 to 88% bored internodes. Commercial sugarcane cultivar HoCP 85-845 was identified as resistant in three of four experiments, whereas HoCP 04-838 was identified as susceptible in all experiments. Of the five sugarcane cultivars in commercial production in the Rio Grande Valley of Texas, only TCP 87-3388 was categorized as resistant. Of the cultivars with potential for bioenergy production, all of the energycane cultivars demonstrated higher levels of resistance than high-biomass and sweet sorghum cultivars. Continued evaluation of cultivar resistance to E. loftini is important to development of effective integrated pest management strategies for this pest. PMID:26470265

  17. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. PMID:26490528

  18. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage.

    PubMed

    Chunthaburee, Sumitahnun; Dongsansuk, Anoma; Sanitchon, Jirawat; Pattanagul, Wattana; Theerakulpisut, Piyada

    2016-07-01

    Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K(+)/Na(+) ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K(+)/Na(+) ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K(+)/Na(+) ratio and chlorophyll accumulation. PMID:27298579

  19. The assessment of the rice cultivars/lines resistance to blast disease in Mazandaran province, Iran.

    PubMed

    Amanzadeh, M; Okhovvat, S M; Moumeni, A; Javan-Nikkhah, M; Khosravi, V

    2004-01-01

    Blast, caused by Magnaporthe grisea, is one of the most important diseases in rice production regions of the world including Iran. To determine progress of rice blast disease on the selective cultivars and lines also to assay some components of partial resistance, a set of Iranian rice cultivars (Local and breeding) along with near-isogenic lines (NILs) and breeding lines from International Rice Research Institute (IRRI) were tested with some field races of the fungus in blast nursery and five of selective races in greenhouse. These experiments were conducted in a Randomized complete Block Design (RCBD) with three replications (except greenhouse experiment on the leaves). Traits in this study consisted of Infection Neck Number (INN), Neck Lesion Size (NLS), Infection Type (IT), percent Diseased Leaf Area (DLA) and Area Under Disease Progress Curve (AUDPC); also IT, Sporulation Lesion Number (SLN), Sporulating Region Diameter (SRD) and percent DLA were measured in leaf blast in greenhouse (one replication). The Iranian local cultivars and NILs i.e. Co-39 and C104-PKT located as susceptible group for AUDPC, IT, INN and NLS. Iranian breeding cultivars, breeding lines from IRRI and NILs (except Co-39 and C104-PKT) were resistant or indicated hypersensivity reaction (HR). Some cultivars (Fujiminori, Onda, and Hassan Saraii) were semi susceptible to leaf blast in nursery. The main point is correlation in 1% (a = 0.0001) between the traits in greenhouse and blast nursery. Neck node infection of Haraz cultivar in greenhouse experiment to IA-89 race is very important, because Haraz is a resistant cultivar to blast disease in Iran. PMID:15756856

  20. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars.

    PubMed

    Hussain, Saddam; Khan, Fahad; Hussain, Hafiz A; Nie, Lixiao

    2016-01-01

    Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18°C) and normal temperatures (28°C) in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism, and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress. PMID:26904078

  1. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars

    PubMed Central

    Hussain, Saddam; Khan, Fahad; Hussain, Hafiz A.; Nie, Lixiao

    2016-01-01

    Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18°C) and normal temperatures (28°C) in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism, and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress. PMID:26904078

  2. ULTRAVIOLET-B RADIATION EFFECTS ON GROWTH AND PHYSIOLOGY OF FOUR RICE CULTIVARS

    EPA Science Inventory

    Enhanced ultraviolet-B radiation, such as could be caused by stratospheric O3 depletion, has been demonstrated to profoundly affect plants. his study was conducted to determine the effects of UV-B on four high-yielding, lowland rice cultivars, and to evaluate morphological and ph...

  3. Responses of rice cultivars and elite lines to diseases in conventional production system, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Twenty rice cultivars and lines were arranged in a randomized complete block ...

  4. Understanding salinity responses and adopting 'omics-based' approaches to generate salinity tolerant cultivars of rice.

    PubMed

    Das, Priyanka; Nutan, Kamlesh K; Singla-Pareek, Sneh L; Pareek, Ashwani

    2015-01-01

    Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using 'omics-based' tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary 'omics-based' approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various 'omics' approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice. PMID:26442026

  5. Screening of rice cultivars for grain arsenic concentration and speciation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, there has been growing interest in the concentration and speciation of arsenic in rice grain because of concerns with food quality and interest in minimizing any potential risk from dietary exposure. Our objective was to screen a range of rice varieties from the USDA world collection for ...

  6. Classification of rice (oryza sativa l. japonica nipponbare) immunophilins (fkbps, cyps) and expression patterns under water stress

    PubMed Central

    2010-01-01

    Background FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. Results FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. Conclusion Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice. PMID:21087465

  7. High-quality Italian rice cultivars: chemical indices of ageing and aroma quality.

    PubMed

    Griglione, Alessandra; Liberto, Erica; Cordero, Chiara; Bressanello, Davide; Cagliero, Cecilia; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara

    2015-04-01

    The volatile fractions of six Italian high-quality rice cultivars were investigated by HS-SPME-GC-MS to define fingerprinting and identify chemical markers and/or indices of ageing and aroma quality. In particular, four non-aromatic (Carnaroli, Carnise, Cerere and Antares) and two aromatic (Apollo and Venere) rices, harvested in 2010 and 2011, were monitored over 12months. Twenty-five aroma components were considered and, despite considerable inter-annual variability, some of them showed similar trends over time, including 2-(E)-octenal as a marker of ageing for all cultivars, and heptanal, octanal and 2-ethyl hexanol as cultivar-specific indicators. The area ratios 2-acetyl-1-pyrroline/1-octen-3-ol, for Venere, and 3-methyl-1-butanol/2-methyl-1-butanol, for Apollo, were also found to act as ageing indices. Additional information on release of key-aroma compounds was also obtained from quantitation and its dependence on grain shape and chemical composition. Heptanal/1-octen-3-ol and heptanal/octanal ratios were also defined as characterising the aroma quality indices of the six Italian rice cultivars investigated. PMID:25442558

  8. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems.

    PubMed

    Simmonds, Maegen B; Anders, Merle; Adviento-Borbe, Maria Arlene; van Kessel, Chris; McClung, Anna; Linquist, Bruce A

    2015-01-01

    An understanding of cultivar effects on field greenhouse gas (GHG) emissions in rice ( L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions and to evaluate the GHG mitigation potential of different cultivars. We compared CH and NO emissions, global warming potential (GWP = NO + CH), yield-scaled GWP (GWP = GWP Mg grain), and plant growth characteristics of eight cultivars within four study sites in California and Arkansas. Nitrous oxide emissions were negligible (<10% of GWP) and were not different among cultivars. Seasonal CH emissions differed between cultivars by a factor of 2.1 and 1.4 at one California and one Arkansas site, respectively. Plant growth characteristics were generally not correlated with seasonal CH emissions; however, the strongest correlations were observed for shoot and total plant (root + shoot) biomass at heading ( = 0.60) at one California site and for grain at maturity ( = -0.95) at one Arkansas site. Although differences in GWP and GWP were observed, there were inconsistencies across sites, indicating the importance of the genotype × environment interaction. Overall, the cultivars with the lowest CH emissions, GWP, and GWP at the California and Arkansas sites were the lowest and highest yielding, respectively. These findings highlight the potential for breeding high-yielding cultivars with low GWP, the ideal scenario to achieve low GWP, but environmental conditions must also be considered. PMID:25602325

  9. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar

    PubMed Central

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7–9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60–64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7–11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17–25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system. PMID:26566229

  10. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).

    PubMed

    Silveira, R D D; Abreu, F R M; Mamidi, S; McClean, P E; Vianello, R P; Lanna, A C; Carneiro, N P; Brondani, C

    2015-01-01

    Gene expression related to drought response in the leaf tissues of two Brazilian upland cultivars, the drought-tolerant Douradão and the drought-sensitive Primavera, was analyzed. RNA-seq identified 27,618 transcripts in the Douradão cultivar, with 24,090 (87.2%) homologous to the rice database, and 27,221 transcripts in the Primavera cultivar, with 23,663 (86.9%) homologous to the rice database. Gene-expression analysis between control and water-deficient treatments revealed 493 and 1154 differentially expressed genes in Douradão and Primavera cultivars, respectively. Genes exclusively expressed under drought were identified for Douradão, including two genes of particular interest coding for the protein peroxidase precursor, which is involved in three distinct metabolic pathways. Comparisons between the two drought-exposed cultivars revealed 2314 genes were differentially expressed (978 upregulated, 1336 downregulated in Douradão). Six genes distributed across 4 different transcription factor families (bHLH, MYB, NAC, and WRKY) were identified, all of which were upregulated in Douradão compared to Primavera during drought. Most of the genes identified in Douradão activate metabolic pathways responsible for production of secondary metabolites and genes coding for enzymatically active signaling receptors. Quantitative PCR validation showed that most gene expression was in agreement with computational prediction of these transcripts. The transcripts identified here will define molecular markers for identification of Cis-acting elements to search for allelic variants of these genes through analysis of polymorphic SNPs in GenBank accessions of upland rice, aiming to develop cultivars with the best combination of these alleles, resulting in materials with high yield potential in the event of drought during the reproductive phase. PMID:26345744

  11. G-string slippage turns white rice red.

    PubMed

    Lee, David; Lupotto, Elisabetta; Powell, Wayne

    2009-05-01

    The mutations that convey the white pericarp phenotype to rice (Oryza sativa subsp. japonica) are in a regulatory gene, Rc. We have identified a genetic difference between the cultivar 'Perla' and its natural red rice mutant 'Perla Rosso' in the Rc gene. The deletion of a G base restores the reading frame for the Rc gene, lost by the original 14 bp deletion that gave rise to white rice. PMID:19448729

  12. Novel method for preparation of the template DNA and selection of primers to differentiate the material rice cultivars of rice wine by PCR.

    PubMed

    Ohtsubo, Ken'ichi; Suzuki, Keitaro; Haraguchi, Kazutomo; Nakamura, Sumiko

    2008-04-24

    As many rice wine brewers label the name of the cultivar of the material rice, authentication technology is necessary. The problems are (1) decomposition of DNAs during the fermentation, (2) contamination of DNAs from microorganisms, (3) co-existence of PCR inhibitors, such as polyphenols. The present authors improved the PCR method by (1) lyophilizing and pulverizing the rice wine to concentrate DNAs, (2) decomposition of starches and proteins so as not to inhibit DNA extraction by the use of heat-resistant amylase and proteinase K, (3) purification of the template DNA by the combination of CTAB method and fractional precipitation by 70% EtOH. To prevent the amplification of microorganism's DNAs during PCR, the present authors selected the suitable plant-specific primers. It became possible to prepare the template DNAs for PCR from the rice wine. The sequences of the amplified DNAs by PCR were ascertained to be same with those of material rice. Mislabeling of material rice cultivar was detected by PCR using the commercial rice wine. It became possible to extract and purify the template DNAs for PCR from the rice wine and to differentiate the material rice cultivars by the PCR using the rice wine as a sample. PMID:17675162

  13. Photosynthesis enhanced oxidative stress tolerance in high-yield rice varieties (Oryza sativa var. japonica L.) in the field.

    PubMed

    Wei, X D

    2016-01-01

    The objective of this study was to understand varietal differences in photosynthetic characteristics, chlorophyll fluorescence, antioxidant capability, and yield of japonica rice varieties. Nanjing 44, Oryza sativa var. japonica (average yield of 12.7 t/ha), Nanjing 46, and Nanjing 5055 (average yields of 11.3 and 11.5 t/ha) were included as "super" and high-yield varieties, respectively, whereas Wuyunjing 7 (average yield of 10.2 t/ha) was included as a control variety. These varieties were grown under field conditions in Jiangsu Province, China, in 2010-2012. Different organs (panicle, grain, etc.) were measured, before and after flowering, to identify differences of dry matter accumulation and transformation properties. Photosynthesis, the chlorophyll content, and antioxidant enzyme activities of the flag leaf in the days after flowering (DAF) were also investigated. The results showed that, compared with the other three rice varieties, Nanjing 44 had the highest plant dry weight and number of grains per panicle. It also had a relatively high net flag leaf photosynthetic rate and showed the least inhibition of photosynthesis at noon in DAF, which probably explains the higher yield in this variety. Furthermore, Nanjing 44 also had the highest stem export and conversion rate from stem to grain, exhibiting a strong ability to convert and distribute photosynthetic products. After DAF 42, Nanjing 44 still maintained a high-soluble protein content and a high antioxidant ability in the leaves to clear peroxidation products, which could protect the photosynthetic apparatus of the flag leaves, and maintain the grain-filling activity for longer. The high-yield capability of Nanjing 44 was attributed to its photosynthetic advantages in the leaves during the late developmental stage. PMID:27525885

  14. Evaluation of the Agronomic Performance of Atrazine-Tolerant Transgenic japonica Rice Parental Lines for Utilization in Hybrid Seed Production

    PubMed Central

    Li, Yanlan; Li, Yanan; Wang, Shengjun; Su, Jinping; Liu, Xuejun; Chen, Defu; Chen, Xiwen

    2014-01-01

    Currently, the purity of hybrid seed is a crucial limiting factor when developing hybrid japonica rice (Oryza sativa L.). To chemically control hybrid seed purity, we transferred an improved atrazine chlorohydrolase gene (atzA) from Pseudomonas ADP into hybrid japonica parental lines (two maintainers, one restorer), and Nipponbare, by using Agrobacterium-mediated transformation. We subsequently selected several transgenic lines from each genotype by using PCR, RT-PCR, and germination analysis. In the presence of the investigated atrazine concentrations, particularly 150 µM atrazine, almost all of the transgenic lines produced significantly larger seedlings, with similar or higher germination percentages, than did the respective controls. Although the seedlings of transgenic lines were taller and gained more root biomass compared to the respective control plants, their growth was nevertheless inhibited by atrazine treatment compared to that without treatment. When grown in soil containing 2 mg/kg or 5 mg/kg atrazine, the transgenic lines were taller, and had higher total chlorophyll contents than did the respective controls; moreover, three of the strongest transgenic lines completely recovered after 45 days of growth. After treatment with 2 mg/kg or 5 mg/kg of atrazine, the atrazine residue remaining in the soil was 2.9–7.0% or 0.8–8.7% respectively, for transgenic lines, and 44.0–59.2% or 28.1–30.8%, respectively, for control plants. Spraying plants at the vegetative growth stage with 0.15% atrazine effectively killed control plants, but not transgenic lines. Our results indicate that transgenic atzA rice plants show tolerance to atrazine, and may be used as parental lines in future hybrid seed production. PMID:25275554

  15. [Mapping quantitative trait loci associated with rice grain shape based on an indica/japonica backcross population].

    PubMed

    Yan, Chang-Jie; Liang, Guo-Hua; Chen, Feng; Li, Xin; Tang, Shu-Zhu; Yi, Chuan-Deng; Tian, Shun; Lu, Ju-Fei; Gu, Ming-Hong

    2003-08-01

    Appearance of rice grain represents a major character of rice quality in many rice-producing areas of the world, especially in hybrid rice production in China. In this study, we conducted a molecular marker-based genetic analysis of the traits that are determinants of the appearance quality of rice grains, including grain length, grain width and grain shape (measured as grain length to grain width ratio). Two typical indica/japonica varieties Balilla and Nantehao(NTH) were selected to construct Balilla/NTH//Balilla backcross population containing 142 individuals. In the population, grain length, grain width and grain shape all conform to the normal distribution with certain transgressive segregation. It can be deduced that all of three traits were controlled by some quantitative trait loci (QTLs). In order to explore the QTLs effect, number and location, a linkage map consisting of 108 SSR markers based on the backcross population was constructed, and QTLs mapping was carried out for grain length, grain width and grain shape. A QTL, qGL-12, was detected for grain length at the interval RM101-RM270 on chromosome 12, its additive effect was 0.26 mm, and can explain 16.7% genetic variation. As for grain width trait, two QTLs were found, qGW-2 located at RM154-RM211 interval on chromosome 2, and qGW-3 at interval RM257-RM175 on chromosome 3, accounting for 11.5% and 16.6% genetic variation, respectively. The alleles at qGW-2 and qGW-3 from parent Balilla can increase grain width by 0.10 mm and 0.12 mm. For grain shape, 3 QTLs, qLW-2, qLW-6 and qLW-7 were found, located on chromosome 2, 6, and 7, respectively. qLW-2 and qLW-7 had positive effect, and they can explain 12.7% and 18.3% genetic variation, while qLW-6 had negative effect and contributed 11.5% genetic variation to the backcross population. The prospects of application of linkage relationship between SSR marker and QTLs in marker based selection (MAS) in rice breeding, and the improvement of grain shape and

  16. Molecular characterization of a population of backcross introgression lines derived from crossing the US japonia rice cultivar Lemont as the recurrent parent withthe Chinese indica cultivar TeQing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequences of both indica and japonica rice present a unique opportunity for assessing rice genes in different genomic content. A set of 269 backcross introgression lines were developed at IRRI, being derived from a cross of ‘Lemont’ by ‘TeQing’ followed by two to four backcross ...

  17. The effects of water regime on phosphorus responses of rainfed lowland rice cultivars

    PubMed Central

    Huguenin-Elie, O.; Kirk, G. J. D.; Frossard, E.

    2009-01-01

    Background and Aims Soil phosphorus (P) solubility declines sharply when a flooded soil drains, and an important component of rice (Oryza sativa) adaptation to rainfed lowland environments is the ability to absorb and utilize P under such conditions. The aim of this study was to test the hypothesis that rice cultivars differ in their P responses between water regimes because P uptake mechanisms differ. Methods Six lowland rice cultivars (three considered tolerant of low P soils, three sensitive) were grown in a factorial experiment with three water regimes (flooded, moist and flooded-then-moist) and four soil P levels, and growth and P uptake were measured. Small volumes of soil were used to maximize inter-root competition and uptake per unit root surface. The results were compared with the predictions of a model allowing for the effects of water regime on P solubility and diffusion. Key Results The plants were P stressed but not water stressed in all the water regimes at all P levels except the higher P additions in the flooded soil. The cultivar rankings scarcely differed between the water regimes and P additions. In all the treatments, the soil P concentrations required to explain the measured uptake were several times the concentration of freely available P in the soil. Conclusions The cultivar rankings were driven more by differences in growth habit than specific P uptake mechanisms, so the hypothesis cannot be corroborated with these data. Evidently all the plants could tap sparingly soluble forms of P by releasing a solubilizing agent or producing a greater root length than measured, or both. However, any cultivar differences in this were not apparent in greater net P uptake, possibly because the restricted rooting volume meant that additional P uptake could not be converted into new root growth to explore new soil volumes. PMID:18945744

  18. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    PubMed

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties. PMID:27093133

  19. Effect of steam-cooking and parboiling on phenolics and antioxidant capacities of red and purple rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red and purple rice cultivars contain high concentrations of phenolics, such as proanthocyanidins and anthocyanins, respectively. We investigated the effect of cooking processes on these antioxidants and antioxidant capacities of pigmented and common light-brown bran rice. The cooking processes incl...

  20. Genetic Diversity Analysis Reveals that Geographical Environment Plays a More Important Role than Rice Cultivar in Villosiclava virens Population Selection

    PubMed Central

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin

    2014-01-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  1. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  2. Comparative transcriptome profiling of developing caryopses from two rice cultivars with differential dormancy.

    PubMed

    Huh, Sun Mi; Hwang, Yong-sic; Shin, Young Seop; Nam, Myung Hee; Kim, Dool Yi; Yoon, In Sun

    2013-08-15

    Pre-harvest sprouting (PHS) in rice causes poor grain quality and results in significant reductions in yield, leading to significant economic losses. In contrast, deep dormancy can lead to equally unwanted non-uniform germination. Therefore, a suitable level of dormancy is a critically important agronomic trait. In this study, an analysis of PHS in developing seeds of two Korean rice cultivars (vivipary), Gopum and Samgwang, revealed differences in dormancy in caryopses at 25 d after heading (DAH). To assess the transcriptomic characteristics associated with vivipary, we compared RNA profiles at early (3-6 DAH), middle (25 DAH), and late (40 DAH) developmental stages. Transcriptomic differentiation was most pronounced in caryopses at 25 DAH, the developmental stage at which differential dormancy was also the most prominent. A k-means clustering analysis of the two cultivars revealed groups of genes with similar or dissimilar expression profiles. Many of the genes that showed distinct differential expression profiles were those involved in seed maturation. Intriguingly, differential gene expression levels between the two cultivars were positively correlated with fold-changes in their expression during the early half of caryopsis development. This implies that the establishment of seed dormancy is strongly correlated with the altered transcriptomic patterns related to the progression of maturation. Our global RNA profiling suggests that caryopsis development in Gopum proceeds at a greater speed than in the Samgwang cultivar. Thus, a high degree of maturity and early dormancy release may be present in 25 DAH caryopses of Gopum, although we cannot exclude the possibility of genetic defects modifying dormancy. The comparative transcriptomic analysis of the two cultivars did not reveal noticeable differences in RNA profiles with respect to differences in abscisic acid (ABA) content or ABA sensitivity. Therefore, it is unlikely that ABA is directly involved in the

  3. A genome-wide survey reveals abundant rice blast R genes in resistant cultivars.

    PubMed

    Zhang, Xiaohui; Yang, Sihai; Wang, Jiao; Jia, Yanxiao; Huang, Ju; Tan, Shengjun; Zhong, Yan; Wang, Ling; Gu, Longjiang; Chen, Jian-Qun; Pan, Qinghua; Bergelson, Joy; Tian, Dacheng

    2015-10-01

    Plant resistance genes (R genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R genes having been defeated by former pests, or do plants harbor a rich diversity of functional R genes, the composite behavior of which is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from five resistant Oryza sativa (rice) cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R genes, with most R genes deriving from multi-copy clades containing especially diversified loci. Each R gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R genes also validates a highly efficient cloning and screening strategy. PMID:26248689

  4. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection.

    PubMed

    Duitama, Jorge; Silva, Alexander; Sanabria, Yamid; Cruz, Daniel Felipe; Quintero, Constanza; Ballen, Carolina; Lorieux, Mathias; Scheffler, Brian; Farmer, Andrew; Torres, Edgar; Oard, James; Tohme, Joe

    2015-01-01

    Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops. PMID:25923345

  5. Whole Genome Sequencing of Elite Rice Cultivars as a Comprehensive Information Resource for Marker Assisted Selection

    PubMed Central

    Duitama, Jorge; Silva, Alexander; Sanabria, Yamid; Cruz, Daniel Felipe; Quintero, Constanza; Ballen, Carolina; Lorieux, Mathias; Scheffler, Brian; Farmer, Andrew; Torres, Edgar; Oard, James; Tohme, Joe

    2015-01-01

    Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops. PMID:25923345

  6. [Effects of different ecological conditions on grain quality and RVA profile of japonica rice from Yunnan of China and Korea].

    PubMed

    Zhu, Zhen-hua; Kim, Ki-young; Yuan, Ping-rong; Zhao, Guo-zhen; Su, Zhen-xi; Liao, Xin-hua; Yang, Sea-jun; Dai, Lu-yuan

    2009-12-01

    Taking sixteen japonica rice varieties from Yunnan of China and Korea growing at three locations with different altitudes in Yunnan Plateau as test materials, this paper studied the effects of different ecological conditions on their grain quality, including brown rice length (BRL), brown rice width (BRW), length-width ratio (L/W), chalky rate (CR), whiteness (WH), amylose content (AC), protein content (PC), and alkali digestion value (ADV), and their starch RVA profile, including peak viscosity (PKV), hot viscosity (HTV), final viscosity (FLV), breakdown viscosity (BDV), setback viscosity (SBV), consistence viscosity( CTV), peak time (PeT), and pasting temperature (PaT). Of all the test parameters, SBV had the largest coefficient of variation. The coefficients of variation of BRL, CR, AC, PC, ADV, FLV, SBV, and PeT of Yunnan varieties were higher than those of Korean varieties, while the BRW, L/W, WH, PKV, HTV, BDV, CTV, and PaT of Korean varieties had higher coefficients of variation than those of Yunnan varieties. With increasing altitude, the BRL, BRW, L/W, WH, AC, ADV, FLV, and CTV of Yunnan varieties, and the BRL, BRW, WH, PC, PKV, HTV and BDV of Korean varieties decreased significantly, while the CR, PC, HTV, and PeT of Yunnan varieties, and the L/W, AC, ADV, SBV and CTV of Korean varieties increased significantly. The CR of Korean varieties had no obvious change. The PKV, BDV, and PaT of Yunnan varieties and the PaT of Korean varieties increased after an initial decrease, whereas the SBV of Yunnan varieties and the FLV and PeT of Korean varieties were in reverse. PMID:20353061

  7. Evaluation of methane emissions of some rice cultivars of Sri Lanka

    SciTech Connect

    Namaratne, S.Y.; Alwis, H.P.W. de

    1996-12-31

    A field experiment on three local rice cultivars, namely BG 300, BG 304 and AT 303, showed no statistically significant difference (p<0.05) among them with-respect to the methane flux emitted. The methane flux profiles of all three varieties indicated a more or less constant emission during the vegetative and reproductive periods, a peak emission during late flowering/early ripening stage and a dramatic increase in the flux during the late ripening period. The seasonal methane flux of BG 300, BG 304 and AT 303 were 200 {+-} 48, 156 {+-} 52 and 129 {+-} 40 g m{sup {minus}2}, respectively for a 92 day cropping period.

  8. Fine mapping of a gene for low-tiller number, Ltn, in japonica rice (Oryza sativa L.) variety Aikawa 1.

    PubMed

    Fujita, Daisuke; Ebron, Leodegario A; Araki, Etsuko; Kato, Hiroshi; Khush, Gurdev S; Sheehy, John E; Lafarge, Tanguy; Fukuta, Yoshimichi; Kobayashi, Nobuya

    2010-04-01

    Tillering is one of the most important agronomic traits related to grain production in rice (Oryza sativa L.). A japonica-type variety, Aikawa 1, is known to have low-tiller number. The detailed location of a low-tillering gene, Ltn, which has been localized on chromosome 8 in Aikawa 1, was confirmed by molecular mapping. Using BC5F2 individuals derived from a cross between IR64 and Aikawa 1, the low-tillering gene was mapped to an interval defined by SSR markers ssr5816-3 and A4765. This was designated as Ltn because there was no reported gene for tillering in the region of chromosome 8. Through high-resolution linkage analysis, the candidate region of Ltn was located between DNA markers ssr6049-23 and ind6049-1 corresponding to 38.6 kbp on the Nipponbare genome sequence. These DNA markers, which were tightly linked to Ltn, are useful for marker-assisted selection in breeding studies. PMID:20062964

  9. Improving Yield and Nutrient Uptake Potentials of japonica and indica Rice Varieties with Nitrogen Fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most important problem in achieving high yields in rice is how to increase the nitrogen (N) absorption at each growth stage without reducing the percentage of ripened grains. Proper amount and timing of application could reduce N losses and increase fertilizer use efficiency while cost of produc...

  10. Phytochemicals characterization of solvent extracts from taro-scented japonica rice bran.

    PubMed

    Chen, Hua Han; Chiu, Tsai Hsin

    2011-05-01

    The major phytochemicals and antioxidant properties of taro-scented rice bran (TaiNung 71; TN71) extracts using 3 different solvents are characterized. Some progress is realized in creating an economic value for rice bran that has long been considered an agricultural waste. Various solvent extracts reveal the presence of phenolic compounds, oryzanols, tocopherols, and tocotrienols. Ethyl acetate (EtOAc) can extract more oryzanols (1.55 ± 0.20 g/kg rice bran). Meanwhile, the methanol (MeOH) extract possesses a higher yield in total contents (15.42 ± 1.41 g/kg bran), which includes phenolic compounds (2.69 ± 0.29 g gallic acid equivalent/kg bran), tocopherols (251 ± 26 mg/kg bran) and tocotrienols (111 ± 4 mg/kg bran). The MeOH extract exhibits more effective antioxidant activity against various oxidative systems in vitro, including the inhibition of linoleic acid peroxidation (33.89%), scavenging of DPPH radicals (83.88%), and reducing power. It is found that the yield, total content in phenolic compounds and tocols of the extracts increase with increasing Synder's polarity value and viscosity, which can then be used as the indices in isolation of the desired rice bran phytochemicals extracts. PMID:22417350

  11. A study on the susceptibility of rice cultivars to Striga hermonthica and mapping of Striga tolerance quantitative trait loci in rice.

    PubMed

    Kaewchumnong, Krittika; Price, Adam H

    2008-01-01

    Striga is a parasitic weed attacking mainly maize, sorghum, millet and cowpea. Studying the interaction between rice and Striga is valuable since rice is a model monocot. In this paper, the susceptibility of different rice cultivars to S. hermonthica was tested and quantitative trait loci (QTL) for Striga tolerance mapped on the Bala x Azucena F(6) population. Seven rice cultivars were grown with and without S. hermonthica for 14 wk. For the mapping experiment, 115 recombinant inbred lines (RILs), along with Azucena and Bala, were grown with and without Striga for 11 wk. Rice cultivars tested had different susceptibilities to Striga, ranging from highly susceptible to completely resistant. Azucena and Bala differed in the speed of Striga emergence and the impact on host growth. A genomic region between positions 139 and 166 cM on chromosome 1 was identified containing strong QTL (LOD = 4.9-15.7) for all traits measured. This indicates that genes for Striga tolerance exist in rice germplasm and the mapped QTL can be further studied to promote understanding of the nature of resistance/tolerance and breeding for Striga-resistant crop plants. PMID:18657212

  12. Photosynthetic Diffusional Constraints Affect Yield in Drought Stressed Rice Cultivars during Flowering

    PubMed Central

    Lauteri, Marco; Haworth, Matthew; Serraj, Rachid; Monteverdi, Maria Cristina; Centritto, Mauro

    2014-01-01

    Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (gm) and not by stomatal conductance (gs). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained gm during water-deficit sustained A and yield to a greater extent. However, the variety with the highest gm and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high gm during optimal growth conditions and the capacity for gm to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer. PMID:25275452

  13. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    PubMed

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars. PMID:26318143

  14. Rice Seed Cultivar Identification Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis

    PubMed Central

    Kong, Wenwen; Zhang, Chu; Liu, Fei; Nie, Pengcheng; He, Yong

    2013-01-01

    A near-infrared (NIR) hyperspectral imaging system was developed in this study. NIR hyperspectral imaging combined with multivariate data analysis was applied to identify rice seed cultivars. Spectral data was exacted from hyperspectral images. Along with Partial Least Squares Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA), K-Nearest Neighbor Algorithm (KNN) and Support Vector Machine (SVM), a novel machine learning algorithm called Random Forest (RF) was applied in this study. Spectra from 1,039 nm to 1,612 nm were used as full spectra to build classification models. PLS-DA and KNN models obtained over 80% classification accuracy, and SIMCA, SVM and RF models obtained 100% classification accuracy in both the calibration and prediction set. Twelve optimal wavelengths were selected by weighted regression coefficients of the PLS-DA model. Based on optimal wavelengths, PLS-DA, KNN, SVM and RF models were built. All optimal wavelengths-based models (except PLS-DA) produced classification rates over 80%. The performances of full spectra-based models were better than optimal wavelengths-based models. The overall results indicated that hyperspectral imaging could be used for rice seed cultivar identification, and RF is an effective classification technique. PMID:23857260

  15. Rice brown spot and susceptibility of some cultivars in north of Iran.

    PubMed

    Safari-Motlagh, M R; Hedjaroude, Gh A; Zad, S J; Okhovvat, S M

    2002-01-01

    Rice brown spot is one of the important diseases in the world including Iran. 91 samples of the infected plants such as leaves and panicles were collected from different locations of Guilan province, North of Iran and the fungi isolated and studied for pathogenicity. Three species of Bipolaris (B. oryzae, Bipolaris sp. and B. cf. victoriae) were isolated more than other species with serious effects on the plants respectively. Reactions of 8 cultivars of rice, Neda, Nemat, Sepeed-rood, Bejar, Khazar, Domsephid, Hassan-saraee and Binam were studied in greenhouse to Bipolaris sp. and B. cf. victoriae in two stages of growth, on leaves and panicles, respectively. The results showed that in seedling stage on leaf there was no significant difference between these cultivars in case of infection rates. In heading stage, although there was no significant difference according to variance analysis, but according to Duncan test (5%) they could be divided into 3 groups. Neda, Sepeed-rood, Khazar and Binam, with the lowest infection rate, were in the first group Bejar, Domsephid and Hassan-saraee were classified into the second group and Nemat was in the third one. Curvularia sp., Nigrospora sp., Pyricularia grisea and Alternaria sp. were with minor prevalence in infection of the plants. PMID:12701419

  16. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?

    PubMed Central

    Rodenburg, Jonne; Cissoko, Mamadou; Kayeke, Juma; Dieng, Ibnou; Khan, Zeyaur R.; Midega, Charles A.O.; Onyuka, Enos A.; Scholes, Julie D.

    2015-01-01

    The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha−1 were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha−1 with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas. PMID:26089591

  17. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation. PMID:27030107

  18. Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice.

    PubMed

    Singh, Lamabam P; Siddiqui, Zaki A

    2003-01-01

    A 120-day greenhouse experiment was conducted to study the effects of various fly ash concentrations (0%, 20%, 40%, 60%, 80% and 100% vol/vol) with normal field soil and Helminthosporium oryzae on the growth and yield of three cultivars (Pusa Basmati, Pant-4 and Pant-10) of rice, Oryza sativa L. Application of 20% and 40% fly ash with soil caused a significant increase in plant growth and yield of all the three cultivars. Forty percent fly ash caused a higher increase in growth and yield than did 20%. Sixty percent, 80% and 100% fly ash had an adverse effect on growth and yield of all the three cultivars, the maximum being with 100% fly ash. Inoculation of H. oryzae had an adverse effect on the growth and yield, Pant-10 suffered higher damage by H. oryzae than Pusa Basmati and Pant-4. Pant-10 also exhibited higher infected leaf area and greater disease symptoms of H. oryzae than did Pusa Basmati and Pant-4. Plants grown in 100% fly ash suffered higher reductions in growth and yield with H. oryzae than plants grown in pure soil or in 20% or 40% fly ash. In general, plant growth was best in Pusa Basmati followed by Pant-4 and Pant-10, while yield was higher in Pant-4 followed by Pant-10 and Pusa Basmati. PMID:12421012

  19. A map of rice genome variation reveals the origin of cultivated rice.

    PubMed

    Huang, Xuehui; Kurata, Nori; Wei, Xinghua; Wang, Zi-Xuan; Wang, Ahong; Zhao, Qiang; Zhao, Yan; Liu, Kunyan; Lu, Hengyun; Li, Wenjun; Guo, Yunli; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Zhu, Chuanrang; Huang, Tao; Zhang, Lei; Wang, Yongchun; Feng, Lei; Furuumi, Hiroyasu; Kubo, Takahiko; Miyabayashi, Toshie; Yuan, Xiaoping; Xu, Qun; Dong, Guojun; Zhan, Qilin; Li, Canyang; Fujiyama, Asao; Toyoda, Atsushi; Lu, Tingting; Feng, Qi; Qian, Qian; Li, Jiayang; Han, Bin

    2012-10-25

    Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research. PMID:23034647

  20. Responses of rice cultivars and elite lines to diseases in no-till organic production system, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Twenty rice cultivars and lines were arranged in a randomized complete block ...

  1. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC-O and GC-MS.

    PubMed

    Maraval, Isabelle; Mestres, Christian; Pernin, Karine; Ribeyre, Fabienne; Boulanger, Renaud; Guichard, Elisabeth; Gunata, Ziya

    2008-07-01

    Volatile compounds of cooked rice from scented (Aychade, Fidji) and nonscented (Ruille) cultivars grown in the Camargue area in France were compared to that of a marketed Asian scented one (Thai) by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). GC-O analyses of the organic extracts resulted in the perception of 40 odorous compounds. Only two compounds, oct-1-en-3-one and 2-acetyl-1-pyrroline, were almost always perceived. Hierarchical cluster analysis showed that most of the difference between rice odors was linked to quantitative differences with only 11 compounds being specific to some of the rice. Sixty compounds were identified and quantified by GC-MS, including a few new odor-active components. Principal component analysis enabled us to differentiate scented cultivars from a nonscented one, and scented rice cultivars from Camargue from a Thai sample. Calculated odor-active values evidenced that the Thai sample odor differed from that of scented Camargue cultivars because of the degradation of lipids and of cinnamic acid compounds. PMID:18547050

  2. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response

    PubMed Central

    Garg, Rohini; Narayana Chevala, VVS; Shankar, Rama; Jain, Mukesh

    2015-01-01

    DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice. PMID:26449881

  3. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice

    PubMed Central

    Das, Priyanka; Nutan, Kamlesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using ‘omics-based’ tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary ‘omics-based’ approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various ‘omics’ approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice. PMID:26442026

  4. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-olfactometry and GC-PFPD.

