Sample records for japonica rice cultivars

  1. Genetic dissection of agronomically important traits in closely related temperate japonica rice cultivars

    PubMed Central

    Hori, Kiyosumi; Yamamoto, Toshio; Yano, Masahiro

    2017-01-01

    Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars. PMID:29398936

  2. Changes in mineral elements and starch quality of grains during the improvement of japonica rice cultivars.

    PubMed

    Zhang, Hao; Yu, Chao; Hou, Danping; Liu, Hailang; Zhang, Huiting; Tao, Rongrong; Cai, Han; Gu, Junfei; Liu, Lijun; Zhang, Zujian; Wang, Zhiqin; Yang, Jianchang

    2018-01-01

    The improvement of rice cultivars plays an important role in yield increase. However, little is known about the changes in starch quality and mineral elements during the improvement of rice cultivars. This study was conducted to investigate the changes in starch quality and mineral elements in japonica rice cultivars. Twelve typical rice cultivars, applied in the production in Jiangsu province during the last 60 years, were grown in the paddy fields. These cultivars were classified into six types according to their application times, plant types and genotypes. The nitrogen (N), phosphorus (P) and, and potassium (K) were mainly distributed in endosperm, bran and bran, respectively. Secondary and micromineral nutrients were distributed throughout grains. With the improvement of cultivars, total N contents gradually decreased, while total P, K and magnesium contents increased in grains. Total copper and zinc contents in type 80'S in grains were highest. The improvement of cultivars enhanced palatability (better gelatinisation enthalpy and amylose content), taste (better protein content) and protein quality (better protein components and essential amino acids). Correlation analysis indicated the close relationship between mineral elements and starch quality. The mineral elements and starch quality of grains during the improvement of japonica rice cultivars are improved. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  4. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates.

    PubMed

    Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2016-12-01

    Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical

  5. [Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice].

    PubMed

    Wei, Hai-Yan; Wang, Ya-Jiang; Meng, Tian-Yao; Ge, Meng-Jie; Zhang, Hong-Cheng; Dai, Qi-Gen; Huo, Zhong-Yang; Xu, Ke

    2014-02-01

    Five super japonica rice cultivars were grown by mechanical transplanting in field and seven N treatments with total N application rate of 0, 150, 187.5, 225, 262.5, 300 and 337.5 kg x hm(-2) respectively were adopted to study the effects of N rate on rice yield, quality and N use efficiency. The differences between N requirement for obtaining the highest yield and for achieving the best economic benefit were compared. With the increase of N fertilizer rate, the yields of five super japonica rice cultivars increased firstly and then descended, achieving the highest yield at the N level of 300 kg x hm(-2) ranging from 10.33-10.60 kg x hm(-2). Yield increase mainly attributed to the large number of spikelet, for the total spikelet number of each rice cultivar reached the maximum value at the 300 kg x hm(-2) N level. With the increase of N application, the rates of brown rice, milled rice, head milled rice and the protein content of the five super japonica rice cultivars were all increased, and the rates of brown rice, milled rice, head milled rice and the protein con- tent were higher at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 3.3%-4.2%, 2.9%-6.0%, 4.4%-33.7% and 23.8%-44.3%, respectively. While the amylose content, gel consistency and taste value of the five rice cultivars were all decreased, and the amylose content, gel consistency and taste value were lower at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 12.4%-38.9%, 10.3%-28.5% and 20.3%-29.7%, respectively. The chalkiness increased firstly and then decreased while the change of chalky rate varied with the cultivars. With the increase of N application, the N use efficiency, agronomic N use efficiency and physiological N use efficiency decreased while the N uptake of grain increased significantly. If the cost of N fertilizer was taken into account, the N fertilizer amount to obtain the optimal economic benefits would be 275.68 kg x hm(-2) with the corresponding yield of 9.97 t x hm

  6. Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties.

    PubMed

    Sales, Ester; Viruel, Juan; Domingo, Concha; Marqués, Luis

    2017-01-01

    A pool of 200 traditional, landraces and modern elite and old cultivars of rice, mainly japonica varieties adapted to temperate regions, have been used to perform a genome wide association study to detect chromosome regions associated to low temperature germination (LTG) regulation using a panel of 1672 SNP markers. Phenotyping was performed by determining growth rates when seeds were germinated at 25° and 15°C in order to separate the germination vigorousness from cold tolerance effects. As expected, the ability to produce viable seedlings varied widely among rice cultivars and also depended greatly on temperature. Furthermore, we observed a differential response during seed germination and in coleoptile elongation. Faster development at 15°C was observed in seeds from varieties traditionally used as cold tolerant parents by breeders, along with other potentially useful cultivars, mainly of Italian origin. When phenotypic data were combined with the panel of SNPs for japonica rice cultivars, significant associations were detected for 31 markers: 7 were related to growth rate at 25°C and 24 to growth rates at 15°. Among the latter, some chromosome regions were associated to LTG while others were related to coleoptile elongation. Individual effects of the associated markers were low, but by combining favourable alleles in a linear regression model we estimated that 27 loci significantly explained the observed phenotypic variation. From these, a core panel of 13 markers was selected and, furthermore, two wide regions of chromosomes 3 and 6 were consistently associated to rice LTG. Varieties with higher numbers of favourable alleles for the panels of associated markers significantly correlated with increased phenotypic values at both temperatures, thus corroborating the utility of the tagged markers for marker assisted selection (MAS) when breeding japonica rice for LTG.

  7. Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties

    PubMed Central

    Viruel, Juan; Domingo, Concha; Marqués, Luis

    2017-01-01

    A pool of 200 traditional, landraces and modern elite and old cultivars of rice, mainly japonica varieties adapted to temperate regions, have been used to perform a genome wide association study to detect chromosome regions associated to low temperature germination (LTG) regulation using a panel of 1672 SNP markers. Phenotyping was performed by determining growth rates when seeds were germinated at 25° and 15°C in order to separate the germination vigorousness from cold tolerance effects. As expected, the ability to produce viable seedlings varied widely among rice cultivars and also depended greatly on temperature. Furthermore, we observed a differential response during seed germination and in coleoptile elongation. Faster development at 15°C was observed in seeds from varieties traditionally used as cold tolerant parents by breeders, along with other potentially useful cultivars, mainly of Italian origin. When phenotypic data were combined with the panel of SNPs for japonica rice cultivars, significant associations were detected for 31 markers: 7 were related to growth rate at 25°C and 24 to growth rates at 15°. Among the latter, some chromosome regions were associated to LTG while others were related to coleoptile elongation. Individual effects of the associated markers were low, but by combining favourable alleles in a linear regression model we estimated that 27 loci significantly explained the observed phenotypic variation. From these, a core panel of 13 markers was selected and, furthermore, two wide regions of chromosomes 3 and 6 were consistently associated to rice LTG. Varieties with higher numbers of favourable alleles for the panels of associated markers significantly correlated with increased phenotypic values at both temperatures, thus corroborating the utility of the tagged markers for marker assisted selection (MAS) when breeding japonica rice for LTG. PMID:28817683

  8. Golden Indica and Japonica rice lines amenable to deregulation.

    PubMed

    Hoa, Tran Thi Cuc; Al-Babili, Salim; Schaub, Patrick; Potrykus, Ingo; Beyer, Peter

    2003-09-01

    As an important step toward free access and, thus, impact of GoldenRice, a freedom-to-operate situation has been achieved for developing countries for the technology involved. Specifically, to carry the invention beyond its initial "proof-of-concept" status in a Japonica rice (Oryza sativa) cultivar, we report here on two transformed elite Indica varieties (IR64 and MTL250) plus one Japonica variety Taipei 309. Indica varieties are predominantly consumed in the areas with vitamin A deficiency. To conform with regulatory constraints, we changed the vector backbone, investigated the absence of beyond-border transfer, and relied on Agrobacterium tumefaciens-mediated transformation to obtain defined integration patterns. To avoid an antibiotic selection system, we now rely exclusively on phosphomannose isomerase as the selectable marker. Single integrations were given a preference to minimize potential epigenetic effects in subsequent generations. These novel lines, now in the T(3) generation, are highly valuable because they are expected to more readily receive approval for follow-up studies such as nutritional and risk assessments and for breeding approaches leading to locally adapted variety development.

  9. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression.

    PubMed

    Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao

    2004-01-01

    RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.

  10. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm

    PubMed Central

    Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S

    2014-01-01

    Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments. PMID:24326293

  11. Differences in Viscosity of Superior and Inferior Spikelets of Japonica Rice with Various Percentages of Apparent Amylose Content.

    PubMed

    Ma, Zhao-Hui; Cheng, Hai-Tao; Nitta, Y; Aoki, Naohiro; Chen, Yun; Chen, Heng-Xue; Ohsugi, Ryu; Lyu, Wen-Yan

    2017-05-31

    Viscosity, a crucial characteristic for rice palatability, is affected by endosperm characters. We compared correlations between differences in viscosity of japonica rice with various palatability and endosperm characters. Changes in apparent amylose and protein contents (AAC% and PC%, respectively) and amylopectin side-chain distribution and the relationship of these traits with palatability were investigated in superior and inferior spikelets of good cultivars with low amylose content from Hokkaido and common cultivars from northeastern Japan, using rapid visco analyzer characteristics and rice-grain microstructures. Significant differences occurred in PC%, AAC%, breakdown, setback, peak time, and pasting temperature of different cultivars and grain positions. Amylopectin components showed remarkable differences in grain surfaces, surface layers, and section structure between the grain varieties. Hokkaido cultivars showed better viscosity than northeastern cultivars, particularly initial stage grains. Correlation analysis indicated viscosity was mainly AAC%-dependent, whereas differences in endosperm characteristics between spikelet positions were mainly due to grain-filling temperature.

  12. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice

    PubMed Central

    Bourgis, F.; Guyot, R.; Gherbi, H.; Tailliez, E.; Amabile, I.; Salse, J.; Lorieux, M.; Delseny, M.

    2008-01-01

    In Asian cultivated rice (Oryza sativa L.), aroma is one of the most valuable traits in grain quality and 2-ACP is the main volatile compound contributing to the characteristic popcorn-like odour of aromatic rices. Although the major locus for grain fragrance (frg gene) has been described recently in Basmati rice, this gene has not been characterised in true japonica varieties and molecular information available on the genetic diversity and evolutionary origin of this gene among the different varieties is still limited. Here we report on characterisation of the frg gene in the Azucena variety, one of the few aromatic japonica cultivars. We used a RIL population from a cross between Azucena and IR64, a non-aromatic indica, the reference genomic sequence of Nipponbare (japonica) and 93–11 (indica) as well as an Azucena BAC library, to identify the major fragance gene in Azucena. We thus identified a betaine aldehyde dehydrogenase gene, badh2, as the candidate locus responsible for aroma, which presented exactly the same mutation as that identified in Basmati and Jasmine-like rices. Comparative genomic analyses showed very high sequence conservation between Azucena and Nipponbare BADH2, and a MITE was identified in the promotor region of the BADH2 allele in 93–11. The badh2 mutation and MITE were surveyed in a representative rice collection, including traditional aromatic and non-aromatic rice varieties, and strongly suggested a monophylogenetic origin of this badh2 mutation in Asian cultivated rices. Altogether these new data are discussed here in the light of current hypotheses on the origin of rice genetic diversity. PMID:18491070

  13. CRISPR/Cas9-Mediated Gene Editing in Rice (Oryza sativa L. japonica cv. Katy) for Stable Resistance against Blast Fungus (Magnaporthe oryzae)

    USDA-ARS?s Scientific Manuscript database

    Rice blast is a recurring and devastating disease in the USA and worldwide. In the USA, the blast-resistance (R) genes found in a tropical japonica cultivar, Katy, reduce blast damages from 1990 to present. The cultivar is still used as a principal donor of blast R genes in developing numerous elit...

  14. Flavonoids from the grains of C1/R-S transgenic rice, the transgenic Oryza sativa spp. japonica, and their radical scavenging activities.

    PubMed

    Cho, Jin-Gyeong; Song, Na-Young; Nam, Tae-Gyu; Shrestha, Sabina; Park, Hee-Jung; Lyu, Ha-Na; Kim, Dae-Ok; Lee, Gihwan; Woo, Young-Min; Jeong, Tae-Sook; Baek, Nam-In

    2013-10-30

    The transgenic rice cultivar of Oryza sativa spp. japonica cv. Hwa-Young, C1/R-S transgenic rice (C1/R-S rice), is a flavonoid-rich cultivar of rice. The grains of C1/R-S rice were extracted with aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH, and H2O, successively. Repeated silica gel, octadecyl silica gel (ODS), and Sephadex LH-20 column chromatographies for the EtOAc and n-BuOH fractions afforded four new flavonoids (compounds 2, 3, 7, and 8) along with four known flavonoids: (+)-3'-O-methyltaxifolin (1), brassicin (4), isorhamnetin-4'-O-β-D-glucosyranoside (5), and 3'-O-methyltaxifolin-5-O-β-D-glucopyranoside (6). The new flavonoids were identified as 3'-O-methyltaxifolin-7-O-β-D-glucopyranoside (2), 3'-O-methyltaxifolin-4'-O-β-D-glucopyranoside (3), isorhamnetin-7-O-β-D-cellobioside (brassicin-4″-O-β-D-glucopyranoside) (7), and brassicin-4'-O-β-D-glucosyranoside (8) from the result of spectroscopic data including nuclear magnetic resonance spectrometry (NMR), mass spectrometry (MS), and infrared spectroscopy (IR). Also, quantitative analysis of major flavonoids (compounds 2, 3, and 8) in C1/R-S rice, O. sativa spp. japonica cv. Hwa-Young (HY), and a hybrid of two cultivar (C1/R-S rice/HY) extracts was performed using HPLC experiment. The isolated flavonoids were evaluated for their radical-scavenging effect on DPPH and ABTS radicals.

  15. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

    PubMed

    Kasajima, Ichiro

    2017-04-26

    Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress

  16. Rice root-associated bacteria – insights in community structures across ten cultivars

    PubMed Central

    Hardoim, Pablo Rodrigo; Andreote, Fernando Dini; Reinhold-Hurek, Barbara; Sessitsch, Angela; van Overbeek, Leonard Simon; van Elsas, Jan Dirk

    2015-01-01

    In this study, the effect of plant genotype, soil type and nutrient use efficiency on the composition of different bacterial communities associated with rice roots were investigated. Thus, total bacteria, Alpha- and Beta-proteobacteria, Pseudomonas and Actinobacteria were studied using PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE). Rice genotype determined to a large extent the composition of the different bacterial communities across cultivars. Several cultivars belonging to Oryza sativa subspecies indica tended to select similar bacterial communities, whereas those belonging to subspecies japonica and aromatica selected ones with divergent community structures. An effect of soil type was pronounced for the Actinobacteria communities, while a small effect of ‘improved’ and ‘traditional’ plants was noted for all communities analysed. A few dominant bands in PCR-DGGE, affiliated with Rhizobium radiobacter, Dickeya zeae, Mycobacterium bolletii and with members of the Rhizobiales, Rhodospirillaceae and Paenibacillaceae were spread across cultivars. In contrast, a majority of bands (e.g. affiliated with Enterobacter cloacae or Burkholderia kururiensis) was only present in particular cultivars or was erratically distributed amongst rice replicates. The data suggested that both bacterial adaptation and plant genotype contribute to the shaping of the dynamic bacterial communities associated with roots of rice plants. PMID:21426364

  17. Effect of Seeding Rate on Weed Suppression Activity and Yield of Indica and Tropical Japonica Rice Cultivars.

    USDA-ARS?s Scientific Manuscript database

    Weeds are ubiquitous and costly pests in U.S. rice production systems. Although most rice cultivars do not suppress weeds dramatically, certain indica cultivars and commercial hybrids have been shown to suppress barnyardgrass (Echinochloa crus-galli) in conventional as well as reduced-herbicide and ...

  18. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  19. Registration of a rice gene mapping population of Lemont X Jasmine 85 recombinant inbred lines

    USDA-ARS?s Scientific Manuscript database

    A mapping population developed from a cross of rice (Oryza sativa L.) tropical japonica cultivar ‘Lemont’ and indica cultivar ‘Jasmine 85’ was developed to facilitate genetic studies for important agronomic traits. The indica- and japonica-based rice recombinant inbred line (RIL) mapping population ...

  20. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application.

    PubMed

    Zhan, Jie; Wei, Shuhe; Niu, Rongcheng; Li, Yunmeng; Wang, Shanshan; Zhu, Jiangong

    2013-04-01

    Using low-accumulative plant, especially excluder crop, to safely produce food is one of the very important technologies of phytoremediation, which is practical to safe production and long-term remediation of heavy metal-contaminated soil. A pot experiment using field cadmium (Cd)-contaminated soil (Cd concentration was 0.75 mg kg(-1)) was conducted to compare Cd accumulation differences among 39 normal rice cultivars (Japonica) in Shenyang region of China for food safety and high grain yield aim. The results showed that brown grain Cd concentration in 12 rice cultivars of a total of 39 tested cultivars was lower than 0.2 mg kg(-1) (Agricultural Trade Standard of Nonpollution Food for Rice of China, NY 5115-2008). In these 12 cultivars, Cd enrichment factors (Cd concentration ratio in shoot to that in soil) of nine cultivars were lower than 1. Likewise, Cd translocation factors (Cd concentration ratio in shoot to that in root) of eight cultivars were lower than the 0.28 average. Furthermore, grain yield per pot of seven cultivars were higher than the average 18.4 g pot(-1). Four cultivars, i.e., Shendao 5, Tianfu 1, Fuhe 90, and Yanfeng 47 showed Cd-exclusive characteristic and better foreground application.

  1. Validation of yield component traits identified by GWA mapping in a rice tropical japonica x tropical japonica RIL mapping population

    USDA-ARS?s Scientific Manuscript database

    The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) mapping to explore the five diverse rice (Oryza sativa) subpopulations (indica, aus, aromatic, temperate japonica and tropical japonica). RDP1 was evaluated for over 30 agronomic and morphological traits, most of whic...

  2. Genetic Diversity, Rather than Cultivar Type, Determines Relative Grain Cd Accumulation in Hybrid Rice

    PubMed Central

    Sun, Liang; Xu, Xiaxu; Jiang, Youru; Zhu, Qihong; Yang, Fei; Zhou, Jieqiang; Yang, Yuanzhu; Huang, Zhiyuan; Li, Aihong; Chen, Lianghui; Tang, Wenbang; Zhang, Guoyu; Wang, Jiurong; Xiao, Guoying; Huang, Daoyou; Chen, Caiyan

    2016-01-01

    Cadmium (Cd) is a toxic element, and rice is known to be a leading source of dietary Cd for people who consume rice as their main caloric resource. Hybrid rice has dominated rice production in southern China and has been adopted worldwide. The characteristics of high yield heterosis of rice hybrids makes the public think intuitively that the hybrid rice accumulates more Cd in grain than do inbred cultivars. A detailed understanding of the genetic basis of grain Cd accumulation in hybrids and developing Cd-safe rice are one of the top priorities for hybrid rice breeders at present. In this study, we investigated genetic diversity and grain Cd levels in 617 elite rice hybrids collected from the middle and lower Yangtze River Valley in China and 68 inbred cultivars from around the world. We found that there are large variations in grain Cd accumulation in both the hybrids and their inbred counterparts. However, we found grain Cd levels in the rice hybrids to be similar to the levels in indica rice inbreds, suggesting that the hybrids do not accumulate more Cd than do the inbred rice cultivars. Further analysis revealed that the high heritability of Cd accumulation in the grain and the single indica population structure increases the risk of Cd over-accumulation in hybrid rice. The genetic effects of Cd-related QTLs, which have been identified in related Cd-QTL mapping studies, were also determined in the hybrid rice population. Four QTLs were identified as being associated with the variation in grain Cd levels; three of these loci exhibited obvious indica-japonica differentiations. Our study will provide a better understanding of grain Cd accumulations in hybrid rice, and pave the way toward effective breeding for high-yielding, low grain-Cd hybrids in the future. PMID:27708659

  3. TOND1 confers tolerance to nitrogen deficiency in rice

    PubMed Central

    Zhang, Yangjun; Tan, Lubin; Zhu, Zuofeng; Yuan, Lixing; Xie, Daoxin; Sun, Chuanqing

    2015-01-01

    Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers. PMID:25439309

  4. Study on creep properties of Japonica cooked rice and its relationship with rice chemical compositions and sensory evaluation

    USDA-ARS?s Scientific Manuscript database

    Creep properties of four varieties japonica cooked rice were tested using a Dynamic Mechanical Analyser (DMA Q800). The creep curve was described by Burgers model. The creep process of japonica cooked rice mainly consisted of retarded elastic deformation, epsilonR and viscous flow deformation, epsil...

  5. Changes in Rice Grain Quality of Indica and Japonica Type Varieties Released in China from 2000 to 2014.

    PubMed

    Feng, Fan; Li, Yajun; Qin, Xiaoliang; Liao, Yuncheng; Siddique, Kadambot H M

    2017-01-01

    China is the first country to use heterosis successfully for commercial rice production. This study compared the main quality characteristics (head rice rate, chalky rice rate, chalkiness degree, gel consistency, amylose content, and length-to-width ratio) of 635 rice varieties (not including upland and glutinous rice) released from 2000 to 2014 to establish the quality status and offer suggestions for future rice breeding for grain quality in China. In the past 15 years, grain quality in japonica rice and indica hybrid rice has improved. In japonica rice, inbred varieties have increased head rice rates and decreased chalkiness degree over time, while hybrid rice varieties have decreased chalky rice rates and chalkiness degree. In indica hybrid rice, the chalkiness degree and amylose contents have decreased and gel consistency has increased. Improvements in grain quality in indica inbred rice have been limited, with some increases in head rice rate and decreases in chalky rice rate and amylose content. From 2010 to 2014, the percentage of indica varieties meeting the Grade III national standard of rice quality for different quality traits was low, especially for chalky rice rate and chalkiness degree. Japonica varieties have more superior grain quality than indica rice in terms of higher head rice rates and gel consistency, lower chalky rice rates and chalkiness degree, and lower amylose contents, which may explain why the Chinese prefer japonica rice. The japonica rice varieties, both hybrid and inbred, had similar grain qualities, but this varied in indica rice with the hybrid varieties having higher grain quality than inbred varieties due to significantly better head rice rates and lower chalkiness degree. For better quality rice in future, the chalky rice rate and chalkiness degree should be improved in japonica rice along with most of the quality traits in indica rice.

  6. Comparative Study of the Phytoprostane and Phytofuran Content of indica and japonica Rice (Oryza sativa L.) Flours.

    PubMed

    Pinciroli, M; Domínguez-Perles, R; Abellán, A; Guy, A; Durand, T; Oger, C; Galano, J M; Ferreres, F; Gil-Izquierdo, A

    2017-10-11

    Phytoprostanes and phytofurans (PhytoPs and PhytoFs, respectively) are nonenzymatic lipid peroxidation products derived from α-linolenic acid (C18:3 n-3), considered biomarkers of oxidative degradation in plant foods. The present work profiled these compounds in white and brown grain flours and rice bran from 14 rice cultivars of the subspecies indica and japonica by ultrahigh performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry. For PhytoPs, the average concentrations were higher in rice bran (0.01-9.35 ng g -1 ) than in white and brown grain flours (0.01-1.17 ng g -1 ). In addition, the evaluation of rice flours for the occurrence PhytoFs evidenced average values 1.77, 4.22, and 10.30 ng g -1 dw in rice bran, brown grain flour, and white grain flour, respectively. A significant correlation was observed between total and individual compounds. The concentrations retrieved suggest rice bran as a valuable source of PhytoPs and PhytoFs that should be considered in further studies on bioavailability and bioactivity of such compounds.

  7. Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses

    PubMed Central

    Fan, Mingyu; Wang, Xiaojing; Sun, Jian; Zhang, Qun; Xu, Zhengjin; Xu, Quan

    2017-01-01

    Amylopectin is one of the major determinants of rice (Oryza sativa L.) grain quality, and a large difference in amylopectin is found between two subspecies: japonica and indica. However, the relationship among rice grain quality, indica/japonica genetic background, and amylopectin has not been clearly established. In this study, a series of backcross inbred lines derived from the cross between japonica (cv. Sasanishiki) and indica (cv. Habataki) were used to survey eating and cooking quality (ECQ), rapid visco analyzer (RVA) profiles, and the chain length distribution of amylopectin. The frequency of indica pedigree (Fi) was calculated to analyze the effects of Fi on grain quality and amylopectin. The results showed that the Sasanishiki cultivar was markedly enriched in chain length with DP6-15 and DP34-45 compared to the Habataki. DP34-45 strongly correlated to RVA characteristics, cooking quality, and prolamin content. The Fi also has significant correlations to RVA characteristics and ECQ, but only significantly negative correlation to DP34-45. Seven quantitative trait loci (QTLs) corresponding to amylopectin were mapped, of which three were in agreement with previous findings. The results of this study provide valuable information for amylopectin characteristics in the offspring derived from the subspecies cross, and the novel QTLs may provide new insights to the identification of minor starch synthesis-related genes. PMID:29398938

  8. Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China.

    PubMed

    Ye, Jing; Niu, Xiaojun; Yang, Yaolong; Wang, Shan; Xu, Qun; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wang, Shu; Feng, Yue; Wei, Xinghua

    2018-01-01

    The heading date is a vital factor in achieving a full rice yield. Cultivars with particular flowering behaviors have been artificially selected to survive in the long-day and low-temperature conditions of Northeast China. To dissect the genetic mechanism responsible for heading date in rice populations from Northeast China, association mapping was performed to identify major controlling loci. A genome-wide association study (GWAS) identified three genetic loci, Hd1 , Ghd7 , and DTH7 , using general and mixed linear models. The three genes were sequenced to analyze natural variations and identify their functions. Loss-of-function alleles of these genes contributed to early rice heading dates in the northern regions of Northeast China, while functional alleles promoted late rice heading dates in the southern regions of Northeast China. Selecting environmentally appropriate allele combinations in new varieties is recommended during breeding. Introducing the early indica rice's genetic background into Northeast japonica rice is a reasonable strategy for improving genetic diversity.

  9. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.

  10. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines

    PubMed Central

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-01-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs. PMID:27246799

  11. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines.

    PubMed

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-06-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.

  12. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers

    PubMed Central

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-01-01

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia. PMID:26019508

  13. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers.

    PubMed

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-03-04

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia.

  14. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.

  15. Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6.

    PubMed

    Qiu, Yongfu; Guo, Jianping; Jing, Shengli; Zhu, Lili; He, Guangcun

    2012-02-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F(2) population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.

  16. The cadmium and lead content of the grain produced by leading Chinese rice cultivars.

    PubMed

    Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S

    2017-02-15

    The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    PubMed

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  18. An Economic Risk Analysis of Weed Suppressive Rice Cultivars in Rice Production

    USDA-ARS?s Scientific Manuscript database

    Weeds are a major constraint to rice production. In the United States, most rice cultivars are not inherently weed-suppressive and require substantial herbicide inputs to achieve agronomic and economic viability. Intensive herbicide application in rice also has many potential drawbacks, resulting in...

  19. Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice.

    PubMed

    Coelho, G R C; Brondani, C; Hoffmann, L V; Valdisser, P A M R; Borba, T C O; Mendonça, J A; Rodrigues, L A; de Menezes, I P P

    2017-09-21

    The objective of this study was to analyze the diversity and discrimination of high-performance Brazilian rice cultivars using microsatellite markers. Twenty-nine rice cultivars belonging to EMBRAPA Arroz e Feijão germplasm bank in Brazil were genotyped by 24 SSR markers to establish their structure and genetic discrimination. It was demonstrated that the analyzed germplasm of rice presents an expressive and significant genetic diversity with low heterogeneity among the cultivars. All 29 cultivars were differentiated genetically, and were organized into two groups related to their upland and irrigated cultivation systems. These groups showed a high genetic differentiation, with greater diversity within the group that includes the cultivars for irrigated system. The genotyping data of these cultivars, with the morphological e phenotypical data, are valuable information to be used by rice breeding programs to develop new improved cultivars.

  20. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice.

    PubMed

    Yu, Hui; Wang, Junli; Fang, Wei; Yuan, Jiangang; Yang, Zhongyi

    2006-11-01

    Large areas of contaminated land are being used for agricultural production in some countries due to the high demand for food. To minimize the influx of pollutants to the human food chain through consumption of agricultural products, we propose the concept of pollution-safe cultivars (PSCs), i.e. cultivars whose edible parts accumulate a specific pollutant at a level low enough for safe consumption, even when grown in contaminated soil. We tested the feasibility of the PSC concept by growing 43 cultivars of paddy rice (Oryza sativa L., including 20 normal and 23 hybrid cultivars) under a high (75.69-77.55 mg kg(-1)) and a low (1.75-1.85 mg kg(-1)) cadmium (Cd) exposure. These pot experiments took place in the spring and summer of 2004. At the low level of Cd exposure, 30 out of the 43 tested cultivars were found to be Cd-PSCs. Grain Cd concentrations were highly correlated (p<0.01) between the two experiments, suggesting that Cd accumulation in rice grain is genotype-dependent and that the selection of PSCs is possible, at least at a certain level of soil contamination. No Cd-PSCs were found under the high level of Cd exposure. Yield was enhanced in some cultivars and depressed in others in response to elevated soil Cd, indicating that farmers cannot rely on yield depression as an indicator of toxicity of the grains. It is therefore important and feasible to screen for PSCs and to establish PSC breeding programs to effectively and efficiently reduce the risk of human exposure to soil pollutants, such as Cd, through crop consumption.

  1. Diverse variation of reproductive barriers in three intraspecific rice crosses.

    PubMed Central

    Harushima, Yoshiaki; Nakagahra, Masahiro; Yano, Masahiro; Sasaki, Takuji; Kurata, Nori

    2002-01-01

    Reproductive barriers are thought to play an important role in the processes of speciation and differentiation. Asian rice cultivars, Oryza sativa, can be classified into two main types, Japonica and Indica, on the basis of several characteristics. The fertility of Japonica-Indica hybrids differs from one cross to another. Many genes involved in reproductive barriers (hybrid sterility, hybrid weakness, and gametophytic competition genes) have been reported in different Japonica-Indica crosses. To clarify the state of Japonica-Indica differentiation, all reproductive barriers causing deviation from Mendelian segregation ratios in F(2) populations were mapped and compared among three different Japonica-Indica crosses: Nipponbare/Kasalath (NK), Fl1084/Dao Ren Qiao (FD), and Fl1007/Kinandang puti (FK). Mapping of reproductive barriers was performed by regression analysis of allele frequencies of DNA markers covering the entire genome. Allele frequencies were explained by 33 reproductive barriers (15 gametophytic and 18 zygotic) in NK, 32 barriers (15 gametophytic and 17 zygotic) in FD, and 37 barriers (19 gametophytic and 18 zygotic) in FK. The number of reproductive barriers in the three crosses was similar; however, most of the barriers were mapped at different loci. Therefore, these reproductive barriers formed after Japonica-Indica differentiation. Considering the high genetic similarity within Japonica and Indica cultivars, the differences in the reproductive barriers of each cross were unexpectedly numerous. The reproductive barriers of Japonica-Indica hybrids likely evolved more rapidly than other genetic elements. One possible force responsible for such rapid evolution of the barriers may have been the domestication of rice. PMID:11805066

  2. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.

    PubMed

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-07-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.

  3. Panicle blast and canopy moisture in rice cultivar mixtures.

    PubMed

    Zhu, You-Yong; Fang, Hui; Wang, Yun-Yue; Fan, Jin Xiang; Yang, Shi-Sheng; Mew, Twng Wah; Mundt, Christopher C

    2005-04-01

    ABSTRACT Glutinous rice cultivars were sown after every fourth row of a nonglutinous, hybrid cultivar in an additive design. The glutinous cultivars were 35 to 40 cm taller and substantially more susceptible to blast than was the nonglutinous cultivar. Interplanting of glutinous and nonglutinous rice reduced the incidence and severity of panicle blast on the glutinous cultivars by >90%, and on the nonglutinous cultivar by 30 to 40%. Mixing increased the per unit area yield of glutinous rice by 80 to 90% relative to pure stand, whereas yield of the nonglutinous cultivar was essentially unaffected by mixing. To determine whether the different plant heights and canopy structures may contribute to a microclimate that is less favorable to blast infection, we monitored the moisture status of the glutinous cultivars in pure stand and mixture at 0800 h by measuring relative humidity at the height of the glutinous panicles using a swing psychrometer and by visually estimating the percentage of leaf area covered by dew. Averaged over the two seasons, the number of days of 100% humidity at 0800 h was 20.0 and 2.2 for pure stands and mixtures, respectively. The mean percentage of glutinous leaf area covered by dewwas 84 and 36% for the pure stands and mixtures, respectively. Although other mechanisms also were operative, reduced leaf wetness was likely a substantial contributor to panicle blast control in the mixtures.

  4. Statistical Inference of Selection and Divergence of the Rice Blast Resistance Gene Pi-ta

    PubMed Central

    Amei, Amei; Lee, Seonghee; Mysore, Kirankumar S.; Jia, Yulin

    2014-01-01

    The resistance gene Pi-ta has been effectively used to control rice blast disease, but some populations of cultivated and wild rice have evolved resistance. Insights into the evolutionary processes that led to this resistance during crop domestication may be inferred from the population history of domesticated and wild rice strains. In this study, we applied a recently developed statistical method, time-dependent Poisson random field model, to examine the evolution of the Pi-ta gene in cultivated and weedy rice. Our study suggests that the Pi-ta gene may have more recently introgressed into cultivated rice, indica and japonica, and U.S. weedy rice from the wild species, O. rufipogon. In addition, the Pi-ta gene is under positive selection in japonica, tropical japonica, U.S. cultivars and U.S. weedy rice. We also found that sequences of two domains of the Pi-ta gene, the nucleotide binding site and leucine-rich repeat domain, are highly conserved among all rice accessions examined. Our results provide a valuable analytical tool for understanding the evolution of disease resistance genes in crop plants. PMID:25335927

  5. Suppression of a NAC-Like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice1

    PubMed Central

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-01-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity. PMID:21543724

  6. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Vesicular Arbuscular Mycorrhiza Associated with Three Cultivars of Rice (Oryza sativa L.).

    PubMed

    Bhattacharjee, Sujata; Sharma, G D

    2011-07-01

    The present study deals with the occurrence of vesicular arbuscular mycorrhizal fungi in three cultivars of rice in Barak valley. Three cultivars of rice were Pankaj, Malati and Ranjit. The results revealed the association of VAM fungi in all the cultivars of rice. The association was maximum in Pankaj cultivar followed by Malati, and Ranjit, respectively, in all the three sampling phases. All the three cultivars of rice crop showed maximum soil spore population and number of VAM fungal species at the harvesting phase (135 DAS) and minimum at the phase of maturation (90 DAS). Glomus species were found dominating followed by Acaulospora species. Glomus microcarpum, Glomus claroideum, Glomus mosseae and Acaulospora scrobiculata were found in all the three fields.

  8. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  9. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica

    PubMed Central

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-01-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties. PMID:25054108

  10. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica.

    PubMed

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-06-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties.

  11. Fine mapping and introgressing qFIS1-2, a major QTL for kernel fissure resistance in rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...

  12. Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols.

    PubMed

    Wagatsuma, Tadao; Maejima, Eriko; Watanabe, Toshihiro; Toyomasu, Tomonobu; Kuroda, Masaharu; Muranaka, Toshiya; Ohyama, Kiyoshi; Ishikawa, Akifumi; Usui, Masami; Hossain Khan, Shahadat; Maruyama, Hayato; Tawaraya, Keitaro; Kobayashi, Yuriko; Koyama, Hiroyuki

    2018-01-23

    Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Complete Chloroplast Genome Sequence and Annotation of the Tropical japonica Group of Asian Cultivated Rice (Oryza sativa L.)

    PubMed Central

    Wang, Shuo

    2016-01-01

    We announce here the first complete chloroplast genome sequence of the tropical japonica rice, along with its genome structure and functional annotation. The plant was collected from Indonesia and deposited as a germplasm accession of the International Rice GenBank Collection (IRGC 66630) at the International Rice Research Institute (IRRI). This genome provides valuable data for the future utilization of the germplasm of rice. PMID:26893422

  14. Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India.

    PubMed

    Roy, Somnath; Marndi, B C; Mawkhlieng, B; Banerjee, A; Yadav, R M; Misra, A K; Bansal, K C

    2016-07-13

    Hill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers' classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies. According to farmers' classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or

  15. Physicochemical and Gelatinization Properties of Starches Separated from Various Rice Cultivars.

    PubMed

    Woo, Hee-Dong; We, Gyoung Jin; Kang, Tae-Young; Shon, Kee Hyuk; Chung, Hyung-Wook; Yoon, Mi-Ra; Lee, Jeom-Sig; Ko, Sanghoon

    2015-10-01

    Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G' values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G' and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γ(c)), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γ(c). The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications. Rice flour has potential applications in various food products. The physicochemical properties of rice flour are dependent on its variety, which affects the quality of the final products. In this study, the combined analysis including hydration, pasting, viscoelastic, and thermal properties of rice flour could afford information for preparing a particular product such as bread and noodle. © 2015 Institute of Food Technologists®

  16. Complete Chloroplast Genome Sequence and Annotation of the Tropical japonica Group of Asian Cultivated Rice (Oryza sativa L.).

    PubMed

    Wang, Shuo; Gao, Li-Zhi

    2016-02-18

    We announce here the first complete chloroplast genome sequence of the tropical japonica rice, along with its genome structure and functional annotation. The plant was collected from Indonesia and deposited as a germplasm accession of the International Rice GenBank Collection (IRGC 66630) at the International Rice Research Institute (IRRI). This genome provides valuable data for the future utilization of the germplasm of rice. Copyright © 2016 Wang and Gao.

  17. Ecophysiological responses to excess iron in lowland and upland rice cultivars.

    PubMed

    Müller, Caroline; Silveira, Solange Ferreira da Silveira; Daloso, Danilo de Menezes; Mendes, Giselle Camargo; Merchant, Andrew; Kuki, Kacilda Naomi; Oliva, Marco Antonio; Loureiro, Marcelo Ehlers; Almeida, Andréa Miyasaka

    2017-12-01

    Iron (Fe) is an essential nutrient for plants but under high concentrations, such as that found naturally in clay and waterlogged soils, its toxic effect can limit production. This study aimed to investigate the stress tolerance responses exhibited by different rice cultivars. Both lowland and upland cultivars were grown under excess Fe and hypoxic conditions. Lowland cultivars showed higher Fe accumulation in roots compared with upland cultivars suggesting the use of different strategies to tolerate excess Fe. The upland Canastra cultivar displayed a mechanism to limit iron translocation from roots to the shoots, minimizing leaf oxidative stress induced by excess Fe. Conversely, the cultivar Curinga invested in the increase of R1/A, as an alternative drain of electrons. However, the higher iron accumulation in the leaves, was not necessarily related to high toxicity. Nutrient uptake and/or utilization mechanisms in rice plants are in accordance with their needs, which may be defined in relation to crop environments. Alterations in the biochemical parameters of photosynthesis suggest that photosynthesis in rice under excess Fe is primarily limited by biochemical processes rather than by diffusional limitations, particularly in the upland cultivars. The electron transport rate, carboxylation efficiency and electron excess dissipation by photorespiration demonstrate to be good indicators of iron tolerance. Altogether, these chemical and molecular patterns suggests that rice plants grown under excess Fe exhibit gene expression reprogramming in response to the Fe excess per se and in response to changes in photosynthesis and nutrient levels to maintain growth under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes.

    PubMed

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-12-02

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.

  19. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes

    PubMed Central

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-01-01

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM+SaF+, whereas all japonica cultivars have SaM−SaF− that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM−. This allele-specific gamete elimination results from a selective interaction of SaF+ with SaM−, a truncated protein, but not with SaM+ because of the presence of an inhibitory domain, although SaM+ is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding. PMID:19033192

  20. Cropping system diversification for food production in Mindanao rubber plantations: a rice cultivar mixture and rice intercropped with mungbean

    PubMed Central

    Elazegui, Francisco; Duque, Jo-Anne Lynne Joy E.; Mundt, Christopher C.; Vera Cruz, Casiana M.

    2017-01-01

    Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley. PMID:28194318

  1. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    PubMed Central

    Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M.; Condamine, Pascal; Close, Timothy J.

    2006-01-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users. PMID:17160619

  2. [Introduction of upland rice cultivars to eastern Keerqin sandy land and their biological characteristics].

    PubMed

    Zeng, Dehui; Zhang, Chunxing; Wang, Guirong; Fan, Zhiping

    2004-10-01

    Developing water-saving rice cultivation is one important strategy for food security in China. This paper reported the experimental results of introducing six upland rice cultivars to eastern Keerqin sandy land. The field experiment results showed that under the condition of 60% water-saving, the yield of cultivars XH 95-13 and XH 95-13-6 was 10.2% and 5.5% higher than the control, respectively, while other four cultivars decreased by 6.7%-18.6%. Economically, all the cultivars except JP 121 had a higher income than the control, and the profitability of cultivars XH 95-13 and XH 95-13-6 reached 24.0% and 19.3%, respectively. The water productivity of all the six cultivars was over 0.566 kg x m(-3), increased by 59.89%-116.38%. Pot experiment showed that 12.1%-16.3% of soil moisture in 0-15 cm layer was beneficial to the growth of upland rice. In eastern Keerqin sandy land, effective tillers occurred before July 18. In brief, upland rice production could be extensively applicable in eastern Keerqin sandy land to gradually alternate the traditional lowland rice cultivation with continuous flooding, and save much underground water.

  3. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  4. Accumulation and Transfer of Cadmium, by Indica Rice Cultivars Fujian Province of China

    NASA Astrophysics Data System (ADS)

    James, B.; Wang, G.

    2016-12-01

    This study was designed to evaluate the accumulating ability of cadmium (Cd) by different Indica rice varieties and to understand the differences in transfer factor in the soil-to-rice grain. A total of 189 crop samples and 189 corresponding soil samples were collected for treatment and chemical analysis. Sixteen (16) Indica rice varieties were selected for this study. Our preliminary results showed that there exist significant differences (p<0.05) in the grain Cd concentrations of the variety studied. A regression method was adopted to calculate the representative soil-to-grain (TF0.1) of each cultivar. The accumulating ability of cadmium of the 16 cultivars varied greatly.Yi-xiang 2292 had the highest TFsoil-grain (2.91), which was 22 times higher than the lowest cultivar Pei- za-tai- fen (0.13). However, no significant difference in TFsoil-grain was observed between conventional and hybrid cultivars. A further study was carried out to understand the transfer characteristics and accumulating ability of cadmium using four (4) selected cultivars (both of hybrid and conventional indica rice cultivars).The TFstem-grain among the variety revealed that significant differences (p<0.05) exist in the stem of the selected variety in the translocation of Cd among indica rice variety and cadmium decreases in the pattern: root>stem>leaf>grain in the four cultivars except Te -you 009 that showed similar cadmium content in root and stem. Among the hybrid cultivars Yi -you 673 accumulated the most Cadmium in root, stem, leaf and grain, while Te- you 009 accumulated the least Cadmium in root, whereas the conventional cultivar Jia-fu-zhan accumulated the lowest Cadmium in leaf and grain. Our findings also revealed that the Cadmium concentrations in rice grains were more significantly correlated with the Cadmium in stem, followed by leaf, which reveals that the transfer from stem and leaf to grain may be the determinant steps for Cadmium accumulation in the grains.