    PubMed

    Mahattanatawee, Kanjana; Rouseff, Russell L

    2014-07-01

    Aroma volatiles from three cooked fragrant rice types (Jasmine, Basmati and Jasmati) were characterised and identified using SPME GC-O, GC-PFPD and confirmed using GC-MS. A total of 26, 23, and 22 aroma active volatiles were observed in Jasmine, Basmati and Jasmati cooked rice samples. 2-Acetyl-1-pyrroline was aroma active in all three rice types, but the sulphur-based, cooked rice character impact volatile, 2-acetyl-2-thiazoline was aroma active only in Jasmine rice. Five additional sulphur volatiles were found to have aroma activity: dimethyl sulphide, 3-methyl-2-butene-1-thiol, 2-methyl-3-furanthiol, dimethyl trisulphide, and methional. Other newly-reported aroma active rice volatiles were geranyl acetate, β-damascone, β-damascenone, and ɑ-ionone, contributing nutty, sweet floral attributes to the aroma of cooked aromatic rice. The first two principal components from the principal component analysis of sulphur volatiles explained 60% of the variance. PC1 separated Basmati from the other two cultivars and PC2 completely separated Jasmine from Jasmati cultivars. PMID:24518308

  5. Data set from the phosphoproteomic analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars

    PubMed Central

    Li, Yunfeng; Ye, Zhijian; Nie, Yanfang; Zhang, Jian; Wang, Guo-Liang; Wang, Zhenzhong

    2015-01-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is the most destructive disease of rice and causes tremendous losses of rice yield worldwide. To explore the molecular mechanisms involved in the rice–M. oryzae interaction, we conducted a time-course phosphoproteomic analysis of leaf samples from resistant and susceptible rice cultivars infected with M. oryzae. This data article contains additional results and analysis of M. oryzae-regulated phosphoproteins in rice leaves [1]. We report the analysis of M. oryzae-regulated phosphoproteins at all time points, including Venn diagram analysis, close-up views, relative intensities, and functional category, and the MS spectra of representative phosphoprotein and representative phosphorylated peptides. PMID:26217708

  6. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology

    PubMed Central

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases—sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions–deletions. PMID:23193278

  7. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes.

    PubMed

    Zhou, T; Wang, Y; Chen, J-Q; Araki, H; Jing, Z; Jiang, K; Shen, J; Tian, D

    2004-05-01

    A complete set of candidate disease resistance ( R) genes encoding nucleotide-binding sites (NBSs) was identified in the genome sequence of japonica rice ( Oryza sativaL. var. Nipponbare). These putative R genes were characterized with respect to structural diversity, phylogenetic relationships and chromosomal distribution, and compared with those in Arabidopsis thaliana. We found 535 NBS-coding sequences, including 480 non-TIR (Toll/IL-1 receptor) NBS-LRR (Leucine Rich Repeat) genes. TIR NBS-LRR genes, which are common in A. thaliana, have not been identified in the rice genome. The number of non-TIR NBS-LRR genes in rice is 8.7 times higher than that in A. thaliana, and they account for about 1% of all of predicted ORFs in the rice genome. Some 76% of the NBS genes were located in 44 gene clusters or in 57 tandem arrays, and 16 apparent gene duplications were detected in these regions. Phylogenetic analyses based both NBS and N-terminal regions classified the genes into about 200 groups, but no deep clades were detected, in contrast to the two distinct clusters found in A. thaliana. The structural and genetic diversity that exists among NBS-LRR proteins in rice is remarkable, and suggests that diversifying selection has played an important role in the evolution of R genes in this agronomically important species. (Supplemental material is available online at http://gattaca.nju.edu.cn.) PMID:15014983

  8. Palatable and bio-functional wheat/rice products developed from pre-germinated brown rice of super-hard cultivar EM10.

    PubMed

    Nakamura, Sumiko; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2010-01-01

    It became possible to produce high-quality and bio-functional wheat/rice bread and wheat/rice noodles by blending, pre-germinated and cooked brown rice of a super-hard cultivar with wheat flour. Super-hard rice (SHR) is not suitable for table rice because of its low palatability. Nevertheless, it was found to be suitable as a blending material for bread-making or noodle-making due to its hard texture and high content of resistant starch. We developed a novel rapid germination method to improve the quality and to save the time needed for germination. By blending pre-germinated and cooked SHR (30% w/w on a dry basis) as a rice gel with wheat flour (70% w/w on a dry basis), the bread became very soft and any hardening after bread-making was markedly retarded. Similarly, blending pre-germinated and cooked SHR as cooked a rice gel with wheat flour gave high-quality noodles with a similar texture to that of durum semolina noodles. The resistant starch of the SHR-blended bread and noodles was also markedly increased. White waxy rice (9%) soaked and cooked with the pre-germinated brown rice of SHR (21%) produced a rice gel that was very useful as a material for bread-making and noodle-making by blending with wheat flour (70%) to prepare soft, tasty and bio-functional wheat/rice bread and wheat/rice noodles. PMID:20530881

  9. Genome-Wide Association Studies Reveal that Diverse Heading Date Genes Respond to Short and Long Day Lengths between Indica and Japonica Rice.

    PubMed

    Han, Zhongmin; Zhang, Bo; Zhao, Hu; Ayaad, Mohammed; Xing, Yongzhong

    2016-01-01

    Rice is a short-day plant. Short-day length promotes heading, and long-day length suppresses heading. Many studies have evaluated rice heading in field conditions in which some individuals in the population were exposed to various day lengths, including short and long days, prior to a growth phase transition. In this study, we investigated heading date under natural short-day conditions (SD) and long-day conditions (LD) for 100s of accessions and separately conducted genome-wide association studies within indica and japonica subpopulations. Under LD, three and four quantitative trait loci (QTLs) were identified in indica and japonica subpopulations, respectively, two of which were less than 80 kb from the known genes Hd17 and Ghd7. But no common QTLs were detected in both subpopulations. Under SD, six QTLs were detected in indica, three of which were less than 80 kb from the known heading date genes Ghd7, Ehd1, and RCN1. But no QTLs were detected in japonica subpopulation. qHd3 under SD and qHd4 under LD were two novel major QTLs, which deserve isolation in the future. Eleven known heading date genes were used to test the power of association mapping at the haplotype level. Hd17, Ghd7, Ehd1, and RCN1 were again detected at more significant level and three additional genes, Hd3a, OsMADS56, and Ghd7.1, were detected. However, of the detected seven genes, only one gene, Hd17, was commonly detected in both subpopulations and two genes, Ghd7 and Ghd7.1, were commonly detected in indica subpopulation under both conditions. Moreover, haplotype analysis identified favorable haplotypes of Ghd7 and OsMADS56 for breeding design. In conclusion, diverse heading date genes/QTLs between indica and japonica subpopulations responded to SD and LD, and haplotype-level association mapping was more powerful than SNP-level association in rice. PMID:27621738

  10. Genome-Wide Association Studies Reveal that Diverse Heading Date Genes Respond to Short and Long Day Lengths between Indica and Japonica Rice

    PubMed Central

    Han, Zhongmin; Zhang, Bo; Zhao, Hu; Ayaad, Mohammed; Xing, Yongzhong

    2016-01-01

    Rice is a short-day plant. Short-day length promotes heading, and long-day length suppresses heading. Many studies have evaluated rice heading in field conditions in which some individuals in the population were exposed to various day lengths, including short and long days, prior to a growth phase transition. In this study, we investigated heading date under natural short-day conditions (SD) and long-day conditions (LD) for 100s of accessions and separately conducted genome-wide association studies within indica and japonica subpopulations. Under LD, three and four quantitative trait loci (QTLs) were identified in indica and japonica subpopulations, respectively, two of which were less than 80 kb from the known genes Hd17 and Ghd7. But no common QTLs were detected in both subpopulations. Under SD, six QTLs were detected in indica, three of which were less than 80 kb from the known heading date genes Ghd7, Ehd1, and RCN1. But no QTLs were detected in japonica subpopulation. qHd3 under SD and qHd4 under LD were two novel major QTLs, which deserve isolation in the future. Eleven known heading date genes were used to test the power of association mapping at the haplotype level. Hd17, Ghd7, Ehd1, and RCN1 were again detected at more significant level and three additional genes, Hd3a, OsMADS56, and Ghd7.1, were detected. However, of the detected seven genes, only one gene, Hd17, was commonly detected in both subpopulations and two genes, Ghd7 and Ghd7.1, were commonly detected in indica subpopulation under both conditions. Moreover, haplotype analysis identified favorable haplotypes of Ghd7 and OsMADS56 for breeding design. In conclusion, diverse heading date genes/QTLs between indica and japonica subpopulations responded to SD and LD, and haplotype-level association mapping was more powerful than SNP-level association in rice. PMID:27621738

  11. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch.

    PubMed

    Nakamura, Sumiko; Katsura, Junji; Kato, Kiyoko; Ohtsubo, Ken'ichi

    2016-01-01

    We searched for the easy and simple method to measure the novel indicators which reflect not only AAC, but also (RS) based on pasting properties using RVA. Novel indexes such as SB/Con and Max/Fin (Maximum viscosity/Minimum viscosity) ratios had a very high correlation with proportion of intermediate and long chains of amylopectin; Fb1+2+3 (DP ≧ 13). In Japonica polished rice, estimation formulae for AAC and RS content were developed using novel indexes based on pasting properties by RVA, and these equations showed determination coefficients of 0.89 and 0.80 for calibration and 0.71 and 0.75 for validation test. We developed the estimation formulae for AAC and RS content for Japonica starch samples. These equations showed determination coefficients of 0.86 and 1.00 for calibration and 0.76 and 0.83 for validation test, which showed that these equations can be applied to the unknown rice samples. PMID:26399277

  12. Divergent responses of methanogenic archaeal communities in two rice cultivars to elevated ground-level O3.

    PubMed

    Zhang, Jianwei; Tang, Haoye; Zhu, Jianguo; Lin, Xiangui; Feng, Youzhi

    2016-06-01

    Inhibitive effect of elevated ground-level ozone (O3) on paddy methane (CH4) emission varies with rice cultivars. However, little information is available on its microbial mechanism. For this purpose, the responses of methane-metabolizing microorganisms, methanogenic archaea and methanotrophic bacteria to O3 pollution were investigated in the O3-tolerant (YD6) and the O3-sensitive (IIY084) cultivars at two rice growth stages in Free Air Concentration Elevation of O3 (O3-FACE) system of China. It was found that O3 pollution didn't change the abundances of Type I and Type II methanotrophic bacteria at two rice stages. For methanogenic archaea, their abundances in both cultivars were decreased by O3 pollution at the tillering stage. Furthermore, a greater negative influence on methanogenic archaeal community was observed on IIY084 than on YD6: at tillering stage, the alpha diversity indices of methanogenic archaeal community in IIY084 was decreased to a greater extent than in YD6; IIY084 shifted methanogenic archaeal community composition and decreased the abundances and the diversities of Methanosarcinaceae and Methanosaetaceae as well as the abundance of Methanomicrobiales, while the diversity of Methanocellaceae were increased in YD6. These findings indicate that the variations in the responses of paddy CH4 emission to O3 pollution between cultivars could result from the divergent responses of their methanogenic archaea. PMID:26895536

  13. Regeneration of plantlets from mature embryo calli of Western Ghats land race cultivar of rice, Oryza sativa L.

    PubMed

    Gnanesh, A U; Krishna, V; Kumar, R Shashi; Venkatesh; Kumar, S R Santosh; Shashidhar, H E

    2012-02-01

    The Malnad region located in the Western Ghats of Karnataka is known for the cultivation of indigenous rain fed land race cultivar of rice. The present study was to investigate the callogenic and caulogenic potentialities of the two indigenous rice cultivar namely Karimundaga and Kanadatumba using dehusked mature embryo explants. For callus and shoot bud differentiation, the explants were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-D (1-3 mg/L), IAA (1-2 mg/L), Kn (1-4 mg/L) and BAP (1-4 mg/L). The morphogenic potentialities of the two rice cultivar differed in texture of callus. In both the cultivar callogenic frequency was optimized at 1 mg/L 2,4-D concentration, it was 94% in Karimundaga and 58% in Kanadatumba. Supplementation of IAA either alone (1-2 mg/L) or in combination with Kn or BAP at 1 to 4 mg/L concentration of each induces shoot bud differentiation from the calli. In the cultivar Karimundaga caulogenic frequency was highest (10.60 +/- 2.55) at 1.0 mg/L IAA and 4.0 mg/L BAP concentration. While in the cultivar Kanadatumba highest number of shoot buds (7.90 +/- 2.69) was differentiated at 1.0 mg/L IAA and 4.0 mg/L Kn concentration. The calli derived regenerants were successfully acclimatized in the greenhouse and agro-morphological variations were evaluated. The growth characteristics and yield related parameters exhibited by in vitro plants were lower than the in vivo plants. PMID:22670480

  14. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22.

    PubMed

    Lin, Qiuyun; Wang, Wenyan; Ren, Yakun; Jiang, Yimei; Sun, Ailing; Qian, Ying; Zhang, Yifei; He, Niqing; Hang, Ngo Thi; Liu, Zhou; Li, Linfang; Liu, Linglong; Jiang, Ling; Wan, Jianmin

    2015-12-01

    Seed storability in rice (Oryza sativa L.) is an important agronomic trait. Two segregating populations with N22 (indica) as a common parent, viz. a set of 122 backcross-inbred lines (BILs) derived from the backcross Nanjing35 (japonica)/N22//Nanjing35 and another population comprising 189 recombinant inbred lines (RILs) from the cross of USSR5 (japonica) and N22, were studied to detect quantitative trait loci (QTL) controlling seed storability. Germination percentage (GP) was used to evaluate seed storability after aging treated under three different conditions, viz. natural, artificial and combined aging treatments. A total of seven QTLs were identified on chromosomes 1, 2, 5, 6 and 9. Among them, a major QTL, qSSn-9, was common in the two populations. In contrast, four QTLs (qSSnj-2-1, qSSn-2-2, qSSn-5 and qSSn-6) were detected in BILs and the QTL qSSn-1 was identified in RILs, which was a new QTL for seed storability. The N22-derived alleles increased the seed storability at all the loci except qSSnj-2-1. We also investigated the effect of QTLs using five selected lines with high storability from BILs and verified qSSn-5 with a near-isogenic line (NIL). These results provide an opportunity for pyramiding or map-based cloning major QTLs for seed storability in rice. PMID:26719744

  15. MULTI-YEAR EVALUATION OF RECIPROCAL OUTCROSSING RATES BETWEEN SELECTED RICE CULTIVARS AND RED RICE TYPES AT STUTTGART, ARKANSAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas various reports and observations have long indicated that hybridization between rice and red rice in farm fields can occur with either of these rice types serving as the pollen donor (male) or pollen acceptor (female). Reliable measurements of the outcrossing rates between rice and red ...

  16. Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice.

    PubMed

    Paul, Soumitra; Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2014-09-01

    Low level of iron in staple food crops is one reason for the predominance of iron-deficiency anemia in developing countries. Most of the iron in rice grains accumulates in the outer aleurone layer and embryo, which are removed during milling, and the edible endosperm contains very low amounts of iron. In an effort to increase iron nutrition, we report here the transgene introgression of a high-iron trait into a high-yielding indica rice cultivar. The ferritin gene from soybean (soyfer1) was introduced into rice plants through interbreeding between soybean ferritin-overexpressing transgenic IR68144 and the high-yielding cultivar Swarna. The stable integration of the soyfer1 gene was confirmed in the BC2F4 generation, and the hybrid seeds showed 2.6-fold soybean ferritin gene expression over the recurrent parent Swarna. The hybrid milled seeds revealed a 2.54-fold increase in iron and 1.54-fold increase in zinc compared to Swarna. Agronomic data and an SSR marker analysis of the hybrid rice plants were taken into account for NIL character identification. PMID:25069855

  17. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation.

    PubMed

    Turan, Satpal; Tripathy, Baishnab C

    2013-02-01

    Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m(-2) s(-1)). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment. PMID:22434153

  18. Crop performance and weed suppression by weed-suppressive rice cultivars in furrow- and flood-irrigated systems under reduced herbicide inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations and diminishing availability of irrigation water. Certain indica rice cultivars can produce high yields and suppress weeds in conventional flood-irrigated, drill-seeded systems in the...

  19. Seasonal CH4 and N2O emissions and plant growth characteristics of several cultivars in direct seeded rice systems

    NASA Astrophysics Data System (ADS)

    Simmonds, M.; Anders, M. M.; Adviento-Borbe, M. A.; Van Kessel, C.; McClung, A.; Linquist, B.

    2014-12-01

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions, and to determine to what extent choice of cultivar may have on GHG mitigation. We compared CH4 and N2O emissions, global warming potential (GWP = N2O + CH4), yield-scaled GWP (GWPY = GWP Mg-1 grain), and plant growth characteristics of 8 cultivars within 4 study sites in California and Arkansas. Seasonal CH4 emissions differed between cultivars by a factor of 2.1 and 1.3 at one California and one Arkansas site, respectively. Nitrous oxide emissions were negligible, comprised <10% of GWP, and were not different among cultivars. When sites and cultivars were pooled, and data were normalized to site averages, there was a positive correlation (r = 0.33) between root biomass at heading and seasonal CH4 emissions, but no correlation with shoot biomass at heading, or grain or straw biomass at maturity. Although differences in GWP and GWPY were observed, the consistency of some of the trends was variable across sites, indicating the importance of the genotype x environment interaction. While no high-yielding and low CH4-emitting cultivars were identified at the California sites, among the Southern varieties tested at the Arkansas site, the lowest emitting cultivar had the highest yield. This highlights the potential for breeding high-yielding varieties with low GWP, the ideal scenario to achieve low GWPY due to simultaneously mitigating GHG emissions and improving global food security.

  20. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments

    PubMed Central

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography–mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0–15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6–9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7–9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon

  1. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

    PubMed

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration

  2. Changes in the concentration of fumonisins in forage rice during the growing period, differences among cultivars and sites, and identification of the causal fungus.

    PubMed

    Uegaki, Ryuichi; Tohno, Masanori; Yamamura, Kohji; Tsukiboshi, Takao

    2014-04-16

    To clarify the changes in rice fumonisin (FUM) concentrations, we conducted field cultivation of 10 forage rice cultivars and inoculation with fumonisin-producing fungal isolates. We cultivated 10 forage rice cultivars at the NARO Institute of Livestock and Grassland Science and one cultivar at two additional farmland sites in Japan in 2011 and 2012. Fusarium fujikuroi, which primarily infects plants shortly after heading, was inoculated on rice just after heading, and we sampled heads at the yellow-ripe and full-ripe stages to assess FUM concentrations. We found differences among cultivars in the FUM concentration and differences among the sites for the same cultivar, but no cultivar had high levels in leaves and stems. Fusarium fujikuroi was the main fumonisin producer. The FUM concentration in heads increases from <1 to 4760 μg/kg DM after the yellow-ripe stage. To control FUM levels, it is necessary to select low-FUM cultivars and manage the cultivation environment. PMID:24628734

  3. Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions.

    PubMed

    Fahad, Shah; Hussain, Saddam; Khan, Fahad; Wu, Chao; Saud, Shah; Hassan, Shah; Ahmad, Naeem; Gang, Deng; Ullah, Abid; Huang, Jianliang

    2015-08-01

    Cadmium (Cd) is among the most widespread and toxic heavy metals becoming a severe threat to humans. A field study was conducted to examine the role of various zinc (Zn) fertilization treatments and cultivars on crop productivity and Zn and Cd concentrations in brown rice and rice straw. The Zn fertilization treatments included an unfertilized control, foliar applied Zn sulfate (ZnSO4) at panicle initiation stage, foliar applied ZnSO4 at milky stage, soil application of rubber ash, and soil-applied ZnSO4, while five rice cultivars were Swat-1, Shadab, Shua-92, Swat-2, and Sada Hayat. All the Zn fertilization treatments resulted in significantly higher number of panicles, number of spikelets per panicles, spikelet fertility, 1,000-grain weight, grain yield, brown rice and rice straw Zn concentrations, and significantly lower Cd concentrations. Soil application of rubber ash remained the best among all Zn fertilization treatments as it resulted in 73% higher grain yield and reduced Cd concentration by 51% as compared with control. Variations were also apparent among cultivars, and Shua-92 and Swat-2 performed better in terms of all studied attributes as compared with other cultivars. Conclusively, cultivar selection and Zn application are effective strategies to improve rice grain yield as well as quality. Rubber ash appeared a viable source of Zn having the ability to increase yield along with reducing Cd accumulation. PMID:25903182

  4. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon

    PubMed Central

    Li, Zimin; Song, Zhaoliang; Cornelis, Jean-Thomas

    2014-01-01

    The continental bio-cycling of silicon (Si) plays a key role in global Si cycle and as such partly controls global carbon (C) budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC) and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa) is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe, and C) in different organs of the shoot system (grains, sheath, leaf and stem). The amount of occluded OC within phytoliths is affected by contents of Si, Al, and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios), compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants. PMID:25346741

  5. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon.

    PubMed

    Li, Zimin; Song, Zhaoliang; Cornelis, Jean-Thomas

    2014-01-01

    The continental bio-cycling of silicon (Si) plays a key role in global Si cycle and as such partly controls global carbon (C) budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC) and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa) is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe, and C) in different organs of the shoot system (grains, sheath, leaf and stem). The amount of occluded OC within phytoliths is affected by contents of Si, Al, and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios), compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants. PMID:25346741

  6. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields.

    PubMed

    Römkens, P F A M; Brus, D J; Guo, H Y; Chu, C L; Chiang, C M; Koopmans, G F

    2011-08-01

    At present, soil quality standards used for agriculture do not consider the influence of pH and CEC on the uptake of pollutants by crops. A database with 750 selected paired samples of cadmium (Cd) in soil and paddy rice was used to calibrate soil to plant transfer models using the soil metal content, pH, and CEC or soil Cd and Zn extracted by 0.01 M CaCl₂ as explanatory variables. The models were validated against a set of 2300 data points not used in the calibration. These models were then used inversely to derive soil quality standards for Japonica and Indica rice cultivars based on the food quality standards for rice. To account for model uncertainty, strict soil quality standards were derived considering a maximum probability that rice exceeds the food quality standard equal to 10 or 5%. Model derived soil standards based on Aqua Regia ranged from less than 0.3 mg kg⁻¹ for Indica at pH 4.5 to more than 6 mg kg⁻¹ for Japonica-type cultivars in clay soils at pH 7. Based on the CaCl₂ extract, standards ranged from 0.03 mg kg⁻¹ Cd for Indica cultivars to 0.1 mg kg⁻¹ Cd for Japonica cultivars. For both Japonica and Indica-type cultivars, the soil quality standards must be reduced by a factor of 2 to 3 to obtain the strict standards. The strong impact of pH and CEC on soil quality standards implies that it is essential to correct for soil type when deriving national or local standards. Validation on the remaining 2300 samples indicated that both types of models were able to accurately predict (> 92%) whether rice grown on a specific soil will meet the food quality standard used in Taiwan. PMID:21632090

  7. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes

    PubMed Central

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E.; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  8. Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.).

    PubMed

    Cai, Quan-Ying; Xiao, Pei-Yun; Chen, Tong; Lü, Huixiong; Zhao, Hai-Ming; Zeng, Qiao-Yun; Li, Yan-Wen; Li, Hui; Xiang, Lei; Mo, Ce-Hui

    2015-06-01

    Agricultural soil in China contains high levels of di-(2-ethylhexyl) phthalate (DEHP), especially in paddy-field soil of Guangdong province of China, but the accumulation and translocation of DEHP by rice (Oryza sativa L.) remains unknown. In the present study, twenty rice cultivars were cultivated in paddy soil spiked with DEHP, and variations in DEHP accumulation and translocation among various cultivars were investigated. Our results showed that DEHP concentrations in roots and shoots of different rice cultivars at four growth stages (i.e., ripening, tillering, jointing, and flowering stages) varied greatly from 0.26 to 11.8 mg/kg (dry weight, dw) and 0.40 to 7.58 mg/kg (dw), respectively. No obvious change over time was observed. The greatest variation in DEHP concentrations among the rice cultivars occurred at ripening stage, whereas the lowest variation at flowering stage. During ripening stage, the largest variation in DEHP concentrations among cultivars were observed in stems (varying from 0.35 to 13.2 mg/kg), whereas the least one was observed in roots (ranging from 1.01 to 5.72 mg/kg). Significant differences in DEHP concentrations in the roots, stems, leaves and grains of most rice cultivars were found. The translocation factors of DEHP from roots to stems or stems to leaves were higher than those from shoots to grains. Overall, cultivars Tianfengyou 316, Wuyou 308, and Peizataifeng, which contained low levels of DEHP in grains but high levels in shoots, were ideal cultivars for simultaneous production of safe food and phytoremediation of contaminated soil. PMID:25768422

  9. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice yield is most sensitive to salinity imposed during panicle initiation stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during panicle initiation. The genotypes selected included a pair of indicas (IR63731 and ...

  10. Cadmium accumulation retard activity of functional components of photo assimilation and growth of rice cultivars amended with vermicompost.

    PubMed

    Sebastian, Abin; Prasad, M N V

    2013-01-01

    Cadmium (Cd) uptake mediated alterations in functional components of photo assimilation during conversion of cow dung and poultry cast to vermicompost were studied in two Indian rice cultivars; MO 16 and MTU 7029. It was found that higher amount of Cd accumulate in plants grown in soil amended with vermicompost which in turn damaged functional components in photo assimilation. Enhancement of root growth was recognized as reason for Cd accumulation. Metabolic alterations noticed among plants were not taken place during application of raw materials used for vermicomposting such as cow dung and poultry cast amendment. Rice varieties accumulated Cd differentially where MTU 7029 accumulated more Cd compare to MO 16. It was also noticed that existence of negative correlation between zinc status of the plant and Cd accumulation. PMID:23819289

  11. Disease severity and yield potential of rice cultivars in organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has driven the steady increase in the acreage of organic rice in the U. S., with Texas and California being the largest states. Yield potential and disease management are among the principal challenges associated with organic rice production. We evalua...

  12. Economics of weed suppressive rice cultivars in flood- and furrow-irrigated systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds are a major constraint to rice production. In the U.S, weeds in rice are controlled primarily with synthetic herbicides. Intensive herbicide application in rice also has many potential drawbacks, resulting in environmental pollution, human health concerns, and development of weed resistance. B...

  13. Finding high yield genes in weedy red rice to improve new cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice (Oryza rufipogon) is a weedy, wild relative of cultivated rice (Oryza sativa) that is considered a major pest in rice production fields. However, researchers have found that it can be a valuable source of disease and insect resistance genes. Researchers with USDA ARS and Cornell University ...

  14. Cluster analysis of lowland and upland rice cultivars based on grain quality attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is cropped in many countries all over the world and plays an important role in human nutrition as well as in agricultural economics, besides its social importance. Embrapa Rice and Beans is responsible for national rice enhancement programs and is conducting breeding projects to increase yield ...

  15. Arsenic accumulation in rice grains as affected by cultivars and water management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) accumulation in rice grains is a threat to human health and marketability of rice products. The accumulation has been linked to the elevated As in soil resulting from pesticide application and/or irrigation water quality. In an effort to minimize As uptake by rice grain and occurrence o...

  16. EXPRESSION PROFILING OF ORYZA SATIVA METAL HOMEOSTASIS GENES IN DIFFERENT RICE CULTIVARS USING CDNA MACROARRAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa) has shaped the cultures, diets and economies of billions of people; unfortunately, rice is a poor source of many essential micronutrients and vitamins. Deficiencies in these micronutrients are common in developing countries, especially where rice is the staple food. In order to i...

  17. A new method for evaluation of the resistance to rice kernel cracking based on moisture absorption in brown rice under controlled conditions

    PubMed Central

    Hayashi, Takeshi; Kobayashi, Asako; Tomita, Katsura; Shimizu, Toyohiro

    2015-01-01

    We developed and evaluated the effectiveness of a new method to detect differences among rice cultivars in their resistance to kernel cracking. The method induces kernel cracking under laboratory controlled condition by moisture absorption to brown rice. The optimal moisture absorption conditions were determined using two japonica cultivars, ‘Nipponbare’ as a cracking-resistant cultivar and ‘Yamahikari’ as a cracking-susceptible cultivar: 12% initial moisture content of the brown rice, a temperature of 25°C, a duration of 5 h, and only a single absorption treatment. We then evaluated the effectiveness of these conditions using 12 japonica cultivars. The proportion of cracked kernels was significantly correlated with the mean 10-day maximum temperature after heading. In addition, the correlation between the proportions of cracked kernels in the 2 years of the study was higher than that for values obtained using the traditional late harvest method. The new moisture absorption method could stably evaluate the resistance to kernel cracking, and will help breeders to develop future cultivars with less cracking of the kernels. PMID:26719740

  18. Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Oliva, Norman; Torrizo, Lina; Abrigo, Editha; Tan, Jing; Rai, Mayank; Rehana, Sayda; Al-Babili, Salim; Beyer, Peter; Potrykus, Ingo; Datta, Swapan K

    2003-03-01

    Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition. PMID:17147745

  19. Production of transgenic rice with agronomically useful genes: an assessment.

    PubMed

    Giri, C C; Vijaya Laxmi, G

    2000-12-01

    Rice is the most important food crop in tropical and subtropical regions of the world. Yield enhancement to increase rice production is one of the essential strategies to meet the demand for food of the growing population. Both abiotic and biotic features limit adversely the productivity of rice growing areas. Conventional breeding has been an effective means for developing high yielding varieties, however; it is associated with its own limitations. It is envisaged that recent trends in biotechnology can contribute to the agronomic improvement of rice in terms of yield and nutritional quality as a supplement to traditional breeding methods. Genetic transformation of rice has demonstrated numerous important opportunities resulting in the genetic improvement of existing elite rice varieties and production of new plant types. Significant advances have been made in the genetic engineering of rice since the first transgenic rice plant production in the late 1980s. Several gene transfer protocols have been employed successfully for the introduction of foreign genes to rice. In more than 60 rice cultivars belonging to indica, japonica, javanica, and elite African cultivars, the protocol has been standardized for transgenic rice production. Selection and use of appropriate promoters, selectable markers, and reporter genes has been helpful for development of efficient protocols for transgenic rice in a number of rice cultivars. The present review is an attempt to assess the current state of development in transgenic rice for the transfer of agronomically useful genes, emphasizing the application and future prospects of transgenic rice production for the genetic improvement of this food crop. PMID:14538093

  20. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    PubMed

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains. PMID:26911020

  1. Does the Upstream Region Possessing MULE-Like Sequence in Rice Upregulate PsbS1 Gene Expression?

    PubMed Central

    Nuruzzaman, Mohammed; Kanno, Tatsuo; Amada, Rika; Habu, Yoshiki; Kasajima, Ichiro; Ishikawa, Toshiki; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2014-01-01

    The genomic nucleotide sequences of japonica rice (Sasanishiki and Nipponbare) contained about 2.7-kb unique region at the point of 0.4-kb upstream of the OsPsbS1 gene. In this study, we found that japonica rice with a few exceptions possessing such DNA sequences [denoted to OsMULE-japonica specific sequence (JSS)] is distinct by the presence of Mutator-like-element (MULE). Such sequence was absent in most of indica cultivars and Oryza glaberrima. In OsMULE-JSS1, we noted the presence of possible target site duplication (TSD; CTTTTCCAG) and about 80-bp terminal inverted repeat (TIR) near TSD. We also found the enhancement ofOsPsbS1 mRNA accumulation by intensified light, which was not associated with the DNA methylation status in OsMULE/JSS. In addition, O. rufipogon, possible ancestor of modern rice cultivars was found to compose PsbS gene of either japonica (minor) or indica (major) type. Transient gene expression assay showed that the japonica type promoter elevated a reporter gene activity than indica type. PMID:25259844

  2. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa.

    PubMed

    Bimpong, Isaac Kofi; Manneh, Baboucarr; Sock, Mamadou; Diaw, Faty; Amoah, Nana Kofi Abaka; Ismail, Abdelbagi M; Gregorio, Glenn; Singh, Rakesh Kumar; Wopereis, Marco

    2016-01-01

    Salt stress affects about 25% of the 4.4 million ha of irrigated and lowland systems for rice cultivation in West Africa (WA). A major quantitative trait locus (QTLs) on chromosome 1 (Saltol) that enhances tolerance to salt stress at the vegetative stage has enabled the use of marker-assisted selection (MAS) to develop salt-tolerant rice cultivar(s) in WA. We used 3 cycles of backcrossing with selection based on DNA markers and field-testing using 'FL478' as tolerant donor and the widely grown 'Rassi' as recurrent parent. In the BC3F2 stage, salt-tolerant lines with over 80% Rassi alleles except in the region around Saltol segment were selected. 429 introgression lines (Saltol-ILs) were identified as tolerant at vegetative stage, of which 116 were field-tested for four seasons at the reproductive stage. Sixteen Saltol-ILs had less yield loss (3-26% relative to control trials), and 8 Saltol-ILs showed high yield potential under stress and non-stress conditions. The 16 Saltol-ILs had been included for further African-wide testing prior to release in 6 WA countries. MAS reduced the time for germplasm improvement from at least 7 to about 4 years. Our objective is to combine different genes/QTLs conferring tolerance to stresses under one genetic background using MAS. PMID:26566846

  3. The relative contribution of climate and cultivar renewal to shaping rice yields in China since 1981

    NASA Astrophysics Data System (ADS)

    Song, Yanling; Wang, Chunyi; Ren, Guoyu; Zhao, Yanxia; Linderholm, Hans W.

    2015-04-01

    Rice is one of China's most important staple food crops, where the yields are strongly influenced by climate and rice variety renewal. Using high-quality weather data, rice growth, and agricultural practice data, the contribution of climatic variation on rice yield increases was analyzed from 1981 to 2009 in Wuchang, Northeast China. In this region, the annual mean surface air temperature increased by 0.6 °C/decade, and the accumulated temperature (>10 °C) increased by 120.1 °C/decade from 1981 to 2009, mainly related to global warming. During the same period, rice yields increased by 2,095 kg/ha*decade. To quantify the contribution of climate change to rice yield increases, a "climate similarity index" was devised, where the most important climate parameters for rice growth were compared among years. If the rice variety was changed between 2 years, while the climate conditions were similar, any yield change would be attributed to a rice variety renewal effect. Conversely, changes in rice yields that were not associated with variety changes were attributed to climate change. Our results showed that over the analyzed period, the influence of climate on yields was estimated to 805 kg/ha per decade, while the increasing trend due to rice variety renewal was estimated to 1,290 kg/ha per decade. Thus, 38 % of the yield increases can be related to climatic variation and the remaining 62 % to changes in rice varieties. Furthermore, the effect of variety renewal on the rice yield increases was more pronounced before the 1990s, while afterward, the yield increases were mainly influenced by climatic variations in Northeast China.

  4. [Comparison on submergence tolerance of different type rice at tillering stage in lower reaches of Yangtze River].

    PubMed

    Ming, Liu; Yan, Li; Gui-hua, Guo; Hai-yan, Liu; Gang-hua, Li; Shao-hua, Wang; Zheng-hui, Liu; Yan-feng, Ding

    2015-05-01

    The agronomic traits, physiological characteristics and yield traits of 9 rice varieties popularized in lower reaches of Yangtze River were investigated under submergence stress at the tillering stage. The differences of environmental adaptability to submergence stress for conventional japonica rice, indica hybrid rice and hybrid japonica rice, were also analyzed and compared. The results showed that the stem and the upper three leaves under submergence stress were elongated compared with the control. And the elongation of the different varieties was shown as, hybrid japonica rice > indica hybrid rice > conventional japonica rice. As to the numbers of tillers and green leaves, and the aboveground dry mass, the reduction of indica hybrid rice was all between hybrid japonica rice and conventional japonica rice. The damage of hybrid japonica was the lightest. The content of MDA in the leaves of conventional japonica rice increased, while the activities of SOD and CAT decreased. However, the performances of hybrid japonica rice and indica hybrid rice were opposite with conventional japonica rice. The yield loss of conventional japonica rice was significantly higher than those of the other types of rice. These results suggested that the submergence tolerance ability of hybrid japonica rice is superior to indica hybrid rice, and the submergence tolerance ability of conventional japonica rice is the weakest. PMID:26571654

  5. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    PubMed

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. PMID:26686058

  6. Threat to food security under current levels of ground level ozone: A case study for Indian cultivars of rice

    NASA Astrophysics Data System (ADS)

    Rai, Richa; Agrawal, Madhoolika; Agrawal, S. B.