  5. Breeding of commercially acceptable allelopathic rice cultivars in China.

    PubMed

    Kong, Chui-Hua; Chen, Xiong-Hui; Hu, Fei; Zhang, Song-Zhu

    2011-09-01

    One promising area of paddy weed control is the potential for exploiting the weed-suppressing ability of rice. This study was conducted to develop commercially acceptable allelopathic rice cultivars using crosses between allelopathic rice variety PI312777 and commercial Chinese cultivars (N2S, N9S, Huahui354, Peiai64S and Tehuazhan35), and to assess their weed suppression and grain yield in paddy fields in relation to their parents. There was a positive dominance in the crosses Huahui354 × PI312777 and N2S × PI312777 but recessive or negative dominance in N9S × PI312777, Peiai64S × PI312777 and Tehuazhan35 × PI312777. Huahui354 × PI312777 and N2S × PI312777 showed stronger weed suppression than their parents and other crosses. Finally, an F8 line with an appearance close to Huahui354 and a magnitude of weed suppression close to PI312777 was obtained from Huahui354 × PI312777. This line, named Huagan-3, was released as a first commercially acceptable allelopathic rice cultivar in China. The grain yield and quality of Huagan-3 met the commercial standard of the local rice industry. Huagan-3 greatly suppressed paddy weeds, although suppression was influenced by year-to-year variation and plant density. There was no certain yield reduction in Huagan-3 even under a slight infestation of barnyard grass in paddy fields. The successful breeding of Huagan-3 with high yield and strong weed suppression may be incorporated into present rice production systems to minimise the amount of herbicide used. Copyright © 2011 Society of Chemical Industry.

  6. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs

    PubMed Central

    Cardoso, Catarina; Zhang, Yanxia; Jamil, Muhammad; Hepworth, Jo; Charnikhova, Tatsiana; Dimkpa, Stanley O. N.; Meharg, Caroline; Wright, Mark H.; Liu, Junwei; Meng, Xiangbing; Wang, Yonghong; Li, Jiayang; McCouch, Susan R.; Leyser, Ottoline; Price, Adam H.; Bouwmeester, Harro J.; Ruyter-Spira, Carolien

    2014-01-01

    Rice (Oryza sativa) cultivar Azucena—belonging to the Japonica subspecies—exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci—qSLB1.1—for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes—SLB1 and SLB2—with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2′-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice. PMID:24464483

  7. Effectiveness of sodium azide alone compared to sodium azide in combination with methyl nitrosurea for rice mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Rice seeds of the temperate japonica cultivar Kitaake were mutagenized with sodium azide alone and in combination with methyl nitrosourea. Using the reduced representation sequencing method Restriction Enzyme Sequence Comparative Analysis (RESCAN), the mutation densities, types and local sequence co...

  8. RiceCAP: Comparison of sheath blight QTLs in two Bengal/O. nivara advanced backcross mapping populations

    USDA-ARS?s Scientific Manuscript database

    Two advanced backcross populations were developed between a popular southern US tropical japonica rice (Oryza sativa L.) cultivar Bengal and two different of Oryza nivara (IRGC100898; IRGC104705) accessions to identify quantitative trait loci (QTLs) related to sheath blight (SB) disease resistance. ...

  9. Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids.

    PubMed

    Cho, Sungeun; Nuijten, Edwin; Shewfelt, Robert L; Kays, Stanley J

    2014-03-15

    To increase rice production in Africa, considerable research has focused on creating interspecific hybrids between African (Oryza glaberrima Steud.) and Asian (O. sativa L.) rice in an attempt to obtain the positive attributes of each in new cultivars. Since flavor is a key criterion in consumer acceptance of rice, as an initial inquiry we characterized and compared the aroma chemistry of selected cultivars of African O. sativa ssp. japonica, O. sativa ssp. indica, O. glaberrima, and their interspecific hybrids grown in West Africa, using gas chromatography-mass spectrometry, gas chromatography-olfactometry and descriptive sensory analysis. Of 41 volatiles identified across seven representative rice cultivars grown in West Africa, 3,5,5-trimethyl-2-cyclopenten-1-one, styrene, eucalyptol, linalool, myrtenal and L-α-terpineol had not been previously reported in rice. Thirty-three odor-active compounds were characterized. 4-Ethylphenol and (E,E)-2,4-heptadienal were unique to O. glaberrima, and pyridine, eucalyptol and myrtenal were described only in an interspecific hybrid. Descriptive sensory analysis indicated 'cooked grain', 'barny' and 'earthy' attributes were statistically different among the cultivars. The aroma chemistry data suggest that it should be possible to separate African cultivars into distinct flavor types thereby facilitating selection of new cultivars with superior flavor in African rice breeding programs. © 2013 Society of Chemical Industry.

  10. The Role of Node Restriction on Cadmium Accumulation in the Brown Rice of 12 Chinese Rice (Oryza sativa L.) Cultivars.

    PubMed

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang

    2017-11-29

    For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.

  11. Understanding the role of DNA polymerase λ gene in different growth and developmental stages of Oryza sativa L. indica rice cultivars.

    PubMed

    Sihi, Sayantani; Maiti, Soumitra; Bakshi, Sankar; Nayak, Arup; Chaudhuri, Shubho; Sengupta, Dibyendu Narayan

    2017-11-01

    DNA polymerase λ (Pol λ) is the only member of DNA polymerase family X present in plants. The enzyme is ddNTP sensitive as it contains the conserved C-terminal Pol β domain. The 1.1 kb partial coding sequence isolated spanned the whole 3' regions of the gene containing functionally important domains of the Pol λ gene. Comparative in silico studies from both indica and japonica cultivars involving homology modelling showed that the model for the partial Pol λ gene was stable and acceptable. The alignment of both the protein models showed a RMS value of 0.783. Apart from this, expression of Pol λ and its relative activity is studied during different development stages of three different indica rice cultivars (IR29, Nonabokra and N22). Enhanced accumulation and higher activity of Pol λ during the early seedling stage was detected. Higher expression and activity were observed in the anthers, which was probably necessary for DNA repair during microspore formation. However, during the maturation stage of seed development and plant growth, expression and the activity of Pol λ decreased due to slow metabolic activity and a reduced rate of cell division respectively. Furthermore, the expression and activity of Pol λ were found to be higher in IR29 in comparison to Nonabokra and N22. IR29 is a rice cultivar susceptible to environmental stresses and hence it encounters higher DNA damages. The enhanced presence and activity of the Pol λ enzyme in IR29 with respect to the other two cultivars, which are more tolerant to the environmental stresses during various developmental stages, is therefore explainable. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication.

    PubMed

    Yu, Yanchun; Tang, Tian; Qian, Qian; Wang, Yonghong; Yan, Meixian; Zeng, Dali; Han, Bin; Wu, Chung-I; Shi, Suhua; Li, Jiayang

    2008-11-01

    Asian rice (Oryza sativa) cultivars originated from wild rice and can be divided into two subspecies by several criteria, one of which is the phenol reaction (PHR) phenotype. Grains of indica cultivars turn brown in a phenol solution that accelerates a similar process that occurs during prolonged storage. By contrast, the grains of japonica do not discolor. This distinction may reflect the divergent domestication of these two subspecies. The PHR is controlled by a single gene, Phr1; here, we report the cloning of Phr1, which encodes a polyphenol oxidase. The Phr1 gene is indeed responsible for the PHR phenotype, as transformation with a functional Phr1 can complement a PHR negative cultivar. Phr1 is defective in all japonica lines but functional in nearly all indica and wild strains. Phylogenetic analysis showed that the defects in Phr1 arose independently three times. The multiple recent origins and rapid spread of phr1 in japonica suggest the action of positive selection, which is further supported by several population genetic tests. This case may hence represent an example of artificial selection driving the differentiation among domesticated varieties.

  13. Multi-scale structures and functional properties of starches from Indica hybrid, Japonica and waxy rice.

    PubMed

    Wang, Shujun; Li, Peiyan; Yu, Jinglin; Guo, Peng; Wang, Shuo

    2017-09-01

    The structural and functional properties of starches from three rice grains differing in amylose content (19.9, 13.4 and 0.8% for Japonica, Indica hybrid and waxy rice, respectively) were investigated using a range of characterization methods Indica hybrid starch (IHS) had the highest proportion of intermediate (DP 13-24) and long branch chains (DP≥37) and the lowest proportion of short branch chains (DP 6-12), whereas the opposite results were observed for Japonica starch (JS). The results for waxy rice starch (WS) were between those of IHS and JS. Rice starches showed a typical A-type X-ray diffraction pattern with the relative crystallinity ranging from 33.4% for JS to 39.4% for WS. Significant differences were observed in lamellar distance and short-range molecular order characterized by IR ratio of absorbances at 1047/1022cm -1 and full width of half maximum (FWHM) of the band at 480cm -1 . WS showed a higher swelling power and a lower close packing concentration at temperatures from 60 to 90°C. The lower peak viscosity of WS was attributed to the formation of less rigid swollen granules at a concentrated regime. WS showed a higher in vitro digestibility compared with IHS and JS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of gamma irradiation on physicochemical, functional and pasting properties of some locally-produced rice (Oryza spp) cultivars in Ghana

    NASA Astrophysics Data System (ADS)

    Ocloo, Fidelis C. K.; Owureku-Asare, Mavis; Agyei-Amponsah, Joyce; Agbemavor, Wisdom S. K.; Egblewogbe, Martin N. Y. H.; Apea-Bah, Franklin B.; Sarfo, Adjoa; Apatey, John; Doku, Henry; Ofori-Appiah, Dora; Ayeh, Ernestina

    2017-01-01

    Rice (Oryza sativa L.) is a staple crop in Ghana and much of West Africa, where it serves as an important convenience food for urban consumers. The objective of this study was to determine the effect of gamma irradiation as insect disinfestation technique on some physicochemical, functional and pasting properties of selected locally-produced rice cultivars in Ghana. Four local rice cultivars and an imported (commercial) type were purchased, cleaned and irradiated at doses of 0.0, 0.25, 0.50, 0.75, 1.0 and 1.5 kGy. The irradiated rice cultivars were milled and their physicochemical, functional and pasting properties determined. There were reductions in pH and swelling power, as well as increase in solubility of rice cultivars after gamma irradiation. Gamma irradiation did not change the XRD pattern of the rice cultivars. Gamma irradiation significantly (P<0.05) decreased peak time for BAL and VNT rice cultivars. Gamma irradiation significantly (P<0.05) decreased PV, HPV, BDV, FV and SBV for all the rice cultivars. This study shows that flours from gamma irradiated rice cultivars have potential in food formulations that require low viscosity.

  15. Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar.

    PubMed

    Okada, Satoshi; Suehiro, Miki; Ebana, Kaworu; Hori, Kiyosumi; Onogi, Akio; Iwata, Hiroyoshi; Yamasaki, Masanori

    2017-12-01

    The grain traits of Yamadanishiki, an excellent sake-brewing rice cultivar in Japan, are governed by multiple QTLs, namely, a total of 42 QTLs including six major QTLs. Japanese rice wine (sake) is produced using brewing rice (Oryza sativa L.) that carries traits desirable for sake-brewing, such as a larger grain size and higher white-core expression rate (WCE) compared to cooking rice cultivars. However, the genetic basis for these traits in brewing rice cultivars is still unclear. We performed analyses of quantitative trait locus (QTL) of grain and days to heading over 3 years on populations derived from crosses between Koshihikari, a cooking rice, and Yamadanishiki, an excellent sake-brewing rice. A total of 42 QTLs were detected for the grain traits, and the Yamadanishiki alleles at 16 QTLs contributed to larger grain size. Two major QTLs essential for regulating both 100-grain weight (GWt) and grain width (GWh) were harbored in the same regions on chromosomes 5 and 10. An interaction was noted between the environment and the QTL associated with WCE on chromosome 6, which was detected in two of 3 years. In addition, two QTLs for WCE on chromosomes 3 and 10 overlapped with the QTLs for GWt and GWh, suggesting that QTLs associated with grain size also play an important role in the formation of white-core. Despite differences in the rate of grain growth in both Koshihikari and Yamadanishiki across 2 years, the WCE in Yamadanishiki remained consistent, thus demonstrating that the formation of white-core does not depend on grain filling speed. These data can be informative for programs involved in breeding better cooking and brewing rice cultivars.

  16. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica).

    PubMed

    Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2012-09-01

    Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.

  17. Factors affecting variation in CH4 emission from paddy soils grown with different rice cultivars: A pot experiment

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira; Kimura, Makoto

    1998-08-01

    The growth of rice plants greatly influences CH4 emission from paddy fields through the supply of organic materials such as root exudates and sloughed tissues, the release of oxygen to the root environment, and the transfer of CH4 from the rhizosphere into the atmosphere through the aerenchyma. In the present pot experiments, the effects of the release of water-soluble organic substances from roots, the air space in roots, and the CH4-oxidizing capacity of roots on intervarietal differences in CH4 emission were examined using three Japonica type cultivars (Norin 25, Nipponbare, and Aoinokaze), which differ in morphological properties. The CH4 emission rates varied among the cultivars from mid-July (tillering stage) to the beginning of September (heading stage).Total CH4 emission throughout the rice growth period was largest for Norin 25, followed by Nipponbare, and Aoinokaze. In August, the rate of release of water-soluble organic substances from roots was largest for Norin 25. The air space in roots was also largest in Norin 25 and least in Aoinokaze. The stable carbon isotopic ratios (δ13C) of CH4 in roots were 3-10‰ higher than those in soil in August. The difference in δ13C values of CH4 between roots and soil was largest for Aoinokaze and smallest for Norin 25. In September, the difference in δ13C values of CH4 between roots and soil became small (2-3‰). These findings suggest that the proportion of CH4 oxidation in the rhizosphere was largest in the cultivar which emitted the smallest amount of CH4 and that the proportion became smaller with continued plant growth.

  18. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn

    2015-01-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  19. The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice

    PubMed Central

    Choi, Jae Young; Platts, Adrian E.; Fuller, Dorian Q.; Hsing (邢禹依), Yue-Ie; Wing, Rod A.

    2017-01-01

    Abstract The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1–24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice. PMID:28087768

  20. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation.

  1. High-quality Italian rice cultivars: chemical indices of ageing and aroma quality.

    PubMed

    Griglione, Alessandra; Liberto, Erica; Cordero, Chiara; Bressanello, Davide; Cagliero, Cecilia; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara

    2015-04-01

    The volatile fractions of six Italian high-quality rice cultivars were investigated by HS-SPME-GC-MS to define fingerprinting and identify chemical markers and/or indices of ageing and aroma quality. In particular, four non-aromatic (Carnaroli, Carnise, Cerere and Antares) and two aromatic (Apollo and Venere) rices, harvested in 2010 and 2011, were monitored over 12months. Twenty-five aroma components were considered and, despite considerable inter-annual variability, some of them showed similar trends over time, including 2-(E)-octenal as a marker of ageing for all cultivars, and heptanal, octanal and 2-ethyl hexanol as cultivar-specific indicators. The area ratios 2-acetyl-1-pyrroline/1-octen-3-ol, for Venere, and 3-methyl-1-butanol/2-methyl-1-butanol, for Apollo, were also found to act as ageing indices. Additional information on release of key-aroma compounds was also obtained from quantitation and its dependence on grain shape and chemical composition. Heptanal/1-octen-3-ol and heptanal/octanal ratios were also defined as characterising the aroma quality indices of the six Italian rice cultivars investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation.

    PubMed

    Gong, Chun Yan; Li, Qi; Yu, Hua Tao; Wang, Zizhang; Wang, Tai

    2012-05-04

    The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.

  3. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    PubMed

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  4. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    PubMed

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  5. Comparing simple root phenotyping methods on a core set of rice genotypes.

    PubMed

    Shrestha, R; Al-Shugeairy, Z; Al-Ogaidi, F; Munasinghe, M; Radermacher, M; Vandenhirtz, J; Price, A H

    2014-05-01

    Interest in belowground plant growth is increasing, especially in relation to arguments that shallow-rooted cultivars are efficient at exploiting soil phosphorus while deep-rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil-filled rhizotrons, hydroponics and soil-filled pots whose bottom was sealed with a non-woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the OryzaSNP set of 20 cultivars, additional parents of mapping populations and products of marker-assisted selection for root QTLs were assessed. A novel method of image analysis for assessing rooting angles from rhizotron photographs was employed. The non-woven fabric was the easiest yet least discriminatory method, while the rhizotron was highly discriminatory and allowed the most traits to be measured but required more than three times the labour of the other methods. The hydroponics was both easy and discriminatory, allowed temporal measurements, but is most likely to suffer from artefacts. Image analysis of rhizotrons compared favourably to manual methods for discriminating between cultivars. Previous observations that cultivars from the indica subpopulation have shallower rooting angles than aus or japonica cultivars were confirmed in the rhizotrons, and indica and temperate japonicas had lower maximum root lengths in rhizotrons and hydroponics. It is concluded that rhizotrons are the preferred method for root screening, particularly since root angles can be assessed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Novel method for preparation of the template DNA and selection of primers to differentiate the material rice cultivars of rice wine by PCR.

    PubMed

    Ohtsubo, Ken'ichi; Suzuki, Keitaro; Haraguchi, Kazutomo; Nakamura, Sumiko

    2008-04-24

    As many rice wine brewers label the name of the cultivar of the material rice, authentication technology is necessary. The problems are (1) decomposition of DNAs during the fermentation, (2) contamination of DNAs from microorganisms, (3) co-existence of PCR inhibitors, such as polyphenols. The present authors improved the PCR method by (1) lyophilizing and pulverizing the rice wine to concentrate DNAs, (2) decomposition of starches and proteins so as not to inhibit DNA extraction by the use of heat-resistant amylase and proteinase K, (3) purification of the template DNA by the combination of CTAB method and fractional precipitation by 70% EtOH. To prevent the amplification of microorganism's DNAs during PCR, the present authors selected the suitable plant-specific primers. It became possible to prepare the template DNAs for PCR from the rice wine. The sequences of the amplified DNAs by PCR were ascertained to be same with those of material rice. Mislabeling of material rice cultivar was detected by PCR using the commercial rice wine. It became possible to extract and purify the template DNAs for PCR from the rice wine and to differentiate the material rice cultivars by the PCR using the rice wine as a sample.

  7. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  8. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    PubMed

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas.

    PubMed

    Mir, Shabir Ahmad; Bosco, Sowriappan John Don

    2014-08-15

    Starch and flour of seven temperate rice cultivars grown in Himalayan region were evaluated for composition, granule structure, crystallinity, Raman spectrometry, turbidity, swelling power, solubility, pasting properties and textural properties. The rice cultivars showed medium to high amylose content for starch (24.69-32.76%) and flour (17.78-24.86%). SKAU-382 showed the highest amount of amylose (32.76%). Rice starch showed polyhedral granule shapes and differences in their mean granule size (2.3-6.5 μm) were noted among the samples. The starch and flour samples showed type A-pattern with strong reflection at 15, 18, and 23. Pasting profile and textural analysis of rice starch and flour showed that all the cultivars differences, probably due to variation in amylose content. The present study can be used for identifying differences between rice genotypes for starch and flour quality and could provide guidance to possible industries for their end use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    PubMed

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  11. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    NASA Astrophysics Data System (ADS)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  12. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China)

    PubMed Central

    Liu, Xiaojun; Ferguson, Richard B.; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI=(1+e−15.2829×(RAGDDi−0.1944))−1−(1+e−11.6517×(RAGDDi−1.0267))−1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status. PMID:28338637

  13. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    PubMed

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  14. Volatile profile of aromatic and non-aromatic rice cultivars using SPME/GC-MS

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is enjoyed by many people as a staple food because of its flavor and texture. Some cultivars, like scented rice, are preferred over others due to their distinctive aroma and flavor. The volatile profile of rice has been explored by many investigators, some of whom have also ...

  15. Volatile profile of aromatic and non-aromatic rice cultivars using SPME/GC-MS

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is enjoyed by many people as a staple food because of its flavor and texture. Some cultivars, like scented rice, are preferred over others due to their distinctive aroma and flavor. The volatile profile of rice has been explored by many investigators, some of whom have deter...

  16. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production.

    PubMed

    Jamil, Muhammad; Rodenburg, Jonne; Charnikhova, Tatsiana; Bouwmeester, Harro J

    2011-12-01

    Striga hermonthica (Striga) is an obligate hemiparasitic weed, causing severe yield losses in cereals, including rice, throughout sub-Saharan Africa. Striga germination depends on strigolactones (germination stimulants) exuded by the host roots. The interspecific New Rice for Africa (NERICA) cultivars offer a potentially interesting gene pool for a screen for low germination-inducing rice cultivars. Exudates were collected from all NERICA cultivars and their parents (Oryza sativa and Oryza glaberrima) for the analysis of strigolactones. In vitro and in situ Striga germination, attachment and emergence rates were recorded for each cultivar. NERICA 1 and CG14 produced significantly less strigolactones and showed less Striga infection than the other cultivars. NERICAs 7, 8, 11 and 14 produced the largest amounts of strigolactones and showed the most severe Striga infection. Across all the cultivars and parents, there was a positive relationship between the amount of strigolactones in the exudate and Striga germination, attachment and emergence rates. This study shows that there is genetic variation in Striga pre-attachment resistance in NERICA rice. Cultivars combining this pre-attachment resistance with post-attachment resistance (already identified) can provide a key component for durable integrated management of this noxious weed in cereal production systems in sub-Saharan Africa. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.

    PubMed

    Feltus, F Alex; Wan, Jun; Schulze, Stefan R; Estill, James C; Jiang, Ning; Paterson, Andrew H

    2004-09-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.

  18. An SNP Resource for Rice Genetics and Breeding Based on Subspecies Indica and Japonica Genome Alignments

    PubMed Central

    Feltus, F. Alex; Wan, Jun; Schulze, Stefan R.; Estill, James C.; Jiang, Ning; Paterson, Andrew H.

    2004-01-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% ± 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% ± 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp. PMID:15342564

  19. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).