    2010-11-01

    A higher ozone concentration in rural agricultural region poses threat to food production in developing countries. The present study was conducted to evaluate the growth, biomass accumulation and allocation pattern, quantitative and qualitative characteristics of grains for two tropical rice cultivars ( Oryza sativa L. cv NDR 97 and Saurabh 950) at ambient O 3 concentrations at a rural site in the Indo Gangetic plains of India. Percent inhibition in number of leaves was higher for NDR 97, but in leaf area for Saurabh 950 grown in non filtered chambers (NFCs) compared to filtered chambers (FCs). Higher inhibition in root biomass was recorded in Saurabh 950 and in leaf and standing dead biomass for NDR 97. During vegetative phase, relative growth rate showed more percent inhibition in Saurabh 950, but at reproductive phase in NDR 97. Net assimilation rate showed higher values for Saurabh 950 than NDR 97 in NFCs but percent inhibition in leaf area ratio was higher for former than latter cultivar in NFCs. The ozone resistance was higher in NDR 97 during vegetative phase, but in Saurabh 950 at reproductive phase. Number of grains was higher in NDR 97 than Saurabh 950, but test weight and weight of grains m -2 showed reverse trends. Concentrations of starch, protein, P, N, Ca, Mg and K decreased, while reducing and total soluble sugar increased in grains of both the cultivars in NFCs compared to FCs. The study concluded that under ambient condition of O 3 exposure, the two cultivars responded differently. Saurabh 950 favoured biomass translocation priority towards ear in reproductive phase and hence showed higher resistivity due to maintenance of higher test weight. NDR 97, however, showed better growth during vegetative period, but could not allocate efficiently to developing ears, hence higher number of unfilled grains in NFCs led lower test weight.

  7. Effects of Organic Fertility Management on Physicochemical Properties and Sensory Quality of Diverse Rice Cultivars.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for organically-grown rice has increased with consumer demand for organic foods. The objective of this research was to determine if there are physicochemical differences in organically- and conventionally-grown rice that contribute to flavor and texture differences, as determined by desc...

  8. Comparative structure and physicochemical properties of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464.

    PubMed

    Kang, Hee-Jin; Hwang, In-Kyeong; Kim, Kyung-Soo; Choi, Hae-Chune

    2003-10-22

    A new rice mutant Suweon 464 (S-464) derived from a high-quality rice, Ilpumbyeo (IP), revealed a striking difference in cooking quality from IP. The physicochemical properties of S-464 and IP were compared. S-464 was unusually high in amylose and fiber contents, had B-type crystallinity of starch, and had a markedly lower proportion of short chains in the distribution of glucan-chain fractions of debranched starch as compared with IP. Scanning electron microscopy revealed that starch granules of S-464 were much smaller in size than those of IP and that many of them were not separated from amyloplasts. The physicochemical properties of S-464 would contribute to poor gelatinization, lower swelling power, higher hardness, and less stickiness when cooked. Although S-464 may not be desirable for cooked rice, the mutant could be an excellent candidate for other processed food products on the basis of its unusual properties of starch and high fiber, protein, and lipid contents. PMID:14558783

  9. Effects of cultivars, organic cropping management and environment on antioxidants in whole grain rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole grain rice contains functional antioxidants such as phenolics, flavonoids (including proanthocyanidins), vitamin E homologues (tocopherols and tocotrienols) and gamma-oryzanol that have positive effects on human health. These antioxidants are secondary metabolites in plants that can be induced...

  10. Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa L.).

    PubMed

    Vanniarajan, C; Vinod, K K; Pereira, Andy

    2012-01-01

    In the present study, we tested rice genotypes that included un(der)exploited landraces of Tamil Nadu along with indica and japonica test cultivars to ascertain their genetic diversity structure. Highly polymorphic microsatellite markers were used for generating marker segregation data. A novel measure, allele discrimination index, was used to determine subpopulation differentiation power of each marker. Phenotypic data were collected for yield and component traits. Pattern of molecular differentiation separated indica and japonica genotypes; indica genotypes had two subpopulations within. Landraces were found to have indica genome, but formed a separate subgroup with low linkage disequilibrium. The landraces further separated into distinct group in both hierarchical clustering analysis using neighbour-joining method as well as in the model based population structure analysis. Japonica and the remaining indica cultivars formed two other distinct groups. Linkage disequilibrium observed in the whole population was considerably reduced in subpopulations. Low linkage disequilibrium of landforms suggests their narrow adaptation in local geographical niche. Many population specific alleles could be identified particularly for japonica cultivars and landraces. Association analysis revealed nine marker-trait associations with three agronomic traits, of which 67% were previously reported. Although the testing landraces together with known cultivars had permitted genomewide association mapping, the experiment offers scope to study more landraces collected from the entire geographical region for drawing more reliable information. PMID:22546822

  11. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice

    NASA Astrophysics Data System (ADS)

    Wu, Dianxing; Shu, Qingyao; Wang, Zhonghua; Xia, Yingwu

    2002-08-01

    Three types of rice cultivars (indica, japonica and hybrid rice) with similar intermediate apparent amylose content (AAC) as well as early indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physicochemical properties and starch granule structure. Four major parameters of RVA profile, that was determined by a rapid visco analyser (RVA, Model-3D), peak viscosity, hot pasting viscosity, cool pasting viscosity, and setback viscosity, were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in gelatinization temperature were detected after irradiation, but the peak time was reduced with the dose levels. Gel consistency was significantly increased in the tested cultivars, especially in the high AAC indica rice. The starch granules were somewhat deformed by gamma irradiation. These results suggested that it is promising to use gamma irradiation to improve rice eating or cooking quality.

  12. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  13. Identification and Characterization of Differentially Expressed Genes in Inferior and Superior Spikelets of Rice Cultivars with Contrasting Panicle-Compactness and Grain-Filling Properties.

    PubMed

    Sekhar, Sudhanshu; Gharat, Sachin Ashruba; Panda, Binay Bhushan; Mohaptra, Trupti; Das, Kaushik; Kariali, Ekamber; Mohapatra, Pravat Kumar; Shaw, Birendra Prasad

    2015-01-01

    Breeding programs for increasing spikelet number in rice have resulted in compactness of the panicle, accompanied by poor grain filling in inferior spikelets. Although the inefficient utilization of assimilate has been indicated as responsible for this poor grain filling, the underlying cause remains elusive. The current study utilized the suppression subtractive hybridization technique to identify 57 and 79 genes that overexpressed in the superior and inferior spikelets (with respect to each other), respectively, of the compact-panicle rice cultivar Mahalaxmi. Functional categorization of these differentially expressed genes revealed a marked metabolic difference between the spikelets according to their spatial location on the panicle. The expression of genes encoding seed storage proteins was dominant in inferior spikelets, whereas genes encoding regulatory proteins, such as serine-threonine kinase, zinc finger protein and E3 ligase, were highly expressed in superior spikelets. The expression patterns of these genes in the inferior and superior spikelets of Mahalaxmi were similar to those observed in another compact-panicle cultivar, OR-1918, but differed from those obtained in two lax-panicle cultivars, Upahar and Lalat. The results first suggest that the regulatory proteins abundantly expressed in the superior spikelets of compact-panicle cultivars and in both the superior and inferior spikelets of lax-panicle cultivars but poorly expressed in the inferior spikelets of compact-panicle cultivars promote grain filling. Second, the high expression of seed-storage proteins observed in the inferior spikelets of compact-panicle cultivars appears to inhibit the grain filling process. Third, the low expression of enzymes of the Krebs cycle in inferior spikelets compared with superior spikelets of compact-panicle cultivars is bound to lead to poor ATP generation in the former and consequently limit starch biosynthesis, an ATP-consuming process, resulting in poor grain

  14. Identification and Characterization of Differentially Expressed Genes in Inferior and Superior Spikelets of Rice Cultivars with Contrasting Panicle-Compactness and Grain-Filling Properties

    PubMed Central

    Panda, Binay Bhushan; Mohaptra, Trupti; Das, Kaushik; Kariali, Ekamber; Mohapatra, Pravat Kumar; Shaw, Birendra Prasad

    2015-01-01

    Breeding programs for increasing spikelet number in rice have resulted in compactness of the panicle, accompanied by poor grain filling in inferior spikelets. Although the inefficient utilization of assimilate has been indicated as responsible for this poor grain filling, the underlying cause remains elusive. The current study utilized the suppression subtractive hybridization technique to identify 57 and 79 genes that overexpressed in the superior and inferior spikelets (with respect to each other), respectively, of the compact-panicle rice cultivar Mahalaxmi. Functional categorization of these differentially expressed genes revealed a marked metabolic difference between the spikelets according to their spatial location on the panicle. The expression of genes encoding seed storage proteins was dominant in inferior spikelets, whereas genes encoding regulatory proteins, such as serine-threonine kinase, zinc finger protein and E3 ligase, were highly expressed in superior spikelets. The expression patterns of these genes in the inferior and superior spikelets of Mahalaxmi were similar to those observed in another compact-panicle cultivar, OR-1918, but differed from those obtained in two lax-panicle cultivars, Upahar and Lalat. The results first suggest that the regulatory proteins abundantly expressed in the superior spikelets of compact-panicle cultivars and in both the superior and inferior spikelets of lax-panicle cultivars but poorly expressed in the inferior spikelets of compact-panicle cultivars promote grain filling. Second, the high expression of seed-storage proteins observed in the inferior spikelets of compact-panicle cultivars appears to inhibit the grain filling process. Third, the low expression of enzymes of the Krebs cycle in inferior spikelets compared with superior spikelets of compact-panicle cultivars is bound to lead to poor ATP generation in the former and consequently limit starch biosynthesis, an ATP-consuming process, resulting in poor grain

  15. Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-10-01

    The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages. PMID:18156780

  16. Differences in responses to flooding by germinating seeds of two contrasting rice cultivars and two species of economically important grass weeds.

    PubMed

    Estioko, Lucy P; Miro, Berta; Baltazar, Aurora M; Merca, Florinia E; Ismail, Abdelbagi M; Johnson, David E

    2014-01-01

    Crop productivity is largely affected by abiotic factors such as flooding and by biotic factors such as weeds. Although flooding after direct seeding of rice helps suppress weeds, it also can adversely affects germination and growth of rice, resulting in poor crop establishment. Barnyard grasses (Echinochloa spp.) are among the most widespread weeds affecting rice, especially under direct seeding. The present work aimed to establish effective management options to control these weeds. We assessed the effects of variable depths and time of submergence on germination, seedling growth and carbohydrate metabolism of (i) two cultivars of rice known to differ in their tolerance to flooding during germination and (ii) two barnyard grasses (Echinochloa colona and E. crus-galli) that commonly infest rice fields. Flooding barnyard grasses with 100-mm-deep water immediately after seeding was effective in suppressing germination and growth. Echinochloa colona showed greater reductions in emergence, shoot and root growth than E. crus-galli. Delaying flooding for 2 or 4 days was less injurious to both species. Echinochloa colona was also more susceptible to flooding than the flood-sensitive rice cultivar 'IR42'. The activity of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) in rice seedlings was increased by flooding after sowing but with greater increases in 'Khao Hlan On' compared with 'IR42'. The activity of ADH and PDC was enhanced to a similar extent in both barnyard grasses. Under aerobic conditions, the activity of ADH and PDC in the two barnyard grasses was downregulated, which might contribute to their inherently faster growth compared with rice. Aldehyde dehydrogenase activity was significantly enhanced in flood-tolerant 'Khao Hlan On' and E. crus-galli, but did not increase in flood-sensitive E. colona and 'IR42', implying a greater ability of the flood-tolerant types to detoxify acetaldehyde generated during anaerobic fermentation. Confirmation of this

  17. Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic is not an essential element and can be toxic to both plants and animals in high concentration. Decreasing arsenic concentrations in all foodstuffs, including rice grain, is a desirable goal because of the potential detrimental impacts of As on plant growth and yield and its potential toxici...

  18. Effect of cultural management practices on the grain quality of two rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to reduce fuel and labor costs and increase profits, farmers are trying new ways of growing rice (Oryza sativa L.). This includes conservation tillage, crop rotations, and changing fertilization applications. There is little information on how these changes effect the cooking quality of r...

  19. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current advances in sequencing technologies and bioinformatics allow to determine a nearly complete genomic background of rice, a staple food for the poor people. Consequently, comprehensive databases of variation among thousands of varieties is currently being assembled and released. Proper analysi...

  20. Performance of weed-suppressive rice cultivars in upland and flooded production systems in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian indica rice lines such as PI 312777 can suppress barnyardgrass (Echinochloa crus-galli) effectively in traditional drill-seeded, flood-irrigated (FLI) production systems, but their weed suppression potential in upland (furrow irrigation; FUI) production systems is unknown. FUI systems are gai...

  1. Can southern US rice cultivars be used to mitigate greenhouse gas emissions? A preliminary study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most rice in the world is produced under flooded paddy conditions as a means of producing high stable yields and controlling non-aquatic weeds. However, the anaerobic soil conditions that occur as a result of the flooded fields cause high levels of methane production due to bacterial methanogenesis....

  2. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice

    PubMed Central

    Kumari, Chanchal; Dutta, Tushar K.; Banakar, Prakash; Rao, Uma

    2016-01-01

    Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures. PMID:26961568

  3. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    PubMed

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine. PMID:27228466

  4. Assessing the potential impact of fly ash amendments on Indian paddy field with special emphasis on growth, yield, and grain quality of three rice cultivars.

    PubMed

    Singh, Anupama; Sarkar, Abhijit; Agrawal, S B

    2012-08-01

    Proper disposal and/or recycling of different industrial waste materials have long been recognized as a prime environmental concern throughout the world, and fly ash is major amongst them. In the present study, we tried to assess the feasibilities of possible effective and safe utilization of fly ash as soil amendment in Indian paddy field and its impact on rice plants, especially at growth and yield level. Our results showed that certain doses of fly ash amendments have significantly improved the physico-chemical and mineralogical properties of paddy field soil, and at lower level of amendments, fly ash induced the growth performances of three rice cultivars too. Grain yield and grain quality also responded similarly as per the growth responses. However, differential cultivar response was observed accordingly, and cultivar Sugandha-3 showed higher yield as compared with cultivars Sambha and Saryu-52. Based on the observed results, it was concluded that up to a certain level, fly ash amendments could be beneficial for Indian paddy field and can be utilized as feasible management strategy for the disposal of this major industrial waste. PMID:21901311

  5. Seed physicochemical characteristics of field-grown U.S. weedy red rice biotypes: Contrasts with commercial cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in the US is an aggressive weed that reduces the yield of rice and contaminates its grain. It is the same species as rice, which provides an opportunity for intercrossing. This genetic similarity complicates the management of red rice in fields and rice mills, but also indicates a potential...

  6. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes.

    PubMed

    Wang, Xi-liang; Song, Shu-hui; Wu, Yong-Sheng; Li, Yu-Li; Chen, Ting-ting; Huang, Zhi-yuan; Liu, Shuo; Dunwell, Thomas L; Pfeifer, Gerd P; Dunwell, Jim M; Wamaedeesa, Raheema; Ullah, Ihsan; Wang, Yinsheng; Hu, Song-nian

    2015-11-01

    5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification. PMID:26272901

  7. The rice mitochondrial genomes and their variations.

    PubMed

    Tian, Xiangjun; Zheng, Jing; Hu, Songnian; Yu, Jun

    2006-02-01

    Based on highly redundant and high-quality sequences, we assembled rice (Oryza sativa) mitochondrial genomes for two cultivars, 93-11 (an indica variety) and PA64S (an indica-like variety with maternal origin of japonica), which are paternal and maternal strains of an elite superhybrid rice Liang-You-Pei-Jiu (LYP-9), respectively. Following up with a previous analysis on rice chloroplast genomes, we divided mitochondrial sequence variations into two basic categories, intravarietal and intersubspecific. Intravarietal polymorphisms are variations within mitochondrial genomes of an individual variety. Intersubspecific polymorphisms are variations between subspecies among their major genotypes. In this study, we identified 96 single nucleotide polymorphisms (SNPs), 25 indels, and three segmental sequence variations as intersubspecific polymorphisms. A signature sequence fragment unique to indica varieties was confirmed experimentally and found in two wild rice samples, but absent in japonica varieties. The intersubspecific polymorphism rate for mitochondrial genomes is 0.02% for SNPs and 0.006% for indels, nearly 2.5 and 3 times lower than that of their chloroplast counterparts and 21 and 38 times lower than corresponding rates of the rice nuclear genome, respectively. The intravarietal polymorphism rates among analyzed mitochondrial genomes, such as 93-11 and PA64S, are 1.26% and 1.38% for SNPs and 1.13% and 1.09% for indels, respectively. Based on the total number of SNPs between the two mitochondrial genomes, we estimate that the divergence of indica and japonica mitochondrial genomes occurred approximately 45,000 to 250,000 years ago. PMID:16384910

  8. Water use efficiency and physiological response of rice cultivars under alternate wetting and drying conditions.

    PubMed

    Zhang, Yunbo; Tang, Qiyuan; Peng, Shaobing; Xing, Danying; Qin, Jianquan; Laza, Rebecca C; Punzalan, Bermenito R

    2012-01-01

    One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology. PMID:23319883

  9. The Nipponbare genome and the next-generation of rice genomics research in Japan.

    PubMed

    Matsumoto, Takashi; Wu, Jianzhong; Itoh, Takeshi; Numa, Hisataka; Antonio, Baltazar; Sasaki, Takuji

    2016-12-01

    The map-based genome sequence of the japonica rice cultivar Nipponbare remains to date as the only monocot genome that has been sequenced to a high-quality level. It has become the reference sequence for understanding the diversity among thousands of rice cultivars and its wild relatives as well as the major cereal crops that comprised the food source for the entire human race. This review focuses on the accomplishments in rice genomics in Japan encompassing the last 10 years which have led into deeper understanding of the genome, characterization of many agronomic traits, comprehensive analysis of the transcriptome, and the map-based cloning of many genes associated with agronomic traits. PMID:27447712

  10. Identification of Conserved and Diverse Metabolic Shifts during Rice Grain Development

    PubMed Central

    Hu, Chaoyang; Tohge, Takayuki; Chan, Shen-An; Song, Yue; Rao, Jun; Cui, Bo; Lin, Hong; Wang, Lei; Fernie, Alisdair R.; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    Seed development dedicates to reserve synthesis and accumulation and uncovering its genetic and biochemical mechanisms has been a major research focus. Although proteomic and transcriptomic analyses revealed dynamic changes of genes and enzymes involved, the information regarding concomitant metabolic changes is missing. Here we investigated the dynamic metabolic changes along the rice grain development of two japonica and two indica cultivars using non-targeted metabolomics approach, in which we successfully identified 214 metabolites. Statistical analyses revealed both cultivar and developmental stage dependent metabolic changes in rice grains. Generally, the stage specific metabolic kinetics corresponded well to the physiological status of the developing grains, and metabolic changes in developing rice grain are similar to those of dicot Arabidopsis and tomato at reserve accumulation stage but are different from those of dicots at seed desiccation stage. The remarkable difference in metabolite abundances between japonica and indica rice grain was observed at the reserve accumulation stage. Metabolite-metabolite correlation analysis uncovered potential new pathways for several metabolites. Taken together, this study uncovered both conserved and diverse development associated metabolic kinetics of rice grains, which facilitates further study to explore fundamental questions regarding the evolution of seed metabolic capabilities as well as their potential applications in crop improvement. PMID:26860358

  11. Comparative proteomics of the superior and inferior spikelets at the early grain filling stage in rice cultivars contrast for panicle compactness and ethylene evolution.

    PubMed

    Das, Kaushik; Panda, Binay B; Sekhar, Sudhanshu; Kariali, Ekamber; Mohapatra, Pravat K; Shaw, Birendra P

    2016-09-01

    The breeding programmes in rice aimed at increasing the number of spikelets per panicle have been accompanied by poor grain filling in the inferior spikelets of large panicle rice, leading to yield disadvantage. The present study attempted to understand the reason for differential grain filling in the inferior and superior spikelets by comparative proteomics considering a compact-panicle rice cultivar Mahalaxmi and a lax-panicle rice cultivar Upahar, which show poor and good grain filling, respectively. An initial study of two rice cultivars for panicle compactness and grain filling revealed an inverse correlation between the two parameters. It was further observed that the panicle compactness in Mahalaxmi was associated with a higher evolution of ethylene by the spikelets, both superior and inferior, compared with the lax-panicle Upahar. The proteomic studies revealed that the superior and inferior spikelets of Mahalaxmi differentially expressed 21 proteins that were also expressed in Upahar. However, in Upahar, only two of these proteins were differentially expressed between the superior and inferior spikelets, indicating that the metabolic activities of the spikelets occupying the superior and inferior positions on the panicle were very different in Mahalaxmi compared with those in Upahar. Among the proteins that were downregulated in the inferior spikelets compared with the superior ones in Mahalaxmi were importin-α, elongation factor 1-β and cell division control protein 48, which are essential for cell cycle progression and cell division. Low expression of these proteins might inhibit endosperm cell division in the inferior spikelets, limiting their sink capacity and leading to poor grain filling compared to that in the superior spikelets. The poor grain filling in Mahalaxmi may also be a result of the high evolution of ethylene in the inferior spikelets, which is reflected from the observation that these spikelets showed significantly higher expression of

  12. Genetic Diversity and Population Structure in Aromatic and Quality Rice (Oryza sativa L.) Landraces from North-Eastern India

    PubMed Central

    Mawkhlieng, Bandapkuper; Misra, A. K.; Pattanayak, A.; Harish, G. D.; Singh, S. K.; Ngachan, S. V.; Bansal, K. C.

    2015-01-01

    The North-eastern (NE) India, comprising of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura, possess diverse array of locally adapted non-Basmati aromatic germplasm. The germplasm collections from this region could serve as valuable resources in breeding for abiotic stress tolerance, grain yield and cooking/eating quality. To utilize such collections, however, breeders need information about the extent and distribution of genetic diversity present within collections. In this study, we report the result of population genetic analysis of 107 aromatic and quality rice accessions collected from different parts of NE India, as well as classified these accessions in the context of a set of structured global rice cultivars. A total of 322 alleles were amplified by 40 simple sequence repeat (SSR) markers with an average of 8.03 alleles per locus. Average gene diversity was 0.67. Population structure analysis revealed that NE Indian aromatic rice can be subdivided into three genetically distinct population clusters: P1, joha rice accessions from Assam, tai rices from Mizoram and those from Sikkim; P2, chakhao rice germplasm from Manipur; and P3, aromatic rice accessions from Nagaland. Pair-wise FST between three groups varied from 0.223 (P1 vs P2) to 0.453 (P2 vs P3). With reference to the global classification of rice cultivars, two major groups (Indica and Japonica) were identified in NE Indian germplasm. The aromatic accessions from Assam, Manipur and Sikkim were assigned to the Indica group, while the accessions from Nagaland exhibited close association with Japonica. The tai accessions of Mizoram along with few chakhao accessions collected from the hill districts of Manipur were identified as admixed. The results highlight the importance of regional genetic studies for understanding diversification of aromatic rice in India. The data also suggest that there is scope for exploiting the genetic diversity of aromatic and quality rice

  13. Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities

    PubMed Central

    2014-01-01

    Background Availability of irrigation water is becoming a major limiting factor in rice cultivation. Production in rainfed areas is affected in particular by drought events, as these areas are commonly planted to high-yielding drought-susceptible rice (Oryza sativa L.) varieties. The use of bulk segregant analysis (BSA), taking grain yield (GY) as a selection criterion, has resulted in the identification of several large-effect QTL. A QTL mapping study was undertaken on a BC1F3:4 population developed from the cross IR55419-04/2*TDK1 with the aim of identifying large-effect QTL in the background of TDK1, a popular variety from Lao PDR. Results The study identified three QTL—qDTY 3.1 (RM168-RM468), qDTY 6.1 (RM586-RM217), and qDTY 6.2 (RM121-RM541)—for grain yield under drought. qDTY 3.1 and qDTY 6.1 , showed consistent effect across seasons under lowland drought-stress conditions while qDTY 6.1 and qDTY 6.2 showed effect under both upland and lowland drought conditions. The test of QTL effect, conducted through a QTL class analysis, showed the complimentary nature of qDTY 3.1 and qDTY 6.1 . Both QTL showed specific patterns of effect across different maturity groups within the mapping population and higher stability for grain yield was seen across stress levels for lines with both QTLs as compared to those with single or no QTL. Conclusions The study offers a clear understanding of large-effect QTL for grain yield under drought and their effect as individual QTL and in various combinations. The study also opens up an opportunity to develop a drought-tolerant version of TDK1 through marker-assisted backcross breeding and has led to a large-scale QTL pyramiding program aiming to combine these QTL with Sub1 in the background of TDK1 as recipient variety. PMID:24491154

  14. Different maternal origins of Japanese lowland and upland rice populations.

    PubMed

    Ishikawa, R.; Sato, -I.; Tang, T.; Nakamura, I.

    2002-05-01

    Plastid subtype ID (PS-ID) sequences were determined from sequence data based on CA repeats between genes rpl16 and rpl14 in Japanese lowland and upland cultivars. The PS-ID sequences of Japanese rice cultivars showed that there are different maternal origins between lowland and upland cultivars. One subtype, 6C7A, of PS-ID sequences was predominant in all but one Japanese lowland cultivar and carried a combination of the indica-specific subtype 8C8A and japonica-specific nuclear markers for the isozyme genotype. It is probably a nuclear-cytoplasmic recombinant resulting from natural out-crossing and succeeding self-pollination. The origin of the plastid was re-confirmed by the existence of an indica-specific deletion in the plastid genome. In contrast, the Japanese upland cultivars showed two subtypes, 7C6A and 6C7A, of PS-ID sequences. An upland-specific isozyme allele as a nuclear marker was equally predominant in cultivars carrying each subtype. The existence of these particular upland-specific nuclear and cytoplasmic genotypes suggests that the origin of Japanese upland cultivars is different from that of Japanese lowland cultivars. Cultivars carrying the upland-specific nuclear genotype are common in Southeast Asia, but the combination of the upland-specific nuclear and cytoplasmic genotypes which is the same as the Japanese upland predominant type was found in cultivars only in Taiwan and Indonesia. Japanese upland cultivars are closely related to those cultivars. PMID:12582602

  15. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru.

    PubMed

    Septiningsih, Endang M; Sanchez, Darlene L; Singh, Namrata; Sendon, Pamella M D; Pamplona, Alvaro M; Heuer, Sigrid; Mackill, David J

    2012-03-01

    Short-term submergence is a recurring problem in many rice production areas. The SUB1 gene, derived from the tolerant variety FR13A, has been transferred to a number of widely grown varieties, allowing them to withstand complete submergence for up to 2 weeks. However, in areas where longer-term submergence occurs, improved varieties having higher tolerance levels are needed. To search for novel quantitative trait loci (QTLs) from other donors, an F(2:3) population between IR72 and Madabaru, both moderately tolerant varieties, was investigated. After a repeated phenotyping of 466 families under submergence stress, a subset of 80 families selected from the two extreme phenotypic tails was used for the QTL analysis. Phenotypic data showed transgressive segregation, with several families having an even higher survival rate than the FR13A-derived tolerant check (IR40931). Four QTLs were identified on chromosomes 1, 2, 9, and 12; the largest QTL on chromosome 1 had a LOD score of 11.2 and R (2) of 52.3%. A QTL mapping to the SUB1 region on chromosome 9, with a LOD score of 3.6 and R (2) of 18.6%, had the tolerant allele from Madabaru, while the other three QTLs had tolerant alleles from IR72. The identification of three non-SUB1 QTLs from IR72 suggests that an alternative pathway may be present in this variety that is independent of the ethylene-dependent pathway mediated by the SUB1A gene. These novel QTLs can be combined with SUB1 using marker assisted backcrossing in an effort to enhance the level of submergence tolerance for flood-prone areas. PMID:22083356

  16. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment.

    PubMed

    Zhu, Chunwu; Xu, Xi; Wang, Dan; Zhu, Jianguo; Liu, Gang

    2015-01-01

    Although the rice growth response to FACE (free-air CO2 enrichment) has been widely studied and is considered important within the scientific community, few studies have attempted to examine the effects of FACE on the yield of indica rice, which is typically the parent of indica hybrids in China. The effects of FACE on the yield, yield components, biomass, N uptake and leaf photosynthesis of Yangdao 6 Hao (an indica rice) in China were examined over 2 years. The grain yield increased over 30%, the panicle number increased 12.4% on average, and the spikelet number per panicle also showed an average increase of 8.2% at elevated CO2. FACE caused a significant enhancement in both the filled spikelet percentage (+5.9%) and the individual grain weight (+3.0%). Compared with three prior FACE studies on rice, a similar enhancement of yield in hybrid indica was shown under FACE, with much a higher value than for the japonica rice cultivar (approximately + 13%) because of indica's stronger sink generation and N uptake capacity, which help coordinate the C/N balance to avoid photosynthetic acclimation. The high enhancement of the indica rice yield under FACE holds promise for improved cultivar selection for future food security. PMID:26228872

  17. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment

    PubMed Central

    Zhu, Chunwu; Xu, Xi; Wang, Dan; Zhu, Jianguo; Liu, Gang

    2015-01-01

    Although the rice growth response to FACE (free-air CO2 enrichment) has been widely studied and is considered important within the scientific community, few studies have attempted to examine the effects of FACE on the yield of indica rice, which is typically the parent of indica hybrids in China. The effects of FACE on the yield, yield components, biomass, N uptake and leaf photosynthesis of Yangdao 6 Hao (an indica rice) in China were examined over 2 years. The grain yield increased over 30%, the panicle number increased 12.4% on average, and the spikelet number per panicle also showed an average increase of 8.2% at elevated CO2. FACE caused a significant enhancement in both the filled spikelet percentage (+5.9%) and the individual grain weight (+3.0%). Compared with three prior FACE studies on rice, a similar enhancement of yield in hybrid indica was shown under FACE, with much a higher value than for the japonica rice cultivar (approximately + 13%) because of indica’s stronger sink generation and N uptake capacity, which help coordinate the C/N balance to avoid photosynthetic acclimation. The high enhancement of the indica rice yield under FACE holds promise for improved cultivar selection for future food security. PMID:26228872

  18. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment

    NASA Astrophysics Data System (ADS)

    Zhu, Chunwu; Xu, Xi; Wang, Dan; Zhu, Jianguo; Liu, Gang

    2015-07-01

    Although the rice growth response to FACE (free-air CO2 enrichment) has been widely studied and is considered important within the scientific community, few studies have attempted to examine the effects of FACE on the yield of indica rice, which is typically the parent of indica hybrids in China. The effects of FACE on the yield, yield components, biomass, N uptake and leaf photosynthesis of Yangdao 6 Hao (an indica rice) in China were examined over 2 years. The grain yield increased over 30%, the panicle number increased 12.4% on average, and the spikelet number per panicle also showed an average increase of 8.2% at elevated CO2. FACE caused a significant enhancement in both the filled spikelet percentage (+5.9%) and the individual grain weight (+3.0%). Compared with three prior FACE studies on rice, a similar enhancement of yield in hybrid indica was shown under FACE, with much a higher value than for the japonica rice cultivar (approximately + 13%) because of indica’s stronger sink generation and N uptake capacity, which help coordinate the C/N balance to avoid photosynthetic acclimation. The high enhancement of the indica rice yield under FACE holds promise for improved cultivar selection for future food security.

  19. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  20. Hydrocolloid sour taste control in pasteurized rice.

    PubMed

    Azanza, Maria Patricia V

    2014-12-01

    The effects of kappa (κ)-carrageenan and carboxymethyl cellulose (CMC) in controlling the sourness intensity perception of added acetic, citric, and tartaric acids in solutions for steeping and cooking of rice intended for pasteurization were determined. The rank order of added acids (0.10 and 0.20 % w/v, pH 4.00) in the initial development of acidified hydrocolloid solutions was: acetic > citric > tartaric. The final rice acidification protocols included steeping and cooking of Japonica rice cultivar Kanto in tartaric-acidified hydrocolloid solutions of κ-carrageenan and CMC (0.30 % w/v, 50 ± 2 °C for 1 h) at pH 2.75 and 2.90, respectively. The acidified cooked rice in pouches were pasteurized in boiling water (100 °C) to reach 95 °C for 5 min. The pasteurized products were categorized under acidified foods with final Aw < 0.85 and pH < 4.00. No perceivable sour tastes from 1 to 12 week storage at 28 ± 2 °C were noted in the pasteurized rice products. The shelf-stable pasteurized products were described as white, translucent, with distinct natural rice aroma and flavor, firm, and slightly elastic mouth and hand feel. PMID:25477672

  1. Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars.

    PubMed

    Hinge, Vidya; Patil, Hemant; Nadaf, Altafhusain

    2016-02-01

    Aroma volatiles in Basmati-370, Ambemohar-157 (non-basmati scented), and IR-64 (non-scented) rice cultivars were qualitatively and quantitatively analyzed at vegetative and maturity stages to study their differential accumulation using headspace solid-phase microextraction, followed by gas chromatography mass spectrometry (HS-SPME-GCMS) with selected ion monitoring (SIM) approach. In addition, expression analysis of major aroma volatile 2-acetyl-1-pyrroline (2AP)-related genes, betaine aldehyde dehydrogenase 2 (badh2) and Δ(1)-pyrolline-5-carboxylic acid synthetase (P5CS), were studied by real-time PCR. Maximum number of volatiles recorded at vegetative (72-58) than at mature stage (54-39). Twenty new compounds (12 in scented and 8 in both) were reported in rice. N-containing aromatic compounds were major distinguishing class separating scented from non-scented. Among quantified 26 volatiles, 14 odor-active compounds distinguished vegetative and mature stage. Limit of detection (LOD) and limit of quantification (LOQ) for 2AP was 0.001 mg/kg of 2AP and 0.01 g of rice, respectively. 2AP accumulation in mature grains was found three times more than in leaves of scented rice. Positive correlation of 2AP with 2-pentylfuran, 6-methyl-5-hepten-2-one, and (E)-2-nonenal suggests their major role as aroma contributors. The badh2 expression was inversely and P5CS expression was positively correlated with 2AP accumulation in scented over non-scented cultivar. PMID:26481230

  2. Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

    PubMed Central

    Lim, Jung-Hyun; Yang, Hyun-Jung; Jung, Ki-Hong; Yoo, Soo-Cheul; Paek, Nam-Chon

    2014-01-01

    Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture. PMID:24599000

  3. Effect of succinylation on functional and morphological properties of starches from broken kernels of Pakistani Basmati and Irri rice cultivars.

    PubMed

    Moin, Abeera; Ali, Tahira Mohsin; Hasnain, Abid

    2016-01-15

    Starch extracted from broken kernels of Basmati and Irri rice varieties of Pakistani rice were subjected to modification by addition of succinic anhydride at levels of 2%, 4% and 5% based on dried weight of starch. The succinyl content of Irri rice starch increased with the concentration of succinic anhydride. Scanning electron micrographs revealed presence of dents and fusion of rice starch granules. Swelling power and water retention capacity (WRC) significantly improved after succinylation while on refrigerated storage percent decline in paste clarity of modified rice starches was stable as compared to native Basmati (BC) and Irri (IC) rice starches. Succinylation also reduced solubility, pasting temperature (PT) and gel hardness of starch gels. Improvement was observed in cold storage stability of rice starch succinates as evident from textural profile analysis. PMID:26258701

  4. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  5. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    PubMed

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  6. Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding.

    PubMed

    Valarmathi, P; Kumar, G; Robin, S; Manonmani, S; Dasgupta, I; Rabindran, R

    2016-08-01

    Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease. PMID:26983604

  7. Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar.