    PubMed

    Silveira, R D D; Abreu, F R M; Mamidi, S; McClean, P E; Vianello, R P; Lanna, A C; Carneiro, N P; Brondani, C

    2015-07-27

    Gene expression related to drought response in the leaf tissues of two Brazilian upland cultivars, the drought-tolerant Douradão and the drought-sensitive Primavera, was analyzed. RNA-seq identified 27,618 transcripts in the Douradão cultivar, with 24,090 (87.2%) homologous to the rice database, and 27,221 transcripts in the Primavera cultivar, with 23,663 (86.9%) homologous to the rice database. Gene-expression analysis between control and water-deficient treatments revealed 493 and 1154 differentially expressed genes in Douradão and Primavera cultivars, respectively. Genes exclusively expressed under drought were identified for Douradão, including two genes of particular interest coding for the protein peroxidase precursor, which is involved in three distinct metabolic pathways. Comparisons between the two drought-exposed cultivars revealed 2314 genes were differentially expressed (978 upregulated, 1336 downregulated in Douradão). Six genes distributed across 4 different transcription factor families (bHLH, MYB, NAC, and WRKY) were identified, all of which were upregulated in Douradão compared to Primavera during drought. Most of the genes identified in Douradão activate metabolic pathways responsible for production of secondary metabolites and genes coding for enzymatically active signaling receptors. Quantitative PCR validation showed that most gene expression was in agreement with computational prediction of these transcripts. The transcripts identified here will define molecular markers for identification of Cis-acting elements to search for allelic variants of these genes through analysis of polymorphic SNPs in GenBank accessions of upland rice, aiming to develop cultivars with the best combination of these alleles, resulting in materials with high yield potential in the event of drought during the reproductive phase.

  20. Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.).

    PubMed

    Kawakami, Shin-ichi; Ebana, Kaworu; Nishikawa, Tomotaro; Sato, Yo-ichiro; Vaughan, Duncan A; Kadowaki, Koh-ichi

    2007-02-01

    Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.

  1. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  2. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars.

    PubMed

    Nakamura, Sumiko; Cui, Jing; Zhang, Xin; Yang, Fan; Xu, Ximing; Sheng, Hua; Ohtsubo, Ken'ichi

    2016-12-01

    In this study, we evaluated 16 Japanese and Chinese rice cultivars in terms of their main chemical components, iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch content, physical properties, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and enzyme activity. Based on these quality evaluations, we concluded that Chinese rice varieties are characterized by a high protein and the grain texture after cooking has high hardness and low stickiness. In a previous study, we developed a novel formula for estimating AAC based on the iodine absorption curve. The validation test showed a determination coefficient of 0.996 for estimating AAC of Chinese rice cultivars as unknown samples. In the present study, we developed a novel formulae for estimating the balance degree of the surface layer of cooked rice (A3/A1: a ratio of workload of stickiness and hardness) based on the iodine absorption curve obtained using milled rice.

  3. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).

    PubMed

    Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E

    2009-03-11

    The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P < 0.001) decreases in the anthocyanins identified. Pressure cooking resulted in the greatest loss of cyanidin-3-glucoside (79.8%) followed by the rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.

  4. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    PubMed

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  5. Construction of Pseudomolecule Sequences of the aus Rice Cultivar Kasalath for Comparative Genomics of Asian Cultivated Rice

    PubMed Central

    Sakai, Hiroaki; Kanamori, Hiroyuki; Arai-Kichise, Yuko; Shibata-Hatta, Mari; Ebana, Kaworu; Oono, Youko; Kurita, Kanako; Fujisawa, Hiroko; Katagiri, Satoshi; Mukai, Yoshiyuki; Hamada, Masao; Itoh, Takeshi; Matsumoto, Takashi; Katayose, Yuichi; Wakasa, Kyo; Yano, Masahiro; Wu, Jianzhong

    2014-01-01

    Having a deep genetic structure evolved during its domestication and adaptation, the Asian cultivated rice (Oryza sativa) displays considerable physiological and morphological variations. Here, we describe deep whole-genome sequencing of the aus rice cultivar Kasalath by using the advanced next-generation sequencing (NGS) technologies to gain a better understanding of the sequence and structural changes among highly differentiated cultivars. The de novo assembled Kasalath sequences represented 91.1% (330.55 Mb) of the genome and contained 35 139 expressed loci annotated by RNA-Seq analysis. We detected 2 787 250 single-nucleotide polymorphisms (SNPs) and 7393 large insertion/deletion (indel) sites (>100 bp) between Kasalath and Nipponbare, and 2 216 251 SNPs and 3780 large indels between Kasalath and 93-11. Extensive comparison of the gene contents among these cultivars revealed similar rates of gene gain and loss. We detected at least 7.39 Mb of inserted sequences and 40.75 Mb of unmapped sequences in the Kasalath genome in comparison with the Nipponbare reference genome. Mapping of the publicly available NGS short reads from 50 rice accessions proved the necessity and the value of using the Kasalath whole-genome sequence as an additional reference to capture the sequence polymorphisms that cannot be discovered by using the Nipponbare sequence alone. PMID:24578372

  6. RFLP Mapping of Genes Conferring Complete and Partial Resistance to Blast in a Durably Resistant Rice Cultivar

    PubMed Central

    Wang, G. L.; Mackill, D. J.; Bonman, J. M.; McCouch, S. R.; Champoux, M. C.; Nelson, R. J.

    1994-01-01

    Moroberekan, a japonica rice cultivar with durable resistance to blast disease in Asia, was crossed to the highly susceptible indica cultivar, CO39, and 281 F(7) recombinant inbred (RI) lines were produced by single seed descent. The population was evaluated for blast resistance in the greenhouse and the field, and was analyzed with 127 restriction fragment length polymorphism (RFLP) markers. Two dominant loci associated with qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and Pi-7(t). They were mapped on chromosomes 4 and 11, respectively. To identify quantitative trait loci (QTLs) affecting partial resistance, RI lines were inoculated with isolate PO6-6 of Pyricularia oryzae in polycyclic tests. Ten chromosomal segments were found to be associated with effects on lesion number (P < 0.0001 and LOD > 6.0). Three of the markers associated with QTLs for partial resistance had been reported to be linked to complete blast resistance in previous studies. QTLs identified in greenhouse tests were good predictors of blast resistance at two field sites. This study illustrates the usefulness of RI lines for mapping a complex trait such as blast resistance and suggests that durable resistance in the traditional variety, Moroberekan, involves a complex of genes associated with both partial and complete resistance. PMID:7912216

  7. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  8. Anaerobic conditions improve germination of a gibberellic acid deficient rice.

    PubMed

    Frantz, Jonathan M; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  9. Mapping osmotic adjustment in an advanced back-cross inbred population of rice.

    PubMed

    Robin, S; Pathan, M S; Courtois, B; Lafitte, R; Carandang, S; Lanceras, S; Amante, M; Nguyen, H T; Li, Z

    2003-11-01

    Osmotic adjustment is one of several characters putatively associated with drought tolerance in rice. Indica cultivars are known to have a greater capacity for osmotic adjustment than japonica cultivars. We developed an advanced back-cross population using an indica donor, IR62266-42-6-2, to introgress osmotic adjustment into an elite japonica cultivar, IR60080-46A. One hundred and fifty BC(3)F(3) families were genotyped using microsatellites and RFLP markers, and a few candidate genes. We evaluated osmotic adjustment in these lines under greenhouse conditions using the re-hydration technique. Using the composite interval mapping technique, we detected 14 QTLs located on chromosomes 1, 2, 3, 4, 5, 7, 8 and 10 that together explained 58% of the phenotypic variability. Most, but not all, of the alleles with positive effects came from the donor parent. On chromosome 8, two QTLs were associated in repulsion. The QTL locations were in good agreement with previous studies on this trait on rice and in other cereals. Some BC(3)F(3) lines carried the favorable alleles at the two markers flanking up to four QTLs. Intercrossing these lines followed by marker-aided selection in their progenies will be necessary to recover lines with levels of osmotic adjustment equal to the donor parent. The advanced back-cross strategy appeared to be an appropriate method to accelerate the process of introgressing interesting traits into elite material.

  10. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    PubMed Central

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  11. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    PubMed

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  12. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice

    PubMed Central

    Uraguchi, Shimpei; Mori, Shinsuke; Kuramata, Masato; Kawasaki, Akira; Arao, Tomohito; Ishikawa, Satoru

    2009-01-01

    Physiological properties involved in divergent cadmium (Cd) accumulation among rice genotypes were characterized using the indica cultivar ‘Habataki’ (high Cd in grains) and the japonica cultivar ‘Sasanishiki’ (low Cd in grains). Time-dependence and concentration-dependence of symplastic Cd absorption in roots were revealed not to be responsible for the different Cd accumulation between the two cultivars because root Cd uptake was not greater in the Cd-accumulating cultivar ‘Habataki’ compared with ‘Sasanishiki’. On the other hand, rapid and greater root-to-shoot Cd translocation was observed in ‘Habataki’, which could be mediated by higher abilities in xylem loading of Cd and transpiration rate as a driving force. To verify whether different abilities in xylem-mediated shoot-to-root translocation generally account for the genotypic variation in shoot Cd accumulation in rice, the world rice core collection, consisting of 69 accessions which covers the genetic diversity of almost 32 000 accessions of cultivated rice, was used. The results showed strong correlation between Cd levels in xylem sap and shoots and grains among the 69 rice accessions. Overall, the results presented in this study revealed that the root-to-shoot Cd translocation via the xylem is the major and common physiological process determining the Cd accumulation level in shoots and grains of rice plants. PMID:19401409

  13. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments

    PubMed Central

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography–mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0–15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6–9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7–9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon

  14. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

    PubMed

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration

  15. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    PubMed Central

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  16. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-06-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice.

  17. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems

    USDA-ARS?s Scientific Manuscript database

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions and determine to what extent choice of cultivar may have on GHG mitigation. We compared methane (CH4) and...

  18. Arsenic biotransformation and volatilization in transgenic rice

    PubMed Central

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Summary Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa L.) cultivar Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Both monomethylarsenate [MAs(V)] and dimethylarsenate [DMAs(V)] were detected in the root and shoot of transgenic rice. After 12-d exposure to As(III), the transgenic rice gave off 10-fold more volatile arsenicals. The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, providing a potential stratagem for phytoremediation theoretically. PMID:21517874

  19. Ancient rice cultivar extensively replaces phospholipids with non-phosphorus glycolipid under phosphorus deficiency.

    PubMed

    Tawaraya, Keitaro; Honda, Soichiro; Cheng, Weiguo; Chuba, Masaru; Okazaki, Yozo; Saito, Kazuki; Oikawa, Akira; Maruyama, Hayato; Wasaki, Jun; Wagatsuma, Tadao

    2018-02-07

    Recycling of phosphorus (P) from P-containing metabolites is an adaptive strategy of plants to overcome soil P deficiency. This study was aimed at demonstrating differences in lipid remodelling between low-P-tolerant and -sensitive rice cultivars using lipidome profiling. The rice cultivars Akamai (low-P-tolerant) and Koshihikari (low-P-sensitive) were grown in a culture solution with [2 mg l -1 (+P)] or without (-P) phosphate for 21 and 28 days after transplantation. Upper and lower leaves were collected. Lipids were extracted from the leaves and their composition was analysed by liquid chromatography/mass spectrometry (LC-MS). Phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC), diacylglycerol (DAG), triacylglycerol (TAG) and glycolipids, namely sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and 1,2-diacyl-3-O-alpha-glucuronosyl glycerol (GlcADG), were detected. GlcADG level was higher in both cultivars grown in -P than in +P and the increase was larger in Akamai than in Koshihikari. DGDG, MGDG and SQDG levels were higher in Akamai grown in -P than in +P and the increase was larger in the upper leaves than in the lower leaves. PC, PE, PG and PI levels were lower in both cultivars grown in -P than in +P and the decrease was larger in the lower leaves than in the upper leaves and in Akamai than in Koshihikari. Akamai catabolised more phospholipids in older leaves and synthesised glycolipids in younger leaves. These results suggested that extensive phospholipid replacement with non-phosphorus glycolipids is a mechanism underlying low-P-tolerance in rice cultivars. © 2018 Scandinavian Plant Physiology Society.

  20. Role of gamma-oryzanol in drought-tolerant and susceptible cultivars of rice (Oryza sativa L.).

    PubMed

    Kumar, M S Sujith; Dahuja, Anil; Rai, R D; Walia, Suresh; Tyagi, Aruna

    2014-02-01

    Drought-tolerant cultivars and their phytochemical composition, which has a role in providing drought tolerance are gaining importance. In this study, rice bran oil and semi-purified oryzanol (SPO) obtained from five rice (Oryza sativa L.) cultivars, namely P1401 and PB1 (drought-susceptible) and N22, PNR381 and APO (drought-tolerant) were analyzed for the gamma-oryzanol content, an antioxidant present in considerable amount in the rice bran. The higher level of gamma-oryzanol and its antioxidant activity was observed in drought-tolerant cultivars (N22, PNR381 and APO) as compared to drought-susceptible (PB1 and P1401), suggesting the role of gamma-oryzanol in drought tolerance, as antioxidants are known to play an important role by scavenging free radicals. The total antioxidant activity of gamma-oryzanol might be attributed to 24-methylene cycloartanyl ferulate, a major component of gamma-oryzanol. By enhancing the level of active oryzanol components identified in this study by genetic and molecular means could impart increased drought tolerance.

  1. Rice-Map: a new-generation rice genome browser.

    PubMed

    Wang, Jun; Kong, Lei; Zhao, Shuqi; Zhang, He; Tang, Liang; Li, Zhe; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2011-03-30

    The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  2. Variation among conventional cultivars could be used as a criterion for environmental safety assessment of Bt rice on nontarget arthropods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Dang, Cong; Chang, Xuefei; Tian, Junce; Lu, Zengbin; Chen, Yang; Ye, Gongyin

    2017-02-01

    The current difficulty facing risk evaluations of Bacillus thuringiensis (Bt) crops on nontarget arthropods (NTAs) is the lack of criteria for determining what represents unacceptable risk. In this study, we investigated the biological parameters in the laboratory and field population abundance of Nilaparvata lugens (Hemiptera: Delphacidae) on two Bt rice lines and the non-Bt parent, together with 14 other conventional rice cultivars. Significant difference were found in nymphal duration and fecundity of N. lugens fed on Bt rice KMD2, as well as field population density on 12 October, compared with non-Bt parent. However, compared with the variation among conventional rice cultivars, the variation of each parameter between Bt rice and the non-Bt parent was much smaller, which can be easily seen from low-high bar graphs and also the coefficient of variation value (C.V). The variation among conventional cultivars is proposed to be used as a criterion for the safety assessment of Bt rice on NTAs, particularly when statistically significant differences in several parameters are found between Bt rice and its non-Bt parent. Coefficient of variation is suggested as a promising parameter for ecological risk judgement of IRGM rice on NTAs.

  3. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and

  4. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    PubMed

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (<0.1mgkg -1 ); therefore, they should be prioritized as safe cultivars for sites with potential contamination. Moreover, the iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of nitrogen rate and the environment on physicochemical properties of selected high amylose rice cultivars

    USDA-ARS?s Scientific Manuscript database

    Genetic marker haplotypes for the Waxy and alk genes are associated with amylose content and gelatinization temperature, respectively, and are used by breeders to develop rice cultivars that have physicochemical properties desired by the parboiling and canning industries. Cultivars that provide cons...

  6. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar.

    PubMed

    Yan-Bing, He; Dao-You, Huang; Qi-Hong, Zhu; Shuai, Wang; Shou-Long, Liu; Hai-Bo, He; Han-Hua, Zhu; Chao, Xu

    2017-02-01

    To mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield. Among these, the LS and LSB treatments reduced the brown rice Cd content by 38.3-69.1% and 58.3-70.9%, respectively, during the three seasons. Combined with planting of a low-Cd-accumulation rice cultivar (Xiang Zaoxian 32) resulted in a Cd content in brown rice that met the contaminant limit (≤0.2mgkg -1 ). However, the grain yield of the low-Cd-accumulation rice cultivar was approximately 30% lower than the other two rice cultivars. Applying LS or LSB as amendments combined with planting a low-Cd-accumulation rice cultivar is recommended for the remediation of Cd-contaminated paddy soil. The selection and breeding of low-Cd-accumulation rice cultivars with high grain production requires further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach

    PubMed Central

    Borah, Pratikshya; Sharma, Eshan; Kaur, Amarjot; Chandel, Girish; Mohapatra, Trilochan; Kapoor, Sanjay; Khurana, Jitendra P.

    2017-01-01

    Traditional cultivars of rice in India exhibit tolerance to drought stress due to their inherent genetic variations. Here we present comparative physiological and transcriptome analyses of two contrasting cultivars, drought tolerant Dhagaddeshi (DD) and susceptible IR20. Microarray analysis revealed several differentially expressed genes (DEGs) exclusively in DD as compared to IR20 seedlings exposed to 3 h drought stress. Physiologically, DD seedlings showed higher cell membrane stability and differential ABA accumulation in response to dehydration, coupled with rapid changes in gene expression. Detailed analyses of metabolic pathways enriched in expression data suggest interplay of ABA dependent along with secondary and redox metabolic networks that activate osmotic and detoxification signalling in DD. By co-localization of DEGs with QTLs from databases or published literature for physiological traits of DD and IR20, candidate genes were identified including those underlying major QTL qDTY1.1 in DD. Further, we identified previously uncharacterized genes from both DD and IR20 under drought conditions including OsWRKY51, OsVP1 and confirmed their expression by qPCR in multiple rice cultivars. OsFBK1 was also functionally validated in susceptible PB1 rice cultivar and Arabidopsis for providing drought tolerance. Some of the DEGs mapped to the known QTLs could thus, be of potential significance for marker-assisted breeding. PMID:28181537

  8. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice

    PubMed Central

    Wang, Hongru; Vieira, Filipe G.; Crawford, Jacob E.; Chu, Chengcai; Nielsen, Rasmus

    2017-01-01

    The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon, are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus, indica, and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica, possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. PMID:28385712

  9. Potential of Bacillus cereus strain RS87 for partial replacement of chemical fertilisers in the production of Thai rice cultivars.

    PubMed

    Jetiyanon, Kanchalee; Plianbangchang, Pinyupa

    2012-03-30

    There is increasing interest in the development of technologies which can reduce the requirement for chemical fertilisers in rice production. The objective of this study was to investigate the efficacy of Bacillus cereus strain RS87 for the partial replacement of chemical fertiliser in rice production. A greenhouse experiment was designed using different fertiliser regimes, with and without strain RS87. Six Thai rice cultivars were tested separately. Maximum rice growth and yield were obtained in rice receiving the full recommended fertiliser rate in combination with the strain RS87. Interestingly, all rice cultivars which were treated with strain RS87 and 50% recommended fertiliser rate provided equivalent plant growth and yield to that receiving the full recommended fertiliser rate only. A paired comparison between rice treated with 50% of the recommended fertiliser rate with the bacterial inoculant and the full fertiliser rate alone was further examined in small experimental rice paddy fields. Growth and yield of all rice cultivars which received the 50% fertiliser rate supplemented with strain RS87 gave a similar yield to that receiving the full fertiliser rate alone. Bacterial strain RS87 showed the potential to replace 50% of the recommended fertiliser rate for yield production. Integration of plant growth-promoting rhizobacterial inoculants with reduced application rates of chemical fertiliser appears promising for future agriculture. Copyright © 2012 Society of Chemical Industry.

  10. Differential morphological, cytological and biochemical responses of two rice cultivars to coumarin

    USDA-ARS?s Scientific Manuscript database

    Plants are often exposed to allelochemicals in the environment produced by neighboring plants. Coumarin is a common allelochemical produced by many higher plants. Two cultivars (susceptible BS-2000 and less susceptible BR-41) of rice (Oryza sativa L.) were selected to compare their differential root...

  11. Interdependency of Reactive Oxygen Species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice.

    PubMed

    Kaur, Navdeep; Dhawan, Manish; Sharma, Isha; Pati, Pratap Kumar

    2016-06-10

    Salinity stress is a major constrain in the global rice production and hence serious efforts are being undertaken towards deciphering its remedial strategies. The comparative analysis of differential response of salt sensitive and salt tolerant lines is a judicious approach to obtain essential clues towards understanding the acquisition of salinity tolerance in rice plants. However, adaptation to salt stress is a fairly complex process and operates through different mechanisms. Among various mechanisms involved, the reactive oxygen species mediated salinity tolerance is believed to be critical as it evokes cascade of responses related to stress tolerance. In this background, the present paper for the first time evaluates the ROS generating and the scavenging system in tandem in both salt sensitive and salt tolerant cultivars of rice for getting better insight into salinity stress adaptation. Comparative analysis of ROS indicates the higher level of hydrogen peroxide (H2O2) and lower level of superoxide ions (O(2-)) in the salt tolerant as compared to salt sensitive cultivars. Specific activity of ROS generating enzyme, NADPH oxidase was also found to be more in the tolerant cultivars. Further, activities of various enzymes involved in enzymatic and non enzymatic antioxidant defence system were mostly higher in tolerant cultivars. The transcript level analysis of antioxidant enzymes were in alignment with the enzymatic activity. Other stress markers like proline were observed to be higher in tolerant varieties whereas, the level of malondialdehyde (MDA) equivalents and chlorophyll content were estimated to be more in sensitive. The present study showed significant differences in the level of ROS production and antioxidant enzymes activities among sensitive and tolerant cultivars, suggesting their possible role in providing natural salt tolerance to selected cultivars of rice. Our study demonstrates that the cellular machinery for ROS production and scavenging system

  12. Physicochemical, functional, and nutritional characteristics of stabilized rice bran form tarom cultivar.

    PubMed

    Rafe, Ali; Sadeghian, Alireza; Hoseini-Yazdi, Seyedeh Zohreh

    2017-05-01

    Extrusion is a multistep thermal process which has been utilized in a wide spectrum of food preparations. The effect of extrusion processing on the physicochemical, nutritional, and functional properties of Tarom cultivar rice bran was studied. However, the color of rice bran was improved by extrusion processing, but the protein content was reduced in the stabilized rice bran, which can be related to the denaturation of protein. Extrusion had also a reduction significant effect on the phytic acid as well as vitamin E in rice bran. However, the content of niacin, riboflavin, pantothenic acid, and folic acid remained unchanged, but the dietary fiber was enhanced which has beneficial health effect on human consumption. In comparison with unstabilized rice bran, water holding capacity was enhanced, but the oil absorption capacity was reduced. Foaming capacity and foaming stability of extruded rice bran was more than that of untreated rice bran, although they were less than that of rice bran protein concentrate/isolate. In general, the extrusion process improves some functional and nutritional properties of rice bran which are valuable to industrial applications and have potential as ingredient in food to improve consumer health.

  13. Growth characteristics of a weed-suppressive indica x non-suppressive tropical japonica rice mapping population

    USDA-ARS?s Scientific Manuscript database

    The indica rice cultivar, PI 312777, can be highly productive as well as suppressive to C4 grass species such as barnyardgrass (Echinochloa crus-galli). A recombinant inbred line (RIL) mapping population was developed using single seed descent from a cross between ‘Katy’ (non-weed-suppressive) and ...

  14. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica).

    PubMed

    Liu, Jing; Dhungana, Birendra; Cobb, George P

    2018-05-04

    Arsenic (As) causes phytotoxicity to rice plants, decreases rice production and causes serious human health concerns due to rice consumption. Additional stresses may be posed to rice plants due to the increasing release into the environment by the expanding production and application of copper oxide nanoparticles (nCuO). The influence of nCuO on As uptake in and effects on rice (Oryza sativa japonica) are explored here for the first time. An 18-d factorial experiment was conducted to determine main effects of nCuO (0, 0.1, 1.0, 10, 50, and 100 mg/L) and As (0 and 10 mg/kg), and the interaction between nCuO and As on rice seed germination and seedling growth. Arsenic alone decreased the germination percentage. Both As and nCuO reduced seedling shoot and root length, and exhibited interactive effects. nCuO and As also produced an interaction effect on the number of root branches (NRB) of rice seedlings. Notably, high nCuO concentrations (50 and 100 mg/L) mitigated the negative effect of As on the NRB. Copper uptake in shoots and roots was linearly correlated with Cu concentration in the sand without As addition (R 2  > 0.756). Whereas, As addition to the sand produced non-monotonic changes in Cu concentrations in shoots and roots versus Cu concentration in the sand (R 2  > 0.890). Arsenic concentration in shoots had a slightly negative linear correlation with Cu concentration in the sand (R 2  = 0.275). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Use of the Rice Diversity Panel 1 to map traits important for rice improvement

    USDA-ARS?s Scientific Manuscript database

    The ‘Rice Diversity Panel 1’ (RDP1) is composed of 421 diverse Oryza sativa accessions from 79 countries, including indica and aus which belong to the Indica varietal group, and tropical japonica, temperate japonica, and aromatic (Group V) which comprise the Japonica varietal group. This panel was ...

  16. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  17. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice.

    PubMed

    Wang, Hongru; Vieira, Filipe G; Crawford, Jacob E; Chu, Chengcai; Nielsen, Rasmus

    2017-06-01

    The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon , are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus , indica , and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica , possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Black rice (Oryza sativa L. var. japonica) hydrolyzed peptides induce expression of hyaluronan synthase 2 gene in HaCaT keratinocytes.

    PubMed

    Sim, Gwan Sub; Lee, Dong-Hwan; Kim, Jin-Hwa; An, Sung-Kwan; Choe, Tae-Boo; Kwon, Tae-Jong; Pyo, Hyeong-Bae; Lee, Bum-Chun

    2007-02-01

    Black rice (Oryza sativa L. var. japonica) has been used in folk medicine in Asia. To understand the effects of black rice hydrolyzed peptides (BRP) from germinated black rice, we assessed the expression levels of about 20,000 transcripts in BRP-treated HaCaT keratinocytes using human 1A oligo microarray analysis. As a result, the BRP treatment showed a differential expression ratio of more than 2-fold: 745 were activated and 1,011 were repressed. One of the most interesting findings was a 2-fold increase in hyaluronan synthase 2 (HAS2) gene expression by BRP. Semiquantitative RT-PCR showed that BRP increased HAS2 mRNA in dose-dependent manners. ELISA showed that BRP effectively increased hyaluronan (HA) production in HaCaT keratinocytes.

  19. Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment.

    PubMed

    Jabran, Khawar; Riaz, Muhammad; Hussain, Mubshar; Nasim, Wajid; Zaman, Umar; Fahad, Shah; Chauhan, Bhagirath Singh

    2017-05-01

    Growing rice with less water is direly needed due to declining water sources worldwide, but using methods that require less water inputs can have an impact on grain characteristics and recovery. A 2-year field study was conducted to evaluate the impact of conventionally sown flooded rice and low-water-input rice systems on the grain characteristics and recovery of fine rice. Three fine grain rice cultivars-Super Basmati, Basmati 2000, and Shaheen Basmati-were grown under conventional flooded transplanted rice (CFTR), alternate wetting and drying (AWD), and aerobic rice systems. Grain characteristics and rice recovery were significantly influenced by different water regimes (production systems). Poor milling, including the lowest percentage of brown (head) rice (65.3%) and polished (white) rice (64.2-66.9%) and the highest percentage of broken brown rice (10.2%), husk (24.5%-26.3%), polished broken rice (24.7%), and bran (11.0-12.5%), were recorded in the aerobic rice system sown with Shaheen Basmati. With a few exceptions, cultivars sown in CFTR were found to possess a higher percentage of brown (head) and polished (white) rice and they had incurred the least losses in the form of brown broken rice, husk, polished broken rice, and bran. In conclusion, better grain quality and recovery of rice can be attained by growing Super Basmati under the CFTR system. Growing Shaheen Basmati under low-water-input systems, the aerobic rice system in particular, resulted in poor grain characteristics tied with less rice recovery.

  20. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing.

    PubMed

    Lee, Seul; Lee, Ju Hun; Chung, Hyun-Jung

    2017-08-01

    The objective of this study was to determine the molecular and crystalline structures of starches from diverse rice cultivars for three major food processing in Korea (cooked rice, brewing and rice cake). Rice starches were isolated from 10 different rice varieties grown in Korea. Apparent amylose contents of rice starches from cooked rice, brewing and rice cake varieties were 21.1-22.4%, 22.9-24.6%, and 20.1-22.0%, respectively. Rice starches from rice cake varieties showed higher peak viscosity but lower pasting temperature than those from cooked rice and brewing varieties. Swelling factor at 80°C of rice starches from cooked rice, brewing and rice cake varieties was 16.6-19.0, 17.8-19.3, and 17.8-19.2, respectively. Based on structure and physicochemical properties of rice starches extracted from different rice varieties, principal component analysis (PCA) results showed that these rice varieties could be clearly classified according to processing adaptability for cooked rice and rice cake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.).

    PubMed

    Duan, Yongbo; Zhai, Chenguang; Li, Hao; Li, Juan; Mei, Wenqian; Gui, Huaping; Ni, Dahu; Song, Fengshun; Li, Li; Zhang, Wanggen; Yang, Jianbo

    2012-09-01

    A number of Agrobacterium-mediated rice transformation systems have been developed and widely used in numerous laboratories and research institutes. However, those systems generally employ antibiotics like kanamycin and hygromycin, or herbicide as selectable agents, and are used for the small-scale experiments. To address high-throughput production of transgenic rice plants via Agrobacterium-mediated transformation, and to eliminate public concern on antibiotic markers, we developed a comprehensive efficient protocol, covering from explant preparation to the acquisition of low copy events by real-time PCR analysis before transplant to field, for high-throughput production of transgenic plants of Japonica rice varieties Wanjing97 and Nipponbare using Escherichia coli phosphomannose isomerase gene (pmi) as a selectable marker. The transformation frequencies (TF) of Wanjing97 and Nipponbare were achieved as high as 54.8 and 47.5%, respectively, in one round of selection of 7.5 or 12.5 g/L mannose appended with 5 g/L sucrose. High-throughput transformation from inoculation to transplant of low copy events was accomplished within 55-60 days. Moreover, the Taqman assay data from a large number of transformants showed 45.2% in Wanjing97 and 31.5% in Nipponbare as a low copy rate, and the transformants are fertile and follow the Mendelian segregation ratio. This protocol facilitates us to perform genome-wide functional annotation of the open reading frames and utilization of the agronomically important genes in rice under a reduced public concern on selectable markers. We describe a comprehensive protocol for large scale production of transgenic Japonica rice plants using non-antibiotic selectable agent, at simplified, cost- and labor-saving manners.

  2. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    PubMed

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  3. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content

    PubMed Central

    Bandillo, Nonoy; Al Shiblawi, Fouad Razzaq A.; Liu, Kan; Du, Qian; Zhang, Chi; Véry, Anne-Aliénor; Lorenz, Aaron J.; Walia, Harkamal

    2017-01-01

    Salinity is a major factor limiting crop productivity. Rice (Oryza sativa), a staple crop for the majority of the world, is highly sensitive to salinity stress. To discover novel sources of genetic variation for salt tolerance-related traits in rice, we screened 390 diverse accessions under 14 days of moderate (9 dS·m-1) salinity. In this study, shoot growth responses to moderate levels of salinity were independent of tissue Na+ content. A significant difference in root Na+ content was observed between the major subpopulations of rice, with indica accessions displaying higher root Na+ and japonica accessions exhibiting lower root Na+ content. The genetic basis of the observed variation in phenotypes was elucidated through genome-wide association (GWA). The strongest associations were identified for root Na+:K+ ratio and root Na+ content in a region spanning ~575 Kb on chromosome 4, named Root Na+ Content 4 (RNC4). Two Na+ transporters, HKT1;1 and HKT1;4 were identified as candidates for RNC4. Reduced expression of both HKT1;1 and HKT1;4 through RNA interference indicated that HKT1;1 regulates shoot and root Na+ content, and is likely the causal gene underlying RNC4. Three non-synonymous mutations within HKT1;1 were present at higher frequency in the indica subpopulation. When expressed in Xenopus oocytes the indica-predominant isoform exhibited higher inward (negative) currents and a less negative voltage threshold of inward rectifying current activation compared to the japonica-predominant isoform. The introduction of a 4.5kb fragment containing the HKT1;1 promoter and CDS from an indica variety into a japonica background, resulted in a phenotype similar to the indica subpopulation, with higher root Na+ and Na+:K+. This study provides evidence that HKT1;1 regulates root Na+ content, and underlies the divergence in root Na+ content between the two major subspecies in rice. PMID:28582424

  4. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    PubMed Central

    Itoh, Takeshi; Tanaka, Tsuyoshi; Barrero, Roberto A.; Yamasaki, Chisato; Fujii, Yasuyuki; Hilton, Phillip B.; Antonio, Baltazar A.; Aono, Hideo; Apweiler, Rolf; Bruskiewich, Richard; Bureau, Thomas; Burr, Frances; Costa de Oliveira, Antonio; Fuks, Galina; Habara, Takuya; Haberer, Georg; Han, Bin; Harada, Erimi; Hiraki, Aiko T.; Hirochika, Hirohiko; Hoen, Douglas; Hokari, Hiroki; Hosokawa, Satomi; Hsing, Yue; Ikawa, Hiroshi; Ikeo, Kazuho; Imanishi, Tadashi; Ito, Yukiyo; Jaiswal, Pankaj; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Kawashima, Hiroaki; Khurana, Jitendra P.; Kikuchi, Shoshi; Komatsu, Setsuko; Koyanagi, Kanako O.; Kubooka, Hiromi; Lieberherr, Damien; Lin, Yao-Cheng; Lonsdale, David; Matsumoto, Takashi; Matsuya, Akihiro; McCombie, W. Richard; Messing, Joachim; Miyao, Akio; Mulder, Nicola; Nagamura, Yoshiaki; Nam, Jongmin; Namiki, Nobukazu; Numa, Hisataka; Nurimoto, Shin; O’Donovan, Claire; Ohyanagi, Hajime; Okido, Toshihisa; OOta, Satoshi; Osato, Naoki; Palmer, Lance E.; Quetier, Francis; Raghuvanshi, Saurabh; Saichi, Naomi; Sakai, Hiroaki; Sakai, Yasumichi; Sakata, Katsumi; Sakurai, Tetsuya; Sato, Fumihiko; Sato, Yoshiharu; Schoof, Heiko; Seki, Motoaki; Shibata, Michie; Shimizu, Yuji; Shinozaki, Kazuo; Shinso, Yuji; Singh, Nagendra K.; Smith-White, Brian; Takeda, Jun-ichi; Tanino, Motohiko; Tatusova, Tatiana; Thongjuea, Supat; Todokoro, Fusano; Tsugane, Mika; Tyagi, Akhilesh K.; Vanavichit, Apichart; Wang, Aihui; Wing, Rod A.; Yamaguchi, Kaori; Yamamoto, Mayu; Yamamoto, Naoyuki; Yu, Yeisoo; Zhang, Hao; Zhao, Qiang; Higo, Kenichi; Burr, Benjamin; Gojobori, Takashi; Sasaki, Takuji

    2007-01-01

    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene. PMID:17210932

  5. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    PubMed

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  6. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    PubMed

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content.

    PubMed

    Itoh, Yuuki; Crofts, Naoko; Abe, Misato; Hosaka, Yuko; Fujita, Naoko

    2017-05-01

    Resistant starch (RS) is beneficial to human health. In order to reduce the current prevalence of diabetes and obesity, several transgenic and mutant crops containing high RS content are being developed. RS content of steamed rice with starch-branching enzyme (BE)IIb-deficient mutant endosperms is considerably high. To understand the mechanisms of RS synthesis and to increase RS content, we developed novel mutant rice lines by introducing the gene encoding starch synthase (SS)IIa and/or granule-bound starch synthase (GBSS)I from an indica rice cultivar into a japonica rice-based BEIIb-deficient mutant line, be2b. Introduction of SSIIa from an indica rice cultivar produced higher levels of amylopectin chains with degree of polymerization (DP) 11-18 than those in be2b; the extent of the change was slight due to the shortage of donor chains for SSIIa (DP 6-12) owing to BEIIb deficiency. The introduction of GBSSI from an indica rice cultivar significantly increased amylose content (by approximately 10%) in the endosperm starch. RS content of the new mutant lines was the same as or slightly higher than that of the be2b parent line. The relationship linking starch structure, RS content, and starch biosynthetic enzymes in the new mutant lines has also been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    PubMed

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  9. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene

    PubMed Central

    Dubois, Vincent; Moritz, Thomas

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon desubmergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence. PMID:21224726

  10. Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice.

    PubMed

    Khan, M Shahadat Hossain; Tawaraya, Keitarou; Sekimoto, Hiroshi; Koyama, Hiroyuki; Kobayashi, Yuriko; Murayama, Tetsuya; Chuba, Masaru; Kambayashi, Mihoko; Shiono, Yoshihito; Uemura, Matsuo; Ishikawa, Satoru; Wagatsuma, Tadao

    2009-01-01

    We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.

  11. Genetic basis of multiple resistance to the brown planthopper (Nilaparvata lugens Stål) and the green rice leafhopper (Nephotettix cincticeps Uhler) in the rice cultivar ‘ASD7’ (Oryza sativa L. ssp. indica)

    PubMed Central

    Van Mai, Tan; Fujita, Daisuke; Matsumura, Masaya; Yoshimura, Atsushi; Yasui, Hideshi

    2015-01-01

    The rice cultivar ASD7 (Oryza sativa L. ssp. indica) is resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) and the green leafhopper (Nephotettix virescens Distant). Here, we analyzed multiple genetic resistance to BPH and the green rice leafhopper (GRH; Nephotettix cincticeps Uhler). Using two independent F2 populations derived from a cross between ASD7 and Taichung 65 (Oryza sativa ssp. japonica), we detected two QTLs (qBPH6 and qBPH12) for resistance to BPH and one QTL (qGRH5) for resistance to GRH. Linkage analysis in BC2F3 populations revealed that qBPH12 controlled resistance to BPH and co-segregated with SSR markers RM28466 and RM7376 in plants homozygous for the ASD7 allele at qBPH6. Plants homozygous for the ASD7 alleles at both QTLs showed a much faster antibiosis response to BPH than plants homozygous at only one of these QTLs. It revealed that epistatic interaction between qBPH6 and qBPH12 is the basis of resistance to BPH in ASD7. In addition, qGRH5 controlled resistance to GRH and co-segregated with SSR markers RM6082 and RM3381. qGRH5 is identical to GRH1. Thus, we clarified the genetic basis of multiple resistance of ASD7 to BPH and GRH. PMID:26719745

  12. Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon).

    PubMed

    Li, W J; Zhang, B; Huang, G W; Kang, G P; Liang, M Z; Chen, L B

    2012-12-17

    We analyzed chloroplast DNA (cpDNA) polymorphism and phylogenic relationships between 6 typical indica rice, 4 japonica rice, 8 javanica rice, and 12 Asian common wild rice (Oryza rufipogon) strains collected from different latitudes in China by comparing polymorphism at 9 highly variable regions. One hundred and forty-four polymorphic bases were detected. The O. rufipogon samples had 117 polymorphic bases, showing rich genetic diversity. One hundred and thirty-one bases at 13 sites were identified with indica/japonica characteristics; they showed differences between the indica and japonica subspecies at these sites. The javanica strains and japonica shared similar bases at these 131 polymorphic sites, suggesting that javanica is closely related to japonica. On the basis of length analyses of the open reading frame (ORF)100 and (ORF)29-tRNA-Cys(GCA) (TrnC(GCA)) fragments, the O. rufipogon strains were classified into indica/japonica subgroups, which was consistent with the results of the phylogenic tree assay based on concatenated datasets. These results indicated that differences in indica and japonica also exist in the cpDNA genome of the O. rufipogon strains. However, these differences demonstrated a certain degree of primitiveness and incompleteness, as an O. rufipogon line may show different indica/ japonica attributes at different sites. Consequently, O. rufipogon cannot be simply classified into the indica/japonica types as O. sativa. Our data support the hypothesis that Asian cultivated rice, O. indica and O. japonica, separately evolved from Asian common wild rice (O. rufipogon) strains, which have different indica-japonica differentiation trends.

  13. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice

    PubMed Central

    Sugimoto, Kazuhiko; Takeuchi, Yoshinobu; Ebana, Kaworu; Miyao, Akio; Hirochika, Hirohiko; Hara, Naho; Ishiyama, Kanako; Kobayashi, Masatomo; Ban, Yoshinori; Hattori, Tsukaho; Yano, Masahiro

    2010-01-01

    Seed dormancy provides a strategy for flowering plants to survive adverse natural conditions. It is also an important agronomic trait affecting grain yield, quality, and processing performance. We cloned a rice quantitative trait locus, Sdr4, which contributes substantially to differences in seed dormancy between japonica (Nipponbare) and indica (Kasalath) cultivars. Sdr4 expression is positively regulated by OsVP1, a global regulator of seed maturation, and in turn positively regulates potential regulators of seed dormancy and represses the expression of postgerminative genes, suggesting that Sdr4 acts as an intermediate regulator of dormancy in the seed maturation program. Japonica cultivars have only the Nipponbare allele (Sdr4-n), which endows reduced dormancy, whereas both the Kasalath allele (Srd4-k) and Sdr4-n are widely distributed in the indica group, indicating prevalent introgression. Srd4-k also is found in the wild ancestor Oryza rufipogon, whereas Sdr4-n appears to have been produced through at least two mutation events from the closest O. rufipogon allele among the accessions examined. These results are discussed with respect to possible selection of the allele during the domestication process. PMID:20220098

  14. Aquaporins are major determinants of water use efficiency of rice plants in the field.

    PubMed

    Nada, Reham M; Abogadallah, Gaber M

    2014-10-01

    This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Distribution of Phenolic Compounds and Antioxidative Activities of Rice Kernel and Their Relationships with Agronomic Practice

    PubMed Central

    Kesarwani, Amit; Chiang, Po-Yuan; Chen, Shih-Shiung

    2014-01-01

    The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain) and Kaohsiung no. 139 (short and round grain), grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH), flavonoid content, and ferrous chelating capacity). In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices. PMID:25506072

  16. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  17. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    PubMed

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development.

    PubMed

    Moon, Sunok; Oo, Moe Moe; Kim, Backki; Koh, Hee-Jong; Oh, Sung Aeong; Yi, Gihwan; An, Gynheung; Park, Soon Ki; Jung, Ki-Hong

    2018-04-23

    Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis

  19. Responses of rice cultivars and elite lines to diseases in conventional production system, 2010

    USDA-ARS?s Scientific Manuscript database

    The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Twenty rice cultivars and lines were arranged in a randomized complete block ...

  20. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice.

    PubMed

    Hua, Lei; Wang, Diane R; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R; Sun, Chuanqing

    2015-07-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Crop performance and weed suppression by weed-suppressive rice cultivars in furrow- and flood-irrigated systems under reduced herbicide inputs

    USDA-ARS?s Scientific Manuscript database

    Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations and diminishing availability of irrigation water. Certain indica rice cultivars can produce high yields and suppress weeds in conventional flood-irrigated, drill-seeded systems in the...

  2. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; Rafii, M Y; Azizi, Parisa; Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  3. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars

    PubMed Central

    Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties. PMID:28191468

  4. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

    PubMed

    Song, Beng-Kah; Chuah, Tse-Seng; Tam, Sheh May; Olsen, Kenneth M

    2014-10-01

    Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild-to-weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed-shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations. © 2014 John Wiley & Sons Ltd.

  5. Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection.