    PubMed

    Kim, Song Lim; Choi, Minkyung; Jung, Ki-Hong; An, Gynheung

    2013-11-01

    As an extremely early flowering cultivar, rice cultivar Kitaake is a suitable model system for molecular studies. Expression analyses revealed that transcript levels of the flowering repressor Ghd7 were decreased while those of its downstream genes, Ehd1, Hd3a, and RFT1, were increased. Sequencing the known flowering-regulator genes revealed mutations in Ghd7 and OsPRR37 that cause early translation termination and amino acid substitutions, respectively. Genetic analysis of F2 progeny from a cross between cv. Kitaake and cv. Dongjin indicated that those mutations additively contribute to the early-flowering phenotype in cv. Kitaake. Because the short life cycle facilitates genetics research, this study generated 10 000 T-DNA tagging lines and deduced 6758 flanking sequence tags (FSTs), in which 3122 were genic and 3636 were intergenic. Among the genic lines, 367 (11.8%) were inserted into new genes that were not previously tagged. Because the lines were generated by T-DNA that contained the promoterless GUS reporter gene, which had an intron with triple splicing donors/acceptors in the right border region, a high efficiency of GUS expression was shown in various organs. Sequencing of the GUS-positive lines demonstrated that the third splicing donor and the first splicing acceptor of the vector were extensively used. The FST data have now been released into the public domain for seed distribution and facilitation of rice research. PMID:23966593

  8. Three QTLs conferring resistance to kernel fissuring in rice (Oryza sativa L.) identified by selective genotyping in two tropical japonica populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel fissures caused by pre- or post-harvest stresses are the leading cause of breakage among milled rice, causing economic losses for producers, millers, and processors. Being an environmentally sensitive trait, it is difficult to reliably select for rice fissure resistance among breeding progen...

  9. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars. PMID:15359604

  10. Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication[W

    PubMed Central

    Yu, Yanchun; Tang, Tian; Qian, Qian; Wang, Yonghong; Yan, Meixian; Zeng, Dali; Han, Bin; Wu, Chung-I; Shi, Suhua; Li, Jiayang

    2008-01-01

    Asian rice (Oryza sativa) cultivars originated from wild rice and can be divided into two subspecies by several criteria, one of which is the phenol reaction (PHR) phenotype. Grains of indica cultivars turn brown in a phenol solution that accelerates a similar process that occurs during prolonged storage. By contrast, the grains of japonica do not discolor. This distinction may reflect the divergent domestication of these two subspecies. The PHR is controlled by a single gene, Phr1; here, we report the cloning of Phr1, which encodes a polyphenol oxidase. The Phr1 gene is indeed responsible for the PHR phenotype, as transformation with a functional Phr1 can complement a PHR negative cultivar. Phr1 is defective in all japonica lines but functional in nearly all indica and wild strains. Phylogenetic analysis showed that the defects in Phr1 arose independently three times. The multiple recent origins and rapid spread of phr1 in japonica suggest the action of positive selection, which is further supported by several population genetic tests. This case may hence represent an example of artificial selection driving the differentiation among domesticated varieties. PMID:19033526

  11. [Effects of different barnyardgrass species on grain yield of rice and their physiological characteristics under alternate wetting and drying irrigation].

    PubMed

    Zhang, Zi-chang; Li, Yong-feng; Yang, Xia; Gu, Tao; Li, Gui

    2015-11-01

    In order to investigate the influence of different barnyardgrass species on rice yield and physiological characteristics of rice, two rice cultivars, Liangyoupeijiu (an indica hybrid cultivar) and Nanjing 9108 (a japonica cultivar) , were employed to co-culture with four barnyardgrass species during the period from transplanting to maturity under alternate wetting and moderate drying ir- rigation condition. The treatments were separately designed as follow: weed free ( control) , rice with Echinochloa crusgalli var. mitis (T1), rice with E. crusgalli (T2), rice with E. crusgali var. zelayensis (T3) and rice with E. colonum (T4). The results showed that T1, T2, T3 and T4 treatments reduced the Liangyoupeijiu yield by 13.8%, 10.6%, 23.8% and 0.5%, but the corresponding yield loss of Nanjing 9108 could reach up to 45.5%, 36.9%, 60.7% and 15.1%, respectively. The results above showed that T1, T2 and T3 treatments all significantly reduced grain yield, and T4 treatment only reduced grain yield for Nanjing 9108 but not for Liangyoupeijiu. All treatments elevated malondialehyde contents of rice leaf, but the activities of peroxidase, catalase, superoxide dimutase, dry matter accumulation in maturity stage, root oxidation activities and contents of indole-3-acetic acid as well as zeatin + zeatin riboside in roots during rice grain filling stage were all decreased. The influence degree of four barnyardgrass against physiological indices of rice had the order of T3 > T1 >T2 > T4. It showed that the reductions in enzyme activities of antioxidant system, root oxidation activities, contents of indole-3-acetic acid, zeatin + zeatin riboside during grain filling stage and accumulation of dry matter in maturity as well as increase in contents of malondialehyde of rice during grain filling stage might be important reasons for grain yield reduction when grew with barnyardgrass. PMID:26915195

  12. Development and evaluation of rice giant embryo mutants for high oil content originated from a high-yielding cultivar ‘Mizuhochikara’

    PubMed Central

    Sakata, Mitsukazu; Seno, Mari; Matsusaka, Hiroaki; Takahashi, Kiyomi; Nakamura, Yuki; Yamagata, Yoshiyuki; Angeles, Enrique R.; Mochizuki, Toshihiro; Kumamaru, Toshihiro; Sato, Masao; Enomoto, Akiko; Tashiro, Kosuke; Kuhara, Satoru; Satoh, Hikaru; Yoshimura, Atsushi

    2016-01-01

    Rice bran oil is a byproduct of the milling of rice (Oryza sativa L.). It offers various health benefits and has a beneficial fatty acid composition. To increase the amount of rice bran as a sink for triacylglycerol (TAG), we developed and characterized new breeding materials with giant embryos. To induce mutants, we treated fertilized egg cells of the high-yielding cultivar ‘Mizuhochikara’ with N-methyl-N-nitrosourea (MNU). By screening M2 seeds, we isolated four giant embryo mutant lines. Genetic analysis revealed that the causative loci in lines MGE12 and MGE13 were allelic to giant embryo (ge) on chromosome 7, and had base changes in the causal gene Os07g0603700. On the other hand, the causative loci in lines MGE8 and MGE14 were not allelic to ge, and both were newly mapped on chromosome 3. The TAG contents of all four mutant lines increased relative to their wild type, ‘Mizuhochikara’. MGE13 was agronomically similar to ‘Mizuhochikara’ and would be useful for breeding for improved oil content. PMID:27436953

  13. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium.

    PubMed

    Li, Weitao; Liu, Ya; Wang, Jing; He, Min; Zhou, Xiaogang; Yang, Chao; Yuan, Can; Wang, Jichun; Chern, Mawsheng; Yin, Junjie; Chen, Weilan; Ma, Bingtian; Wang, Yuping; Qin, Peng; Li, Shigui; Ronald, Pamela; Chen, Xuewei

    2016-04-01

    Rice blast caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive diseases worldwide. Although the rice-M. oryzae interaction has been studied extensively, the early molecular events that occur in rice before full maturation of the appressorium during M. oryzae invasion are unknown. Here, we report a comparative transcriptomics analysis of the durably resistant rice variety Digu and the susceptible rice variety Lijiangxintuanheigu (LTH) in response to infection by M. oryzae (5, 10 and 20 h post-inoculation, prior to full development of the appressorium). We found that the transcriptional responses differed significantly between these two rice varieties. Gene ontology and pathway analyses revealed that many biological processes, including extracellular recognition and biosynthesis of antioxidants, terpenes and hormones, were specifically activated in Digu shortly after infection. Forty-eight genes encoding receptor kinases (RKs) were significantly differentially regulated by M. oryzae infection in Digu. One of these genes, LOC_Os08g10300, encoding a leucine-rich repeat RK from the LRR VIII-2 subfamily, conferred enhanced resistance to M. oryzae when overexpressed in rice. Our study reveals that a multitude of molecular events occur in the durably resistant rice Digu before the full maturation of the appressorium after M. oryzae infection and that membrane-associated RKs play important roles in the early response. PMID:26095454

  14. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) is sensitive to prolonged exposure to low temperature, which at the seedling stage can result in significant chilling injury and mortality. The objective of this study was to quantify physiological and biochemical changes in rice seedlings undergoing chilling stress and compar...

  15. Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is an important food crop, but it is a poor source of essential micronutrients such as iron and zinc. In order to improve the metal ion content of rice grains through breeding or biotechnology, more information is needed on the molecular players that help mobilize metals from leaves to developi...

  16. Effects of Fertilizer Inputs and Conventional Versus Organic Management on the Physiocochemical Properties and Sensory Quality of Diverse Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for organically-grown rice has increased with consumer demand for organic foods. The objective of this research was to determine if there are physicochemical differences in organically- and conventionally-grown rice that contribute to flavor and texture differences, as determined by desc...

  17. A “Rice Diversity Panel” evaluated for genetic and agro-morphological variation between subpopulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since ancient times, Indica and Japonica have been recognized as the two major subspecies of Asian rice (Oryza sativa L.). First with isozymes and subsequently with DNA markers, five subpopulations indica, aus, temperate japonica, tropical japonica and aromatic/GroupV were identified. A “Rice Diver...

  18. [Using liquid chromatography-mass spectrometry based metabolomics to discriminate between cold pressed rice bran oils produced from two different cultivars of Oryza sativa L. ssp. indica in Thailand].

    PubMed

    Charoonratana, Tossaton; Songsak, Thanapat; Sakunpak, Apirak; Pathompak, Pathamaporn; Charoenchai, Laksana

    2015-09-01

    A newly developed liquid chromatography-mass spectrometry (LC-MS) method for the analysis of cold pressed rice bran oil (RBO) was established and used to discriminate between RBOs produced from two different cultivars of major Thai fragrant rice species. The cold pressed RBO was prepared using the screw compression method. The LC-MS data were preprocessed with MZmine 2.10 program before evaluating with principal component analysis using SIMCA 13 software. The LC-MS method was able to detect and quantify several kinds of valuable constituents such as fatty acids, vitamin E, and γ-oryzanol. The chromatographic condition was feasible; short time for analysis and simple method were achieved. From score plot and loading plot of principle component analysis (PCA) , two rice cultivar samples were clearly separated, and it was revealed that Khao-Hom-Pathum was more suitable than Khao-Hom-Mali for cold pressed RBO production since it contained high total γ-oryzanol and less saturated free fatty acids. As with the fixed price of all the rice brans, this information can be used in order to, if possible, preserve the price of rice brans from different cultivars. PMID:26753285

  19. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  20. Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers.

    PubMed

    Jain, Sunita; Jain, Rajinder K; McCouch, Susan R

    2004-09-01

    Genetic relationships among Indian aromatic and quality rice (Oryza sativa) germplasm were assessed using 30 fluorescently labeled rice microsatellite markers. The 69 rice genotypes used in this study included 52 Basmati and other scented/quality rice varieties from different parts of India and 17 indica and japonica varieties that served as controls. A total of 235 alleles were detected at the 30 simple sequence repeat (SSR) loci, 62 (26.4%) of which were present only in Basmati and other scented/quality rice germplasm accessions. The number of alleles per locus ranged from 3 to 22, with an average of 7.8, polymorphism information content (PIC) values ranged from 0.2 to 0.9, with an average of 0.6, and the size range between the smallest and the largest allele for a given microsatellite locus varied between 3 bp and 68 bp. Of the 30 SSR markers, 20 could distinguish traditional Basmati rice varieties, and a single panel of eight markers could be used to differentiate the premium traditional Basmati, cross-bred Basmati, and non-Basmati rice varieties having different commercial value in the market-place. When estimates of inferred ancestry or similarity coefficients were used to cluster varieties, the high-quality Indian aromatic and quality rice genotypes could be distinguished from both indica and japonica cultivars, and crossbred varieties could be distinguished from traditional Basmati rices. The results indicate that Indian aromatic and quality germplasm is genetically distinct from other groups within O. sativa and is the product of a long independent pattern of evolution. The data also suggest that there is scope for exploiting the genetic diversity of aromatic/quality rice germplasm available in India for national Basmati rice breeding programs. PMID:15309297

  1. Comparing simple root phenotyping methods on a core set of rice genotypes.

    PubMed

    Shrestha, R; Al-Shugeairy, Z; Al-Ogaidi, F; Munasinghe, M; Radermacher, M; Vandenhirtz, J; Price, A H

    2014-05-01

    Interest in belowground plant growth is increasing, especially in relation to arguments that shallow-rooted cultivars are efficient at exploiting soil phosphorus while deep-rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil-filled rhizotrons, hydroponics and soil-filled pots whose bottom was sealed with a non-woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the OryzaSNP set of 20 cultivars, additional parents of mapping populations and products of marker-assisted selection for root QTLs were assessed. A novel method of image analysis for assessing rooting angles from rhizotron photographs was employed. The non-woven fabric was the easiest yet least discriminatory method, while the rhizotron was highly discriminatory and allowed the most traits to be measured but required more than three times the labour of the other methods. The hydroponics was both easy and discriminatory, allowed temporal measurements, but is most likely to suffer from artefacts. Image analysis of rhizotrons compared favourably to manual methods for discriminating between cultivars. Previous observations that cultivars from the indica subpopulation have shallower rooting angles than aus or japonica cultivars were confirmed in the rhizotrons, and indica and temperate japonicas had lower maximum root lengths in rhizotrons and hydroponics. It is concluded that rhizotrons are the preferred method for root screening, particularly since root angles can be assessed. PMID:24015692

  2. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the

  3. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    PubMed

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics. PMID:23299411

  4. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    PubMed Central

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  5. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars.

    PubMed

    Sekhar, Sudhanshu; Panda, Binay B; Mohapatra, Trupti; Das, Kaushik; Shaw, Birendra P; Kariali, Ekamber; Mohapatra, Pravat K

    2015-05-01

    Grain yields in modern super rice cultivars do not always meet the expectations because many spikelets are located on secondary branches in closely packed homogeneous distribution in these plants, and they do not fill properly. The factors limiting grain filling of such spikelets, especially in the lower panicle branches, are elusive. Two long-duration rice cultivars differing in panicle density, Mahalaxmi (compact) and Upahar (lax), were cultivated in an open field plot. Grain filling, ethylene production and constitutive expression of ethylene receptors and ethylene signal transducers in apical and basal spikelets of the panicle were compared during the early post-anthesis stage, which is the most critical period for grain development. In another experiment, a similar assessment was made for the medium-duration cultivars compact-panicle OR-1918 and lax-panicle Lalat. Grain weight of the apical spikelets was always higher than that of the basal spikelets. This gradient of grain weight was wide in the compact-panicle cultivars and narrow in the lax-panicle cultivars. Compared to apical spikelets, the basal spikelets produced more ethylene at anthesis and retained the capacity for post-anthesis expression of ethylene receptors and ethylene signal transducers longer. High ethylene production enhanced the expression of the RSR1 gene, but reduced expression of the GBSS1 gene. Ethylene inhibited the partitioning of assimilates of developing grains resulting in low starch biosynthesis and high accumulation of soluble carbohydrates. It is concluded that an increase in grain/spikelet density in rice panicles reduces apical dominance to the detriment of grain filling by production of ethylene and/or enhanced perception of the ethylene signal. Ethylene could be a second messenger for apical dominance in grain filling. The manipulation of the ethylene signal would possibly improve rice grain yield. PMID:25817414

  6. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar.

    PubMed

    Panda, B B; Badoghar, A K; Sekhar, S; Shaw, B P; Mohapatra, P K

    2016-05-01

    High ethylene production in dense-panicle rice cultivars impacts grain filling. 1-MCP (ethylene action inhibitor) treatment increased assimilates partitioning, cell number and size and expression of starch synthesizing enzyme genes of developing caryopses mostly in the basal spikelets of panicle at early post-anthesis stage. The gain in cell number was less compared to the increase of size. High ethylene production in spikelets matched with greater expression of ethylene receptor and signal transducer genes. Genes encoding cell cycle regulators CDK, CYC and CKI expressed poorly on 9 DAA. 1-MCP treatment enhanced their expression; the increase of expression was higher for CDKs and lower for CKIs in basal compared to apical spikelets. Greater expression of CDKB2:1 might have lifted cytokinesis of nascent peripheral cells of endosperm, while promotion of CDKAs, CYCD2:2 and inhibition of CYCB2:2 expression contributed to endoreduplication of central cells increasing cell size and DNA ploidy level. It is concluded that the process of endoreduplication, which begins at mid-grain filling stage, is crucially linked with the final caryopsis size of rice grain. The enhanced endosperm growth brought about by repressed ethylene action during the first few days after anthesis seems to be associated with the overall increased cell cycle activity and sink strength. PMID:26993232

  7. Effect of early planting on weed suppression activity of indica and commercial U.S. rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indica and commercial cultivars can suppress barnyardgrass when drill-seeded into ‘warm’ soils and grown under flood-irrigation in Arkansas. Because early planting is popular with growers and considered to improve productivity and flexibility, weed suppression tests were planted in the field on Apr...

  8. Artificial introgression of a large fragment around the Pi-ta rice blast resistance gene in backcross progenies and several elite rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study of the size of genomic introgressions should lead to a better understanding of linkage disequilibrium in crop breeding. Rice presents a unique opportunity to examine the size of introgressions because of the availability of abundant simple sequence repeat (SSR) markers. In the present study, ...

  9. Greenhouse validation of yield component transgressive variation effects of wild Oryza species introgressions in an elite US rice cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of global studies have been conducted which have shown that the wild ancestral species, Oryza rufipogon, possesses beneficial alleles that can be used to improve cultivated rice, O. sativa, for biotic and abiotic stress tolerance as well as yield. Introgression lines (IL) were developed thr...

  10. Geographic description of genetic diversity and genetic relationships in the USDA Rice World Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian cultivated rice (Oryza sativa L.) is structured into five genetic groups, indica, AUS, tropical japonica, temperate japonica and aromatic. Genetic characterization of a global rice collection could help better serve the global research community. Collecting worldwide rice germplasm started in ...

  11. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice

    PubMed Central

    Kazama, Tomohiko; Toriyama, Kinya

    2016-01-01

    Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria. PMID:27414645

  12. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    PubMed Central

    Drogue, Benoît; Sanguin, Hervé; Chamam, Amel; Mozar, Michael; Llauro, Christel; Panaud, Olivier; Prigent-Combaret, Claire; Picault, Nathalie; Wisniewski-Dyé, Florence

    2014-01-01

    Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice

  13. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    PubMed Central

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  14. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  15. Differentiation of weedy traits in ALS-resistant red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  16. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  17. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  18. Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci.

    PubMed

    Urso, Simona; Desiderio, Francesca; Biselli, Chiara; Bagnaresi, Paolo; Crispino, Laura; Piffanelli, Pietro; Abbruscato, Pamela; Assenza, Federica; Guarnieri, Giada; Cattivelli, Luigi; Valè, Giampiero

    2016-02-01

    Rice cultivars exhibiting durable resistance to blast, the most important rice fungal disease provoking up to 30 % of rice losses, are very rare and searching for sources of such a resistance represents a priority for rice-breeding programs. To this aim we analyzed Gigante Vercelli (GV) and Vialone Nano (VN), two temperate japonica rice cultivars in Italy displaying contrasting response to blast, with GV showing a durable and broad-spectrum resistance, whereas VN being highly susceptible. An SSR-based genetic map developed using a GV × VN population segregating for blast resistance identified two blast resistance loci, localized to the long arm of chromosomes 1 and 4 explaining more than 78 % of the observed phenotypic variation for blast resistance. The pyramiding of two blast resistance QTLs was therefore involved in the observed durable resistance in GV. Mapping data were integrated with information obtained from RNA-seq expression profiling of all classes of resistance protein genes (resistance gene analogs, RGAs) and with the map position of known cloned or mapped blast resistance genes to search candidates for the GV resistant response. A co-localization of RGAs with the LOD peak or the marker interval of the chromosome 1 QTL was highlighted and a valuable tool for selecting the resistance gene during breeding programs was developed. Comparative analysis with known blast resistance genes revealed co-positional relationships between the chromosome 1 QTL with the Pi35/Pish blast resistance alleles and showed that the chromosome 4 QTL represents a newly identified blast resistance gene. The present genetic analysis has therefore allowed the identification of two blast resistance loci in the durable blast-resistant rice cultivar GV and tools for molecular selection of these resistance genes. PMID:26141566

  19. Genetic structural analysis for germplasm accessions in the USDA Rice World Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is grouped into five genetic structures including indica, aus, aromatic, temperate japonica, and tropical japonica. A core collection having 1,785 accessions from 114 countries has been developed that is representative of the USDA rice world collection which includes over 18,000 accessions. The...

  20. Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight.

    PubMed

    Yu, Chu L; Yan, Shun P; Wang, Chang C; Hu, Hai T; Sun, Wei N; Yan, Cheng Q; Chen, Jian P; Yang, Ling

    2008-07-01

    Rice bacterial blight, caused by Xanthomonasoryzae pv. Oryzae (Xoo), is one of the most serious rice diseases worldwide. The bacterial blight resistance trait from Oryza meyeriana, a wild rice species, was introduced into an elite japonica rice cultivar using asymmetric somatic hybridization. This study was carried out with the intention of understanding the molecular mechanism of incompatible interaction between Xoo and the stable somatic hybrids by using proteomic analyses. Proteins were extracted from leaves at 24, 48, and 72 h after Xoo inoculation and separated by 2-DE. A total of 77 protein spots changed their intensities significantly (p<0.05) by more than 1.5-fold at least at one time point. Sixty-four protein spots were successfully identified by MS analysis. Among them, 51 were known to be involved in photosynthesis. Up-regulation of Rubisco large subunit (RcbL) small fragments and down-regulation of RcbL big fragments indicated that intact RcbL and RcbL big fragments degraded following Xoo attack, which was further confirmed by Western blot analysis. The differential expression of proteins related to signal transduction, antioxidant defense, photosynthesis, metabolism, and protein turnover during the Xoo infection, suggests the existence of a complex regulatory network in the somatic hybrid rice that increases resistance toward Xoo infection and damage. PMID:18534637

  1. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. PMID:23504792

  2. Identification of rice blast resistance genes using international monogenic differentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases of rice that severely affects crop production in Jilin Province, Northeast China, where temperate japonica rice is primarily grown. In the present study, 44 representative local blast isolat...

  3. Registration of 'Cybonnet' Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Cybonnet’ rice is a high-yielding, short-season, long-grain cultivar. It originated form the cross ‘Cypress’//’Newbonnet’/’Katy’ made at the University of Arkansas Rice Research and Extension Center in Stuttgart, AR. Cybonnet is similar in maturity to ‘Kaybonnet’ and ‘Wells’, is a simidwarf culti...

  4. Registration of 'Medark' Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Medark’ rice is a high-yielding, early maturing, semidwarf, medium-grain cultivar. It originated from the cross ‘Bengal’/’Short Rico’ and is similar in maturity to Bengal. It has improved disease resistance to rice blase, brown spot and straighthead. Medark has a lodging resistance slightly less...

  5. Unlocking the variation hidden in rice germplasm collections with genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated Asian rice (Oryza sativa) was domesticated from O. rufipogon (O. nivara). The O. sativa subspecies indica and japonica diverged in ancient times, and based on DNA markers, further subdivided into the five major subpopulations, aus, indica, aromatic, tropical japonica and temperate japoni...

  6. Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa).

    PubMed

    Yan, Yong-Feng; Lestari, Puji; Lee, Kyu-Jong; Kim, Moon Young; Lee, Suk-Ha; Lee, Byun-Woo

    2013-04-01

    Cadmium (Cd) poses a serious risk to human health due to its biological concentration through the food chain. To date, information on genetic and molecular mechanisms of Cd accumulation and distribution in rice remains to be elucidated. We developed an independent F7 RIL population derived from a cross between two japonica cultivars with contrasting Cd levels, 'Suwon490' and 'SNU-SG1', for QTLs identification of Cd accumulation and distribution. 'Suwon490' accumulated five times higher Cd in grain than 'SNU-SG1'. Large genotypic variations in Cd accumulation (17-fold) and concentration (12-fold) in grain were found among RILs. Significant positive correlations between Cd accumulation in grain with shoot Cd accumulation and shoot to grain distribution ratio of Cd signify that both shoot Cd accumulation and shoot to grain Cd distribution regulate Cd accumulation in japonica rice grain. A total of five main effect QTLs (scc10 for shoot Cd accumulation; gcc3, gcc9, gcc11 for grain Cd accumulation; and sgr5 for shoot to grain distribution ratio) were detected in chromosomes 10, 3, 9, 11, and 5, respectively. Of these, the novel potential QTL sgr5 has the strongest effect on shoot to grain Cd distribution. In addition, two digenic epistatic interaction QTLs were identified, suggesting the substantial contribution of nonallelic genes in genetic control of these Cd-related traits. PMID:23706075

  7. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice. PMID:26471973

  8. Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform.

    PubMed

    Lü, Yang; Cui, Xiao; Li, Rui; Huang, Piaopiao; Zong, Jie; Yao, Danqing; Li, Gang; Zhang, Dabing; Yuan, Zheng

    2015-11-01

    DNA markers play important roles in plant breeding and genetics. The Insertion/Deletion (InDel) marker is one kind of co-dominant DNA markers widely used due to its low cost and high precision. However, the canonical way of searching for InDel markers is time-consuming and labor-intensive. We developed an end-to-end computational solution (InDel Markers Development Platform, IMDP) to identify genome-wide InDel markers under a graphic pipeline environment. IMDP constitutes assembled genome sequences alignment pipeline (AGA-pipe) and next-generation re-sequencing data mapping pipeline (NGS-pipe). With AGA-pipe we are able to identify 12,944 markers between the genome of rice cultivars Nipponbare and 93-11. Using NGS-pipe, we reported 34,794 InDels from re-sequencing data of rice cultivars Wu-Yun-Geng7 and Guang-Lu-Ai4. Combining AGA-pipe and NGS-pipe, we developed 205,659 InDels in eight japonica and nine indica cultivars and 2,681 InDels showed a subgroup-specific pattern. Polymerase chain reaction (PCR) analysis of subgroup-specific markers indicated that the precision reached 90% (86 of 95). Finally, to make them available to the public, we have integrated the InDels/markers information into a website (Rice InDel Marker Database, RIMD, http://202.120.45.71/). The application of IMDP in rice will facilitate efficiency for development of genome-wide InDel markers, in addition it can be used in other species with reference genome sequences and NGS data. PMID:25809845

  9. Diversity in grain physico-chemical characteristics of West African rice, including Nerica genotypes, as compared to cultivars from the United States of America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landraces from West Africa (WA), NERICA progenies derived from crosses between Oryza sativa and Oryza glaberrima, and improved O. sativa lines from Africa Rice Center were introduced to the Beaumont Rice Research Center in Texas, United States of America (USA) (29 degrees 57’ N and 94 degrees 30’ W)...

  10. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties. PMID:25745230

  11. SSR MARKER CONFIRMATION OF RECIPROCAL OUTCROSSING RATES BETWEEN RICE AND RED RICE LINES IN ARKANSAS OVER A FIVE-YEAR PERIOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outcrossing between rice and red rice can negatively impact the rice industry, especially when herbicide-resistant rice cultivars are grown. Previous research has indicated that outcrossing between rice and red rice in Arkansas farm fields can occur with either plant type serving as the pollen dono...

  12. Detection of DNA polymerase λ activity during seed germination and enhancement after salinity stress and dehydration in the plumules of indica rice (Oryza sativa L.

    PubMed

    Sihi, Sayantani; Bakshi, Sankar; Sengupta, Dibyendu Narayan

    2015-02-01

    DNA polymerase λ (DNA pol λ) is the only reported X-family DNA polymerases in plants and has been shown to play a significant role in dry quiescent seeds, growth, development and nuclear DNA repair. cDNA for DNA pol λ has been reported in Arabidopsis and japonica rice cultivar and has been characterized from E. coli expressed protein, but very little is known about its activity at protein level in plants. The enzymatic activity of DNA pol λ was studied in dry, imbibed and during different germination stages of indica rice IR-8 (salt sensitive) by in-gel activity assay to determine its physiological role in important stages of growth and development. The upstream sequence was also analyzed using plantCARE database and was found to contain several cis-acting elements, including light responsive elements, dehydration responsive elements, Myb binding sites, etc. Hence, 4-day-old germinating seedlings of IR29, a salt-sensitive, but high yielding indica rice cultivar and Nonabokra, a salt-tolerant, but low yielding cultivar were treated with water (control) or 250 mM NaCl or 20% polyethyleneglycol-6000 for 4 and 8 h. The protein was analyzed by in vitro DNA pol λ activity assay, in-gel activity assay and Western blot analysis. DNA pol λ was not detected in dry seeds, but enhanced after imbibition and detectable from low level to high level during subsequent germination steps. Both salinity and dehydration stress led to the enhancement of the activity and protein level of DNA pol λ, as compared to control tissues. This is the first evidence of the salinity or dehydration stress induced enhancement of DNA pol λ activity in the plumules of rice (Oryza sativa L.) cultivars. PMID:26040115

  13. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice

    PubMed Central

    2012-01-01

    Background Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar genotoxic stress on

  14. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  15. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection

    PubMed Central

    Tanweer, Fatah A.; Rafii, Mohd Y.; Sijam, Kamaruzaman; Rahim, Harun A.; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A.

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  16. Transfer of herbicide-resistant gene to weedy rice populations and its implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice diversity in terms of phenology, sexual compatibility with cultivated rice, and the wide window of rice planting time can affect the rate of herbicide-resistant gene transfer from rice to RR. Experiments were conducted to a) determine the effect of red rice, rice cultivar, and planting date...

  17. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    PubMed Central

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-01-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000–7700 BP), Tianluoshan (7000–6500 BP), Majiabang (6300–6000 BP), and Liangzhu (5300–4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice. PMID:27324699

  18. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley.

    PubMed

    Zheng, Yunfei; Crawford, Gary W; Jiang, Leping; Chen, Xugao

    2016-01-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice. PMID:27324699

  19. Development of polymorphic microsatellite loci in the perennial herb Hepatica nobilis var. japonica (Ranunculaceae)1

    PubMed Central

    Kameoka, Shinichiro; Higashi, Hiroyuki; Setoguchi, Hiroaki

    2015-01-01

    Premise of the study: Microsatellite markers were developed and characterized in the vulnerable plant Hepatica nobilis var. japonica (Ranunculaceae) to investigate its genetic diversity, population structure, and gene flow. Methods and Results: Fourteen microsatellite markers were developed. The number of alleles per locus ranged from one to 12, and the expected heterozygosity per locus ranged from 0.043 to 0.855. Eleven markers were successfully amplified in the cultivar ‘Mego’ from Japan. Conclusions: These microsatellite markers can be used to investigate the genetic diversity, population structure, and gene flow of H. nobilis var. japonica. PMID:25798342

  20. Switchgrass cultivar

    DOEpatents

    Wu, Yanqi; Taliaferro, Charles M.

    2012-10-02

    A new cultivar of switchgrass `Cimarron` (SL93 2001-1) having increased biomass yield is provided. The switchgrass comprises all the morphological and physiological properties of the cultivar grown from a seed deposited under American Type Culture Collection (ATCC) No. PTA-10116. The invention also provides seeds, progeny, parts and methods of use of Cimarron, such as for the production of biofuels.

  1. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    PubMed Central

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  2. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J.

    2014-07-01

    Increasing numbers of studies have suggested that a comprehensive assessment of the impacts of cropping practices on greenhouse gas (GHG) emissions per unit yield (yield-scaled), rather than by land area (area-scaled), is needed to inform trade-off decisions to increase yields and reduce GHG emissions. We conducted a meta-analysis to quantify impacts of rice varieties on the global warming potential (GWP) of GHG emissions at the yield scale in China. Our results showed that significantly higher yield-scaled GWP occurred with indica rice varieties (1101.72 kg CO2 equiv. Mg-1) than japonica rice varieties (711.38 kg CO2 equiv. Mg-1). Lower yield-scaled GHG emissions occurred within 120-130 days of growth duration after transplanting (GDAT; 613.66 kg CO2 equiv. Mg-1), followed by 90-100 days of GDAT (749.72 kg CO2 equiv. Mg-1, 100-110 days of GDAT (794.29 kg CO2 equiv. Mg-1), and 70-80 days of GDAT (800.85 kg CO2 equiv. Mg-1). The fertilizer rate of 150-200 kg N ha-1 resulted in the lowest yield-scaled GWP. Consequently, appropriate cultivar choice and pairs were of vital importance in the rice cropping system. A further life cycle assessment of GHG emissions among rice varieties at the yield scale is urgently needed to develop win-win policies for rice production to achieve higher yield with lower emissions.

  3. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Huang, H.; Yao, L.; Liu, J.; He, H.; Tang, J.

    2013-12-01

    Increasing numbers of studies have suggested that a comprehensive assessment of the impacts of cropping practices on greenhouse gas (GHG) emissions per unit yield (yield-scaled), rather than by land area (area-scaled), is needed to inform trade-off decisions to increase yields and reduce GHG emissions. We conducted a meta-analysis to quantify impacts of rice varieties on the global warming potential (GWP) of GHG emissions at the yield scale in China. The results showed that significantly higher yield-scaled GWP occurred with indica rice varieties (1101.72 kg CO2 equiv. Mg-1) compared to japonica rice varieties (711.38 kg CO2 equiv. Mg-1). Lower yield-scaled GHG emissions occurred within 120-130 days of growth duration after transplanting (GDAT; 613.66 kg CO2 equiv. Mg-1), followed by 90-100 days of GDAT (749.72 kg CO2 equiv. Mg-1), 100-110 days of GDAT (794.29 kg CO2 equiv. Mg-1), and 70-80 days of GDAT (800.85 kg CO2 equiv. Mg-1). The greatest reduction, 41%, occurred at a rate of 150-200 kg N ha-1 relative to the non-fertilized control. Consequently, appropriate cultivar choice and pairs was of vital importance in the rice cropping system. A further life cycle assessment of GHG emissions among rice varieties at the yield scale is urgently needed to develop win-win policies for rice production to achieve higher yield with lower emissions.

  4. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.).

    PubMed

    Lee, Gyu-Ho; Kang, In-Kyu; Kim, Kyung-Min

    2016-01-01

    The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativa L.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning. PMID:27419124

  5. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.)

    PubMed Central

    Lee, Gyu-Ho; Kang, In-Kyu

    2016-01-01

    The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativa L.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning. PMID:27419124

  6. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.

    PubMed

    Drogue, Benoît; Sanguin, Hervé; Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2014-02-01

    Azospirillum-plant cooperation has been mainly studied from an agronomic point of view leading to a wide description of mechanisms implicated in plant growth-promoting effects. However, little is known about genetic determinants implicated in bacterial adaptation to the host plant during the transition from free-living to root-associated lifestyles. This study aims at characterizing global gene expression of Azospirillum lipoferum 4B following a 7-day-old interaction with two cultivars of Oryza sativa L. japonica (cv. Cigalon from which it was originally isolated, and cv. Nipponbare). The analysis was done on a whole genome expression array with RNA samples obtained from planktonic cells, sessile cells, and root-adhering cells. Root-associated Azospirillum cells grow in an active sessile-like state and gene expression is tightly adjusted to the host plant. Adaptation to rice seems to involve genes related to reactive oxygen species (ROS) detoxification and multidrug efflux, as well as complex regulatory networks. As revealed by the induction of genes encoding transposases, interaction with root may drive bacterial genome rearrangements. Several genes related to ABC transporters and ROS detoxification display cultivar-specific expression profiles, suggesting host specific adaptation and raising the question of A. lipoferum 4B/rice cv. Cigalon co-adaptation. PMID:24283406

  7. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought

    PubMed Central

    Do, Phuc T.; Drechsel, Oliver; Heyer, Arnd G.; Hincha, Dirk K.; Zuther, Ellen

    2014-01-01

    Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put) content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd) content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm) content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease) or salt (unchanged) conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3), one generally stress-repressed gene (ADC1), constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1), specifically drought-induced genes (SAMDC2, AIH), one specifically drought-repressed gene (CPA3) and one specifically salt-stress repressed gene (SAMDC4), revealing both overlapping and specific stress responses under these conditions

  8. Dissecting Rice Polyamine Metabolism under Controlled Long-Term Drought Stress

    PubMed Central

    Do, Phuc Thi; Degenkolbe, Thomas; Erban, Alexander; Heyer, Arnd G.; Kopka, Joachim; Köhl, Karin I.; Hincha, Dirk K.; Zuther, Ellen

    2013-01-01

    A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate), substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions. PMID:23577102

  9. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice.