    PubMed

    Li, Xiaobai; Yan, Wengui; Agrama, Hesham; Hu, Biaolin; Jia, Limeng; Jia, Melissa; Jackson, Aaron; Moldenhauer, Karen; McClung, Anna; Wu, Dianxing

    2010-12-01

    A rice mini-core collection consisting of 217 accessions has been developed to represent the USDA core and whole collections that include 1,794 and 18,709 accessions, respectively. To improve the efficiency of mining valuable genes and broadening the genetic diversity in breeding, genetic structure and diversity were analyzed using both genotypic (128 molecular markers) and phenotypic (14 numerical traits) data. This mini-core had 13.5 alleles per locus, which is the most among the reported germplasm collections of rice. Similarly, polymorphic information content (PIC) value was 0.71 in the mini-core which is the highest with one exception. The high genetic diversity in the mini-core suggests there is a good possibility of mining genes of interest and selecting parents which will improve food production and quality. A model-based clustering analysis resulted in lowland rice including three groups, aus (39 accessions), indica (71) and their admixtures (5), upland rice including temperate japonica (32), tropical japonica (40), aromatic (6) and their admixtures (12) and wild rice (12) including glaberrima and four other species of Oryza. Group differentiation was analyzed using both genotypic distance Fst from 128 molecular markers and phenotypic (Mahalanobis) distance D(2) from 14 traits. Both dendrograms built by Fst and D(2) reached similar-differentiative relationship among these genetic groups, and the correlation coefficient showed high value 0.85 between Fst matrix and D(2) matrix. The information of genetic and phenotypic differentiation could be helpful for the association mapping of genes of interest. Analysis of genotypic and phenotypic diversity based on genetic structure would facilitate parent selection for broadening genetic base of modern rice cultivars via breeding effort.

  6. The 3,000 rice genomes project

    PubMed Central

    2014-01-01

    Background Rice, Oryza sativa L., is the staple food for half the world’s population. By 2030, the production of rice must increase by at least 25% in order to keep up with global population growth and demand. Accelerated genetic gains in rice improvement are needed to mitigate the effects of climate change and loss of arable land, as well as to ensure a stable global food supply. Findings We resequenced a core collection of 3,000 rice accessions from 89 countries. All 3,000 genomes had an average sequencing depth of 14×, with average genome coverages and mapping rates of 94.0% and 92.5%, respectively. From our sequencing efforts, approximately 18.9 million single nucleotide polymorphisms (SNPs) in rice were discovered when aligned to the reference genome of the temperate japonica variety, Nipponbare. Phylogenetic analyses based on SNP data confirmed differentiation of the O. sativa gene pool into 5 varietal groups – indica, aus/boro, basmati/sadri, tropical japonica and temperate japonica. Conclusions Here, we report an international resequencing effort of 3,000 rice genomes. This data serves as a foundation for large-scale discovery of novel alleles for important rice phenotypes using various bioinformatics and/or genetic approaches. It also serves to understand the genomic diversity within O. sativa at a higher level of detail. With the release of the sequencing data, the project calls for the global rice community to take advantage of this data as a foundation for establishing a global, public rice genetic/genomic database and information platform for advancing rice breeding technology for future rice improvement. PMID:24872877

  7. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms.

    PubMed

    Yamamoto, Toshio; Nagasaki, Hideki; Yonemaru, Jun-ichi; Ebana, Kaworu; Nakajima, Maiko; Shibaya, Taeko; Yano, Masahiro

    2010-04-27

    To create useful gene combinations in crop breeding, it is necessary to clarify the dynamics of the genome composition created by breeding practices. A large quantity of single-nucleotide polymorphism (SNP) data is required to permit discrimination of chromosome segments among modern cultivars, which are genetically related. Here, we used a high-throughput sequencer to conduct whole-genome sequencing of an elite Japanese rice cultivar, Koshihikari, which is closely related to Nipponbare, whose genome sequencing has been completed. Then we designed a high-throughput typing array based on the SNP information by comparison of the two sequences. Finally, we applied this array to analyze historical representative rice cultivars to understand the dynamics of their genome composition. The total 5.89-Gb sequence for Koshihikari, equivalent to 15.7 x the entire rice genome, was mapped using the Pseudomolecules 4.0 database for Nipponbare. The resultant Koshihikari genome sequence corresponded to 80.1% of the Nipponbare sequence and led to the identification of 67,051 SNPs. A high-throughput typing array consisting of 1917 SNP sites distributed throughout the genome was designed to genotype 151 representative Japanese cultivars that have been grown during the past 150 years. We could identify the ancestral origin of the pedigree haplotypes in 60.9% of the Koshihikari genome and 18 consensus haplotype blocks which are inherited from traditional landraces to current improved varieties. Moreover, it was predicted that modern breeding practices have generally decreased genetic diversity Detection of genome-wide SNPs by both high-throughput sequencer and typing array made it possible to evaluate genomic composition of genetically related rice varieties. With the aid of their pedigree information, we clarified the dynamics of chromosome recombination during the historical rice breeding process. We also found several genomic regions decreasing genetic diversity which might be

  8. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice[OPEN

    PubMed Central

    Hua, Lei; Wang, Diane R.; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R.; Sun, Chuanqing

    2015-01-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development. PMID:26082172

  9. Phenotypic Evaluation of Weed-competitive Traits and Yield of Rice RILs from an Indica x Tropical Japonica Mapping Population

    USDA-ARS?s Scientific Manuscript database

    Indica rice cultivars can suppress weedy grasses. To better understand the important traits and genes underlying weed suppression and crop productivity, a recombinant inbred line (RIL) F8 population was developed by crossing non-suppressive ‘Katy’ and high-yielding, allelopathic ‘PI312777’. Three h...

  10. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress.

    PubMed

    Ahn, Jun Cheul; Kim, Dae-Won; You, Young Nim; Seok, Min Sook; Park, Jeong Mee; Hwang, Hyunsik; Kim, Beom-Gi; Luan, Sheng; Park, Hong-Seog; Cho, Hye Sun

    2010-11-18

    FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.

  11. Responses of rice cultivars and elite lines to diseases in tilled organic production system, 2010

    USDA-ARS?s Scientific Manuscript database

    The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University system’' Agrilife Research and Extension Center, Beaumont. Twenty rice cultivars and lines were arranged in a randomized complete block ...

  12. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars.

    PubMed

    Ng, Lean-Teik; Huang, Shao-Hua; Chen, Yen-Ting; Su, Chun-Han

    2013-12-26

    This study examined the changes of tocopherols (Toc), tocotrienols (T3), γ-oryzanol (GO), and γ-aminobutyric acid (GABA) contents in germinated brown rice (GBR) of pigmented and nonpigmented cultivars under different germination conditions. Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars. The pigmented GBR possessed higher total vitamin E, total Toc, total T3, and GO contents than the nonpigmented GBR; however, its level of GABA was lower. The order of the three highest vitamin E homologues in pigmented and nonpigmented GBR was γ-T3 > γ-Toc > α-Toc and α-Toc > γ-T3 > α-T3, respectively; β-Toc, β-T3, δ-Toc, and δ-T3 were present in only small amounts (≤1.0 mg/kg) in GBR of both cultivars. Although both cultivars showed an increase in GABA contents with increasing germination time, the GABA content in nonpigmented GBR was higher.

  13. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.

    PubMed

    Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K

    2013-02-08

    The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will

  14. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  15. Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-10-01

    The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.

  16. Introgression of two chromosome regions for leaf photosynthesis from an indica rice into the genetic background of a japonica rice

    PubMed Central

    Hirasawa, Tadashi

    2014-01-01

    Increases in rates of individual leaf photosynthesis (P n) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between indica cultivar Habataki, with one of the highest recorded values of P n, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect P n. The present study examined the combined effect of qCAR4 and qCAR8 on P n in the genetic background of Koshihikari. The pyramided near-isogenic line NIL(qCAR4+qCAR8) showed higher P n than both NIL(qCAR4) and NIL(qCAR8), equivalent to that of Habataki despite being due to only two out of the four QTLs. The high P n of NIL(qCAR4+qCAR8) may be attributable to the high leaf nitrogen content, which may have been inherited from NIL(qCAR4), to the large hydraulic conductance due to the large root surface area from NIL(qCAR4), and to the high hydraulic conductivity from NIL(qCAR8). It might be also attributable to high mesophyll conductance, which may have been inherited from NIL(qCAR4). The induction of mesophyll conductance and the high leaf nitrogen content and high hydraulic conductivity could not be explained in isolation from the Koshihikari background. These results suggest that QTL pyramiding is a useful approach in rice breeding aimed at increasing P n. PMID:24591053

  17. A comparison of spider communities in Bt and non-Bt rice fields.

    PubMed

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  18. Evaluation of the agronomic performance of atrazine-tolerant transgenic japonica rice parental lines for utilization in hybrid seed production.

    PubMed

    Zhang, Luhua; Chen, Haiwei; Li, Yanlan; Li, Yanan; Wang, Shengjun; Su, Jinping; Liu, Xuejun; Chen, Defu; Chen, Xiwen

    2014-01-01

    Currently, the purity of hybrid seed is a crucial limiting factor when developing hybrid japonica rice (Oryza sativa L.). To chemically control hybrid seed purity, we transferred an improved atrazine chlorohydrolase gene (atzA) from Pseudomonas ADP into hybrid japonica parental lines (two maintainers, one restorer), and Nipponbare, by using Agrobacterium-mediated transformation. We subsequently selected several transgenic lines from each genotype by using PCR, RT-PCR, and germination analysis. In the presence of the investigated atrazine concentrations, particularly 150 µM atrazine, almost all of the transgenic lines produced significantly larger seedlings, with similar or higher germination percentages, than did the respective controls. Although the seedlings of transgenic lines were taller and gained more root biomass compared to the respective control plants, their growth was nevertheless inhibited by atrazine treatment compared to that without treatment. When grown in soil containing 2 mg/kg or 5 mg/kg atrazine, the transgenic lines were taller, and had higher total chlorophyll contents than did the respective controls; moreover, three of the strongest transgenic lines completely recovered after 45 days of growth. After treatment with 2 mg/kg or 5 mg/kg of atrazine, the atrazine residue remaining in the soil was 2.9-7.0% or 0.8-8.7% respectively, for transgenic lines, and 44.0-59.2% or 28.1-30.8%, respectively, for control plants. Spraying plants at the vegetative growth stage with 0.15% atrazine effectively killed control plants, but not transgenic lines. Our results indicate that transgenic atzA rice plants show tolerance to atrazine, and may be used as parental lines in future hybrid seed production.

  19. Mapping Blast and Sheath Blight QTL in an Advanced Backcross Bengal/O. nivara (Wild2) Population

    USDA-ARS?s Scientific Manuscript database

    An advanced backcross mapping population was developed from a cross between ‘Bengal’, a popular southern U.S. tropical japonica rice (Oryza sativa L.) cultivar, and an accession of the rice ancestral species, O. nivara Sharma & Shastry (IRGC104705). Previous studies identified this O. nivara accessi...

  20. Responses of rice cultivars and elite lines to diseases in no-till organic production system, 2010

    USDA-ARS?s Scientific Manuscript database

    The experiment was established in a field of League-type soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. Twenty rice cultivars and lines were arranged in a randomized complete block ...

  1. Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone.

    PubMed

    Sarkar, Abhijit; Singh, Aditya Abha; Agrawal, Shashi Bhushan; Ahmad, Altaf; Rai, Shashi Pandey

    2015-05-01

    For the past few decades continuous increase in the levels of tropospheric ozone (O3) concentrations is posing to be a threat for agricultural productivity. Two high yielding tropical rice cultivars (Malviya dhan 36 and Shivani) were evaluated against different concentrations of O3 under field conditions. Experimental design included filtered chambers, non-filtered chambers having ambient O3 and 10 and 20ppb elevated O3 above the ambient. Study was conducted to assess differential response if any in induction of antioxidative defense system, genome stability, leaf proteome, yield and quality of the product in both the test cultivars. Superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were induced under ambient and elevated levels of O3. Native polyacrylamide gel electrophoresis (PAGE) of SOD, CAT and POD also displayed increased enzymatic activity along with associated alterations in specific isoforms. Ascorbic acid, thiols and phenolics were also stimulated at ambient and elevated O3. Structural alterations in DNA of rice plants due to O3 affecting its genome template stability (GTS) was examined using RAPD technique. 2-D PAGE revealed 25 differential spots in Malviya dhan 36 and 36 spots in Shivani after O3 treatment with reductions in RuBisCO subunits. Reductions in yield and change in the quality of grains were also noticed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Dynamics and combined injuries of main pest species in rice cropping zones of Yunnan, Southwest China].

    PubMed

    Dong, Kun; Dong, Yan; Wang, Hai-Long; Zhang, Li-Min; Zan, Qing-An; Chen, Bin; Li, Zheng-Yue

    2014-01-01

    A series of rice pest injuries (due to pathogens, insects, and weeds) were surveyed in 286 farmers' fields for major rice varieties of three rice cropping zones of Yunnan Province, Southwest China. The composition and dynamics of main pest species were analyzed, and the trend of rice pest succession in Yunnan was discussed based upon landmark publications. The results showed that the three rice cropping zones had different pest characteristics as regard to main species, dynamics and combined injuries. Sheath rot, bacterial leaf blight, rice stripe, leaf hoppers, armyworms and stem borers were serious in the japonica rice zone. Sheath blight and rice stripe were serious in the japonica-indica interlacing zone. Leaf blast, sheath blight, leaf folders and weeds above rice crop canopy were serious in the indica rice zone. False smut, plant hoppers and weeds below rice crop canopy were ubiquitous and serious in the three kinds of rice cropping zones. Many kinds of weed infestation emerged in the whole rice cropping seasons. Echinochloa crusgalli, Sagittaria pygmaea, Potamogeton distinctus and Spirodela polyrhiza were the main species of weeds in the rice cropping zones of Yunnan. Overall, levels of combined injuries due to pests in the japonica rice zone and the indica rice zone were higher than that in the japonica-indica interlacing zone. In terms of the trend of rice pest succession in Yunnan, injuries due to false smut, sheath blight and plant hoppers seemed to be in a worse tendency in all rice cropping zones of Yunnan, while dominants species of weeds in the paddy fields are shifting from the annual weeds to the perennial malignant weeds.

  3. Natural variation of rice blast resistance gene Pi-d2

    USDA-ARS?s Scientific Manuscript database

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  4. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    PubMed

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  5. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes

    PubMed Central

    Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93–11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93–11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  6. [CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China].

    PubMed

    Yan, Xiao-Jun; Wang, Li-Li; Jiang, Yu; Deng, Ai-Xing; Tian, Yun-Lu; Zhang, Wei-Jian

    2013-09-01

    A pot experiment was conducted to study the CH4 emission features of fourteen leading super-rice varieties (six Japonica rice varieties and eight Indica hybrid rice varieties) and their relationships with the varieties growth characteristics in Yangtze Delta. Two distinct peaks of CH4 emission were detected during the entire growth period of the varieties, one peak occurred at full-tillering stage, and the other appeared at booting stage. The average total CH4 emission of Japonica rice varieties was 37.6% higher than that of the Indica hybrid rice varieties (P<0.01), and the differences in the CH4 emission between rice types occurred at the post-anthesis phase. For all the varieties, there was a significant positive correlation between the total CH4 emission and the maximum leaf area, but the correlations between the CH4 emission and the other growth characteristics varied with variety type. The total CH4 emission of Japonica rice varieties had a significant positive correlation with plant height, while the correlations between the total CH4 emission of Indica hybrid rice varieties and their plant height were not significant. The total CH4 emission of Indica hybrid rice varieties had significant negative correlations with the total aboveground biomass, grain yield, and harvest index, but the correlations were not significant for Japonica rice varieties. The lower CH4 emission of Indica hybrid rice varieties was likely due to their significantly higher root biomass, as compared with Japonica rice varieties.

  7. Population structure in Japanese rice population

    PubMed Central

    Yamasaki, Masanori; Ideta, Osamu

    2013-01-01

    It is essential to elucidate genetic diversity and relationships among even related individuals and populations for plant breeding and genetic analysis. Since Japanese rice breeding has improved agronomic traits such as yield and eating quality, modern Japanese rice cultivars originated from narrow genetic resource and closely related. To resolve the population structure and genetic diversity in Japanese rice population, we used a total of 706 alleles detected by 134 simple sequence repeat markers in a total of 114 cultivars composed of 94 improved varieties and 20 landraces, which are representative and important for Japanese rice breeding. The landraces exhibit greater gene diversity than improved lines, suggesting that landraces can provide additional genetic diversity for future breeding. Model-based Bayesian clustering analysis revealed six subgroups and admixture situation in the cultivars, showing good agreement with pedigree information. This method could be superior to phylogenetic method in classifying a related population. The leading Japanese rice cultivar, Koshihikari is unique due to the specific genome constitution. We defined Japanese rice diverse sets that capture the maximum number of alleles for given sample sizes. These sets are useful for a variety of genetic application in Japanese rice cultivars. PMID:23641181

  8. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Photosynthetic Diffusional Constraints Affect Yield in Drought Stressed Rice Cultivars during Flowering

    PubMed Central

    Lauteri, Marco; Haworth, Matthew; Serraj, Rachid; Monteverdi, Maria Cristina; Centritto, Mauro

    2014-01-01

    Global production of rice (Oryza sativa) grain is limited by water availability and the low ‘leaf-level’ photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g m) and not by stomatal conductance (g s). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g m during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g m and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g m during optimal growth conditions and the capacity for g m to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer. PMID:25275452

  10. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    PubMed Central

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives. PMID:25861637

  11. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  12. Unlocking the variation hidden in rice germplasm collections with genomics

    USDA-ARS?s Scientific Manuscript database

    Cultivated Asian rice (Oryza sativa) was domesticated from O. rufipogon (O. nivara). The O. sativa subspecies indica and japonica diverged in ancient times, and based on DNA markers, further subdivided into the five major subpopulations, aus, indica, aromatic, tropical japonica and temperate japoni...

  13. Identification of broad spectrum rice blast resistance genes with IRRI Rice monogenic lines

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most destructive rice disease worldwide. This disease is managed with a combination of the use of resistant cultivars, application of fungicides, and improved cultural practices. Among them, the use of resistant cultivars is the mos...

  14. Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of 'golden' indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue.

    PubMed

    Baisakh, Niranjan; Rehana, Sayda; Rai, Mayank; Oliva, Norman; Tan, Jing; Mackill, David J; Khush, Gurdev S; Datta, Karabi; Datta, Swapan K

    2006-07-01

    We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for beta-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase (psy) and phytoene desaturase (crtI)] and the selectable marker gene (hygromycin phosphotransferase, hph) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI, which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC(2)F(2)) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase (cat) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 microg total carotenoids, including beta-carotene, in 1 g of the endosperm. The accumulation of beta-carotene was also evident from the clearly visible yellow colour of the polished seeds.

  15. Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    PubMed Central

    Stolc, Viktor; Deng, Wei; He, Hang; Korbel, Jan; Chen, Xuewei; Tongprasit, Waraporn; Ronald, Pamela; Chen, Runsheng; Gerstein, Mark; Wang Deng, Xing

    2007-01-01

    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome. PMID:17372628

  16. Detection of DNA polymerase λ activity during seed germination and enhancement after salinity stress and dehydration in the plumules of indica rice (Oryza sativa L.

    PubMed

    Sihi, Sayantani; Bakshi, Sankar; Sengupta, Dibyendu Narayan

    2015-02-01

    DNA polymerase λ (DNA pol λ) is the only reported X-family DNA polymerases in plants and has been shown to play a significant role in dry quiescent seeds, growth, development and nuclear DNA repair. cDNA for DNA pol λ has been reported in Arabidopsis and japonica rice cultivar and has been characterized from E. coli expressed protein, but very little is known about its activity at protein level in plants. The enzymatic activity of DNA pol λ was studied in dry, imbibed and during different germination stages of indica rice IR-8 (salt sensitive) by in-gel activity assay to determine its physiological role in important stages of growth and development. The upstream sequence was also analyzed using plantCARE database and was found to contain several cis-acting elements, including light responsive elements, dehydration responsive elements, Myb binding sites, etc. Hence, 4-day-old germinating seedlings of IR29, a salt-sensitive, but high yielding indica rice cultivar and Nonabokra, a salt-tolerant, but low yielding cultivar were treated with water (control) or 250 mM NaCl or 20% polyethyleneglycol-6000 for 4 and 8 h. The protein was analyzed by in vitro DNA pol λ activity assay, in-gel activity assay and Western blot analysis. DNA pol λ was not detected in dry seeds, but enhanced after imbibition and detectable from low level to high level during subsequent germination steps. Both salinity and dehydration stress led to the enhancement of the activity and protein level of DNA pol λ, as compared to control tissues. This is the first evidence of the salinity or dehydration stress induced enhancement of DNA pol λ activity in the plumules of rice (Oryza sativa L.) cultivars.

  17. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae

    PubMed Central

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen. PMID:27005950

  18. Rice Varieties in Archaic East Asia: Reduction of Its Diversity from Past to Present Times.

    PubMed

    Kumagai, Masahiko; Kanehara, Masaaki; Shoda, Shin'ya; Fujita, Saburo; Onuki, Shizuo; Ueda, Shintaroh; Wang, Li

    2016-10-01

    The Asian cultivated rice, Oryza sativa, is one of the most important crops feeding more than a third of global population. In spite of the studies for several decades, the origin and domestication history of rice varietal groups, japonica and indica, have not been fully unveiled. Genetic information of ancient rice remains is essential for direct and exclusive insight into the domestication history of rice. We performed ancient DNA analysis of 950- to 2,800-year-old rice remains excavated from Japan and Korea. We found the presence of both japonica- and indica-type varieties in the Yayoi period and the middle ages of Japan and the middle part of Korea Peninsula 2,000 years ago. It is popularly considered that japonica has been exclusively cultivated in northern part of East Asia including Japan and Korea. Our result disclosed unexpectedly wide diversity of rice varieties in archaic East Asia. The present results from ancient rice DNA reveal an exclusive insight for the domestication history of rice which is not provided as far as contemporary rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication

    PubMed Central

    Gettler, Kyle A.; Burgos, Nilda R.; Fischer, Albert J.

    2016-01-01

    Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds

  20. Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication.