    PubMed

    Jiang, Wenzhu; Chu, Sang-Ho; Piao, Rihua; Chin, Joong-Hyoun; Jin, Yong-Mei; Lee, Joohyun; Qiao, Yongli; Han, Longzhi; Piao, Zongze; Koh, Hee-Jong

    2008-05-01

    Hybrid breakdown (HB), a phenomenon of reduced viability or fertility accompanied with retarded growth in hybrid progenies, often arises in the offspring of intersubspecific hybrids between indica and japonica in rice. We detected HB plants in F8 recombinant inbred lines derived from the cross between an indica variety, Milyang 23, and a japonica variety, Tong 88-7. HB plants showed retarded growth, with fewer tillers and spikelets. Genetic analysis revealed that HB was controlled by the complementary action of two recessive genes, hwh1 and hwh2, originating from each of both parents, which were fine-mapped on the short arm of chromosome 2 and on the near centromere region of the long arm of chromosome 11, respectively. A comparison of the sequences of candidate genes among both parents and HB plants revealed that hwh1 encoded a putative glucose-methanol-choline oxidoreductase with one amino acid change compared to Hwh1 and that hwh2 probably encoded a putative hexose transporter with a six amino acid insertion compared to Hwh2. Investigation of the distribution of these alleles among 54 japonica and indica cultivars using candidate gene-based markers suggested that the two loci might be involved in developing reproductive barriers between two subspecies. PMID:18335199

  10. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit.

    PubMed

    Pareek, Sunil; Benkeblia, Noureddine; Janick, Jules; Cao, Shifeng; Yahia, Elhadi M

    2014-06-01

    Loquat (Eriobotrya japonica Lindl.) is a subtropical evergreen tree whose fruit is consumed both fresh and processed. Loquat fruit is a good source of minerals and carotenoids, while the kernel is rich in protein and carbohydrates. It has been considered a non-climacteric fruit, but there is evidence that some cultivars have a ripening pattern similar to that of climacteric fruits. The fruit has a short postharvest life at ambient temperatures and is susceptible to physical and mechanical damage, loss of moisture and nutrients, and decay. Low-temperature storage extends the shelf life of loquat fruit, but some cultivars are severely affected by chilling injury and flesh browning during cold storage. Purple spot, browning and leatheriness are major postharvest disorders. The shelf life of loquat can be extended by modified or controlled atmosphere storage as well as by postharvest treatment with 1-methyl cyclopropene or methyl jasmonate. PMID:24395491

  11. CULTIVAR SPECIFIC RESPONSE TO THE HOST-SELECTIVE TOXIN PRODUCED BY RHIZOCTONIA SOLANI, THE CAUSAL PATHOGEN OF SHEATH BLIGHT DISEASE Of RICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath Blight, caused by Rhizoctonia solani, is widely regarded as one of the most important diseases of cultivated rice and germplasm improvement is essential for disease management. Genetic sources of tolerance for this disease are known, however, complex quantitative inheritance and high environ...

  12. GENE FLOW BETWEEN RED RICE AND RICE IN HERBICIDE RESISTANT RICE FIELDS: EVALUATING RISKS AND MANAGEMENT OPTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imidazolinone (IMI)-resistant rice cultivars have been increasingly adopted in the southern U.S. since their initial introduction in 2002, largely due to the newly acquired control of red rice that is now possible in these systems. It is estimated that IMI rice is being grown on 20 to 25% of the ac...

  13. Effects of Delaying Transplanting on Agronomic Traits and Grain Yield of Rice under Mechanical Transplantation Pattern

    PubMed Central

    Liu, Qihua; Wu, Xiu; Ma, Jiaqing; Chen, Bocong; Xin, Caiyun

    2015-01-01

    A delay in the mechanical transplantation (MT) of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT). The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT. PMID:25875607

  14. Development of the recombinant inbred line population of tropical japonica Lemont crossed with indica Jasmine 85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant inbred line (RIL) population of rice is routinely used in studying agronomically important genes, and is particularly useful for analyzing quantitative trait loci (QTL) since phenotypes can be assessed over years. Jasmine 85, a midseason aromatic long-grain indica rice cultivar develo...

  15. Unraveling the rich phenotypic and genetic diversity in rice for varietal improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian cultivated rice (Oryza sativa L.) has two distinct varietal groups identified as the indica and japonica subspecies. With the advent of molecular markers the indica subspecies was divided into the indica and aus subpopulation groups and the japonica subspecies into the aromatic, tropical japon...

  16. Unraveling the rich phenotypic and genetic diversity in rice for varietal improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian cultivated rice (Oryza sativa L.) has two distinct varietal groups identified as the indica and japonica subspecies. With the advent of molecular markers the indica subspecies was divided into the indica and aus subpopulation groups and the japonica subspecies into the aromatic, tropical japo...

  17. Effect of Removing Superior Spikelets on Grain Filling of Inferior Spikelets in Rice.

    PubMed

    You, Cuicui; Zhu, Honglei; Xu, Beibei; Huang, Wenxiao; Wang, Shaohua; Ding, Yanfeng; Liu, Zhenghui; Li, Ganghua; Chen, Lin; Ding, Chengqiang; Tang, She

    2016-01-01

    Large-panicle rice cultivars often fail to reach their yield potential due to the poor grain filling of inferior spikelets (IS). Thus, it is important to determine the causes of poor IS grain filling. In this study, we attempted to identify whether inferior grain filling of large panicles is restricted by superior spikelets (SS) and their physiological mechanism. SS were removed from two homozygous japonica rice strains (W1844 and WJ165) during flowering in an attempt to force photosynthate transport to the IS. We measured the effects of SS removal on seed setting rate, grain weight, grain filling rate, sucrose content, as well as hormone levels, activities of key enzymes, and expression of genes involved in sucrose to starch metabolism in rice IS during grain filling. The results showed that SS removal improved IS grain filling by increasing the seed setting rate, grain weight, sucrose content, and hormone levels. SS removal also enhanced the activities of key enzymes and the expression levels of genes involved in sucrose to starch metabolism. These results suggest that sucrose and several hormones act as signal substances and play a vital role in grain filling by regulating enzyme activities and gene expression. Therefore, IS grain filling is restricted by SS, which limit assimilate supply and plant hormones, leading to poor grain filling of IS. PMID:27547210

  18. Effect of Removing Superior Spikelets on Grain Filling of Inferior Spikelets in Rice

    PubMed Central

    You, Cuicui; Zhu, Honglei; Xu, Beibei; Huang, Wenxiao; Wang, Shaohua; Ding, Yanfeng; Liu, Zhenghui; Li, Ganghua; Chen, Lin; Ding, Chengqiang; Tang, She

    2016-01-01

    Large-panicle rice cultivars often fail to reach their yield potential due to the poor grain filling of inferior spikelets (IS). Thus, it is important to determine the causes of poor IS grain filling. In this study, we attempted to identify whether inferior grain filling of large panicles is restricted by superior spikelets (SS) and their physiological mechanism. SS were removed from two homozygous japonica rice strains (W1844 and WJ165) during flowering in an attempt to force photosynthate transport to the IS. We measured the effects of SS removal on seed setting rate, grain weight, grain filling rate, sucrose content, as well as hormone levels, activities of key enzymes, and expression of genes involved in sucrose to starch metabolism in rice IS during grain filling. The results showed that SS removal improved IS grain filling by increasing the seed setting rate, grain weight, sucrose content, and hormone levels. SS removal also enhanced the activities of key enzymes and the expression levels of genes involved in sucrose to starch metabolism. These results suggest that sucrose and several hormones act as signal substances and play a vital role in grain filling by regulating enzyme activities and gene expression. Therefore, IS grain filling is restricted by SS, which limit assimilate supply and plant hormones, leading to poor grain filling of IS. PMID:27547210

  19. Nitrogen fertilization on center pivot sprinkler irrigated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three rice (Oryza sativa) experiments were conducted to determine the effects of nitrogen (N) form and timing of application on growth and yield of sprinkler irrigated rice compared to flood irrigated rice. Three rice cultivars (two conventional, one hybrid) were grown under a center pivot irrigatio...

  20. Utilization of trait-linked DNA markers in rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA marker technology is being used in U.S. rice breeding programs to enhance development of rice cultivars with improved cooking quality and genetic resistance to rice blast disease. Because there is a continuous threat of race shifts within the Magnaporthe grisea populations found in rice fields t...

  1. Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar Mulato compared with rice.

    PubMed

    Nanamori, Masahito; Shinano, Takuro; Wasaki, Jun; Yamamura, Takuya; Rao, Idupulapati M; Osaki, Mitsuru

    2004-04-01

    The Brachiaria hybrid cv. Mulato is well adapted to low-fertility acid soils deficient in phosphorus (P). To study the grassy forage's mechanisms for tolerating low P supply, we compared it with rice (Oryza sativa L. cv. Kitaake). We tested by using nutrient solution cultures, and quantified the effects of P deficiency on the enzymatic activities of phosphohydrolases and on carbon metabolism in P-deficient leaves. While P deficiency markedly induced activity of phosphohydrolases in both crops, the ratio of inorganic phosphorus to total P in leaves was greater in Brachiaria hybrid. Phosphorus deficiency in leaves also markedly influenced the partitioning of carbon in both crops. In the Brachiaria hybrid, compared with rice, the smaller proportion of (14)C partitioned into sugars and the larger proportion into amino acids and organic acids in leaves coincided with decreased levels of sucrose and starch. Hence, in P-deficient leaves of the Brachiaria hybrid, triose-P was metabolized into amino acids or organic acids. Results thus indicate that the Brachiaria hybrid, compared with rice, tolerates low P supply to leaves by enhancing sugar catabolism and by inducing the activity of several phosphohydrolases. This apparently causes rapid P turnover and enables the Brachiaria hybrid to use P more efficiently. PMID:15111721

  2. Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L.)

    PubMed Central

    Yu, Ling; Pan, Cunhong; Li, Yuhong; Zhang, Xiaoxiang; Liu, Guangqing; Dai, Zhengyuan; Pan, Xuebiao; Li, Aihong

    2015-01-01

    Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as ‘Pi9+Pi54’, ‘Pid3+Pigm’, ‘Pi5+Pid3+Pigm’, ‘Pi5+Pi54+Pid3+Pigm’, ‘Pi5+Pid3’ and ‘Pi5+Pit+Pid3’ in indica-type accessions and ‘Pik+Pib’, ‘Pik+Pita’, ‘Pik+Pb1’, ‘Pizt+Pia’ and ‘Pizt+Pita’ in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance. PMID:26030358

  3. Early Embryogenesis-Specific Expression of the Rice Transposon Ping Enhances Amplification of the MITE mPing

    PubMed Central

    Teramoto, Shota; Tsukiyama, Takuji; Okumoto, Yutaka; Tanisaka, Takatoshi

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are numerically predominant transposable elements in the rice genome, and their activities have influenced the evolution of genes. Very little is known about how MITEs can rapidly amplify to thousands in the genome. The rice MITE mPing is quiescent in most cultivars under natural growth conditions, although it is activated by various stresses, such as tissue culture, gamma-ray irradiation, and high hydrostatic pressure. Exceptionally in the temperate japonica rice strain EG4 (cultivar Gimbozu), mPing has reached over 1000 copies in the genome, and is amplifying owing to its active transposition even under natural growth conditions. Being the only active MITE, mPing in EG4 is an appropriate material to study how MITEs amplify in the genome. Here, we provide important findings regarding the transposition and amplification of mPing in EG4. Transposon display of mPing using various tissues of a single EG4 plant revealed that most de novo mPing insertions arise in embryogenesis during the period from 3 to 5 days after pollination (DAP), and a large majority of these insertions are transmissible to the next generation. Locus-specific PCR showed that mPing excisions and insertions arose at the same time (3 to 5 DAP). Moreover, expression analysis and in situ hybridization analysis revealed that Ping, an autonomous partner for mPing, was markedly up-regulated in the 3 DAP embryo of EG4, whereas such up-regulation of Ping was not observed in the mPing-inactive cultivar Nipponbare. These results demonstrate that the early embryogenesis-specific expression of Ping is responsible for the successful amplification of mPing in EG4. This study helps not only to elucidate the whole mechanism of mPing amplification but also to further understand the contribution of MITEs to genome evolution. PMID:24921928

  4. Host suitability of some Poaceous crop cultivars for Heterodera goldeni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The host suitability of four corn, four sorghum and five rice cultivars to the cyst nematode Heterodera goldeni was determined in the greenhouse. The results showed that H. goldeni infected and reproduced successfully on all the tested poaceous crop cultivars. The corn hybrids Pioneer 3062 and SC 10...

  5. Gene transfer rate from CL rice to diverse red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future and sustainability of ClearfieldTM (CL) technology at the producers’ level will be dictated by various factors. Among many, prominent factors which affect the transfer of ALS-resistant gene from CL rice to red rice are: disparity in red rice biotypes and CL cultivars; flowering time of re...

  6. Factors affecting the outcrossing rate between Clearfield rice and red rice (Oryza sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The commercialization of imazethapyr-resistant (Clearfield[TM], CL) rice in the southern United States has raised serious concerns about gene flow to red rice, producing imazethapyr-resistant red rice populations. Our objectives were to determine the impact of planting date, CL cultivars, and red ri...

  7. Loss of function of OsMADS3 via the insertion of a novel retrotransposon leads to recessive male sterility in rice (Oryza sativa).

    PubMed

    Zhang, Li; Mao, Donghai; Xing, Feng; Bai, Xufeng; Zhao, Hu; Yao, Wen; Li, Guangwei; Xie, Weibo; Xing, Yongzhong

    2015-09-01

    Natural mutation is the source of natural variation, which is the fundamental basis for the genetic improvement of crops. During the process of developing a recombinant inbred line (RI), a spontaneous mutagenesis in RI127 led to the production of the recessive male-sterile line RI127S. Via a map-based cloning approach, the gene controlling the male sterility was identified as OsMADS3, which was previously reported to be associated with floral organ development and male sterility. Thermal asymmetric interlaced PCR isolated one 1633-bp insertion in OsMADS3 in RI127S, which damaged its function due to failed transcription. The 1633-bp insertion was derived from a fragment flanked by retrotransposon genes on chromosome 5. Seven haplotypes of OsMADS3 were observed among 529 cultivars and 107 wild rice accessions, and 98% of the investigated genotypes carried the same H2 haplotype, indicating that OsMADS3 is highly conserved. RI127S has the combined genome constitution of its parents, indica rice Teqing and japonica 02428, and carries the widely compatible S5 gene donated by 02428. RI127 exhibits good performance in regard to its agronomic traits and has a wide compatibility. Therefore, RI127S would be an elite mediator for recurrent breeding in cases requiring a tedious hand-crossing-based inter-crossing phase. RI127S can be crossed not only with indica rice but also with japonica rice, thus providing breeders with flexible arrangements in recurrent breeding programs. PMID:26259187

  8. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  9. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes

    PubMed Central

    Dimkpa, Stanley O. N.; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H.

    2016-01-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  10. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    PubMed

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  11. The organelle genomes of Hassawi rice (Oryza sativa L.) and its hybrid in saudi arabia: genome variation, rearrangement, and origins.

    PubMed

    Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S; Yu, Jun

    2012-01-01

    Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93-11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184

  12. Bioactive compounds in pigmented rice bran inhibit growth of human cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice bran contains both lipophilic and hydrophilic antioxidants. Our previous studies have shown that pigmented rice cultivars contained several-fold higher total phenolic concentrations and antioxidant capacities than non-pigmented cultivars. We investigated three rice brans (purple, red and light-...

  13. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.)

    PubMed Central

    2013-01-01

    Background Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. Results The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. Conclusion These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes. PMID:24280269

  14. Candidate regulators of the cold stress response gene regulon of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional regulation is an important aspect of the complex network of genes involved in plant responses to low temperature. At the seedling stage, most japonica cultivars can survive continuous exposure to as low as 10oC for up to 7 days better than most indica cultivars. Here we present a sna...

  15. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed-suppressive rice cultivars hold promise for improved and more economical weed management in rice. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but these phenomena are difficult to measure and not well understo...

  16. Genome-wide identification and analysis of rice genes preferentially expressed in pollen at an early developmental stage.

    PubMed

    Nguyen, Tien Dung; Moon, Sunok; Nguyen, Van Ngoc Tuyet; Gho, Yunsil; Chandran, Anil Kumar Nalini; Soh, Moon-Soo; Song, Jong Tae; An, Gynheung; Oh, Sung Aeong; Park, Soon Ki; Jung, Ki-Hong

    2016-09-01

    Microspore production using endogenous developmental programs has not been well studied. The main limitation is the difficulty in identifying genes preferentially expressed in pollen grains at early stages. To overcome this limitation, we collected transcriptome data from anthers and microspore/pollen and performed meta-expression analysis. Subsequently, we identified 410 genes showing preferential expression patterns in early developing pollen samples of both japonica and indica cultivars. The expression patterns of these genes are distinguishable from genes showing pollen mother cell or tapetum-preferred expression patterns. Gene Ontology enrichment and MapMan analyses indicated that microspores in rice are closely linked with protein degradation, nucleotide metabolism, and DNA biosynthesis and regulation, while the pollen mother cell or tapetum are strongly associated with cell wall metabolism, lipid metabolism, secondary metabolism, and RNA biosynthesis and regulation. We also generated transgenic lines under the control of the promoters of eight microspore-preferred genes and confirmed the preferred expression patterns in plants using the GUS reporting system. Furthermore, cis-regulatory element analysis revealed that pollen specific elements such as POLLEN1LELAT52, and 5659BOXLELAT5659 were commonly identified in the promoter regions of eight rice genes with more frequency than estimation. Our study will provide new sights on early pollen development in rice, a model crop plant. PMID:27356912

  17. Antifungal stilbenoids from Stemona japonica.

    PubMed

    Zhang, Ya-Zhong; Xu, Guo-Bing; Zhang, Tong

    2008-01-01

    Three new dihydrostilbenes, stilbostemins P-R (1-3), and a new dihydrophenanthrene, stemanthrene G (4), were isolated from the roots of Stemona japonica together with three known bibenzyls, 3,5-dihydroxy-2'-methoxy bibenzyl (5), 3,3'-dihydroxy-2,5'-dimethoxy bibenzyl (6), and 3,5,2'-trihydroxy-4-methyl bibenzyl (7). Their structures were elucidated by spectroscopic analyses. Compounds 5 and 6 exhibited strong antifungal activities against Candida albicans. PMID:18636375

  18. Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of 'golden' indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue.

    PubMed

    Baisakh, Niranjan; Rehana, Sayda; Rai, Mayank; Oliva, Norman; Tan, Jing; Mackill, David J; Khush, Gurdev S; Datta, Karabi; Datta, Swapan K

    2006-07-01

    We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for beta-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase (psy) and phytoene desaturase (crtI)] and the selectable marker gene (hygromycin phosphotransferase, hph) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI, which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC(2)F(2)) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase (cat) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 microg total carotenoids, including beta-carotene, in 1 g of the endosperm. The accumulation of beta-carotene was also evident from the clearly visible yellow colour of the polished seeds. PMID:17177811

  19. Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars

    PubMed Central

    Vergara, Georgina V.; Nugraha, Yudhistira; Esguerra, Manuel Q.; Mackill, David J.; Ismail, Abdelbagi M.

    2014-01-01

    Stagnant flooding (SF) is a major problem in rainfed lowlands where floodwater of 25–50 cm stagnates in the field for most of the season. We aimed to establish a system for phenotyping SF tolerance and identifying tolerant germplasm through screening of landraces. A total of 626 rice accessions were evaluated over 3 years under control conditions and two levels of SF. Floodwater was raised to 20 cm at 25 or 30 days after transplanting (DAT). In one trial, the depth was increased subsequently by 5 cm a week and in another (severe stress), it was increased to 40 cm at 37 DAT and to 50 cm at 42 DAT. In both trials, water depth was maintained at 50–60 cm until maturity. In all cases, no plant was completely submerged. Plant height, elongation rate and yield were measured at maturity. Genotypes best suited to SF showed moderate elongation of 1.3–2.3 cm day−1 under SF. In contrast, semi-dwarf and fast-elongating types performed poorly. Subsequent trials using 18 genotypes, including six pairs of near isogenic lines (NILs) with or without SUB1 showed that all SUB1 NILs were sensitive to SF. Five of the other six genotypes contained SUB1 and were SF tolerant, suggesting the possibility of combining tolerances to complete submergence (SUB1) and SF. Stem starch and soluble sugar concentrations were similar under control conditions among the 18 genotypes, but starch was depleted by 37 % under SF, with less depletion in tolerant genotypes. SUB1 NILs contained similar concentrations of starch and sugars under SF. We conclude that survival and yield under SF are dependent on moderate elongation, high tillering, lesser carbohydrate depletion and higher fertility. The tolerant genotypes identified here performed strongly in both wet and dry seasons and will be used to identify tolerance mechanisms and alleles for use in marker-assisted breeding. PMID:25202124

  20. Efficient in vitro plant regeneration through leaf base derived callus cultures of abiotic stress sensitive popular Asian Indica rice cultivar IR 64 (Oryza sativa L.).

    PubMed

    Mohana Priya, A; Karutha Pandian, S; Ramesh, M

    2011-12-01

    A simple and efficient protocol has been developed for high frequency plant regeneration through callus cultures derived from leaf bases of abiotic stress sensitive Asian indica rice variety IR 64. Leaf base segments (4-5 mm diameter) were obtained from 6-day-old dark grown seedlings germinated on halfstrength Murashige and Skoog medium and cultured on MS medium supplemented with different concentrations of 2,4-Dichlorophenoxyacetic acid (2.2-18 μM) and Kinetin (0.2-1.7 μM). Among the various combinations, 13.5 μM 2,4-D and 1.3 μM Kn resulted in high callus induction frequency (87.5%) with a maximum fresh weight of 0.22 g per segment. The regeneration frequency was 75.5% with multiple shoots within 3 weeks of transfer on MS medium supplemented with 13.3 μM 6-benzylamino purine and 8 μM Naphthaleneacetic acid. The shoots readily rooted on half-strength MS medium without any hormonal supplements. In vitro regenerated plantlets with multiple shoots and roots were transferred to sterile soil and vermiculite mix and maintained in shade house for 30 days. Complete plantlets were then transferred to nursery and acclimatized to the external environment until seed set. RAPD profile reveals monomorphism and thus confirming the genetic stability of the regenerated plants. This method has the potential for both direct as well as indirect method of transformation for the production of genetically modified plants. PMID:22119872

  1. Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars.

    PubMed

    Vergara, Georgina V; Nugraha, Yudhistira; Esguerra, Manuel Q; Mackill, David J; Ismail, Abdelbagi M

    2014-01-01

    Stagnant flooding (SF) is a major problem in rainfed lowlands where floodwater of 25-50 cm stagnates in the field for most of the season. We aimed to establish a system for phenotyping SF tolerance and identifying tolerant germplasm through screening of landraces. A total of 626 rice accessions were evaluated over 3 years under control conditions and two levels of SF. Floodwater was raised to 20 cm at 25 or 30 days after transplanting (DAT). In one trial, the depth was increased subsequently by 5 cm a week and in another (severe stress), it was increased to 40 cm at 37 DAT and to 50 cm at 42 DAT. In both trials, water depth was maintained at 50-60 cm until maturity. In all cases, no plant was completely submerged. Plant height, elongation rate and yield were measured at maturity. Genotypes best suited to SF showed moderate elongation of 1.3-2.3 cm day(-1) under SF. In contrast, semi-dwarf and fast-elongating types performed poorly. Subsequent trials using 18 genotypes, including six pairs of near isogenic lines (NILs) with or without SUB1 showed that all SUB1 NILs were sensitive to SF. Five of the other six genotypes contained SUB1 and were SF tolerant, suggesting the possibility of combining tolerances to complete submergence (SUB1) and SF. Stem starch and soluble sugar concentrations were similar under control conditions among the 18 genotypes, but starch was depleted by 37 % under SF, with less depletion in tolerant genotypes. SUB1 NILs contained similar concentrations of starch and sugars under SF. We conclude that survival and yield under SF are dependent on moderate elongation, high tillering, lesser carbohydrate depletion and higher fertility. The tolerant genotypes identified here performed strongly in both wet and dry seasons and will be used to identify tolerance mechanisms and alleles for use in marker-assisted breeding. PMID:25202124

  2. Cytoplasm affects grain weight and filled-grain ratio in indica rice

    PubMed Central

    2011-01-01

    Background Cytoplasmic effects on agronomic traits -involving cytoplasmic and nuclear genomes of either different species or different cultivars - are well documented in wheat but have seldom been demonstrated in rice (Oryza sativa L.). To detect cytoplasmic effects, we introgressed the nuclear genomes of three indica cultivars - Guichao 2, Jiangchengkugu, and Dianrui 449 - into the cytoplasms of six indica cultivars - Dijiaowujian, Shenglixian, Zhuzhan, Nantehao, Aizizhan, and Peta. These 18 nuclear substitution lines were evaluated during the winter season of 2005 in Sanya, Hainan, China, and during the summer season of 2006 in Kunming, Yunnan, China. The effects of 6 cytoplasm sources, 3 nucleus sources, 2 locations and their interactions were estimated for plant height, panicle length, panicle number per plant, spikelet number per panicle, grain weight, filled-grain ratio, and yield per plot. Results For five of the seven traits, analysis of variance showed that there were no significant cytoplasmic effects or interactions involving cytoplasmic effects. The effect of cytoplasm on 1000-grain weight was highly significant. Mean 1000-grain weight over the two locations in four of the six cytoplasms clustered close to the overall mean, whereas plants with Nantehao cytoplasm had a high, and those with Peta cytoplasm a low mean grain weight. There was a highly significant three-way interaction affecting filled-grain ratio. At Sanya, cytoplasms varied in very narrow ranges within nuclear backgrounds. Strong cytoplasmic effects were observed only at Kunming and in only two of the three nuclear backgrounds; in the Jianchenkugu nuclear background, there was no evidence of strong cytoplasmic effects at either location. In the Dianrui 449 and Guichao 2 nuclear background evaluated at Kunming, filled-grain ratios of the six cytoplasms showed striking rank shifts Conclusions We detected cytoplasmic variation for two agronomically important traits in indica rice. The

  3. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.).

    PubMed

    Yang, Ruifang; Sun, Chunlong; Bai, Jianjiang; Luo, Zhixiang; Shi, Biao; Zhang, Jianming; Yan, Wengui; Piao, Zhongze

    2012-01-01

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs. PMID:22937009

  4. Relationship of cooked rice nutritionally-important starch fractions with other physicochemical properties.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen rice cultivars representing 5 cytosine-thymine repeat (CTn) microsatellite genetic marker groups were analyzed for their cooked rice nutritionally-important starch fractions (rapidly digestible, slowly digestible, and resistant starch), basic grain quality indices (apparent amylose, crude pr...

  5. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice.

    PubMed

    Jeung, J U; Kim, B R; Cho, Y C; Han, S S; Moon, H P; Lee, Y T; Jena, K K

    2007-11-01

    Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement. PMID:17909744

  6. Test of Some Hybrid Combinations to Rice Blast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by Magnaporthe oryzae is one of the most devastating rice diseases worldwide. Blast resistant cultivars are recognized as the most efficacious and economical way to control this disease. Genetic resistance to rice blast is generally governed by a few major genes, often in c...

  7. Four new rice varieties for specialty markets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although conventional long grain rice varieties are grown on over 75% of the acreage in the US, there is interest in developing rice cultivars which possess specific qualities required for certain value-added markets. USDA ARS researchers at Beaumont, TX and Stuttgart, AR, in various collaborations ...

  8. SNP-assisted development of interspecific CSSLs in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to generate six libraries of chromosome segment substitution lines (CSSLs) using three diverse accessions of the wild Oryza sativa progenitor species, O. rufipogon/O. nivara as donors, and two elite O. sativa cultivars, Cybonnet (tropical japonica) and IR64 (indica) as...

  9. Production and heterosis analysis of rice (Oryza sativa L.) autotetraploid hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hard to achieve good seed set in hybrid rice between cultivarsof the same Oyrza sataiva L sub-species, and even harder in hybrids between the two rice sub-species, indica and japonica. The wider cross has greater hybrid vigor or heterosis. Cytoplasmic male sterile (CMS) system used widely and ...

  10. Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice

    PubMed Central

    Sun, Wenqian; Zhou, Qiaoling; Yao, Yue; Qiu, Xianjin; Xie, Kun; Yu, Sibin

    2015-01-01

    Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which each line carried one or a few introduced japonica cultivar Nipponbare segments in the genetic background of the indica cultivar ZS97. Ten quantitative trait loci regions were commonly identified for the percentage of grain chalkiness and the degree of endosperm chalkiness. The allelic effects at nine of these quantitative trait loci reduced grain chalkiness. Furthermore, a quantitative trait locus (qPGC8-2) on chromosome 8 was validated in a chromosomal segment substitution line–derived segregation population, and had a stable effect on chalkiness in a multiple-environment evaluation of the near-isogenic lines. Residing on the qPGC8-2 region, the isoamylase gene (ISA1) was preferentially expressed in the endosperm and revealed some nucleotide polymorphisms between two varieties, Nipponbare and ZS97. Transgenic lines with suppression of ISA1 by RNA interference produced grains with 20% more chalkiness than the control. The results support that the gene may underlie qPGC8-2 for grain chalkiness. The multiple-environment trials of the near-isogenic lines also show that combination of the favorable alleles such as the ISA1 gene for low chalkiness and the GS3 gene for long grains considerably improved grain quality of ZS97, which proves useful for grain quality improvement in rice breeding programs. PMID:25790260

  11. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae

    PubMed Central

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen. PMID:27005950

  12. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae.

    PubMed

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen. PMID:27005950

  13. Switchgrass cultivar EG1102

    DOEpatents

    Bouton, Joseph H; Wood, Donald T

    2012-11-20

    A switchgrass cultivar designated EG1102 is disclosed. The invention relates to the seeds of switchgrass cultivar EG1102, to the plants of switchgrass EG1102, to plant parts of switchgrass cultivar EG1102 and to methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1102 with itself or with another switchgrass variety. The invention also relates to methods for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. This invention also relates to switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1102, to methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1102 and to the switchgrass plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1102 with another switchgrass cultivar.

  14. Switchgrass cultivar EG1101

    DOEpatents

    Bouton, Joseph H; Wood, Donald T

    2012-11-27

    A switchgrass cultivar designated EG1101 is disclosed. Also disclosed are seeds of switchgrass cultivar EG1101, plants of switchgrass EG1101, plant parts of switchgrass cultivar EG1101 and methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1101 with itself or with another switchgrass variety. Methods are also described for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. Switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1101, methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1101 and the switchgrass plants, varieties, and their parts derived from use of those methods are described herein. Hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1101 with another switchgrass cultivar are also described.

  15. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins.

    PubMed

    Zhang, Xiaojie; Li, Yunhe; Romeis, Jörg; Yin, Xinming; Wu, Kongming; Peng, Yufa

    2014-01-01

    A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F. PMID:24409328

  16. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  17. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    PubMed

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. PMID:26043067

  18. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  19. Characterization of rice blast resistance gene Pi61(t) in rice germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance (R) genes to races of Magnaporthe oryzae in rice germplasm is essential for the development of rice cultivars with long lasting blast resistance. In the present study, one major quantitative trait locus, qPi93-3, was fine mapped using a recombinant inbred line (RIL), F8 ...

  20. Promising weed suppressive activity in high-yielding indica rice and hybrid rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective weed control in U.S. rice has relied primarily on herbicides since the 1960s. Several indica rice lines tested in the 1980s suppressed aquatic weeds. Since then, they and their crosses with standard U.S. cultivars, and other indica lines were found to suppress barnyardgrass (Echinochloa ...

  1. Fine mapping of a palea defective 1 (pd1), a locus associated with palea and stamen development in rice.

    PubMed

    Xiang, Chunyan; Liang, Xinxing; Chu, Ruizhen; Duan, Min; Cheng, Jinping; Ding, Zhengquan; Wang, Jianfei

    2015-12-01

    KEY MESSAGE : pd1, a genetic factor in a 69 kb region between RM11239 and RM11245 on rice chromosome 1, controls stamen number and palea development. Spikelets are important organs that store photosynthetic products in rice. Spikelet development directly affects grain yield and rice quality. Here, we report a palea defective (pd1) mutant identified from selfing progenies of indica cv. 93-11 after (60)Co γ ray treatment. pd1 mutant flowers only had four stamens (wild-type has six), but pollen fertility was not affected. Compared with 93-11 palea, pd1 mutant palea showed smaller and flatter leaf, which caused the lemma to bend excessively inward. pd1 mutants had only 46% seed setting rate and 21.6 g 1000-grain weight, which led to two-thirds loss of grain yield. Scanning electron microscope analysis revealed that pd1 mutants had reduced epidermal cell size and reduced numbers of fibrous sclerenchyma cells in both palea and lemma. To analyze the genetic factors involved, we crossed pd1 mutants with three japonica cultivars and generated F1 and F2 populations. The F1 phenotype and F2 segregation ratio indicated that a recessive gene controlled the mutant traits. Using the F2 population, we found that pd1 mapped between the simple sequence repeat markers RM11236 and RM11280 on rice chromosome 1. From a segregating population of 2836 plants, 77 recombinants were screened by RM11236 and RM11280. High-resolution linkage analysis narrowed the pd1 locus to a 69 kb region between RM11239 and RM11245 that contained 10 open reading frames (ORFs). Sequence alignment and quantitative real-time PCR expression analysis of these ORFs between 93-11 and pd1 mutant plants found no unequivocal evidence to identify the pd1 gene. PMID:26441054

  2. Root distribution and interactions between allelopathic rice and c4 grass weed species as determined by 13c isotope discrimination analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivars which carry allelopathic traits (traits that enable them to suppress weeds) could improve the economical management and sustainability of rice production. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but ...

  3. Use of 13C isotope discrimination analysis to quantify distribution of barnyardgrass and rice roots in a four-year study of weed-suppressive rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A four-year field study was conducted to evaluate weed control potential of weed-suppressive indica rice cultivars, common commercial cultivars, and crosses between the two types. Under diverse field environments, indica cultivars produced relatively high and consistent yields and levels of weed su...

  4. Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic, cytological and molecular responses of rice to the fungus M. grisea were studied using rice cultivars and lesion mimic plants. Cultivar Katy was susceptible to several virulent Magnaporthe grisea isolates. A Sekiguchi-like lesion mimic mutant of Katy (LmmKaty) has shown enhanced resista...

  5. 'Rondo', a long-grain indica rice with resistances to multiple diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indica rice (Oryza sativa L.) is needed to increase genetic diversity in the U.S. cultivars and resistant germplasm is needed to control newly occurred races of blast disease (Magnaporthe oryzae). ‘Rondo’ rice, a long grain cultivar meeting these needs, was developed by the USDA-ARS through mutation...

  6. Pathogenicity of Heterodera daverti, H. zeae, and Meloidogyne incognita on rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reactions of five rice cultivars to the cyst nematodes Heterodera daverti and H. zeae and the root-knot nematode Meloidogyne incognita were determined in the greenhouse. The results showed that both H. daverti and H. zeae infected and reproduced successfully on some of the tested rice cultivars....

  7. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil.

    PubMed

    Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E

    2016-08-01

    Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies. PMID:27468302

  8. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Orysa Sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice seedlings are sensitive to low temperatures ('15°C) and under prolonged or repeated exposure, yellowing and stunting are commonly observed. Damage to seedlings results in poor stand establishment and delayed maturation, which can cause significant reductions in yield. In general, japonica rice ...

  9. MOLECULAR MECHANISMS OF THE INSTABILITY OF AVIRULENCE GENE AVR-PITA IN RICE BLAST FUNGUS MAGNAPORTHE ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by Magnaporthe Oryzae, is one of the most serious diseases of rice worldwide. The Pi-ta gene in rice confers resistance to M. Oryzae isolates containing the corresponding avirulence gene AVR-Pita. In the southern U.S., rice cultivars containing Pi-ta have been widely utilized sinc...

  10. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    PubMed

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  11. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    PubMed

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  12. Onion cultivar evaluation - Lane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers currently use a combination of short-day and intermediate-day onion cultivars to extend the time periods for transplanting and harvesting. The intermediate cultivars available to growers have been limited in Oklahoma. Newly available intermediate cultivars may offer additional characterist...

  13. Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs.

    PubMed

    Cheng, Chaoyang; Motohashi, Reiko; Tsuchimoto, Suguru; Fukuta, Yoshimichi; Ohtsubo, Hisako; Ohtsubo, Eiichi

    2003-01-01

    The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains. PMID:12519908

  14. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  15. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice

    PubMed Central

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  16. A Variable Cluster of Ethylene Response Factor–Like Genes Regulates Metabolic and Developmental Acclimation Responses to Submergence in Rice[W

    PubMed Central

    Fukao, Takeshi; Xu, Kenong; Ronald, Pamela C.; Bailey-Serres, Julia

    2006-01-01

    Submergence-1 (Sub1), a major quantitative trait locus affecting tolerance to complete submergence in lowland rice (Oryza sativa), contains two or three ethylene response factor (ERF)–like genes whose transcripts are regulated by submergence. In the submergence-intolerant japonica cultivar M202, this locus encodes two ERF genes, Sub1B and Sub1C. In the tolerant near-isogenic line containing the Sub1 locus from the indica FR13A, M202(Sub1), the locus additionally encodes the ERF gene Sub1A. During submergence, the tolerant M202(Sub1) displayed restrained leaf and internode elongation, chlorophyll degradation, and carbohydrate consumption, whereas the enzymatic activities of pyruvate decarboxylase and alcohol dehydrogenase were increased significantly compared with the intolerant M202. Transcript levels of genes associated with carbohydrate consumption, ethanolic fermentation, and cell expansion were distinctly regulated in the two lines. Sub1A and Sub1C transcript levels were shown to be upregulated by submergence and ethylene, with the Sub1C allele in M202 also upregulated by treatment with gibberellic acid (GA). These findings demonstrate that the Sub1 region haplotype determines ethylene- and GA-mediated metabolic and developmental responses to submergence through differential expression of Sub1A and Sub1C. Submergence tolerance in lowland rice is conferred by a specific allele variant of Sub1A that dampens ethylene production and GA responsiveness, causing quiescence in growth that correlates with the capacity for regrowth upon desubmergence. PMID:16816135

  17. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice.

    PubMed

    Wang, Daofeng; Qin, Yanling; Fang, Jingjing; Yuan, Shoujiang; Peng, Lixiang; Zhao, Jinfeng; Li, Xueyong

    2016-01-01

    Rice is a model plant species for the study of cellulose biosynthesis. We isolated a mutant, S1-24, from ethyl methanesulfonate (EMS)-treated plants of the japonica rice cultivar, Nipponbare. The mutant exhibited brittle culms and other pleiotropic phenotypes such as dwarfism and partial sterility. The brittle culms resulted from reduced mechanical strength due to a defect in thickening of the sclerenchyma cell wall and reduced cellulose content in the culms of the S1-24 mutant. Map-based gene cloning and a complementation assay showed that phenotypes of the S1-24 mutant were caused by a recessive point mutation in the OsCESA7 gene, which encodes cellulose synthase A subunit 7. The missense mutation changed the highly conserved C40 to Y in the zinc finger domain. The OsCESA7 gene is expressed predominantly in the culm at the mature stage, particularly in mechanical tissues such as vascular bundles and sclerenchyma cells, consistent with the brittle phenotype in the culm. These results indicate that OsCESA7 plays an important role in cellulose biosynthesis and plant growth. PMID:27092937

  18. Genetic mapping of a QTL controlling source-sink size and heading date in rice.

    PubMed

    Zhan, Xiaodeng; Sun, Bin; Lin, Zechuan; Gao, Zhiqiang; Yu, Ping; Liu, Qunen; Shen, Xihong; Zhang, Yingxin; Chen, Daibo; Cheng, Shihua; Cao, Liyong

    2015-10-25

    Source size, sink size and heading date (HD) are three important classes of traits that determine the productivity of rice. In this study, a set of recombinant inbred lines (RILs) derived from the cross between an elite indica line Big Grain1 (BG1) and a japonica line Xiaolijing (XLJ) were used to map quantitative trait loci (QTLs) for source-sink size and heading date. Totally, thirty-one QTLs for source size, twenty-two for sink size, four for heading date and seven QTL clusters which included QTLs for multiple traits were identified in three environmental trials. Thirty QTLs could be consistently detected in at least two trials and generally located in the clusters. Using a set of BC4F2 lines, the QTL cluster in C5-1-C5-2 on chromosome 5 was validated to be a major QTL pleiotropically affecting heading date, source size (flag leaf area) and panicle type (neck length of panicle, primary branching number and the ratio of secondary branching number to primary branching number), and was narrowed down to a 309.52Kb region. QTL clusters described above have a large effect on source-sink size and/or heading date, therefore they should be good resources to improve the adaptability and high yield potential of cultivars genetically. PMID:26123916

  19. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice

    PubMed Central

    Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  20. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice.

    PubMed

    Zhao, Juan; Qiu, Zhennan; Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar "Nipponbare" subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT's. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  1. Amplifying the benefits of agroecology by using the right cultivars.

    PubMed

    Noguera, D; Laossi, K-R; Lavelle, P; De Carvalho, M H Cruz; Asakawa, N; Botero, C; Barot, S

    2011-10-01

    Tropical soils are particularly vulnerable to fertility losses due to their low capacity to retain organic matter and mineral nutrients. This urges the development of new agricultural practices to manage mineral nutrients and organic matter in a more sustainable way while relying less on fertilizer inputs. Two methods pertaining to ecological engineering and agroecology have been tested with some success: (1) the addition of biochar to the soil, and (2) the maintenance of higher earthworm densities. However, modern crop varieties have been selected to be adapted to agricultural practices and to the soil conditions they lead to and common cultivars might not be adapted to new practices. Using rice as a model plant, we compared the responsiveness to biochar and earthworms of five rice cultivars with contrasted selection histories. These cultivars had contrasted responsivenesses to earthworms, biochar, and the combination of both. The mean relative increase in grain biomass, among all treatments and cultivars, was 94% and 32%, respectively, with and without fertilization. Choosing the best combination of cultivar and treatment led to a more than fourfold increase in this mean benefit (a 437% and a 353% relative increase in grain biomass, respectively, with and without fertilization). Besides, the more rustic cultivar, a local landrace adapted to diverse and difficult conditions, responded the best to earthworms in terms of total biomass, while a modern common cultivar responded the best in term of grain biomass. This suggests that cultivars could be selected to amplify the benefit of biochar- and earthworm-based practices. Overall, selecting new cultivars interacting more closely with soil organisms and soil heterogeneity could increase agriculture sustainability, fostering the positive feedback loop between soils and plants that has evolved in natural ecosystems. PMID:22073627

  2. Development of strategies to manage rice blast disease in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease has been a serious threat to stable rice production in the southern USA. Blast disease has been causing yield losses for decades. Severity of blast epidemics has been always influenced by a combination of the following three factors: 1) rice cultivars deployed with different comb...

  3. Effect of nitrogen application and crop rotation on the accumulation of silica in the rice kernel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silica is needed for high production and healthy growth of rice. However, little is known about the effect of nitrogen (N) application and crop rotation on the accumulation of silica in the rice kernel. Therefore, the objective of this study was to grow the rice cultivars ‘Wells’ and ‘Cybonnet’ in t...

  4. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice.

    PubMed

    Tsugane, Kazuo; Maekawa, Masahiko; Takagi, Kyoko; Takahara, Hiroyuki; Qian, Qian; Eun, Chang-Ho; Iida, Shigeru

    2006-01-01

    While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed. PMID:16367953

  5. Registration of 'Jazzman' aromatic long-grain rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jazzman is a U.S.-bred Jasmine-type, soft-cooking aromatic long-grain rice cultivar (Oryza sativa L.) that is glabrous and has no seed dormancy. It was developed from a single cross using a modified pedigree breeding method at the Rice Research Station, Louisiana State University Agriculture Center,...

  6. Addressing the dilemmas of measuring amylose in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylose content is a parameter that correlates with the cooking behaviour of rice. It is measured at the earliest possible stages of rice improvement programs to enable breeders to build the foundations of appropriate grain quality during cultivar development. Amylose is usually quantified by absorb...

  7. Viscoelastic Properties of Waxy and Non-Waxy Rice Flours, Their Fat and Protein-Free Starch, and the Microstructure of Their Cooked Kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physicochemistry and structural studies of two types of japonica rice, low amylose Calmochi-101 (CM101) and intermediate amylose M-202 (M202), were conducted to determine similarities and differences between the rices perhaps attributable to amylose content differences. The rheological behavior of ...

  8. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  9. Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: implications for bioethanol production.

    PubMed

    Goda, Takashi; Teramura, Hiroshi; Suehiro, Miki; Kanamaru, Kengo; Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko; Yamasaki, Masanori

    2016-05-01

    Rice straw is a promising resource for bioethanol production. Because the glucose content of pretreatment liquid hydrolysates is highly correlated with ethanol yield, the selection of appropriate rice cultivars is essential. The glucose content in liquid hydrolysates of pretreated rice straws of 208 diverse cultivars was evaluated in natural field in 2013 and 2014 using a novel high-throughput system. The glucose content of the rice straw samples varied across cultivars and was affected by environmental factors such as temperature and solar radiation. Several high-quality cultivars exhibiting high glucose content in both years were identified. The results of this study can aid in development of novel rice cultivars suitable as both feedstocks for bioethanol production and cooking. PMID:26872499

  10. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain. PMID:27242730

  11. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root

    PubMed Central

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar “Zenith” root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected “Zenith” roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of “Zenith” root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of “Zenith” root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain

  12. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm

    PubMed Central

    Kawakatsu, Taiji; Yamamoto, Masayuki P.; Hirose, Sakiko; Yano, Masahiro; Takaiwa, Fumio

    2008-01-01

    A new glutelin gene, designated GluD-1, has been discovered by comparing the seed storage proteins from 48 japonica and indica rice cultivars on SDS-PAGE gels. Evidence that GluD-1 is a member of the glutelin family was provided by Western blots using anti-glutelin antiserum and by mapping the gene to the chromosomal glutelin gene cluster. The limited GluD-1 size polymorphism among the rice varieties is due to amino acid substitutions rather than to post-transcriptional modification. GluD-1 is maximally expressed in the starchy endosperm starting at 5 d after flowering (DAF) and increasing through 30 DAF, a major difference from the other glutelins which are primarily expressed in the subaleurone from 10–16 DAF. Only about 0.2 kb of the GluD-1 promoter was sufficient to confer inner starchy endosperm-specific expression. The 0.2 kb truncated GluD-1 promoter contains a bifactorial endosperm box consisting of a truncated GCN4 motif (TGA(G/C)TCA) and AAAG Prolamin box (P box), and ACGT and AACA motifs as cis-regulatory elements. Gel retardation assays and trans-activation experiments indicated that the truncated GCN4 and P box are specifically recognized by RISBZ1 b-ZIP and RPBF Dof activators in vitro, respectively, and are synergistically transactivated, indicating that combinatorial interactions of these motifs are involved in essential endosperm-specific regulation. Furthermore, deviation from the cognate GCN4 motif alters tissue-specific expression in the inner starchy endosperm to include other endosperm tissues. PMID:18980953

  13. RiceNet v2: an improved network prioritization server for rice genes

    PubMed Central

    Lee, Tak; Oh, Taeyun; Yang, Sunmo; Shin, Junha; Hwang, Sohyun; Kim, Chan Yeong; Kim, Hyojin; Shim, Hongseok; Shim, Jung Eun; Ronald, Pamela C.; Lee, Insuk

    2015-01-01

    Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional network server called RiceNet, constructed by integrating diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v2 (http://www.inetbio.org/ricenet), which provides a network of 25 765 genes (70.1% of the coding genome) and 1 775 000 co-functional links. Ricenet v2 also provides two complementary methods for network prioritization based on: (i) network direct neighborhood and (ii) context-associated hubs. RiceNet v2 can use genes of the related subspecies O. sativa ssp. indica and the reference plant Arabidopsis for versatility in generating hypotheses. We demonstrate that RiceNet v2 effectively identifies candidate genes involved in rice root/shoot development and defense responses, demonstrating its usefulness for the grass research community. PMID:25813048

  14. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells.

    PubMed

    Friedman, Mendel

    2013-11-13

    Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies. PMID:24175575

  15. Hop Cultivars and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in hops varies among cultivars. Historically, the primary objective of hop breeding programs has been to increase the yield or characteristics associated with either bittering (high alpha-acids) or aroma (unique volatile oil profiles) cultivars. Other factors consid...

  16. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.)

    PubMed Central

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars ‘Anyang-jungji’ (AJ) and ‘Greenzoa’ (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information. PMID:25905914

  17. Archaeological and genetic insights into the origins of domesticated rice

    PubMed Central

    Gross, Briana L.; Zhao, Zhijun

    2014-01-01

    Rice (Oryza sativa) is one of the most important cereal grains in the world today and serves as a staple food source for more than half of the world’s population. Research into when, where, and how rice was brought into cultivation and eventually domesticated, along with its development into a staple food source, is thus essential. These questions have been a point of nearly continuous research in both archaeology and genetics, and new information has continually come to light as theory, data acquisition, and analytical techniques have advanced over time. Here, we review the broad history of our scientific understanding of the rice domestication process from both an archaeological and genetic perspective and examine in detail the information that has come to light in both of these fields in the last 10 y. Current findings from genetics and archaeology are consistent with the domestication of O. sativa japonica in the Yangtze River valley of southern China. Interestingly, although it appears rice was cultivated in the area by as early 8000 BP, the key domestication trait of nonshattering was not fixed for another 1,000 y or perhaps longer. Rice was also cultivated in India as early as 5000 BP, but the domesticated indica subspecies currently appears to be a product of the introgression of favorable alleles from japonica. These findings are reshaping our understanding of rice domestication and also have implications for understanding the complex evolutionary process of plant domestication. PMID:24753573

  18. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.

    PubMed

    Xu, Xu; Kim, Ji Young; Oh, Yu Ri; Park, Jong Moon

    2014-10-01

    As aquatic biomass which is called "the third generation biomass", Laminaria japonica (also known as Saccharina japonica) consists of mannitol and alginate which are the main polysaccharides of algal carbohydrates. In this study, oleaginous yeast (Cryptococcus curvatus) was used to produce lipid from carbon sources derived from Laminaria japonica. Volatile fatty acids (VFAs) were produced by fermentation of alginate extracted from L. japonica. Thereafter, mannitol was mixed with VFAs to culture the oleaginous yeast. The highest lipid content was 48.30%. The composition of the fatty acids was similar to vegetable oils. This is the first confirmation of the feasibility of using macroalgae as a carbon source for biodiesel production. PMID:25084043

  19. GENOMIC ANALYSIS OF THE EARLY RESPONSES OF DEVELOPING RICE SEEDLINGS TO COLD STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is highly sensitive to low temperature particularly during the early stages of seedling establishment. In general, japonicas are more tolerant than most indicas. Given the biochemical complexity of adaptive responses to stress, the genotypic basis of differential low temperature sensitivity mus...

  20. Variation in cooking and eating quality traits in Japanese rice germplasm accessions

    PubMed Central

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-01-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan. PMID:27162502

  1. Variation in cooking and eating quality traits in Japanese rice germplasm accessions.

    PubMed

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-03-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan. PMID:27162502

  2. Functional properties as affected by laboratory-scale parboiling of rough rice and brown rice.

    PubMed

    Patindol, J; Newton, J; Wang, Y-J

    2008-10-01

    Rough rice (RR) is the conventional feedstock for parboiling. The use of brown rice (BR) instead of RR is gaining interest because it results in shorter processing time and lower energy requirement. This study compared the functional properties of milled parboiled rice under different parboiling conditions from RR and BR. Presoaked RR and BR from cultivars Bolivar, Cheniere, Dixiebelle, and Wells were parboiled under mild (20 min, 100 degrees C, 0 kPa) and severe (20 min, 120 degrees C, 98 kPa) laboratory-scale conditions. Head rice yield improved on the RR and BR samples subjected to severe parboiling and was comparable to that of a commercially parboiled sample. Mild parboiling of BR resulted in lower head rice yields. Parboiling generally resulted in decreased head rice whiteness, decreased apparent amylose, increased total lipid, and sparingly changed protein content. Under the same parboiling conditions, the extent of starch gelatinization was higher for BR compared to RR as manifested by some distinct differences in pasting and thermal properties. The cooking characteristics (water uptake ratio, leached materials, and volumetric expansion) and cooked rice texture (hardness and stickiness) of RR and BR subjected to severe parboiling were fairly comparable. Differences in parboiled rice functional properties due to cultivar effect were evident. PMID:19019108

  3. The roots of future rice harvests.

    PubMed

    Ahmadi, Nourollah; Audebert, Alain; Bennett, Malcolm J; Bishopp, Anthony; de Oliveira, Antonio Costa; Courtois, Brigitte; Diedhiou, Abdala; Diévart, Anne; Gantet, Pascal; Ghesquière, Alain; Guiderdoni, Emmanuel; Henry, Amelia; Inukai, Yoshiaki; Kochian, Leon; Laplaze, Laurent; Lucas, Mikael; Luu, Doan Trung; Manneh, Baboucarr; Mo, Xiaorong; Muthurajan, Raveendran; Périn, Christophe; Price, Adam; Robin, Sabariappan; Sentenac, Hervé; Sine, Bassirou; Uga, Yusaku; Véry, Anne Aliénor; Wissuwa, Matthias; Wu, Ping; Xu, Jian

    2014-12-01

    Rice production faces the challenge to be enhanced by 50% by year 2030 to meet the growth of the population in rice-eating countries. Whereas yield of cereal crops tend to reach plateaus and a yield is likely to be deeply affected by climate instability and resource scarcity in the coming decades, building rice cultivars harboring root systems that can maintain performance by capturing water and nutrient resources unevenly distributed is a major breeding target. Taking advantage of gathering a community of rice root biologists in a Global Rice Science Partnership workshop held in Montpellier, France, we present here the recent progresses accomplished in this area and focal points where an international network of laboratories should direct their efforts. PMID:26224558

  4. Identification of the main retrogradation-related properties of rice starch.

    PubMed

    Lian, Xijun; Kang, Haiqi; Sun, Haibo; Liu, Lizeng; Li, Lin

    2015-02-11

    The retrogradation of rice in shelf life is the biggest barrier to the industrial production of traditional foods using rice as material. Many rice breeders have tried their best to screen low-retrogradation rice cultivars without a specific indicator. To identify the main retrogradation-related properties of rice, the starch, amylose, and amylopectin from 16 rice cultivars were extracted from rice powder and their physicochemical properties, such as visible absorbance, infrared, average molecule weight (amylopectin), chain-length distribution (amylopectin), X-ray diffraction, and differential scanning calorimetry, were determined. The correlation between starch retrogradation rates and those physicochemical properties was investigated. The results show that a significant positive correlation (R(2) = 0.85; r = 0.926; p < 0.01) exists only between proportions of the chains [degree of polymerization (DP) > 10] in amylopectin and the retrogradation rates of different rice starches. The findings in the paper offer a shortcut for rice breeders to screen cultivars with a low retrogradation rate. Because the genes related to the branching enzyme control the DP of amylopectin, they can be exploited as molecular markers to screen low-retrogradation rice cultivars. PMID:25615262

  5. Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues

    PubMed Central

    2014-01-01

    Background Rice is one of the major crop species in the world helping to sustain approximately half of the global population’s diet especially in Asia. However, due to the impact of extreme climate change and global warming, rice crop production and yields may be adversely affected resulting in a world food crisis. Researchers have been keen to understand the effects of drought, temperature and other environmental stress factors on rice plant growth and development. Gene expression microarray technology represents a key strategy for the identification of genes and their associated expression patterns in response to stress. Here, we report on the development of the rice OneArray® microarray platform which is suitable for two major rice subspecies, japonica and indica. Results The rice OneArray® 60-mer, oligonucleotide microarray consists of a total of 21,179 probes covering 20,806 genes of japonica and 13,683 genes of indica. Through a validation study, total RNA isolated from rice shoots and roots were used for comparison of gene expression profiles via microarray examination. The results were submitted to NCBI’s Gene Expression Omnibus (GEO). Data can be found under the GEO accession number GSE50844 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50844). A list of significantly differentially expressed genes was generated; 438 shoot-specific genes were identified among 3,138 up-regulated genes, and 463 root-specific genes were found among 3,845 down-regulated genes. GO enrichment analysis demonstrates these results are in agreement with the known physiological processes of the different organs/tissues. Furthermore, qRT-PCR validation was performed on 66 genes, and found to significantly correlate with the microarray results (R = 0.95, p < 0.001***). Conclusion The rice OneArray® 22 K microarray, the first rice microarray, covering both japonica and indica subspecies was designed and validated in a comprehensive study of gene expression in

  6. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Zhang, Chang-Quan; Tang, Ke-Xuan; Sun, Ming-Fa; Yan, Guo-Hong; Liu, Qiao-Quan

    2015-01-01

    Ascorbic acid (AsA) is the most abundant water-soluble antioxidant in plants, and it plays a crucial role in plant growth, development and abiotic stress tolerance. In the present study, six key Arabidopsis or rapeseed genes involved in AsA biosynthesis were constitutively overexpressed in an elite Japonica rice cultivar. These genes encoded the GDP-mannose pyrophosphorylase (GMP), GDP-mannose-3',5'-epimerase (GME), GDP-L-galactose phosphorylase (GGP), L-galactose-1-phosphate phosphatase (GPP), L-galactose dehydrogenase (GDH), and L-galactono-1,4-lactone dehydrogenase (GalLDH). The effects of transgene expression on rice leaf AsA accumulation were carefully evaluated. In homozygous transgenic seedlings, AtGGP transgenic lines had the highest AsA contents (2.55-fold greater than the empty vector transgenic control), followed by the AtGME and AtGDH transgenic lines. Moreover, with the exception of the AtGPP lines, the increased AsA content also provoked an increase in the redox state (AsA/DHA ratio). To evaluate salt tolerance, AtGGP and AtGME transgenic seedlings were exposed to salt stress for one week. The relative plant height, root length and fresh weight growth rates were significantly higher for the transgenic lines compared with the control plants. Altogether, our results suggest that GGP may be a key rate-limiting step in rice AsA biosynthesis, and the plants with elevated AsA contents demonstrated enhanced tolerance for salt stress. PMID:25938231

  7. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.).

    PubMed

    Nada, Reham M; Abogadallah, Gaber M

    2016-04-01

    Rice has shallow, weak roots, but it is unknown how much increase in yield potential could be achieved if the root/shoot ratio is corrected. Removing all tillers except the main one, in a japonica (Sakha 101) and an indica (IR64) rice cultivar, instantly increased the root/shoot ratio from 0.21 to 1.16 in Sakha 101 and from 0.16 to 1.46 in IR64. Over 30 days after detillering, the root/shoot ratios of the detillered plants decreased to 0.49 in Sakha 101 and 0.46 in IR64 but remained significantly higher than in the controls. The detillered plants showed two- or fourfold increase in the main tiller fresh weight, as a consequence of more positive midday leaf relative water content (RWC), and consistently higher rates of stomatal conductance and photosynthesis, but not transpiration, compared with the controls. The enhanced photosynthesis in Sakha 101 after detillering resulted from both improved water status and higher Rubisco contents whereas in IR64, increasing the Rubisco content did not contribute to improving photosynthesis. Detillering did not increase the carbohydrate contents of leaves but prevented starch depletion at the end of grain filling. The leaf protein content during vegetative and reproductive stages, the grain filling rate, the number of filled grains per panicle were greatly improved, bringing about 38.3 and 35.9% increase in the harvested grain dry weight per panicle in Sakha 101 and IR64, respectively. We provide evidence that improving the root performance by increasing the root/shoot ratio would eliminate the current limitations to photosynthesis and growth in rice. PMID:26296302

  8. In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches.

    PubMed

    Lorieux, Mathias; Blein, Mélisande; Lozano, Jaime; Bouniol, Mathieu; Droc, Gaétan; Diévart, Anne; Périn, Christophe; Mieulet, Delphine; Lanau, Nadège; Bès, Martine; Rouvière, Claire; Gay, Céline; Piffanelli, Pietro; Larmande, Pierre; Michel, Corinne; Barnola, Isabelle; Biderre-Petit, Corinne; Sallaud, Christophe; Perez, Pascual; Bourgis, Fabienne; Ghesquière, Alain; Gantet, Pascal; Tohme, Joe; Morel, Jean Benoit; Guiderdoni, Emmanuel

    2012-06-01

    We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines. We estimate that 8686 predicted gene intervals--i.e. one-fourth to one-fifth of the estimated rice nontransposable element gene complement--are interrupted by sequence-indexed T-DNA (6563 genes) and/or Tos17 (2755 genes) inserts. Six hundred and forty-three genes are interrupted by both T-DNA and Tos17 inserts. High quality of the sequence indexation of the T2 seed samples was ascertained by several approaches. Field evaluation under agronomic conditions of 27,832 OTL has revealed that 18.2% exhibit at least one morphophysiological alteration in the T1 progeny plants. Screening 10,000 lines for altered response to inoculation by the fungal pathogen Magnaporthe oryzae allowed to observe 71 lines (0.7%) developing spontaneous lesions simulating disease mutants and 43 lines (0.4%) exhibiting an enhanced disease resistance or susceptibility. We show here that at least 3.5% (four of 114) of these alterations are tagged by the mutagens. The presence of allelic series of sequence-indexed mutations in a gene among OTL that exhibit a convergent phenotype clearly increases the chance of establishing a linkage between alterations and inserts. This convergence approach is illustrated by the identification of the rice ortholog of AtPHO2, the disruption of which causes a lesion-mimic phenotype owing to an over-accumulation of phosphate, in nine lines bearing allelic insertions. PMID:22369597

  9. Genetic control of inflorescence architecture during rice domestication.

    PubMed

    Zhu, Zuofeng; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Cai, Hongwei; Xie, Daoxin; Wu, Feng; Wu, Jianzhong; Matsumoto, Takashi; Sun, Chuanqing

    2013-01-01

    Inflorescence architecture is a key agronomical factor determining grain yield, and thus has been a major target of cereal crop domestication. Transition from a spread panicle typical of ancestral wild rice (Oryza rufipogon Griff.) to the compact panicle of present cultivars (O. sativa L.) was a crucial event in rice domestication. Here we show that the spread panicle architecture of wild rice is controlled by a dominant gene, OsLG1, a previously reported SBP-domain transcription factor that controls rice ligule development. Association analysis indicates that a single-nucleotide polymorphism-6 in the OsLG1 regulatory region led to a compact panicle architecture in cultivars during rice domestication. We speculate that the cis-regulatory mutation can fine-tune the spatial expression of the target gene, and that selection of cis-regulatory mutations might be an efficient strategy for crop domestication. PMID:23884108

  10. Rice, indica (Oryza sativa L.).

    PubMed

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2015-01-01

    Indica varieties, which are generally recalcitrant to tissue culture and transformation, occupy 80 % of rice cultivation area in the world. Therefore, transformation method for indica rice must be improved greatly so that global rice production would take full advantage of cutting-edge biotechnology. An efficient protocol for indica transformation mediated by Agrobacterium tumefaciens is hereby described. Immature embryos collected from plants in a greenhouse are cocultivated with A. tumefaciens after pretreatment with heat and centrifuging. The protocol was successfully tested in many elite indica cultivars such as IR8, IR24, IR58025B, IR64, IR72, Suweon 258, and Nanjing 11, yielding between 5 and 15 of independent transgenic plants per immature embryo. The use of immature embryos is recommended because gene transfer to them could be much more efficient and much less genotype dependent than gene transfer to callus. PMID:25300838

  11. RNA-Seq analysis of urea nutrition responsive transcriptome of Oryza sativa elite indica cultivar RP Bio 226.

    PubMed

    Reddy, Mettu Madhavi; Ulaganathan, Kandasamy

    2015-12-01

    Rice yield is greatly influenced by the nitrogen and rice varieties show variation in yield. For understanding the role of urea nutrition in the yield of elite indica rice cultivar RPBio-226, the urea responsive transcriptome was sequenced and analyzed. The raw reads and the Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession GDKM00000000. The version described in this paper is the first version, GDKM01000000. PMID:26697348

  12. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice.

    PubMed

    Paiva, Flávia Fernandes; Vanier, Nathan Levien; Berrios, Jose De J; Pinto, Vânia Zanella; Wood, Delilah; Williams, Tina; Pan, James; Elias, Moacir Cardoso

    2016-01-15

    This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration of red rice proteins than black rice proteins to the endosperm as a result of parboiling. Parboiling reduced the ash content of red rice while no difference was determined in black rice. Gelatinized starch granules from both genotypes showed similar appearance. There was a decrease in relative crystallinity on both black and red rice subjected to parboiling, which was an indicative of crystallites disruption. Polishing removed more than 90% of free phenolics for both genotypes, while parboiling allowed the partial preservation of free phenolics content in polished rice. Parboiling induced an increase in the cooking time of red rice, but a decrease in the cooking time of black rice. PMID:26258708

  13. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    PubMed Central

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  14. Effect of hydrothermal processing on antioxidant contents and capacities in pigmented rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purple and red bran rice cultivars (Oryza sativa L.) are rich sources of antioxidants including lipophilic antioxidants (vitamin E homologues and '-oryzanol), soluble phenolics (including anthocyanidins and proanthocyanidins), and cell-wall-bound phenolics. This study investigated impacts of hydroth...

  15. Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Pharmacology Review.

    PubMed

    Li, Yujie; Cai, Weiyan; Weng, Xiaogang; Li, Qi; Wang, Yajie; Chen, Ying; Zhang, Wei; Yang, Qing; Guo, Yan; Zhu, Xiaoxin; Wang, Hainan

    2015-01-01

    Lonicerae japonicae flos, a widely used traditional Chinese medicine (TCM), has been used for several thousand years in China. Chinese Pharmacopeia once included Lonicerae japonicae flos of Caprifoliaceae family and plants of the same species named Lonicerae flos in general in the same group. Chinese Pharmacopeia (2005 Edition) lists Lonicerae japonicae flos and Lonicerae flos under different categories, although they have the similar history of efficacy. In this study, we research ancient books of TCM, 4 main databases of Chinese academic journals, and MEDLINE/PubMed to verify the origins and effects of Lonicerae japonicae flos and Lonicerae flos in traditional medicine and systematically summarized the research data in light of modern pharmacology and toxicology. Our results show that Lonicerae japonicae flos and Lonicerae flos are similar pharmacologically, but they also differ significantly in certain aspects. A comprehensive systematic review and a standard comparative pharmacological study of Lonicerae japonicae flos and Lonicerae flos as well as other species of Lonicerae flos support their clinical safety and application. Our study provides evidence supporting separate listing of Lonicerae japonicae flos and Lonicerae flos in Chinese Pharmacopeia as well as references for revision of relevant pharmacopeial records dealing with traditional efficacy of Lonicerae japonicae flos and Lonicerae flos. PMID:26257818

  16. Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Pharmacology Review

    PubMed Central

    Li, Yujie; Cai, Weiyan; Weng, Xiaogang; Li, Qi; Wang, Yajie; Chen, Ying; Zhang, Wei; Yang, Qing; Guo, Yan; Zhu, Xiaoxin; Wang, Hainan

    2015-01-01

    Lonicerae japonicae flos, a widely used traditional Chinese medicine (TCM), has been used for several thousand years in China. Chinese Pharmacopeia once included Lonicerae japonicae flos of Caprifoliaceae family and plants of the same species named Lonicerae flos in general in the same group. Chinese Pharmacopeia (2005 Edition) lists Lonicerae japonicae flos and Lonicerae flos under different categories, although they have the similar history of efficacy. In this study, we research ancient books of TCM, 4 main databases of Chinese academic journals, and MEDLINE/PubMed to verify the origins and effects of Lonicerae japonicae flos and Lonicerae flos in traditional medicine and systematically summarized the research data in light of modern pharmacology and toxicology. Our results show that Lonicerae japonicae flos and Lonicerae flos are similar pharmacologically, but they also differ significantly in certain aspects. A comprehensive systematic review and a standard comparative pharmacological study of Lonicerae japonicae flos and Lonicerae flos as well as other species of Lonicerae flos support their clinical safety and application. Our study provides evidence supporting separate listing of Lonicerae japonicae flos and Lonicerae flos in Chinese Pharmacopeia as well as references for revision of relevant pharmacopeial records dealing with traditional efficacy of Lonicerae japonicae flos and Lonicerae flos. PMID:26257818

  17. The Power of Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice Domestication.

    PubMed

    Wang, Hongru; Xu, Xun; Vieira, Filipe Garrett; Xiao, Yunhua; Li, Zhikang; Wang, Jun; Nielsen, Rasmus; Chu, Chengcai

    2016-07-01

    Low-coverage whole-genome sequencing is an effective strategy for genome-wide association studies in humans, due to the availability of large reference panels for genotype imputation. However, it is unclear whether this strategy can be utilized in other species without reference panels. Using simulations, we show that this approach is even more relevant in inbred species such as rice (Oryza sativa L.), which are effectively haploid, allowing easy haplotype construction and imputation-based genotype calling, even without the availability of large reference panels. We sequenced 203 rice varieties with well-characterized phenotypes from the United States Department of Agriculture Rice Mini-Core Collection at an average depth of 1.5× and used the data for mapping three traits. For the first two traits, amylose content and seed length, our approach leads to direct identification of the previously identified causal SNPs in the major-effect loci. For the third trait, pericarp color, an important trait underwent selection during domestication, we identified a new major-effect locus. Although known loci can explain color variation in the varieties of two main subspecies of Asian domesticated rice, japonica and indica, the new locus identified is unique to another domesticated rice subgroup, aus, and together with existing loci, can fully explain the major variation in pericarp color in aus. Our discovery of a unique genetic basis of white pericarp in aus provides an example of convergent evolution during rice domestication and suggests that aus may have a domestication history independent of japonica and indica. PMID:27179918

  18. [Bioinformatics analysis of DNA demethylase genes in Lonicera japonica Thunb].

    PubMed

    Qi, Lin-jie; Yuan, Yuan; Wu, Chong; Huang, Lu-qi; Chen, Ping

    2015-03-01

    The DNA demethylase genes are widespread in plants. Four DNA demethylase genes (LJDME1, LJDME2, LJDME3 and LJDME4) were obtained from transcriptome dataset of Lonicera japonica Thunb by using bioinformatics methods and the proteins' physicochemical properties they encoded were predicted. The phylogenetic tree showed that the four DNA demethylase genes and Arabidopsis thaliana DME had a close relationship. The result of gene expression model showed that four DNA demethylase genes were different between species. The expression levels of LJDME1 and LJDME2 were even more higher in Lonicera japonica var. chinensis than those in L. japonica. LJDME] and LJDME2 maybe regulate the active compounds of L. japonica. This study aims to lay a foundation for further understanding of the function of DNA demethylase genes in L. japonica. PMID:26118119

  19. OsSPL13 controls grain size in cultivated rice.

    PubMed

    Si, Lizhen; Chen, Jiaying; Huang, Xuehui; Gong, Hao; Luo, Jianghong; Hou, Qingqing; Zhou, Taoying; Lu, Tingting; Zhu, Jingjie; Shangguan, Yingying; Chen, Erwang; Gong, Chengxiang; Zhao, Qiang; Jing, Yufeng; Zhao, Yan; Li, Yan; Cui, Lingling; Fan, Danlin; Lu, Yiqi; Weng, Qijun; Wang, Yongchun; Zhan, Qilin; Liu, Kunyan; Wei, Xinghua; An, Kyungsook; An, Gynheung; Han, Bin

    2016-04-01

    Although genetic diversity has a cardinal role in domestication, abundant natural allelic variations across the rice genome that cause agronomically important differences between diverse varieties have not been fully explored. Here we implement an approach integrating genome-wide association testing with functional analysis on grain size in a diverse rice population. We report that a major quantitative trait locus, GLW7, encoding the plant-specific transcription factor OsSPL13, positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield. We determine that a tandem-repeat sequence in the 5' UTR of OsSPL13 alters its expression by affecting transcription and translation and that high expression of OsSPL13 is associated with large grains in tropical japonica rice. Further analysis indicates that the large-grain allele of GLW7 in tropical japonica rice was introgressed from indica varieties under artificial selection. Our study demonstrates that new genes can be effectively identified on the basis of genome-wide association data. PMID:26950093

  20. Proteomic analysis of rice after different seed space flights by two-dimensional difference electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liang, Shujian; Sun, Yeqing

    To investigate the biological effects of space environment in rice plants, proteomic profiles of six rice cultivars growing after twice different seed space flights were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) coupled with mass spectrometry (MS). Over 1500 protein spots were detected in each paired space/ground-control comparison and more than 800 protein spots were reproducible across all the samples. Six proteins including peroxiredoxin and rubisco were found significantly changed in most of the six cultivars after both of the seed space flights, indicating they might be associated with the responses of rice cells to the space environment. Cluster analyses were also applied using the quantitative protein expression data: cultivar hierarchical clustering and principal component analysis both indicated that the rice proteome changed its expression profiles after seed space environment exposures while protein hierarchical clustering revealed that there might be a decrease of protein expression in rice plants after seed space flights.