    PubMed

    Kanapeckas, Kimberly L; Vigueira, Cynthia C; Ortiz, Aida; Gettler, Kyle A; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy L

    Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds

  1. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice

    PubMed

    Nagano; Wu; Kawasaki; Kishima; Sano

    1999-12-01

    The present study was carried out to characterize the molecular organization in the vicinity of the waxy locus in rice. To determine the structural organization of the region surrounding waxy, contiguous clones covering a total of 260 kb were constructed using a bacterial artificial chromosome (BAC) library from the Shimokita variety of Japonica rice. This map also contains 200 overlapping subclones, which allowed construction of a fine physical map with a total of 64 HindIII sites. During the course of constructing the map, we noticed the presence of some repeated regions which might be related to transposable elements. We divided the 260-kb region into 60 segments (average size of 5.7 kb) to use as probes to determine their genomic organization. Hybridization patterns obtained by probing with these segments were classified into four types: class 1, a single or a few bands without a smeared background; class 2, a single or a few bands with a smeared background; class 3, multiple discrete bands without a smeared background; and class 4, only a smeared background. These classes constituted 6.5%, 20.9%, 3.7%, and 68.9% of the 260-kb region, respectively. The distribution of each class revealed that repetitive sequences are a major component in this region, as expected, and that unique sequence regions were mostly no longer than 6 kb due to interruption by repetitive sequences. We discuss how the map constructed here might be a powerful tool for characterization and comparison of the genome structures and the genes around the waxy locus in the Oryza species.

  2. Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene

    PubMed Central

    Dong, Yufeng; Jin, Xi; Tang, Qiaoling; Zhang, Xin; Yang, Jiangtao; Liu, Xiaojing; Cai, Junfeng; Zhang, Xiaobing; Wang, Xujing; Wang, Zhixing

    2017-01-01

    Glyphosate is a widely used herbicide, due to its broad spectrum, low cost, low toxicity, high efficiency, and non-selective characteristics. Rice farmers rarely use glyphosate as a herbicide, because the crop is sensitive to this chemical. The development of transgenic glyphosate-tolerant rice could greatly improve the economics of rice production. Here, we transformed the Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene G2-EPSPS, which conferred tolerance to glyphosate herbicide into a widely used japonica rice cultivar, Zhonghua 11 (ZH11), to develop two highly glyphosate-tolerant transgenic rice lines, G2-6 and G2-7, with one exogenous gene integration. Seed germination tests and glyphosate-tolerance assays of plants grown in a greenhouse showed that the two transgenic lines could greatly improve glyphosate-tolerance compared with the wild-type; The glyphosate-tolerance field test indicated that both transgenic lines could grow at concentrations of 20,000 ppm glyphosate, which is more than 20-times the recommended concentration in the field. Isolation of the flanking sequence of transgenic rice G2-6 indicated that the 5′-terminal of T-DNA was inserted into chromosome 8 of the rice genome. An event-specific PCR test system was established and the limit of detection of the primers reached five copies. Overall, the G2-EPSPS gene significantly improved glyphosate-tolerance in transgenic rice; furthermore, it is a useful candidate gene for the future development of commercial transgenic rice. PMID:28611804

  3. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil.

    PubMed

    Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E

    2016-08-01

    Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies.

  4. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  5. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining

    PubMed Central

    2014-01-01

    Background Apparent Amylose Content (AAC), regulated by the Waxy gene, represents the key determinant of rice cooking properties. In occidental countries high AAC rice represents the most requested market class but the availability of molecular markers allowing specific selection of high AAC varieties is limited. Results In this study, the effectiveness of available molecular markers in predicting AAC was evaluated in a collection of 127 rice accessions (125 japonica ssp. and 2 indica ssp.) characterized by AAC values from glutinous to 26%. The analyses highlighted the presence of several different allelic patterns identifiable by a few molecular markers, and two of them, i.e., the SNPs at intron1 and exon 6, were able to explain a maximum of 79.5% of AAC variation. However, the available molecular markers haplotypes did not provide tools for predicting accessions with AAC higher than 24.5%. To identify additional polymorphisms, the re-sequencing of the Waxy gene and 1kbp of the putative upstream regulatory region was performed in 21 genotypes representing all the AAC classes identified. Several previously un-characterized SNPs were identified and four of them were used to develop dCAPS markers. Conclusions The addition of the SNPs newly identified slightly increased the AAC explained variation and allowed the identification of a haplotype almost unequivocally associated to AAC higher than 24.5%. Haplotypes at the waxy locus were also associated to grain length and length/width (L/W) ratio. In particular, the SNP at the first intron, which identifies the Wx a and Wx b alleles, was associated with differences in the width of the grain, the L/W ratio and the length of the kernel, most likely as a result of human selection. PMID:24383761

  7. Adapting rice anther culture to gene transformation and RNA interference.

    PubMed

    Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang

    2006-10-01

    Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.

  8. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    PubMed

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  9. Differential effects of rice bran cultivars to limit Salmonella Typhimurium in chicken cecal in vitro incubations and impact on the cecal microbiome and metabolome.

    PubMed

    Rubinelli, Peter M; Kim, Sun Ae; Park, Si Hong; Roto, Stephanie M; Nealon, Nora Jean; Ryan, Elizabeth P; Ricke, Steven C

    2017-01-01

    In this study, rice brans from different cultivars (Calrose, Jasmine, and Red Wells) were assessed for their ability to inhibit Salmonella enterica serovar Typhimurium using an in vitro mixed anaerobic culture system containing cecal microbiota obtained from broilers of different ages. Salmonella Typhimurium was added to controls (feed only, cecal only, and feed + cecal material) and treatments (feed + cecal + different rice brans) and S. Typhimurium populations were enumerated at 0, 24, and 48 h. Two experimental conditions were applied 1) unadapted condition in which S. Typhimurium was added at the beginning of the culture incubation and 2) adapted condition in which S. Typhimurium was added after a 24 hour pre-incubation of the cecal bacteria with the feed and/or rice bran. Among the three rice brans, only Calrose exhibited a rapid inhibition of S. Typhimurium, which decreased to undetectable levels after 24 h under the adapted incubation. Changes in microbiological composition and metabolites by addition of Calrose bran were also investigated with an Illumina MiSeq platform and gas chromatography-mass spectrometry, respectively. Addition of Calrose bran resulted in significant changes including decreased Firmicutes phylum abundance and an increased number of metabolites associated with fatty acid metabolism. In summary, it appears that rice bran from specific rice cultivars may be effective as a means to reduce Salmonella in the chicken ceca. In addition, Calrose rice bran inclusion leads to changes in cecal microbiological composition and metabolite profile.

  10. Detection and validation of QTLs for milky-white grains caused by high temperature during the ripening period in Japonica rice

    PubMed Central

    Miyahara, Katsunori; Wada, Takuya; Sonoda, Jun-ya; Tsukaguchi, Tadashi; Miyazaki, Masayuki; Tsubone, Masao; Yamaguchi, Osamu; Ishibashi, Masafumi; Iwasawa, Norio; Umemoto, Takayuki; Kondo, Motohiko

    2017-01-01

    The occurrence of chalky rice (Oryza sativa L.) grains caused by high temperature is a serious problem in rice production. Of the several kinds of chalky grains, milky-white grains are not well analyzed. The milky-white rice grain phenomenon is caused by genetic factors as well as environmental and nutritional conditions. To analyze the genetic control system for rice grain quality, we raised recombinant inbred lines from progeny produced from ‘Tsukushiroman’ (high temperature sensitive) and ‘Chikushi 52’ (high temperature tolerant) cultivars. Quantitative trait locus (QTL) analysis revealed that the QTL on chromosome 4, linked to the simple sequence repeat marker RM16424, contributed substantially to the occurrence of milky-white grains, as it was detected over two experimental years. To validate the effect of the QTL, we developed near isogenic lines that have the ‘Chikushi 52’ segment on the short arm of chromosome 4 in the ‘Tsukushiroman’ genetic background, and that had a lower milky-white grain ratio than that of ‘Tsukushiroman’ when exposed to high temperatures during the ripening period. These results suggest that the ‘Chikushi 52’ allele on chromosome 4 suppresses the occurrence of milky-white grains and improves rice grain quality under heat stress during the grain ripening period. PMID:29085242

  11. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars.

    PubMed

    Bhat, Farhan Mohiuddin; Riar, Charanjit Singh

    2016-11-01

    The research was carried out to investigate the effect of starch powder particle size, morphology, amylose content and varietal effect on physicochemical, X-ray diffraction pattern, thermal and pasting characteristics. The results indicated that starches isolated from seven traditional rice cultivars of temperate region of India have possessed higher yield (82.47-86.83%) with lower degree of granule damage and higher level of starch crystallinity (36.55-39.15%). The water and oil binding capacities were observed to correlate positively with amylose content. The bulk density and color parameters of starches were found to have linked with starch powder particle size coupled with arrangement and morphology of the starch granules. The rice cultivars having smaller starch powder particle size indicated lowest degree of crystallinity. Morphological studies revealed that the starches with tightly packed granules had greater mean granular width, while granules with openly spaced granular morphology depicted the higher values for mean granular length. The peak height index (PHI) among different starches ranged from 1.01 to 2.57 whereas the gelatinization range varied from 10.66 to 10.88. Concluding, the differences in distributional pattern of starch granule size and shape and powder particle size indicated a significant effect on the functional properties of starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots.

    PubMed

    Bertazzini, Michele; Sacchi, Gian Attilio; Forlani, Giuseppe

    2018-04-27

    Rice is very sensitive to salt stress at the seedling level, with consequent poor crop establishment. A natural variability in susceptibility to moderate saline environments was found in a group of six Italian temperate japonica rice cultivars, and the physiological determinants for salt tolerance were investigated. Cation (Na + , K + and Mg ++ ) levels were determined in shoots from individual rice plantlets grown in the absence or in the presence of inhibitory, yet sublethal salt levels, and at increasing time after salt treatments. Significant variations were found among genotypes, but these were unrelated to the relative tolerance, which seems to result from neither mechanism(s) for reduced Na + translocation to the aerial part, nor its increased retrieval from the xylem mediating Na + exclusion from leaves. Accordingly, thiobarbituric acid reactive substance levels raised in leaf tissues of salt-treated seedlings, and osmo-induced proline accumulation was found in all genotypes. Data suggest that the difference in salt tolerance most likely depends on mechanisms for osmotic adjustment and/or antioxidative defence. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Variation in cooking and eating quality traits in Japanese rice germplasm accessions

    PubMed Central

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-01-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan. PMID:27162502

  14. Variation in cooking and eating quality traits in Japanese rice germplasm accessions.

    PubMed

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-03-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.

  15. Identification of the main retrogradation-related properties of rice starch.

    PubMed

    Lian, Xijun; Kang, Haiqi; Sun, Haibo; Liu, Lizeng; Li, Lin

    2015-02-11

    The retrogradation of rice in shelf life is the biggest barrier to the industrial production of traditional foods using rice as material. Many rice breeders have tried their best to screen low-retrogradation rice cultivars without a specific indicator. To identify the main retrogradation-related properties of rice, the starch, amylose, and amylopectin from 16 rice cultivars were extracted from rice powder and their physicochemical properties, such as visible absorbance, infrared, average molecule weight (amylopectin), chain-length distribution (amylopectin), X-ray diffraction, and differential scanning calorimetry, were determined. The correlation between starch retrogradation rates and those physicochemical properties was investigated. The results show that a significant positive correlation (R(2) = 0.85; r = 0.926; p < 0.01) exists only between proportions of the chains [degree of polymerization (DP) > 10] in amylopectin and the retrogradation rates of different rice starches. The findings in the paper offer a shortcut for rice breeders to screen cultivars with a low retrogradation rate. Because the genes related to the branching enzyme control the DP of amylopectin, they can be exploited as molecular markers to screen low-retrogradation rice cultivars.

  16. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars.

    PubMed

    Sarvestani, Zinolabedin Tahmasebi; Pirdashti, Hemmatollah; Sanavy, Seyed Ali Mohammad Modarres; Balouchi, Hamidreza

    2008-05-15

    A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.

  17. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice.

    PubMed

    Xie, Yongyao; Niu, Baixiao; Long, Yunming; Li, Gousi; Tang, Jintao; Zhang, Yaling; Ren, Ding; Liu, Yao-Guang; Chen, Letian

    2017-09-01

    Hybrids between the indica and japonica subspecies of rice (Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. Association of Commercial Rice Varieties with Weedy Rice Accessions (Oryza sativa complex) in Pulau Pinang's Rice Granary Area.

    PubMed

    Hussain, Zainudin; Man, Azmi; Othman, Ahmad Sofiman

    2011-12-01

    Weedy rice (WR) is the most significant weed in direct-seeded fields. It has morphological characteristics similar to those of cultivated rice varieties. WR is more difficult to control than other weeds. We collected WR accessions from four sites within the Pulau Pinang rice growing areas. Thirty six different accessions were collected from each site: B, the northern site; P, the central site; A, the southern site; and N, the southwestern site. Wild rice (Oryza rufipogon), which grows in the sampled areas, was also collected together with four varieties (MR84, MR185, MR211 and MR219) that have been widely planted in these areas for a long period of time. The objective of this study was to compare the morphological characteristics of the WR accessions and cultivated rice. Twenty characteristics were observed for the comparison of WR accessions and rice cultivars. Morpho-matrix analyses allowed the specimens to be grouped to two main groups (A and B), based on a 95% dissimilarity matrix. Group A was subdivided into 7 subgroups consisting of a few WR accessions, wild rice and MR211 (control), and group B was subdivided to 10 subgroups consisting of other WR accessions and the 3 other control varieties. Dendrogram analysis indicated that the morphological traits used in this study were able to differentiate among the WR accessions and the cultivars, except for rice cultivar MR211 and WRA8, which grouped together in subgroup A2. STRUCTURE program analysis indicated that all individuals were distinguishable and were divided into 18 clusters. These results suggest that some genes of the WR accessions have been influenced by commercial varieties. The information gained from this study will be useful to develop rice weed management protocols and good agricultural practices to control WR in the future.

  19. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    PubMed

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  20. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice.

    PubMed

    You, Cuicui; Chen, Lin; He, Haibing; Wu, Liquan; Wang, Shaohua; Ding, Yanfeng; Ma, Chuanxi

    2017-06-07

    Large-panicle rice varieties often fail to achieve their yield potential due to poor grain filling of late-flowering inferior spikelets (IS). The physiological and molecular mechanisms of poor IS grain filling, and whether an increase in assimilate supply could regulate protein abundance and consequently improve IS grain filling for japonica rice with large panicles is still partially understood. A field experiment was performed with two spikelet removal treatments at anthesis in the large-panicle japonica rice line W1844, including removal of the top 1/3 of spikelets (T1) and removal of the top 2/3 of spikelets (T2), with no spikelet removal as a control (T0). The size, weight, setting rate, and grain filling rate of IS were significantly increased after spikelet removing. The biological functions of the differentially expressed proteins (DEPs) between superior and inferior spikelets as well as the response of IS to the removal of superior spikelets (SS) were investigated by using iTRAQ at 10 days post anthesis. A total of 159, 87, and 28 DEPs were identified from group A (T0-SS/T0-IS), group B (T0-SS/T2-IS), and group C (T2-IS/T0-IS), respectively. Among these, 104, 63, and 22 proteins were up-regulated, and 55, 24, and 6 proteins were down-regulated, respectively. Approximately half of these DEPs were involved in carbohydrate metabolism (sucrose-to-starch metabolism and energy metabolism) and protein metabolism (protein synthesis, folding, degradation, and storage). Reduced endosperm cell division and decreased activities of key enzymes associated with sucrose-starch metabolism and nitrogen metabolism are mainly attributed to the poor sink strength of IS. In addition, due to weakened photosynthesis and respiration, IS are unable to obtain a timely supply of materials and energy after fertilization, which might be resulted in the stagnation of IS development. Finally, an increased abundance of 14-3-3 protein in IS could be involved in the inhibition of starch

  1. Effect of volunteer rice infestation on grain quality and yield of rice

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  2. Dissipation of phenanthrene and pyrene at the aerobic-anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars.

    PubMed

    He, Yan; Xia, Wen; Li, Xinfeng; Lin, Jiajiang; Wu, Jianjun; Xu, Jianming

    2015-03-01

    A pot experiment was conducted to reveal the removal of two polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, PHE, and pyrene, PYR) during rice cultivation in a paddy field. The rhizosphere effect on facilitating dissipation of PAHs varied simultaneously as a function of soil properties, PAH types, cultivation time, and genotypes within rice cultivars, with differences performed for PYR but not PHE. Changes in soil PLFA profiles evidenced that the growth of rice roots modified the dominant species within rhizosphere microbial communities and induced a selective enrichment of Gram-negative aerobic bacteria capable of degrading, thereby resulting in the differentiated dissipation of PYR. While the insignificant differences in PHE dissipation might be attributed to its higher solubility and availability under flooded condition that concealed the differences in improvement of bioavailability for microorganisms between rhizosphere and non-rhizosphere, and between both soils and both rice cultivars. Our findings illustrate that the removal of PAHs in paddy soils was more complex relative to those in dryland soils. This was possibly due to the specialty of rice roots for oxygen secretion that provides development of redox heterogeneous microbial habitats at root-soil interface under flooded condition.

  3. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    PubMed

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi

    NASA Astrophysics Data System (ADS)

    Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.

    2018-02-01

    Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.

  5. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  6. Bioactive compounds in pigmented rice bran inhibit growth of human cancer cells

    USDA-ARS?s Scientific Manuscript database

    Rice bran contains both lipophilic and hydrophilic antioxidants. Our previous studies have shown that pigmented rice cultivars contained several-fold higher total phenolic concentrations and antioxidant capacities than non-pigmented cultivars. We investigated three rice brans (purple, red and light-...

  7. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply.

    PubMed

    Zahoor; Sun, Dan; Li, Ying; Wang, Jing; Tu, Yuanyuan; Wang, Yanting; Hu, Zhen; Zhou, Shiguang; Wang, Lingqiang; Xie, Guosheng; Huang, Jianliang; Alam, Aftab; Peng, Liangcai

    2017-11-01

    In this study, two rice cultivars were collected from experimental fields with seven nitrogen fertilizer treatments. All biomass samples contained significantly increased cellulose contents and reduced silica levels, with variable amounts of hemicellulose and lignin from different nitrogen treatments. Under chemical (NaOH, CaO, H 2 SO 4 ) and physical (hot water) pretreatments, biomass samples exhibited much enhanced hexoses yields from enzymatic hydrolysis, with high bioethanol production from yeast fermentation. Notably, both degree of polymerization (DP) of cellulose and xylose/arabinose (Xyl/Ara) ratio of hemicellulose were reduced in biomass residues, whereas other wall polymer features (cellulose crystallinity and monolignol proportion) were variable. Integrative analysis indicated that cellulose DP, hemicellulosic Xyl/Ara and silica are the major factors that significantly affect cellulose crystallinity and biomass saccharification. Hence, this study has demonstrated that nitrogen fertilizer supply could largely enhance biomass saccharification in rice cultivars, mainly by reducing cellulose DP, hemicellulosic Xyl/Ara and silica in cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    PubMed

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  9. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Mapping and marker-assisted selection of a brown planthopper resistance gene bph2 in rice (Oryza sativa L.).

    PubMed

    Sun, Li-Hong; Wang, Chun-Ming; Su, Chang-Chao; Liu, Yu-Qiang; Zhai, Hu-Qu; Wan, Jian-Min

    2006-08-01

    Nilaparvata lugens Stål (brown planthopper, BPH), is one of the major insect pests of rice (Oryza sativa L.) in the temperate rice-growing region. In this study, ASD7 harboring a BPH resistance gene bph2 was crossed to a susceptible cultivar C418, a japonica restorer line. BPH resistance was evaluated using 134 F2:3 lines derived from the cross between "ASD7" and "C418". SSR assay and linkage analysis were carried out to detect bph2. As a result, the resistant gene bph2 in ASD7 was successfully mapped between RM7102 and RM463 on the long arm of chromosome 12, with distances of 7.6 cM and 7.2 cM, respectively. Meanwhile, both phenotypic selection and marker-assisted selection (MAS) were conducted in the BC1F1 and BC2F1 populations. Selection efficiencies of RM7102 and RM463 were determined to be 89.9% and 91.2%, respectively. It would be very beneficial for BPH resistance improvement by using MAS of this gene.

  11. Seasonal CH4 and N2O emissions and plant growth characteristics of several cultivars in direct seeded rice systems

    NASA Astrophysics Data System (ADS)

    Simmonds, M.; Anders, M. M.; Adviento-Borbe, M. A.; Van Kessel, C.; McClung, A.; Linquist, B.

    2014-12-01

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions, and to determine to what extent choice of cultivar may have on GHG mitigation. We compared CH4 and N2O emissions, global warming potential (GWP = N2O + CH4), yield-scaled GWP (GWPY = GWP Mg-1 grain), and plant growth characteristics of 8 cultivars within 4 study sites in California and Arkansas. Seasonal CH4 emissions differed between cultivars by a factor of 2.1 and 1.3 at one California and one Arkansas site, respectively. Nitrous oxide emissions were negligible, comprised <10% of GWP, and were not different among cultivars. When sites and cultivars were pooled, and data were normalized to site averages, there was a positive correlation (r = 0.33) between root biomass at heading and seasonal CH4 emissions, but no correlation with shoot biomass at heading, or grain or straw biomass at maturity. Although differences in GWP and GWPY were observed, the consistency of some of the trends was variable across sites, indicating the importance of the genotype x environment interaction. While no high-yielding and low CH4-emitting cultivars were identified at the California sites, among the Southern varieties tested at the Arkansas site, the lowest emitting cultivar had the highest yield. This highlights the potential for breeding high-yielding varieties with low GWP, the ideal scenario to achieve low GWPY due to simultaneously mitigating GHG emissions and improving global food security.

  12. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation.

    PubMed

    Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji

    2014-04-01

    The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.

  13. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.

    PubMed

    Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar

    2018-06-01

    Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.

  14. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.

    PubMed

    Dwivedi, S; Tripathi, R D; Srivastava, S; Mishra, S; Shukla, M K; Tiwari, K K; Singh, R; Rai, U N

    2007-02-01

    The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52

  15. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa).