  1. Antiinflammatory activity of Polygala japonica extract.

    PubMed

    Kou, Junping; Si, Minda; Dai, Guofei; Lin, Yuwen; Zhu, Danni

    2006-09-01

    The antiinflammatory activity of the aqueous extract of Polygala japonica (AEPJ) was investigated in mice and rats to find the pharmacological basis for its ethnomedical use. The extract produced a significant inhibition of peritoneal and cutaneous vascular permeability induced by acetic acid and histamine, respectively and ear swelling induced by picryl chloride in mice at the dose of 25.0 mg/kg. Moreover, the extract markedly inhibited footpad edema induced by histamine in rats, and decreased prostaglandin E(2) (PGE(2)) content in carrageenan-induced air-pouch at doses of 12.5 and 6.25 mg/kg respectively. PMID:16814958

  2. Sensory characteristics and consumer acceptance of frozen cooked rice by a rapid freezing process compared to homemade and aseptic packaged cooked rice.

    PubMed

    Kwak, Han Sub; Kim, Hye-Gyeong; Kim, Hyun Suk; Ahn, Yong Sik; Jung, Kyunghee; Jeong, Hyo-Young; Kim, Tae Hyeong

    2013-03-01

    Descriptive analysis and consumer acceptance tests were conducted with frozen (FCR), homemade (HCR), and aseptic-packaged (ACR) cooked rice products from two cultivars-IM and SD. FCR was prepared using a rapid freezing process, which may provide consumers with a quality similar to that of HCR. The intensity of the flavors of roasted, glutinous rice, rice cake, and rice starch and the textures of glutinousness, moistness, chunkiness, adhesiveness, and squishiness were all greater in the FCR as compared to the HCR and ACR (p<0.05) in IM and SD cultivars. The differences in sensory characteristics between the FCR and ACR were larger than the equivalent differences between the FCR and HCR. Overall consumer acceptance ratings for FCR in overall aspect, appearance, aroma, and texture were not significantly different compared to those for HCR (p>0.05); however, in most cases these factors showed significant differences when compared with ACR (p<0.05). From partial least square regression analysis, cooked rice was positively related to sweet, transparency, glossiness, roasted, glutinousness, chunkiness, moistness, glutinous rice, adhesiveness, rice shape, rice starch, and squishiness attributes but negatively related to raw rice, old rice, old rice aroma, a particle feeling, off-aroma, white color, scatteredness, slickness, size of cooked rice, and firmness attributes. PMID:24471112

  3. Rice Methylmercury Exposure and Mitigation: A Comprehensive Review

    PubMed Central

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509

  4. Rice methylmercury exposure and mitigation: a comprehensive review

    USGS Publications Warehouse

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  5. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. PMID:24972509

  6. Rice response to planting date differs at two locations in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting date can have a dramatic effect on crop development and yield. Determining if rice cultivars respond differently to planting date is important when selecting the most appropriate cultivar for a particular planting date. Research was conducted from 1995 through 1997 at two locations in Louis...

  7. The origin and evolution of fragrance in rice (Oryza sativa L.)

    PubMed Central

    Kovach, Michael J.; Calingacion, Mariafe N.; Fitzgerald, Melissa A.; McCouch, Susan R.

    2009-01-01

    Fragrance in the grain is one of the most highly valued grain quality traits in rice, yet the origin and evolution of the betaine aldehyde dehydrogenase gene (BADH2) underlying this trait remains unclear. In this study, we identify eight putatively nonfunctional alleles of the BADH2 gene and show that these alleles have distinct geographic and genetic origins. Despite multiple origins of the fragrance trait, a single allele, badh2.1, is the predominant allele in virtually all fragrant rice varieties today, including the widely recognized Basmati and Jasmine types. Haplotype analysis allowed us to establish a single origin of the badh2.1 allele within the Japonica varietal group and demonstrate the introgression of this allele from Japonica to Indica. Basmati-like accessions were nearly identical to the ancestral Japonica haplotype across a 5.3-Mb region flanking BADH2 regardless of their fragrance phenotype, demonstrating a close evolutionary relationship between Basmati varieties and the Japonica gene pool. These results clarify the relationships among fragrant rice varieties and challenge the traditional assumption that the fragrance trait arose in the Indica varietal group. PMID:19706531

  8. Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.).

    PubMed

    Zhao, C F; Chen, T; Zhao, Q Y; Zhou, L H; Zhao, L; Zhang, Y D; Zhu, Z; Yao, S; Wang, C L

    2016-01-01

    Panicle exsertion (PE) is an important morphological trait that is closely associated with spikelet fertility and grain yield. To understand the genetic basis of PE and its relationships with yield and yield-related traits, a recombinant inbred population consisting of 240 lines derived from a cross between an Indica cultivar 'Kasalath' and a Japonica germplasm 'TD70', was studied over two years. PE was significantly correlated with plant height, heading date (HD), panicle length (PL), and panicle characteristics such as primary branch number, spikelet number per panicle, and spikelet density, but showed poor correlation with yield components. Based on linkage mapping of 141 SSR markers, a total of 38 quantitative trait loci (QTLs) were located for 12 investigated traits, with the contribution varying from 6.51 to 8.61%. Among these, four QTL clusters were identified on chromosomes 1, 2, 3, and 6, suggesting the existence of pleiotropic alleles. In some intervals, two loci for PE were collocated with several traits, which is consistent with the correlations observed with phenotypic variations. The PE QTLs with 'Kasalath' alleles and without pleiotropic effects would be valuable for the improvement of PE in 'TD70' and in other rice varieties. PMID:27173278

  9. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group

    PubMed Central

    Shimono, Hiroyuki; Okada, Masumi; Yamakawa, Yasuhiro; Nakamura, Hirofumi; Kobayashi, Kazuhiko; Hasegawa, Toshihiro

    2009-01-01

    Maturity group (based on the number of days to maturity) is an important growth trait for determining crop productivity, but there has been no attempt to examine the effects of elevated [CO2] on yield enhancement of rice cultivars with different maturity groups. Since early-maturing cultivars generally show higher plant N concentration than late-maturing cultivars, it is hypothesized that [CO2]-induced yield enhancement might be larger for early-maturing cultivars than late-maturing cultivars. To test this hypothesis, the effects of elevated [CO2] on yield components, biomass, N uptake, and leaf photosynthesis of cultivars with different maturity groups were examined for 2 years using a free-air CO2 enrichment (FACE). Elevated [CO2] significantly increased grain yield and the magnitude significantly differed among the cultivars as detected by a significant [CO2]×cultivar interaction. Two cultivars (one with early and one with late maturity) responded more strongly to elevated [CO2] than those with intermediate maturity, resulting mainly from increases in spikelet density. Biomass and N uptake at the heading stage were closely correlated with grain yield and spikelet density over [CO2] and cultivars. Our 2 year field trial rejected the hypothesis that earlier cultivars would respond more to elevated [CO2] than later cultivars, but it is revealed that the magnitude of the growth enhancement before heading is a useful criterion for selecting rice cultivars capable of adapting to elevated [CO2]. PMID:19050063

  10. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The domestication of Asian rice (Oryza sativa) was a complex process and substantial ambiguity remains regarding the timing, number, and locations of domestication events. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests at least two independent domesticati...

  11. Cooking quality and blast disease resistance linked markers: Genotyping a working rice germplasm collection for future marker-assisted breeding applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marker-assisted breeding is being used in US rice breeding programs to enhance development of rice cultivars with improved cooking quality and genetic resistance to rice blast disease. Because there is a continuous threat of race shifts within the Magnaporthe grisea populations found in Southern US...

  12. Analysis of the effectiveness of the rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The casual agent of rice blast, Magnaporthe oryzae, continues to remain a serious threat for rice production and in general for the world food supply. The most economically and environmentally viable strategy to control this pathogen is the development of cultivars which possess major resistance gen...

  13. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration ...

  14. Use of gross income as a measure of productivity in rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice breeders consider high grain yield and grain quality in the development of new cultivars, but usually do not go a step further and consider gross income per se. The objectives of this study were to determine the direct effects of whole and total milled rice percentages on gross income using pat...

  15. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  16. HYDROLYTIC DEGRADATION OF TRIACYLGLYCERLS AND CHANGES IN FATTY ACID COMPOSITION IN RICE BRAN DURING STORAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid degradation of lipids after milling makes rice bran unsuitable for human consumption. To better understand these lipolytic processes, bran from a conventional U.S. long ('Cypress') and medium grain ('Earl') rice cultivar were stored at room temperature for six months, and the changes in triacy...

  17. Characterization of genetic diversity of rice blast fungus in Arkansas field isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice blast resistance gene Pita has been deployed for preventing blast disease in the southern US for the past two decades. To date, at least eleven rice cultivars, Katy, Drew, Madison, Kaybonnet, Banks, Ahrent, Spring, Cybonnet, Catahoula, CL111, and Templeton carrying Pi-ta were developed by ...

  18. Analysis of rice PDR-like ABC transporter genes in sheath blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...

  19. PGPR: A novel strategy for the control of rice sheath blight disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight caused by Rhizoctonia solani is the most important rice disease in Texas, Arkansas, Mississippi and other southern states. Due to the lack of sheath blight resistance in most commonly planted cultivars, southern rice famers apply more than 1 million pounds of fungicides annually to co...

  20. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.

    PubMed

    Islam, Faisal; Ali, Basharat; Wang, Jian; Farooq, Muhammad A; Gill, Rafaqat A; Ali, Shafaqat; Wang, Danying; Zhou, Weijun

    2016-10-01

    Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants. PMID:27258572

  1. Residues of thiamethoxam and chlorantraniliprole in rice grain.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Jones, Trevor; McCauley, Garry

    2015-03-01

    Thiamethoxam and chlorantraniliprole insecticides have been important tools for controlling pests in rice. However, food safety issues related to pesticide residues are important to consider with a food crop such as rice. Therefore, the objective of this study was to analyze thiamethoxam and chlorantraniliprole residues in rice hull, bran, and polished rice grains. The study was conducted during the 2012 cropping season at the Texas A&M Agrilife Research, David R. Wintermann Rice Research Station, near Eagle Lake, TX, USA. Rice was planted on May 5, 2012, using the cultivar 'Presidio'. Pesticide applications were performed at 5, 15, 25, and 35 days after flowering (DAF) using 1 and 2 times the recommended rate of 30 g active ingredient (ai) ha(-1) for thiamethoxam and 30 g ai ha(-1) for chlorantraniliprole. Sequentially, two treatments using the insecticides at recommended rate were applied at 5 and 25 DAF and at 5, 25, and 35 DAF. Insecticide residues were analyzed in different sample fractions: rice hull, bran, and polished rice grains. The samples were subjected to extraction using an accelerated solvent extraction (ASE) technique. Sample aliquots were analyzed using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), with a limit of quantification (LOQ) of 5 × 10(-5) mg kg(-1). Residues of thiamethoxam and chlorantraniliprole were detected in rice hull, bran, and polished rice grains, and the quantified values were greater in hull and in rice bran. PMID:25626153

  2. Iron-fortified parboiled rice - A novel solution to high iron density in rice-based diets.

    PubMed

    Prom-U-Thai, Chanakan; Fukai, Shu; Godwin, Ian D; Rerkasem, Benjavan; Huang, Longbin

    2008-09-15

    The present study pioneered an investigation of a novel and cost-effective approach to fortify Fe in rice and to greatly improve Fe nutrition in rice-based diets through parboiling, though it remains at its preliminary phase. Rice grains of seven cultivars were parboiled in deionised water containing different levels of Fe chelate made by mixing different proportions of Fe sulfate (FeSO4) with ethylenediaminetetra-acetic acid disodium salt (Na2EDTA). Adding Fe to the parboiling water resulted in an increased Fe concentration in the most grain, effectively where FeSO4 and Na2EDTA were mixed at 2:1 molar ratio (11.16g Fe per 100g raw paddy grain). This treatment resulted in Fe concentrations in white rice milled for 60s and 120s, which were 20-50 times higher than those in the unfortified milled raw rice grains. The Fe concentrations in milled rice grains were 50-150mg Fe kg(-1) in 60s milled grains with a slight reduction in 120s milled grains. Perls Prussian blue staining of the cross section of Fe-fortified parboiled rice grains suggested inward movement of added Fe into the endosperm through the apoplastic pathway in the dorsal region of the rice grain. The retention rates of fortified Fe varied among the different cultivars, possibly due to different physical-chemical properties of the grains. The percentages of soluble fraction of the total Fe were higher than 50% in all cultivars tested, indicating its high bioavailability potential, though it remains to be evaluated. The present findings provided a preliminary basis for further investigation of this innovative technique, before its adoption by parboiled rice industry, such as optimising the levels of Fe addition and industrial process and Fe bioavailability in Fe-fortified-parboiled rice. PMID:26049231

  3. Rice Nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the symptoms of deficiency and toxicity of the major and minor mineral nutrients in rice, as well as a current synopsis of nutrient transporters and their regulation. The availability of sequences from the recently completed rice genome has furthered the knowledge of how plants...

  4. Research Progress on Chemical Constituents of Lonicerae japonicae flos

    PubMed Central

    Wang, Lingna; Jiang, Qiu; Hu, Jinghong; Zhang, Yongqing; Li, Jia

    2016-01-01

    Lonicerae japonicae flos is commonly used in traditional Chinese medicine for thousands of years with confirmed curative effects. Except for medicine, it is also used in healthy food, cosmetics, and soft beverages for its specific activities. Therefore, the chemical constituents, mainly including organic acids, flavonoids, iridoids, triterpenoids, and volatile oils, have been well studied by many scholars in recent years and a comprehensive and systematic review on chemical constituents of Lonicerae japonicae flos is indispensable. This paper aims at reviewing the chemical components of LJF in recent years through searching for the literatures both at home and abroad. Our results show that 212 components have been isolated from Lonicerae japonicae flos, including 27 flavonoids, 40 organic acids, 83 iridoids, 17 triterpenoids, and 45 other compounds, which could lay a foundation for the further application of Lonicerae japonicae flos. PMID:27403439

  5. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    PubMed

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  6. Crystallization and preliminary X-ray crystallographic studies of dehydroascorbate reductase (DHAR) from Oryza sativa L. japonica

    PubMed Central

    Do, Hackwon; Kim, Il-Sup; Kim, Young-Saeng; Shin, Sun-Young; Kim, Jin-Ju; Mok, Ji-Eun; Park, Seong-Im; Wi, Ah Ram; Park, Hyun; Kim, Han-Woo; Yoon, Ho-Sung; Lee, Jun Hyuck

    2014-01-01

    Dehydroascorbate reductase from Oryza sativa L. japonica (OsDHAR), a key enzyme in the regeneration of vitamin C, maintains reduced pools of ascorbic acid to detoxify reactive oxygen species. In previous studies, the overexpression of OsDHAR in transgenic rice increased grain yield and biomass as well as the amount of ascorbate, suggesting that ascorbate levels are directly associated with crop production in rice. Hence, it has been speculated that the increased level of antioxidants generated by OsDHAR protects rice from oxidative damage and increases the yield of rice grains. However, the crystal structure and detailed mechanisms of this important enzyme need to be further elucidated. In this study, recombinant OsDHAR protein was purified and crystallized using the sitting-drop vapour-diffusion method at pH 8.0 and 298 K. Plate-shaped crystals were obtained using 0.15 M potassium bromide, 30%(w/v) PEG MME 2000 as a precipitant, and the crystals diffracted to a resolution of 1.9 Å on beamline 5C at the Pohang Accelerator Laboratory. The X-ray diffraction data indicated that the crystal contained one OsDHAR molecule in the asymmetric unit and belonged to space group P21 with unit-cell parameters a = 47.03, b = 48.38, c = 51.83 Å, β = 107.41°. PMID:24915093

  7. Light demands of juvenile Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Fei, Xiugeng; Jiang, Benyu; Ding, Meili; Wu, Yajing; Huang, Ruyi; Li, Hanchang

    1989-03-01

    The light demands of seaweeds is an interesting and rather complex phenomenon because they depend not only on the species but also on their different development stages. Even different parts of the same plant sometimes have different light demands. Light control is an important procedure at large scale Laminaria nursery stations in China. Technicians and scientists have different viewpoints on the best method to regulate light. A culture study on Laminaria japonica starting from zoospores to several centimeter sporophytes to find the optimal and critical irradiance ranges for juvenile Laminaria at different development stages added more knowledge on this aspect. Experiment results show gametophytes can not tolerate irradiance of more than 150 μE m-2s-1 while sporophytes can tolerate more than 519 μE m-2s-1. This big difference starts from the very early stage of 1-to 2-celled sporophytes. The biological basis and mechanism of this phenomenon need further research.

  8. A transformation model for Laminaria Japonica (Phaeophyta, Laminariales)

    NASA Astrophysics Data System (ADS)

    Qin, Song; Jiang, Peng; Li, Xin-Ping; Wang, Xi-Hua; Zeng, Cheng-Kui

    1998-03-01

    A genetic transformation model for the seaweed Laminaria japonica mainly includes the following aspects: 1. The method to introduce foreign genes into the kelp, L. japonica Biolistic bombardment has been proved to be an effective method to bombard foreign DNA through cell walls into intact cells of both sporophytes and gametophytes. The expression of cat and lacZ was detected in regenerated sporophytes, which suggests that this method could induce random integration of foreign genes. Promoters to drive gene expression

  9. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety.

    PubMed

    Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen

    2014-10-01

    This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. PMID:25108175

  10. Genome-wide DNA polymorphism in the indica rice varieties RGD-7S and Taifeng B as revealed by whole genome re-sequencing.

    PubMed

    Fu, Chong-Yun; Liu, Wu-Ge; Liu, Di-Lin; Li, Ji-Hua; Zhu, Man-Shan; Liao, Yi-Long; Liu, Zhen-Rong; Zeng, Xue-Qin; Wang, Feng

    2016-03-01

    Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2 758 740 polymorphic sites including 2 408 845 SNPs and 349 895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961 791 SNPs and 46 640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis. PMID:26926666

  11. A biochar application protects rice pollen from high-temperature stress.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Tanveer, Mohsin; Bajwa, Ali Ahsan; Hassan, Shah; Shah, Adnan Noor; Ullah, Abid; Wu, Chao; Khan, Faheem Ahmed; Shah, Farooq; Ullah, Sami; Chen, Yajun; Huang, Jianliang

    2015-11-01

    The influences of high temperature and fertilization with biochar and phosphorus (P) on the pollen characteristics of two rice cultivars (IR-64 and Huanghuazhan) were examined in controlled growth chambers. Temperature treatments included high daytime temperature (HDT), high nighttime temperature (HNT) and ambient temperature (AT). The fertilization treatments were control, biochar alone, P alone and biochar + P. High temperature severely reduced pollen fertility, anther dehiscence, pollen retention and pollen germination of both rice cultivars, with HNT more destructive than HDT. The Huanghuazhan cultivar performed better than IR-64 under high temperature, with higher pollen fertility, better anther dehiscence and greater pollen retention and germination rates. In both cultivars, the pollen of plants treated with biochar + P were more resistant to heat induced stress. Further studies are needed to test the ability of biochar to ameliorate the effects of different abiotic stresses in rice and other crops. PMID:26318145

  12. Genetic variations in the hybrids of rice (Oryza sativa) and sorghum (Sorghum vulgare).

    PubMed

    Deming, Z; Shanbao, C; Xiaolan, D; Junhua, F; Xianbin, S; Yonghui, L; Liancheng, L; Bensong, X

    1985-08-01

    Some of results from morphological and cytological observations and esterase-isozyme studies of a rice-sorghum hybrid are presented in this paper. There is a great diversity of morphological characters and some special characteristics in the progenies of the hybrids of rice with sorghum. The meiosis of pollen mother cells in the early generations of the hybrid was found to be abnormal. One main band coinciding with one found in sorghum but lacking in rice appeared in the majority of the hybrid lines. This band is characteristic of a are the specificities of the distant hybridization of rice and sorghum, and is rarely observed in the intervariety hybrids or hybrids between subspecies of Oryza sativa, indica and japonica. On the basis of these facts we concluded that the hybrids obtained are true hybrids of rice and sorghum. PMID:24253065

  13. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica 'Nuccio's Pearl'. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6-8 weeks of cold treatment. Overall, plants treated for 6-8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  14. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed Central

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica ‘Nuccio’s Pearl’. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6–8 weeks of cold treatment. Overall, plants treated for 6–8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  15. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    PubMed

    Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V

    2015-04-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. PMID:25614066

  16. DNA Rearrangement in Orthologous Orp Regions of the Maize, Rice and Sorghum Genomes

    PubMed Central

    Ma, Jianxin; SanMiguel, Phillip; Lai, Jinsheng; Messing, Joachim; Bennetzen, Jeffrey L.

    2005-01-01

    The homeologous Orp1 and Orp2 regions of maize and the orthologous regions in sorghum and rice were compared by generating sequence data for >486 kb of genomic DNA. At least three genic rearrangements differentiate the maize Orp1 and Orp2 segments, including an insertion of a single gene and two deletions that removed one gene each, while no genic rearrangements were detected in the maize Orp2 region relative to sorghum. Extended comparison of the orthologous Orp regions of sorghum and japonica rice uncovered numerous genic rearrangements and the presence of a transposon-rich region in rice. Only 11 of 27 genes (40%) are arranged in the same order and orientation between sorghum and rice. Of the 8 genes that are uniquely present in the sorghum region, 4 were found to have single-copy homologs in both rice and Arabidopsis, but none of these genes are located near each other, indicating frequent gene movement. Further comparison of the Orp segments from two rice subspecies, japonica and indica, revealed that the transposon-rich region is both an ancient and current hotspot for retrotransposon accumulation and genic rearrangement. We also identify unequal gene conversion as a mechanism for maize retrotransposon rearrangement.

  17. The Birth of a Black Rice Gene and Its Local Spread by Introgression

    PubMed Central

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Izawa, Takeshi

    2015-01-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. PMID:26362607

  18. Inheritance of starch paste viscosity is directly associated with a rice Waxy gene exon 10 SNP marker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent amylose content is a key element for characterizing a rice cultivar for cooking quality. However, cultivars with similar apparent amylose content can have widely varying quality attributes, including major parameters of starch paste viscosity. It has been postulated that the presence of a r...

  19. Reducing arsenic accumulation in rice grain through iron oxide amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  20. Registration of "Rex" Southern Long-Grain Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Rex’ (Oryza sativa L.) (Reg. No. CV-136, PI 661111) is a conventional, southern, long-grain rice cultivar developed at the Mississippi Agricultural and Forestry Experiment Station, Delta Research and Extension Center, Stoneville, MS, and officially released in February 2010. Rex is a semidwarf cult...

  1. Model biases in rice phenology under warmer climates

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-06-01

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models.

  2. Model biases in rice phenology under warmer climates

    PubMed Central

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-01-01

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models. PMID:27273847

  3. Model biases in rice phenology under warmer climates.

    PubMed

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-01-01

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models. PMID:27273847

  4. Quantitative trait loci for rice blast resistance detected in a local rice breeding population by genome-wide association mapping

    PubMed Central

    Shinada, Hiroshi; Yamamoto, Toshio; Sato, Hirokazu; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Sato, Takashi; Fujino, Kenji

    2015-01-01

    Plant breeding programs aim to develop cultivars with high adaptability to the specific conditions in a local region. As a result, unique genes and gene combinations have been accumulated in local elite breeding populations during the long history of plant breeding. Genetic analyses on such genes and combinations may be useful for developing new cultivars with more-desirable agronomic traits. Here, we attempted to detect quantitative trait loci (QTL) for rice blast resistance (BR) using a local breeding rice population from Hokkaido, Japan. Using genotyping data on single nucleotide polymorphisms and simple sequence repeat markers distributed throughout the whole genomic region, we detected genetic regions associated with phenotypic variation in BR by a genome-wide association mapping study (GWAS). An additional association analysis using other breeding cultivars verified the effect and inheritance of the associated region. Furthermore, the existence of a gene for BR in the associated region was confirmed by QTL mapping. The results from these studies enabled us to estimate potential of the Hokkaido rice population as a gene pool for improving BR. The results of this study could be useful for developing novel cultivars with vigorous BR in rice breeding programs. PMID:26719741

  5. Rapid quantitative analysis of adulterant Lonicera species in preparations of Lonicerae Japonicae Flos.

    PubMed

    Zhang, Xiao; Guo, Qing; Yu, Boyang

    2015-12-01

    Lonicerae Japonicae Flos is often adulterated with Lonicerae Flos, which is derived from the other four Lonicera species, in both the crude drug and Lonicerae Japonicae Flos preparations. We proposed a methodology for the quantitative analysis of adulterant Lonicerae Flos in Lonicerae Japonicae Flos preparations. Taking macranthoidins A, B, dipsacoside B (saponins), sweroside (iridoids), and luteolin-7-O-d-glucoside (flavonoids) as markers, a method of ultra high performance liquid chromatography with triple quadrupole mass spectrometry was employed to determine their amounts in Lonicerae Flos, Lonicerae Japonicae Flos, and Lonicerae Japonicae Flos preparations. The proportion of adulterant Lonicerae Flos in Lonicerae Japonicae Flos preparations was estimated based on the saponin contents of Lonicerae Japonicae Flos and Lonicerae Flos. All analytes separated under isocratic elution in 12 min with acceptable linearity, precision, repeatability, and accuracy. Lonicerae Japonicae Flos was easily distinguished from Lonicerae Flos by the total amount of saponins (0.067 and > 45.8 mg/g for Lonicerae Japonicae Flos and Lonicerae Flos, respectively). Eighteen of twenty one Lonicerae Japonicae Flos preparation samples were adulterated with Lonicerae Flos in proportions of 11.3-100%. The developed ultra high performance liquid chromatography with triple quadrupole mass spectrometry method could be used for the identification of Lonicerae Japonicae Flos and the four species of Lonicerae Flos and for the analysis of Lonicerae Japonicae Flos preparations adulterated with Lonicerae Flos. PMID:26420337

  6. Cellulitis in Japanese quail (Coturnix coturnix japonica).

    PubMed

    Burns, Karen E; Otalora, Raul; Glisson, John R; Hofacre, Charles L

    2003-01-01

    A case of cellulitis was observed in Japanese quail (Coturnix coturnix japonica) reared for commercial meat production. This condition in Japanese quail has not been reported in the literature. This incident was the first, and to date only, occurrence of cellulitis in this processing plant. The cellulitis lesions were localized to the subcutis overlying the breast and inner thigh. Carcasses of processed birds and live birds from the affected farm were presented to the Poultry Diagnostic and Research Center, University of Georgia. Escherichia coli was cultured from the lesion. The affected live birds displayed lameness and had osteomyelitis. Pasteurella multocida serotype 3,4 was cultured from the liver and bone marrow of affected birds. Approximately 4.61% of the processed carcasses from the flock were condemned because of cellulitis. This represented a 10fold increase from the typical condemnation rate. Further investigation revealed birds were placed in higher than normal density; therefore, we theorize that the concurrent pasteurellosis and increased placement density resulted in the cellulitis condition. PMID:12713180

  7. Cultivar evaluation for hoop house grown onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oklahoma onions are produced for the fresh market using a combination of short and intermediate day cultivars. Recently developed hoop house transplant production techniques enable local production of cultivars not available as transplants elsewhere. Several new intermediate cultivars have product...

  8. Disease reactions of IRRI near-isogenic rice lines to U.S. isolates of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by Magnaporthe oryzae, is a destructive disease of rice. The use of resistant cultivars is the most effective way to manage this disease. However, to be effective, it is necessary to know how the isolates of the pathogen within a population respond to specific resistance genes. Tw...

  9. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  10. Linkage Block and Recombination Suppression at the Pi-ta locus at the Centromere Region of Rice Chromosome 12

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene, located near the centromeric region of chromosome 12 is an effective resistance gene to Magnaporthe oryzae that causes rice blast disease. Pi-ta has been incorporated into diverse resistant rice cultivars by classical plant breeding in the southern US and worldwide. Previously, la...

  11. Determination of resistance spectra of the Pi-ta and Pi-k genes to US races of Magnaporthe oryzae causing rice blast in a recombinant inbred line population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes to ten common races of Magnaporthe oryzae were mapped using an F10 recombinant inbred line population of a cross of a tropical japonica cultivar Katy with a breeding line RU9101001. Katy was found to confer resistance to all common races IA-45, IB-1, IB-45, IB-49, IB-54, IC-17,...

  12. FON2 SPARE1 Redundantly Regulates Floral Meristem Maintenance with FLORAL ORGAN NUMBER2 in Rice

    PubMed Central

    Suzaki, Takuya; Ohneda, Masako; Toriba, Taiyo; Yoshida, Akiko; Hirano, Hiro-Yuki

    2009-01-01

    CLAVATA signaling restricts stem cell identity in the shoot apical meristem (SAM) in Arabidopsis thaliana. In rice (Oryza sativa), FLORAL ORGAN NUMBER2 (FON2), closely related to CLV3, is involved as a signaling molecule in a similar pathway to negatively regulate stem cell proliferation in the floral meristem (FM). Here we show that the FON2 SPARE1 (FOS1) gene encoding a CLE protein functions along with FON2 in maintenance of the FM. In addition, FOS1 appears to be involved in maintenance of the SAM in the vegetative phase, because constitutive expression of FOS1 caused termination of the vegetative SAM. Genetic analysis revealed that FOS1 does not need FON1, the putative receptor of FON2, for its action, suggesting that FOS1 and FON2 may function in meristem maintenance as signaling molecules in independent pathways. Initially, we identified FOS1 as a suppressor that originates from O. sativa indica and suppresses the fon2 mutation in O. sativa japonica. FOS1 function in japonica appears to be compromised by a functional nucleotide polymorphism (FNP) at the putative processing site of the signal peptide. Sequence comparison of FOS1 in about 150 domesticated rice and wild rice species indicates that this FNP is present only in japonica, suggesting that redundant regulation by FOS1 and FON2 is commonplace in species in the Oryza genus. Distribution of the FNP also suggests that this mutation may have occurred during the divergence of japonica from its wild ancestor. Stem cell maintenance may be regulated by at least three negative pathways in rice, and each pathway may contribute differently to this regulation depending on the type of the meristem. This situation contrasts with that in Arabidopsis, where CLV signaling is the major single pathway in all meristems. PMID:19834537

  13. Sensory Characteristics and Consumer Acceptance of Frozen Cooked Rice by a Rapid Freezing Process Compared to Homemade and Aseptic Packaged Cooked Rice

    PubMed Central

    Kwak, Han Sub; Kim, Hye-Gyeong; Kim, Hyun Suk; Ahn, Yong Sik; Jung, Kyunghee; Jeong, Hyo-Young; Kim, Tae Hyeong

    2013-01-01

    Descriptive analysis and consumer acceptance tests were conducted with frozen (FCR), homemade (HCR), and aseptic-packaged (ACR) cooked rice products from two cultivars–IM and SD. FCR was prepared using a rapid freezing process, which may provide consumers with a quality similar to that of HCR. The intensity of the flavors of roasted, glutinous rice, rice cake, and rice starch and the textures of glutinousness, moistness, chunkiness, adhesiveness, and squishiness were all greater in the FCR as compared to the HCR and ACR (p<0.05) in IM and SD cultivars. The differences in sensory characteristics between the FCR and ACR were larger than the equivalent differences between the FCR and HCR. Overall consumer acceptance ratings for FCR in overall aspect, appearance, aroma, and texture were not significantly different compared to those for HCR (p>0.05); however, in most cases these factors showed significant differences when compared with ACR (p<0.05). From partial least square regression analysis, cooked rice was positively related to sweet, transparency, glossiness, roasted, glutinousness, chunkiness, moistness, glutinous rice, adhesiveness, rice shape, rice starch, and squishiness attributes but negatively related to raw rice, old rice, old rice aroma, a particle feeling, off-aroma, white color, scatteredness, slickness, size of cooked rice, and firmness attributes. PMID:24471112

  14. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    PubMed

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars. PMID:26604353

  15. Mitigation of arsenic accumulation in rice with water management and silicon fertilization.

    PubMed

    Li, R Y; Stroud, J L; Ma, J F; McGrath, S P; Zhao, F J

    2009-05-15

    Rice represents a major route of As exposure in populations that depend on a rice diet. Practical measures are needed to mitigate the problem of excessive As accumulation in paddy rice. Two potential mitigation methods, management of the water regime and Si fertilization, were investigated under greenhouse conditions. Growing rice aerobically during the entire rice growth duration resulted in the leastAs accumulation. Maintaining aerobic conditions during either vegetative or reproductive stage of rice growth also decreased As accumulation in rice straw and grain significantly compared with rice grown under flooded conditions. The effect of water management regimes was consistent with the observed effect of flooding-induced arsenite mobilization in the soil solution. Aerobic treatments increased the percentage of inorganic As in grain, but the concentrations of inorganic As remained lower than in the flooded rice. Silicon fertilization decreased the total As concentration in straw and grain by 78 and 16%, respectively, even though Si addition increased As concentration in the soil solution. Silicon also significantly influenced As speciation in rice grain and husk by enhancing methylation. Silicon decreased the inorganic As concentration in grain by 59% while increasing the concentration of dimethylarsinic acid (DMA) by 33%. There were also significant differences between two rice genotypes in grain As speciation. This study demonstrated that water management Si fertilization, and selection of rice cultivars are effective measures that can be used to reduce As accumulation in rice. PMID:19544887

  16. Involvement of Multiple Types of Dehydrins in the Freezing Response in Loquat (Eriobotrya japonica)

    PubMed Central

    Xu, Hongxia; Yang, Yong; Xie, Li; Li, Xiaoying; Feng, Chao; Chen, Junwei; Xu, Changjie

    2014-01-01

    Dehydrins (DHNs) are a family of plant proteins typically induced in response to stress conditions that cause cellular dehydration, such as low temperatures, high salinity, and drought. Loquat (Eriobotrya japonica) is a perennial fruit crop that blossoms during winter. Loquat fruitlets are frequently injured by freezing. To evaluate the role of the EjDHNs in freezing resistance in loquat fruitlets, two cultivars of loquat, the freezing-sensitive ‘Ninghaibai’ (FS-NHB) and the freezing-tolerant ‘Jiajiao’ (FT-JJ), were analyzed under induced freezing stress. Freezing stress led to obvious accumulation of reactive oxygen species and considerable lipid peroxidation in membranes during the treatment period. Both these phenomena were more pronounced in ‘FS-NHB’ than in ‘FS-JJ.’ Immunogold labeling of dehydrin protein was performed. DHN proteins were found to be concentrated mainly in the vicinity of the plasma membrane, and the density of the immunogold labeling was significantly higher after freezing treatment, especially in the more freezing-tolerant cultivar ‘FT-JJ.’ Seven DHNs, showing four different structure types, were obtained from loquat fruitlets and used to study the characteristics of different EjDHN proteins. These DHN proteins are all highly hydrophilic, but they differ significantly in size, ranging from 188 to 475 amino acids, and in biochemical properties, such as theoretical pI, aliphatic index, and instability index. Freezing treatment resulted in up-regulation of the expression levels of all seven EjDHNs, regardless of structure type. The accumulation of the transcripts of these EjDHN genes was much more pronounced in ‘FT-JJ’ than in ‘FS-NHB.’ Altogether, this study provides evidence that EjDHNs are involved in the cryoprotection of the plasma membrane during freeze-induced dehydration in loquat fruitlets. PMID:24498141

  17. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.

    PubMed

    Huang, Jian; Zhang, Kewei; Shen, Yi; Huang, Zejun; Li, Ming; Tang, Ding; Gu, Minghong; Cheng, Zhukuan

    2009-03-01

    Recent completion of rice genome sequencing has revealed that more than 40% of its genome consists of repetitive sequences, and most of them are related to inactive transposable elements. In the present study, a transposable element, nDaiZ0, which is induced by tissue culture with high frequency, was identified by sequence analysis of an allelic line of the golden hull and internode 2 (gh2) mutant, which was integrated into the forth exon of GH2. The 528-bp nDaiZ0 has 14-bp terminal inverted repeats (TIRs), and generates an 8-bp duplication of its target sites (TSD) during its mobilization. nDaiZs are non-autonomous transposons and have no coding capacity. Bioinformatics analysis and southern blot hybridization showed that at least 16 copies of nDaiZ elements exist in the japonica cultivar Nipponbare genome and 11 copies in the indica cultivar 93-11 genome. During tissue culture, only one copy, nDaiZ9, located on chromosome 5 in the genome of Nipponbare can be activated with its transposable frequency reaching 30%. However, nDaiZ9 was not present in the 93-11 genome. The larger elements, DaiZs, were further identified by database searching using nDaiZ0 as a query because they share similar TIRs and subterminal sequences. DaiZ can also generate an 8-bp TSD. DaiZ elements contain a conserved region with a high similarity to the hAT dimerization motif, suggesting that the nDaiZ-DaiZ transposon system probably belongs to the hAT superfamily of class II transposons. Phylogenetic analysis indicated that it is a new type of plant hAT-like transposon. Although nDaiZ is activated by tissue culture, the high transposable frequency indicates that it could become a useful gene tagging system for rice functional genomic studies. In addition, the mechanism of the high transposable ability of nDaiZ9 is discussed. PMID:19071208

  18. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils.

    PubMed

    Syu, Chien-Hui; Huang, Chia-Chen; Jiang, Pei-Yu; Lee, Chia-Hsing; Lee, Dar-Yuan

    2015-04-01

    Rice consumption is a major route of As exposure to human for the population of worldwide. This study investigates the effect of phytotoxicity and rice genotypes on the content and speciation of As in rice grains grown in different levels of As-elevated paddy soils from Taiwan. Three levels of As-elevated soils and six rice genotypes commonly planted in Taiwan were used for this study. The results indicate that As contents in grains of rice is not proportional to soil As concentrations and they were equal or higher in indica genotypes than japonica genotypes used in this study. It was also found that the As phytotoxicity not only reducing the grain yields but also the As concentrations in grain of rice. The predominant As species found in rice grains were dimethylarsinic acid (DMA) and arsenite. The concentrations of DMA increased with total As concentrations, wherggeas the arsenite remained in a narrow range from 0.1 to 0.3 mg kg(-1). Because of the lower toxicity of DMA than inorganic As species, the health risks may not be increased through consumption of rice even when total As content in the grains is increased. PMID:25577320

  19. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague–Dawley rats

    PubMed Central

    Lo, Lara Marie Pangan; Kang, Mi Young; Yi, Seong Joon; Chung, Soo Im

    2016-01-01

    Background In the recent years, cases of elderly women suffering from metabolic diseases such as dyslipidemias brought about by hormonal imbalance after menopause are continuously increasing. In this regard, a continuous and escalating demand to develop a more functional and highly nutritional food product as an adjunct supplement that can help alleviate these diseases is still being sought. Objective This study investigated the effects of germinated blackish-purple rice cultivars Keunnunjami, Superjami, and reddish-brown cultivar Superhongmi in the lipid metabolism of ovariectomized Sprague–Dawley rats. Method The animals were randomly divided into nine groups (n=5) and were supplemented with either non-germinated or germinated rice for 9 weeks. Then the plasma, liver, and fat samples were collected for the lipid metabolism effects analyses. Results Animals fed with germinated rice cultivars had improved lipid profile levels relative to the groups supplemented with non-germinated rice cultivars. The germinated rice groups, Keununjami and Superjami in particular, showed a low total cholesterol levels, high levels of high-density lipoproteins-cholesterol, high fecal lipid output, low hepatic lipid values, and low hepatic adipocyte accumulation. There was also an increase in the rate of lipolysis and decrease in lipogenesis based on the lipid-regulating enzyme activity profiles obtained for the groups that fed on germinated rice. Also, results revealed that pigmented rice cultivars had superior effects in improving the lipid metabolism relative to the non-pigmented normal brown rice variety. Conclusion Based on the results, this study suggests that germinated pigmented rice consumption can confer better lipid metabolism than ordinary white rice and constitutes as an effective functional food in alleviating the risk of having dyslipidemias like those suffering from menopausal co-morbidities. PMID:27032671

  20. Establishment of a prediction model for the miRNA-based heading date characteristics of rice in the booting stage.

    PubMed

    Chen, Y C; Lin, W S; Chen, R K; Chao, Y Y; Chin, S W; Chen, F C; Lee, C Y

    2015-01-01

    Rice (Oryza sativa L.) is one of the most important food crops in the world. In Taiwan, due to the warm climate, there are two harvests annually. However, the yield and quality of rice can vary between each crop season in any given year. Previous reports have shown that microRNAs (miRNAs) play a crucial role in many developmental and physiological processes in plants. In this study, the heading date characteristics of 167 rice cultivars from the second crop season were recorded, and 27 rice cultivars were selected for preliminary microarray analysis. A total of 14 miRNAs from different heading date characteristics in 21 cultivars were selected based on significant differences in their expression profiles. Using a correlation analysis between the heading date and selected miRNA expression obtained from real-time polymerase chain reaction (PCR) assays, we developed a heading date prediction model. The model includes nine miRNA genes with corresponding R2 values of 0.8. To confirm the model, a real-time PCR analysis was performed on an additional 27 rice cultivars and we found the model predicted the heading date with accuracy. Therefore, the developed prediction may be useful in further studies aimed at confirming the reliability of the use of miRNA in molecular breeding and to increase the selection efficiency of rice cultivars and breeding. PMID:25966211

  1. Studies on the Pasting and Rheology of Rice Starch with Different Protein Residual

    NASA Astrophysics Data System (ADS)

    Lin, Qinlu; Liu, Zhonghua; Xiao, Huaxi; Li, Lihui; Yu, Fengxiang; Tian, Wei

    Indica rice starch and japonica rice starch were used in the study. The protein contents of the two rice variety were respectively 0.43%, 0.62%, 0.84%, 1.08%, 1.25%. The pasting and rheological properties of samples were determined with Rapid Visco Analyzer and dynamic rheometer. The results indicated that, with the increase of protein content, the peak viscosity, breakdown viscosity and final viscosity of rice starch paste decreased, the setback viscosity increased and the pasting temperature did not change significantly. With the increase of protein content, the consistency coefficient of starch decreased, the corresponding yield stress also decreased, however, the flow behavior index increased with the decrease of consistency coefficient. At same temperature, the storage modulus G' was greater when the protein content was higher.

  2. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. PMID:26063517

  3. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields. PMID:12742397

  4. Negative gravitactic behavior of Caenorhabditis japonica dauer larvae.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-04-15

    Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism. PMID:23307800

  5. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  6. Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China.

    PubMed

    Li, Junhui; Dong, Fei; Lu, Ying; Yan, Qiuyan; Shim, Hojae

    2014-01-01

    Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As) associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, "SY-89" and "DY-162" had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils. PMID:25251438

  7. Mechanisms Controlling Arsenic Uptake in Rice Grown in Mining Impacted Regions in South China

    PubMed Central

    Lu, Ying; Yan, Qiuyan; Shim, Hojae

    2014-01-01

    Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As) associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, “SY-89” and “DY-162” had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils. PMID:25251438

  8. International Consortium of Rice Mutagenesis: resources and beyond

    PubMed Central

    2013-01-01

    Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses. As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds. PMID:24341871

  9. Organoleptic Analysis of Blueberry Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry selections must possess a range of horticultural characteristics before being considered suitable to release as a cultivar. These characteristics include soil adaptability, consistently high yields, high quality fruit, and many others such as disease resistance. These characteristics are i...

  10. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. PMID:26277389

  11. Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPAR-γ Activation in Rats.

    PubMed

    Han, Jae Min; Kim, Mi Hye; Choi, You Yeon; Lee, Haesu; Hong, Jongki; Yang, Woong Mo

    2015-10-01

    Lonicera japonica Thunb. (Caprifoliaceae) is a traditional herbal medicine and has been used to treat diabetic symptoms. Notwithstanding its use, the scientific basis on anti-diabetic properties of L. japonica is not yet established. This study is designed to investigate anti-diabetic effects of L. japonica in type 2 diabetic rats. L. japonica was orally administered at the dose of 100 mg/kg in high-fat diet-fed and low-dose streptozotocin-induced rats. After the treatment of 4 weeks, L. japonica reduced high blood glucose level and homeostatic model assessment of insulin resistance in diabetic rats. In addition, body weight and food intake were restored by the L. japonica treatment. In the histopathologic examination, the amelioration of damaged β-islet in pancreas was observed in L. japonica-treated diabetic rats. The administration of L. japonica elevated peroxisome proliferator-activated receptor gamma and insulin receptor subunit-1 protein expressions. The results demonstrated that L. japonica had anti-diabetic effects in type 2 diabetic rats via the peroxisome proliferator-activated receptor gamma regulatory action of L. japonica as a potential mechanism. PMID:26174209

  12. Reducing arsenic accumulation in rice grain through iron oxide amendment.

    PubMed

    Farrow, Eric M; Wang, Jianmin; Burken, Joel G; Shi, Honglan; Yan, Wengui; Yang, John; Hua, Bin; Deng, Baolin

    2015-08-01

    Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As. PMID:25910688

  13. Method of creating starch-like ultra-fine rice flour and effect of spray drying on formation of free fatty acid.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice flour from long, medium, and short grain cultivars were processed by passing a 32% rice flour slurry through a microfluidizer at 100 MPa, and spray dryer at three different outlet temperatures, OT (50°C, 80°C, and 115°C). Spray drying conditions were controlled by the flow-rate of the slurry ...

  14. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a poor source of essential micronutrients such as iron and zinc. To help clarify the molecular mechanisms that regulate the mobilization of metals from leaves to developing seeds, we conducted suppression subtractive hybridization analysis in flag leaves of two rice cultivars. Flag leaves ar...

  15. Analysis of genetic and molecular identity among field isolates of the rice blast fungus with an international differential system, rep-PCR and DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene deployed in the Southern US rice germplasm is effective in preventing the infection by strains of Magnaporthe oryzae isolates that carry the avirulence gene AVR-Pita1. In the present study, a total of 169 isolates from rice (Oryza sativa) cultivars, with and without Pi-ta, were analyz...

  16. A User-Friendly 13C Isotope Discrimination Method for Root Studies with Rice and C4 Weeds in Field Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable weed control is a continuing challenge in rice production in the U.S. Some rice cultivars can provide significant levels of barnyardgrass (Echinochloa crus-galli) suppression, much of which is thought to occur below the soil surface. This presentation describes a simple 13C isotope dep...

  17. Structural and functional analysis of the avirulence gene AVR-Pita1 of the rice blast fungus in isolates of Magnaporthe oryzae worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avirulence gene AVR-Pita1 of the rice blast fungus triggers race-specific resistance when races of Magnaporthe oryzae that contain AVR-Pita1 infect rice cultivars that contain the resistance gene Pi-ta. In the present study, a panel of 221 isolates from the US, China, Colombia, Egypt, India and ...

  18. Analysis of the Structure of the AVR1-CO39 Avirulence Locus in Virulent Rice-Infecting Isolates of Magnaporthe grisea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AVR1-CO39 gene that came from a Magnaporthe grisea isolate from weeping lovegrass controls avirulence on the rice cultivar CO39. AVR1-CO39 was not present in the genome of the rice-infecting M. grisea isolate Guy11 from French Guyana, suggesting that the gene had been deleted. Molecular analysis...

  19. [Bioinformatics analysis and expressed level of histone methyltransferase genes in Lonicera japonica].

    PubMed

    Qi, Lin-jie; Yuan, Yuan; Huang, Lu-qi; Long, Ping; Zha, Liang-ping; Wang, Yao-long

    2015-06-01

    Twenty-three histone methyltransferase genes were obtained from transcriptome dataset of Lonicera japonica. The nucleotide and proteins characteristics, subcellular localization, senior structural domains and conservative forecasting were analyzed. The result of phylogenetic tree showed that 23 histone methyltransferases were mainly divided into two groups: lysine methyltransferase and arginine methyltransferases. The result of gene expression showed that 23 histone methyltransferases showed preference in terms of interspecies and organs. They were more expressed in buds of L. japonica than in L. japonica var. chinensis and lower in leaves of L. japonica than in L. japonica var. chinensis. Eight genes were specific expressed in flower. These results provided basis for further understanding the function of histone methyltransferase and epigenetic regulation of active ingredients of L. japonica. PMID:26552158

  20. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure.

    PubMed

    Williams, P N; Price, A H; Raab, A; Hossain, S A; Feldmann, J; Meharg, A A

    2005-08-01

    Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 microg As g(-1) (n = 7), and the highest grain arsenic value of the survey at 0.40 microg As g(-1). The mean arsenic level of Bangladeshi rice was 0.13 microg As g(-1) (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 +/- 1% (n = 7), 80 +/- 3% (n = 11), and 81 +/- 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 +/- 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure. PMID:16124284

  1. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    PubMed

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. PMID:26995311

  2. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  3. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress.

    PubMed

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by ¹H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of ¹H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  4. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

    PubMed Central

    2014-01-01

    Background The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. Results We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. Conclusions A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease. PMID:24521476

  5. Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification.

    PubMed

    Liu, Donger; Shen, Jie; Yang, Litao; Zhang, Dabing

    2010-04-28

    Rice (Oryza sativa) is a main staple food in the world, and several genetically modified (GM) rice events have been approved for commercialization. To accurately quantify GM contents in rice derived products, we have evaluated the variation of seed DNA density and nuclear DNA content in the hull, endosperm, and embryo of rice seeds from 19 cultivars, as well as their impacts on GM rice quantification. Rice endosperm DNA accounts for 73.71% of total seed DNA, whereas the hull and embryo DNAs account for 3.98% and 22.31%, respectively. Two formulas were established to describe the relationship between GM content on the basis of weight ratio (GM(wt)%) and that on the basis of haploid genome copy number ratio (GM(hg)%) for the samples containing heterozygous GM rice seeds. These two equations were well confirmed in quantification of the heterozygous GM rice TT51-1 seeds containing the GM allele from a female parent or that from a male parent. This work is useful for accurate quantification of GM rice using reference materials containing the heterozygous GM rice seed powder. PMID:20222712

  6. Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice.

    PubMed

    Liu, Lei; Guo, Jinjie; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Guo, Jinxin; Zhang, Mingwei

    2015-10-15

    The impact of increasing degree of milling (DOM) on free and bound phenolics and flavonoids and on cellular antioxidant activity (CAA) of japonica and indica brown rice was investigated. As the average DOM increased from 0 to 2.67, 7.25 and 9.60%, the average total phenolic content decreased by 21.1, 42.6 and 55.6%, and the average total CAA value decreased by 37.4, 84.0 and 92.8%, respectively. Furthermore, the percentage contributions of bound forms to total phenolics and flavonoids decreased with increasing DOM. The contents of nine phenolic compounds significantly decreased with increasing DOM, including quercetin, ferulic and coumaric acids. Interestingly, as the DOM increased to 9.6%, free ferulic and coumaric acids were undetectable in japonica rice, while neither free nor bound caffeic acid was detectable in indica rice. These findings indicate that DOM should be carefully controlled for acceptable sensory quality and retention of phytochemicals during brown rice milling. PMID:25952874

  7. Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica

    PubMed Central

    Do, Hackwon; Kim, Il-Sup; Jeon, Byoung Wook; Lee, Chang Woo; Park, Ae Kyung; Wi, Ah Ram; Shin, Seung Chul; Park, Hyun; Kim, Young-Saeng; Yoon, Ho-Sung; Kim, Han-Woo; Lee, Jun Hyuck

    2016-01-01

    Dehydroascorbate reductase (DHAR) is a key enzyme involved in the recycling of ascorbate, which catalyses the glutathione (GSH)-dependent reduction of oxidized ascorbate (dehydroascorbate, DHA). As a result, DHAR regenerates a pool of reduced ascorbate and detoxifies reactive oxygen species (ROS). In previous experiments involving transgenic rice, we observed that overexpression of DHAR enhanced grain yield and biomass. Since the structure of DHAR is not available, the enzymatic mechanism is not well-understood and remains poorly characterized. To elucidate the molecular basis of DHAR catalysis, we determined the crystal structures of DHAR from Oryza sativa L. japonica (OsDHAR) in the native, ascorbate-bound, and GSH-bound forms and refined their resolutions to 1.9, 1.7, and 1.7 Å, respectively. These complex structures provide the first information regarding the location of the ascorbate and GSH binding sites and their interacting residues. The location of the ascorbate-binding site overlaps with the GSH-binding site, suggesting a ping-pong kinetic mechanism for electron transfer at the common Cys20 active site. Our structural information and mutagenesis data provide useful insights into the reaction mechanism of OsDHAR against ROS-induced oxidative stress in rice. PMID:26775680

  8. Group I intron located in PR protein homologue gene in Youngia japonica.

    PubMed

    Nishida, H; Ogura, A; Yokota, A; Yamaguchi, I; Sugiyama, J

    2000-03-01

    A Youngia japonica strain had a group I intron that was suggested to have been transferred from Protomyces inouyei, a pathogenic fungus of Y. japonica. It was located in the miraculin homologue coding gene by reverse complementation. The deduced amino acid sequence of this miraculin homologue of Y. japonica was similar to the amino acid sequences of tobacco and tomato pathogenesis-related proteins. PMID:10803963

  9. Contact urticaria from rice.

    PubMed

    Yamakawa, Y; Ohsuna, H; Aihara, M; Tsubaki, K; Ikezawa, Z

    2001-02-01

    A 30-year-old man with atopic dermatitis had had erythema and itching of the hands after washing rice in water, though he had always eaten cooked rice without problems. Handling test with water used to wash regular rice was performed on abraded hands, and produced urticarial erythema after several minutes. Applications of water used to wash allergen-reduced rice were negative for urticarial reaction. Prick test with water used to wash regular rice was +++. However prick test reaction with water used to wash allergen-reduced rice was +. Histamine-release test of regular rice-washing water was grade 3 and that of allergen-reduced rice grade 1. In immunoblotting analysis with regular rice washing water, there were no bands with this patient. These results suggest that the allergen responsible for contact urticaria in this patient might be water-soluble, heat-unstable, and not contained in allergen-reduced rice. PMID:11205411

  10. Hormetic Responses of Lonicera Japonica Thunb. To Cadmium Stress

    PubMed Central

    Liu, Zhouli; Chen, Wei; Jia, Lian; Yu, Shuai; Zhao, Mingzhu

    2015-01-01

    The hormetic responses of Lonicera japonica Thunb. to cadmium (Cd) stress were investigated in a hydroponic experiment. The present results showed that root length and total biomass dry weight increased in comparison with the control at low concentrations Cd. The height of the plant exposed to 2.5 and 5 mg L-1 Cd increased significantly by 11.9% and 12.8% relative to the control, and with the increase of Cd concentrations in the medium, plant height began to decrease. The responses of photosynthetic pigments contents and relative water content to Cd stress had a similar trend, which all showed significantly an inverted U-shaped dose–response curve and confirmed that the stimulatory effect of low concentrations Cd occurred in the plant. Furthermore, L. japonica, as a new Cd-hyperaccumulator, could be considered as a new plant model to study the underlying mechanisms of the hormesis. PMID:26672952

  11. Hormetic Responses of Lonicera Japonica Thunb. To Cadmium Stress.

    PubMed

    Liu, Zhouli; Chen, Wei; He, Xingyuan; Jia, Lian; Yu, Shuai; Zhao, Mingzhu

    2015-01-01

    The hormetic responses of Lonicera japonica Thunb. to cadmium (Cd) stress were investigated in a hydroponic experiment. The present results showed that root length and total biomass dry weight increased in comparison with the control at low concentrations Cd. The height of the plant exposed to 2.5 and 5 mg L(-1) Cd increased significantly by 11.9% and 12.8% relative to the control, and with the increase of Cd concentrations in the medium, plant height began to decrease. The responses of photosynthetic pigments contents and relative water content to Cd stress had a similar trend, which all showed significantly an inverted U-shaped dose-response curve and confirmed that the stimulatory effect of low concentrations Cd occurred in the plant. Furthermore, L. japonica, as a new Cd-hyperaccumulator, could be considered as a new plant model to study the underlying mechanisms of the hormesis. PMID:26672952

  12. DEVELOPMENT OF A MOLECULAR MARKER FROM THE RICE BLAST AVIRULENCE GEN AVR-PITA FOR SURVEILLANCE OF DURABLE RICE BLAST RESISTANCE CONFERRED BY PI-TA IN ARKANSAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, a major resistance gene Pi-ta in rice has been deployed effectively to prevent blast disease. Currently, the US cultivars, Katy, Madison, Kaybonnet, Drew, Cybonnet and Ahrent were confirmed to contain the resistance gene Pi-ta. Pi-ta is effective only when blast pathogen Magnaporthe o...

  13. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles.

    PubMed

    Hwang, Gi Byoung; Heo, Ki Joon; Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi-Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2(filter) at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  14. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  15. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  16. Extensive Microsatellite Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.)

    PubMed Central

    Dong, Zhenying; Wang, Hongyan; Dong, Yuzhu; Wang, Yongming; Liu, Wei; Miao, Gaojian; Lin, Xiuyun; Wang, Daqing; Liu, Bao

    2013-01-01

    Background It is widely accepted that interspecific hybridization may induce genomic instability in the resultant hybrids. However, few studies have been performed on the genomic analysis of homoploid hybrids and introgression lines. We have reported previously that by introgressive hybridization, a set of introgression lines between rice (Oryza sativa L.) and wild rice (Zizania latifolia Griseb.) was successfully generated, and which have led to the release of several cultivars. Methodology Using 96 microsatellite markers located in the nuclear and organelle genomes of rice, we investigated microsatellite stability in three typical introgression lines. Expression of a set of mismatch repair (MMR) genes and microsatellite-containing genes was also analyzed. Results/Conclusions Compared with the recipient rice cultivar (Matsumae), 55 of the 96 microsatellite loci revealed variation in one or more of the introgression lines, and 58.2% of the altered alleles were shared by at least two lines, indicating that most of the alterations had occurred in the early stages of introgression before their further differentiation. 73.9% of the non-shared variations were detected only in one introgression line, i.e. RZ2. Sequence alignment showed that the variations included substitutions and indels that occurred both within the repeat tracts and in the flanking regions. Interestingly, expression of a set of MMR genes altered dramatically in the introgression lines relative to their rice parent, suggesting participation of the MMR system in the generation of microsatellite variants. Some of the altered microsatellite loci are concordant with changed expression of the genes harboring them, suggesting their possible cis-regulatory roles in controlling gene expression. Because these genes bear meaningful homology to known-functional proteins, we conclude that the introgression-induced extensive variation of microsatellites may have contributed to the novel phenotypes in the

  17. [The structural, transcriptional and homology analysis of two frr genes in rice].

    PubMed

    Hu, Xin; Hu, Hao; Hong, Guo-Fan; Han, Bin

    2004-02-01

    Two rice (Oryza sativa subsp. japonica cv. Nipponbare) ribosome recycling factor genes--OsfrrA and OsfrrB had been identified and characterized in this study. The gene OsfrrA is located on chromosome 4 while OsfrrB on chromosome 7. No other homologue is found in rice organelle genomes. Both genes are unique in rice genome and constitutively expressed. The N-terminal character of their encoded protein products suggests that the proteins are transferred to mitochondrion and chloroplast respectively and carry out their functions. The sequence conservation and the constitutive expression profile of the two genes strongly imply their indispensable role in plant growth. In addition, these sequences share phylogenetic homology to some extent with other prokaryotic and eukaryotic RRFs, providing further evidence for the endosymbiotic theory, and implying the potential value of RRFs in molecular evolution research. PMID:15583417

  18. Identification of Blackberry Cultivars by Seed Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This handbook was designed to aid blackberry processors in determining the cultivar identity of blackberry fruit. The ability to correctly identify commercial cultivars is important to the berry industry because less desirable cultivars may be mistaken or substituted for more desirable ones, result...

  19. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.)

    PubMed Central

    Zubair, Muhammad; Anwar, Farooq; Ashraf, Muhammad; Uddin, Md. Kamal

    2012-01-01

    The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), Δ5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods. PMID:22605998

  20. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman).

    PubMed

    Yesudas, C R; Sharma, H; Lightfoot, D A

    2010-07-01

    Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex x Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0-9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% < R (2) < 27%). The loci were within the intervals Satt632-A2D8 on linkage group (LG) A2 (chromosome 8); Satt583-Satt415 on LG B1 (11); Satt009-Satt530 on LG N (3); and close to two markers OB02_140 (LG E; 20 cM from Satt572) and OZ15_150 LG (19 cM from Satt291 C2). Two QTL were detected for the mean PI field trait (16% < R (2) < 18%) close to Satt385 on LG A1 and Satt440 on LG I. The no choice feeding studies detected three QTL that were significant; two for antixenosis (22% < R (2) < 24%) between Satt632-A2D8 on LG A2 (8) and Sat_039-Satt160 on LG F (13); and a major locus effect (R (2) = 54%) for antibiosis on LG D2 (17) between Satt464-Satt488. Therefore, loci underlying resistance to JB herbivory were a mixture of major and minor gene effects. Some loci were within regions underlying resistance to soybean cyst nematode (LGs A2 and I) and root knot nematode (LG F) but not other major loci underlying

  1. Expression profile of rice Hsp genes under anoxic stress.

    PubMed

    Mertz-Henning, L M; Pegoraro, C; Maia, L C; Venske, E; Rombaldi, C V; Costa de Oliveira, A

    2016-01-01

    Although flooding is one of the most important environmental stresses worldwide, not all plant species are intolerant to its effects. Species from semi-aquatic environments, such as rice, have the capacity to cope with flooding stress. Heat-shock proteins (Hsps) are thought to contribute to cellular homeostasis under both optimal and adverse growth conditions. Studies of gene expression in plants exposed to low levels of oxygen revealed the up-regulation of Hsp genes. However, it is not clear whether Hsp genes are transcribed as a function of tolerance or whether they represent a response to anoxic stress. Therefore, the accumulation of Hsp gene transcripts was investigated in two different cultivars, "Nipponbare" (flooding tolerant) and "IPSL 2070" (flooding sensitive), subjected to anoxic stress. Fifteen-day-old rice root seedlings from both cultivars were used. Four different treatments were performed: no anoxia (control); 24-h anoxia; 48-h anoxia; and 72-h anoxia. Anoxic stress was confirmed by the increased gene expression of alcohol dehydrogenase. The data obtained showed that both rice cultivars ("Nipponbare" and "IPSL 2070") accumulated Hsp gene transcripts under anoxic stress; however, the majority of the Hsp genes evaluated were responsive to anoxic stress in "IPSL 2070" (flooding sensitive), whereas in "Nipponbare" (flooding tolerant), only six genes were highly up-regulated. This suggests that although Hsps have an important role in the response to anoxia, they are not the major cause of tolerance. PMID:27173349

  2. Rice: Characterizing the Environmental Response of a Gibberellic Acid-Deficient Rice for Use as a Model Crop

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Pinnock, Derek; Klassen, Steve; Bugbee, Bruce

    2004-01-01

    Rice (Oryza sativa L.) is a useful model crop plant. Rice was the first crop plant to have its complete genome sequenced. Unfortunately, even semi-dwarf rice cultivars are 60 to 90 an tail, and large plant populations cannot be grown in the confined volumes of greenhouses and growth chambers. We recently identified an extremely short (20 em tall) rice line, which is an ideal model for larger rice cultivars. We called this line "Super Dwarf rice." Here we report the response of Super Dwarf to temperature, photoperiod, photosynthetic photon flux (PPF), and factors that can affect time to head emergence. Vegetative biomass increased 6% per degree Celsius, with increasing temperature from 27 to 31 C. Seed yield decreased by 2% per degree Celsius rise in temperature, and as a result, harvest index decreased from 60 to 54%. The time to heading increased by 2 d for every hour above a 12-h photoperiod. Yield increased with increasing PPF up to the highest level tested at 1800 micro-mol/sq m/s (12-h photoperiod; 77.8 mol/sq m/d). Yield efficiency (grams per mole of photons) increased to 900 micro-mol/sq m/s and then slightly decreased at 1800 micro-mol/sq m/s . Heading was delayed by addition of gibberellic acid 3 (GA,) to the root zone but was hastened under mild N stress. Overall, short stature, high yield, high harvest index, and no extraordinary environmental requirements make Super Dwarf rice an excellent model plant for yield studies in controlled environments.

  3. Breeding, Genetics, and Cultivar Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato breeding is a challenge due to the tetraploid nature of the potato, limited variability for economically important traits in adapted breeding clones, and a complex set of requirements necessary for the successful adoption of new cultivars. However, rich germplasm resources are readily availa...

  4. Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping

    PubMed Central

    Famoso, Adam N.; Zhao, Keyan; Clark, Randy T.; Tung, Chih-Wei; Wright, Mark H.; Bustamante, Carlos; Kochian, Leon V.; McCouch, Susan R.

    2011-01-01

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and

  5. Genetic Analysis of Cold Tolerance at the Germination and Booting Stages in Rice by Association Mapping

    PubMed Central

    Zhang, Dongling; Li, Jinjie; Xiong, Haiyan; Yu, Jianping; Li, Jilong; Rashid, Muhammad Abdul Rehman; Li, Gangling; Ma, Xiaoding; Cao, Guilan; Han, Longzhi; Li, Zichao

    2015-01-01

    Low temperature affects the rice plants at all stages of growth. It can cause severe seedling injury and male sterility resulting in severe yield losses. Using a mini core collection of 174 Chinese rice accessions and 273 SSR markers we investigated cold tolerance at the germination and booting stages, as well as the underlying genetic bases, by association mapping. Two distinct populations, corresponding to subspecies indica and japonica showed evident differences in cold tolerance and its genetic basis. Both subspecies were sensitive to cold stress at both growth stages. However, japonica was more tolerant than indica at all stages as measured by seedling survival and seed setting. There was a low correlation in cold tolerance between the germination and booting stages. Fifty one quantitative trait loci (QTLs) for cold tolerance were dispersed across all 12 chromosomes; 22 detected at the germination stage and 33 at the booting stage. Eight QTLs were identified by at least two of four measures. About 46% of the QTLs represented new loci. The only QTL shared between indica and japonica for the same measure was qLTSSvR6-2 for SSvR. This implied a complicated mechanism of old tolerance between the two subspecies. According to the relative genotypic effect (RGE) of each genotype for each QTL, we detected 18 positive genotypes and 21 negative genotypes in indica, and 19 positive genotypes and 24 negative genotypes in japonica. In general, the negative effects were much stronger than the positive effects in both subspecies. Markers for QTL with positive effects in one subspecies were shown to be effective for selection of cold tolerance in that subspecies, but not in the other subspecies. QTL with strong negative effects on cold tolerance should be avoided during MAS breeding so as to not cancel the effect of favorable QTL at other loci. PMID:25790128

  6. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-02-15

    Host recognition is crucial during the phoretic stage of nematodes because it facilitates their association with hosts. However, limited information is available on the direct cues used for host recognition and host specificity in nematodes. Caenorhabditis japonica forms an intimate association with the burrower bug Parastrachia japonensis. Caenorhabditis japonica dauer larvae (DL), the phoretic stage of the nematode, are mainly found on adult P. japonensis females but no other species. To understand the mechanisms of species-specific and female carrier-biased ectophoresy in C. japonica, we investigated whether C. japonica DL could recognize their hosts using nematode loading and chemoattraction experiments. During the loading experiments, up to 300 C. japonica DL embarked on male and female P. japonensis, whereas none or very few utilized the other shield bugs Erthesina fullo and Macroscytus japonensis or the terrestrial isopod Armadillidium vulgare. In the chemoattraction experiments, hexane extracts containing the body surface components of nymphs and both adult P. japonensis sexes attracted C. japonica DL, whereas those of other shield bugs did not. Parastrachia japonensis extracts also arrested the dispersal of C. japonica DL released at a site where hexane extracts were spotted on an agar plate; i.e. >50% of DL remained at the site even 60 min after nematode inoculation whereas M. japonensis extracts or hexane alone did not have the same effect. These results suggest that C. japonica DL recognize their host species using direct chemical attractants from their specific host to maintain their association. PMID:23077159

  7. Duration of Temperature exposure controls growth of Zostera japonica: implications for zonation and colonization

    EPA Science Inventory

    At least two seagrass congeners in the genus Zostera are found along the Pacific Coast of North America: native Z. marina L. and the non-native Z. japonica Aschers. & Graebn. Efforts to understand the drivers behind the expanding colonization of Z. japonica have led to interest ...

  8. Science and Management of the Introduced Seagrass Zostera japonica in North America

    EPA Science Inventory

    Healthy seagrass is considered a prime indicator of estuarine ecosystem function. On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Z. japonica. Z. japonica is considered “invasive” and therefore, ecologically...

  9. Seed vigor of contrasting rice cutivars in response to rising CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although a number of studies have shown that rising atmospheric carbon dioxide concentration, [CO2], can differentially affect the growth and yield potential of rice (Oryza sativa L.) cultivars, there has been no attempt to determine if the response is associated with changes in seed vigor, an essen...

  10. Rice straighthead performance of twelve lines for three years in the natural conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straighthead severely reduces grain yield in rice and previous studies have relied upon inducing straighthead symptoms using arsenic chemicals. The ability to evaluate this disease using natural conditions would be more practical for cultivar improvement. Twelve lines including three commercial cult...

  11. Interactions of Heterodera daverti, H. goldeni and H. zeae with Meloidogyne incognita on rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions of the cyst nematodes Heterodera daverti, H. goldeni and H. zeae with the root-knot nematode Meloidogyne incognita on rice (Oryza sativa) cultivars Giza 178 and Sakha 101 were studied in the greenhouse. Inoculation with H. goldeni alone or one week before inoculation with M. incogni...

  12. INTRASPECIFIC VARIATION IN SENSITIVITY TO UV-B RADIATION IN RICE

    EPA Science Inventory

    Twenty-two cultivars of rice (Oryza sativa L.) from diverse origins were grown under greenhouse conditions and exposed to ultraviolet-B radiation (UV-B; 280-320 nm) simulating a 5% reduction in stratospheric ozone in spring for the Philippines (14 degrees N lat.) to evaluate grow...

  13. Physico-Chemical Properties of Rice Starch Modified by Hydrothermal Treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice starches of long grain and waxy cultivars were annealed (ANN) in excess water at 50 oC for 4 hours. They were also modified under heat-moisture treatment (MHT) conditions at 110 oC, and various moisture contents (20%, 30%, and 40%) for 8 hours. The modified products were analyzed by Rapid-Vis...

  14. A rapid procedure for analyzing rice bran tocopherol, tocotrienol and G-oryzanol contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tocopherol, tocotrienol and gamma-oryzanol are phytochemicals with antioxidant activities and other additional health benefits. Their contents and isomer ratios in rice bran vary among southern US cultivars suggesting that breeding for higher contents or a favorable ratio of these phytochemicals is ...

  15. Identification of a Pi9 containing rice germplasm with a newly developed robust marker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi9 gene, originating from Oryza minuta, is an effective resistance gene for controlling rice blast disease (Magnaporthe oryzae). However, currently available linked DNA markers do not accurately identify the function of Pi9, thus hindering its efficient incorporation into new cultivars through...

  16. Response to early generation selection for resistance to rice kernel fissuring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The value of milled rice (Oryza sativa L.) depends on the percent whole versus broken kernels after milling. Kernel fissures caused by pre- or post-harvest stresses are the leading cause of breakage upon milling. ‘Cypress’ is known to be more fissure resistant (FR) than most cultivars, but breeding ...

  17. Straighthead resistance is controlled by two dominant and additive genes in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straighthead is a physiological disorder and causes grain sterility, which could result in complete yield loss when it is severe in rice. Most U.S. cultivars are susceptible to the disorder and water management is used for its prevention although it increases production costs. Genetic understanding ...

  18. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have reported the health benefits of pigmented rice cultivars due to the presence of bioactive compounds in its bran layer of caryopsis. This study evaluated the proximate composition, colour, total flavonoids, anthocyanins and proanthocyanidins contents, as well as the total phenolic...

  19. Physico-chemical Properties of Rice Starch Modified by Hydrothermal Treatment.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice starch of long grain and waxy cultivars were annealed (ANN) in excess water at 50C for 4 hours. They were also modified under moisture-heat treatment (MHT) conditions at 110 C, and various moisture contents (20%, 30%, and 40%) for 8 hrs. The modified products were analyzed by Rapid-Visco Anal...

  20. Impact of Rhyzopertha dominica (F.) on quality parameters of milled rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of Rhyzopertha dominica ([F.), the lesser grain borer, on milling quality of Francis and Wells cultivars was assessed for the 2007 and 2008 crop years by infesting 200-g rough rice samples harvested at moderate and low moisture contents with 0, 10, 25, 50, and 100 parental adult insects, ...