    PubMed

    James, Blessing; Zhang, Weili; Sun, Pei; Wu, Mingyan; Li, Hong Hong; Khaliq, Muhammad Athar; Jayasuriya, Pathmamali; James, Swithin; Wang, Guo

    2017-12-01

    The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H 2 C 2 O 4 ·2H 2 O-(NH 4 ) 2 C 2 O 4 ·H 2 O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg -1 to 15.34 mg kg -1  and available soil W ranged from 0.03 mg kg -1 to 1.61 mg kg -1 . The W concentration in brown rice varied from 7 μg kg -1 to 283 μg kg -1 and was significantly correlated with the available soil W. The highest mean TF avail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TF avail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.

  16. The complex history of the domestication of rice.

    PubMed

    Sweeney, Megan; McCouch, Susan

    2007-11-01

    Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of alleles will allow scientists to

  17. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.)

    PubMed Central

    2013-01-01

    Background Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. Results The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. Conclusion These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes. PMID:24280269

  18. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    PubMed

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  19. Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.).

    PubMed

    Li, Riqing; Xia, Jixing; Xu, Yiwei; Zhao, Xiucai; Liu, Yao-Guang; Chen, Yuanling

    2014-01-01

    Plant height is an important agronomic trait for crop architecture and yield. Most known factors determining plant height function in gibberellin or brassinosteroid biosynthesis or signal transduction. Here, we report a japonica rice (Oryza sativa ssp. japonica) dominant dwarf mutant, Photoperiod-sensitive dwarf 1 (Psd1). The Psd1 mutant showed impaired cell division and elongation, and a severe dwarf phenotype under long-day conditions, but nearly normal growth in short-day. The plant height of Psd1 mutant could not be rescued by gibberellin or brassinosteroid treatment. Genetic analysis with R1 and F2 populations determined that Psd1 phenotype was controlled by a single dominant locus. Linkage analysis with 101 tall F2 plants grown in a long-day season, which were derived from a cross between Psd1 and an indica cultivar, located Psd1 locus on chromosome 1. Further fine-mapping with 1017 tall F2 plants determined this locus on an 11.5-kb region. Sequencing analysis of this region detected a mutation site in a gene encoding a putative lipid transfer protein; the mutation produces a truncated C-terminus of the protein. This study establishes the genetic foundation for understanding the molecular mechanisms regulating plant cell division and elongation mediated by interaction between genetic and environmental factors.

  20. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes

    PubMed Central

    Dimkpa, Stanley O. N.; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H.

    2016-01-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  1. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  2. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  3. A Reference Genome for US Rice

    USDA-ARS?s Scientific Manuscript database

    The development of reference genomes for rice has served as means for understanding the allelic diversity and genetic structure of a cereal grain that feeds half of the world. It has long been understood that Oryza sativa diverged into two major sub-populations Indica and Japonica, over 400 K years ...

  4. Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Oliva, Norman; Torrizo, Lina; Abrigo, Editha; Tan, Jing; Rai, Mayank; Rehana, Sayda; Al-Babili, Salim; Beyer, Peter; Potrykus, Ingo; Datta, Swapan K

    2003-03-01

    Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

  5. Characterization of rice blast resistance gene Pi61(t) in rice germplasm

    USDA-ARS?s Scientific Manuscript database

    Identification of resistance (R) genes to races of Magnaporthe oryzae in rice germplasm is essential for the development of rice cultivars with long lasting blast resistance. In the present study, one major quantitative trait locus, qPi93-3, was fine mapped using a recombinant inbred line (RIL), F8 ...

  6. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice

    PubMed Central

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E.; Qiang, Sheng

    2015-01-01

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China. PMID:26012494

  7. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    PubMed

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  8. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52.

    PubMed

    Myint, Khin Khin Marlar; Fujita, Daisuke; Matsumura, Masaya; Sonoda, Tomohiro; Yoshimura, Atsushi; Yasui, Hideshi

    2012-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F(2) population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F(2) population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan.

  9. Unraveling the secrets of rice wild species

    USDA-ARS?s Scientific Manuscript database

    The rice wild species (Oryza spp.) genepool is a relatively untapped source of novel alleles for crop improvement. Several different accessions of rice wild species have been crossed as donor parents with several different Asian rice (O. sativa) cultivars, as the recurrent parent to develop mappi...

  10. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2011-11-01

    In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F(1)) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC(2)F(1) population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis.

  11. Hybrid Male Sterility in Rice Is Due to Epistatic Interactions with a Pollen Killer Locus

    PubMed Central

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2011-01-01

    In intraspecific crosses between cultivated rice (Oryza sativa) subspecies indica and japonica, the hybrid male sterility gene S24 causes the selective abortion of male gametes carrying the japonica allele (S24-j) via an allelic interaction in the heterozygous hybrids. In this study, we first examined whether male sterility is due solely to the single locus S24. An analysis of near-isogenic lines (NIL-F1) showed different phenotypes for S24 in different genetic backgrounds. The S24 heterozygote with the japonica genetic background showed male semisterility, but no sterility was found in heterozygotes with the indica background. This result indicates that S24 is regulated epistatically. A QTL analysis of a BC2F1 population revealed a novel sterility locus that interacts with S24 and is found on rice chromosome 2. The locus was named Epistatic Factor for S24 (EFS). Further genetic analyses revealed that S24 causes male sterility when in combination with the homozygous japonica EFS allele (efs-j). The results suggest that efs-j is a recessive sporophytic allele, while the indica allele (EFS-i) can dominantly counteract the pollen sterility caused by S24 heterozygosity. In summary, our results demonstrate that an additional epistatic locus is an essential element in the hybrid sterility caused by allelic interaction at a single locus in rice. This finding provides a significant contribution to our understanding of the complex molecular mechanisms underlying hybrid sterility and microsporogenesis. PMID:21868603

  12. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins.

    PubMed

    Zhang, Xiaojie; Li, Yunhe; Romeis, Jörg; Yin, Xinming; Wu, Kongming; Peng, Yufa

    2014-01-01

    A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F.

  13. Pathogenicity of Heterodera daverti, H. zeae, and Meloidogyne incognita on rice

    USDA-ARS?s Scientific Manuscript database

    The reactions of five rice cultivars to the cyst nematodes Heterodera daverti and H. zeae and the root-knot nematode Meloidogyne incognita were determined in the greenhouse. The results showed that both H. daverti and H. zeae infected and reproduced successfully on some of the tested rice cultivars....

  14. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice

    PubMed Central

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16–74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7–8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse

  15. Genetic Mapping of Quantitative Trait Loci for Grain Yield under Drought in Rice under Controlled Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan

    2017-12-01

    Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.

  16. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica.

    PubMed

    Cissoko, Mamadou; Boisnard, Arnaud; Rodenburg, Jonne; Press, Malcolm C; Scholes, Julie D

    2011-12-01

    Striga hermonthica and S. asiatica are root parasitic weeds that infect the major cereal crops of sub-Saharan Africa causing severe losses in yield. The interspecific upland NEw RICe for Africa (NERICA) cultivars are popular amongst subsistence farmers, but little is known about their post-attachment resistance against Striga. Here, we evaluate the post-attachment resistance levels of the NERICA cultivars and their parents against ecotypes of S. hermonthica and S.asiatica, characterize the phenotype of the resistance mechanisms and determine the effect of Striga on host biomass. Some NERICA cultivars showed good broad-spectrum resistance against several Striga ecotypes, whereas others showed intermediate resistance or were very susceptible. The phenotype of a resistant interaction was often characterized by an inability of the parasite to penetrate the endodermis. Moreover, some parasites formed only a few connections to the host xylem, grew slowly and remained small. The most resistant NERICA cultivars were least damaged by Striga, although even a small number of parasites caused a reduction in above-ground host biomass. The elucidation of the molecular genetic basis of the resistance mechanisms and tolerance would allow the development of cultivars with multiple, durable resistance for use in farmers' fields. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

  18. Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice

    PubMed Central

    Sun, Wenqian; Zhou, Qiaoling; Yao, Yue; Qiu, Xianjin; Xie, Kun; Yu, Sibin

    2015-01-01

    Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which each line carried one or a few introduced japonica cultivar Nipponbare segments in the genetic background of the indica cultivar ZS97. Ten quantitative trait loci regions were commonly identified for the percentage of grain chalkiness and the degree of endosperm chalkiness. The allelic effects at nine of these quantitative trait loci reduced grain chalkiness. Furthermore, a quantitative trait locus (qPGC8-2) on chromosome 8 was validated in a chromosomal segment substitution line–derived segregation population, and had a stable effect on chalkiness in a multiple-environment evaluation of the near-isogenic lines. Residing on the qPGC8-2 region, the isoamylase gene (ISA1) was preferentially expressed in the endosperm and revealed some nucleotide polymorphisms between two varieties, Nipponbare and ZS97. Transgenic lines with suppression of ISA1 by RNA interference produced grains with 20% more chalkiness than the control. The results support that the gene may underlie qPGC8-2 for grain chalkiness. The multiple-environment trials of the near-isogenic lines also show that combination of the favorable alleles such as the ISA1 gene for low chalkiness and the GS3 gene for long grains considerably improved grain quality of ZS97, which proves useful for grain quality improvement in rice breeding programs. PMID:25790260

  19. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    PubMed

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  20. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice.

    PubMed

    Ma, Jianxin; Bennetzen, Jeffrey L

    2006-01-10

    Centromeres have many unusual biological properties, including kinetochore attachment and severe repression of local meiotic recombination. These properties are partly an outcome, partly a cause, of unusual DNA structure in the centromeric region. Although several plant and animal genomes have been sequenced, most centromere sequences have not been completed or analyzed in depth. To shed light on the unique organization, variability, and evolution of centromeric DNA, detailed analysis of a 1.97-Mb sequence that includes centromere 8 (CEN8) of japonica rice was undertaken. Thirty-three long-terminal repeat (LTR)-retrotransposon families (including 11 previously unknown) were identified in the CEN8 region, totaling 245 elements and fragments that account for 67% of the region. The ratio of solo LTRs to intact elements in the CEN8 region is approximately 0.9:1, compared with approximately 2.2:1 in noncentromeric regions of rice. However, the ratio of solo LTRs to intact elements in the core of the CEN8 region ( approximately 2.5:1) is higher than in any other region investigated in rice, suggesting a hotspot for unequal recombination. Comparison of the CEN8 region of japonica and its orthologous segments from indica rice indicated that approximately 15% of the intact retrotransposons and solo LTRs were inserted into CEN8 after the divergence of japonica and indica from a common ancestor, compared with approximately 50% for previously studied euchromatic regions. Frequent DNA rearrangements were observed in the CEN8 region, including a 212-kb subregion that was found to be composed of three rearranged tandem repeats. Phylogenetic analysis also revealed recent segmental duplication and extensive rearrangement and reshuffling of the CentO satellite repeats.

  1. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua

    2017-04-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress.

  2. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    PubMed

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Development of the recombinant inbred line population of tropical japonica Lemont crossed with indica Jasmine 85

    USDA-ARS?s Scientific Manuscript database

    A recombinant inbred line (RIL) population of rice is routinely used in studying agronomically important genes, and is particularly useful for analyzing quantitative trait loci (QTL) since phenotypes can be assessed over years. Jasmine 85, a midseason aromatic long-grain indica rice cultivar develo...

  4. Paddy rice productivity under climate and land-use change in northern Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, R.; Fukui, S.; Shimada, T.; Hasegawa, T.; Iwasaki, T.

    2013-12-01

    An evaluation of the best rice cultivar under climate change is an important issue because the projected climate change has a potential to bring a negative impact on crop yield. In this study, we estimate an impact of climate change on rice yield and potential best cultivar in northern Japan where the larger paddy field is located than other regions in Japan. Two global climate model data, MIROC5 (RCP 4.5) and MRI-AGCM (SRES A1B), are applied as the future scenario. These data are too coarse to resolve the regional differences in northern Japan; we conduct the downscale experiments by a regional climate model (JMA-NHM) with a 10-km grid spacing. Considering that rice yield is sensitive to warm season climate, we conduct the downscaling from 28th May to 1st September during 1981-2000 and 2081-2099. The biases of downscaled two scenarios are corrected to match their cumulative distribution functions (CDF) of present climate with that of the station-based observation. The derived CDF-based biases are also used to correct the future scenarios. These corrected scenarios are applied to rice growth model (NIAES-Rice). To take account for the impacts of land use change (LUC) on climate and rice yield, we consider the additional temperature changes due to the LUC. As a reference, we add the LUC-induced temperature change in southwest Japan because the data are available from the previous study. We first check the climate change in northern Japan. General tendencies derived from the bias-corrected-downscaled future climates are that 1) surface warming was approximately twice in low elevation area relative to mountainous area and 2) downward shortwave radiation homogeneously increased 7-8 W m-2. Then, we evaluated the simulated yield through comparing with observation. Using observed ambient conditions as input data, the NIAES-Rice model provides the reasonable performance in simulating the rice yield with biases ranging from -19.0 to 29.2 % in prefecture base. Climate

  5. Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice

    PubMed Central

    Liu, Xiaojun; Zhang, Ke; Zhang, Zeyu; Cao, Qiang; Lv, Zunfu; Yuan, Zhaofeng; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    Canopy chlorophyll density (Chl) has a pivotal role in diagnosing crop growth and nutrition status. The purpose of this study was to develop Chl based models for estimating N status and predicting grain yield of rice (Oryza sativa L.) with Leaf area index (LAI) and Chlorophyll concentration of the upper leaves. Six field experiments were conducted in Jiangsu Province of East China during 2007, 2008, 2009, 2013, and 2014. Different N rates were applied to generate contrasting conditions of N availability in six Japonica cultivars (9915, 27123, Wuxiangjing 14, Wuyunjing 19, Yongyou 8, and Wuyunjing 24) and two Indica cultivars (Liangyoupei 9, YLiangyou 1). The SPAD values of the four uppermost leaves and LAI were measured from tillering to flowering growth stages. Two N indicators, leaf N accumulation (LNA) and plant N accumulation (PNA) were measured. The LAI estimated by LAI-2000 and LI-3050C were compared and calibrated with a conversion equation. A linear regression analysis showed significant relationships between Chl value and N indicators, the equations were as follows: PNA = (0.092 × Chl) − 1.179 (R2 = 0.94, P < 0.001, relative root mean square error (RRMSE) = 0.196), LNA = (0.052 × Chl) − 0.269 (R2 = 0.93, P < 0.001, RRMSE = 0.185). Standardized method was used to quantity the correlation between Chl value and grain yield, normalized yield = (0.601 × normalized Chl) + 0.400 (R2 = 0.81, P < 0.001, RRMSE = 0.078). Independent experimental data also validated the use of Chl value to accurately estimate rice N status and predict grain yield. PMID:29163568

  6. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  7. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    PubMed

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  8. The Birth of a Black Rice Gene and Its Local Spread by Introgression

    PubMed Central

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Izawa, Takeshi

    2015-01-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. PMID:26362607

  9. Genetic Diversity and Population Structure of Rice Varieties Cultivated in Temperate Regions.

    PubMed

    Reig-Valiente, Juan L; Viruel, Juan; Sales, Ester; Marqués, Luis; Terol, Javier; Gut, Marta; Derdak, Sophia; Talón, Manuel; Domingo, Concha

    2016-12-01

    After its domestication, rice cultivation expanded from tropical regions towards northern latitudes with temperate climate in a progressive process to overcome limiting photoperiod and temperature conditions. This process has originated a wide range of diversity that can be regarded as a valuable resource for crop improvement. In general, current rice breeding programs have to deal with a lack of both germplasm accessions specifically adapted to local agro-environmental conditions and adapted donors carrying desired agronomical traits. Comprehensive maps of genome variability and population structure would facilitate genome-wide association studies of complex traits, functional gene investigations and the selection of appropriate donors for breeding purposes. A collection of 217 rice varieties mainly cultivated in temperate regions was generated. The collection encompasses modern elite and old cultivars, as well as traditional landraces covering a wide genetic diversity available for rice breeders. Whole Genome Sequencing was performed on 14 cultivars representative of the collection and the genomic profiles of all cultivars were constructed using a panel of 2697 SNPs with wide coverage throughout the rice genome, obtained from the sequencing data. The population structure and genetic relationship analyses showed a strong substructure in the temperate rice population, predominantly based on grain type and the origin of the cultivars. Dendrogram also agrees population structure results. Based on SNP markers, we have elucidated the genetic relationship and the degree of genetic diversity among a collection of 217 temperate rice varieties possessing an enormous variety of agromorphological and physiological characters. Taken together, the data indicated the occurrence of relatively high gene flow and elevated rates of admixture between cultivars grown in remote regions, probably favoured by local breeding activities. The results of this study significantly expand the

  10. Allele Distributions at Hybrid Incompatibility Loci Facilitate the Potential for Gene Flow between Cultivated and Weedy Rice in the US

    PubMed Central

    Craig, Stephanie M.; Reagon, Michael; Resnick, Lauren E.; Caicedo, Ana L.

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds. PMID:24489758

  11. The Organelle Genomes of Hassawi Rice (Oryza sativa L.) and Its Hybrid in Saudi Arabia: Genome Variation, Rearrangement, and Origins

    PubMed Central

    Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S.; Yu, Jun

    2012-01-01

    Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93–11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184

  12. Genetic control of inflorescence architecture during rice domestication

    PubMed Central

    Zhu, Zuofeng; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Cai, Hongwei; Xie, Daoxin; Wu, Feng; Wu, Jianzhong; Matsumoto, Takashi; Sun, Chuanqing

    2013-01-01

    Inflorescence architecture is a key agronomical factor determining grain yield, and thus has been a major target of cereal crop domestication. Transition from a spread panicle typical of ancestral wild rice (Oryza rufipogon Griff.) to the compact panicle of present cultivars (O. sativa L.) was a crucial event in rice domestication. Here we show that the spread panicle architecture of wild rice is controlled by a dominant gene, OsLG1, a previously reported SBP-domain transcription factor that controls rice ligule development. Association analysis indicates that a single-nucleotide polymorphism-6 in the OsLG1 regulatory region led to a compact panicle architecture in cultivars during rice domestication. We speculate that the cis-regulatory mutation can fine-tune the spatial expression of the target gene, and that selection of cis-regulatory mutations might be an efficient strategy for crop domestication. PMID:23884108

  13. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    PubMed Central

    Pham, Nikki T.; Wei, Tong; Schackwitz, Wendy S.; Lipzen, Anna M.; Duong, Phat Q.; Jones, Kyle C.; Ruan, Deling; Bauer, Diane; Peng, Yi; Schmutz, Jeremy

    2017-01-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. PMID:28576844

  14. Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers.

    PubMed

    Duan, Meijuan; Sun, Zhizhong; Shu, Liping; Tan, Yanning; Yu, Dong; Sun, Xuewu; Liu, Ruifen; Li, Yujie; Gong, Siyu; Yuan, Dingyang

    2013-08-15

    With an increasing world population and a gradual decline in the amount of arable land, food security remains a global challenge. Continued increases in rice yield will be required to break through the barriers to grain output. In order to transition from hybrid rice to super-hybrid rice, breeding demands cannot be addressed through traditional heterosis. Therefore, it is necessary to incorporate high yield loci from other rice genetic groups and to scientifically utilize intersubspecific heterosis in breeding lines. In this study, 781 lines from a segregating F2 population constructed by crossing the indica variety, "Giant Spike Rice" R1128 as trait donor with the japonica cultivar 'Nipponbare', were re-sequenced using high-throughout multiplexed shotgun genotyping (MSG) technology. In combination with high-density single nucleotide polymorphisms, quantitative trait locus (QTL) mapping and genetic effect analysis were performed for five yield factors (spikelet number per panicle, primary branches per panicle, secondary branches per panicle, plant height, and panicle length) to explore the genetic mechanisms underlying the formation of the giant panicle of R1128. Also, they were preformed to locate new high-yielding rice genetic intervals, providing data for super-high-yielding rice breeding. QTL mapping and genetic effect analysis for five yield factors in the population gave the following results: 49 QTLs for the five yield factors were distributed on 11 of 12 chromosomes. The super-hybrid line R1128 carries multiple major genes for good traits, including Sd1 for plant height, Hd1 and Ehd1 for heading date, Gn1a for spikelet number and IPA1 for ideal plant shape. These genes accounted for 44.3%, 21.9%, 6.2%, 12.9% and 10.6% of the phenotypic variation in the individual traits. Six novel QTLs, qph1-2, qph9-1, qpl12-1, qgn3-1, qgn11-1and qsbn11-1 are reported here for the first time. High-throughout sequencing technology makes it convenient to study rice genomics

  15. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    PubMed Central

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  16. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa).

    PubMed

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-12-31

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    PubMed

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).

  18. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality.

    PubMed

    Pang, Yuehan; Zhou, Xin; Chen, Yaling; Bao, Jinsong

    2018-03-21

    Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.

  19. Head rice rate measurement based on concave point matching

    PubMed Central

    Yao, Yuan; Wu, Wei; Yang, Tianle; Liu, Tao; Chen, Wen; Chen, Chen; Li, Rui; Zhou, Tong; Sun, Chengming; Zhou, Yue; Li, Xinlu

    2017-01-01

    Head rice rate is an important factor affecting rice quality. In this study, an inflection point detection-based technology was applied to measure the head rice rate by combining a vibrator and a conveyor belt for bulk grain image acquisition. The edge center mode proportion method (ECMP) was applied for concave points matching in which concave matching and separation was performed with collaborative constraint conditions followed by rice length calculation with a minimum enclosing rectangle (MER) to identify the head rice. Finally, the head rice rate was calculated using the sum area of head rice to the overall coverage of rice. Results showed that bulk grain image acquisition can be realized with test equipment, and the accuracy rate of separation of both indica rice and japonica rice exceeded 95%. An increase in the number of rice did not significantly affect ECMP and MER. High accuracy can be ensured with MER to calculate head rice rate by narrowing down its relative error between real values less than 3%. The test results show that the method is reliable as a reference for head rice rate calculation studies. PMID:28128315

  20. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    PubMed

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  1. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    PubMed

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  3. Detection of DNA "fingerprints" of cultivated rice by hybridization with a human minisatellite DNA probe.

    PubMed

    Dallas, J F

    1988-09-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species.

  4. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa).

    PubMed

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-08-01

    Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  6. The Birth of a Black Rice Gene and Its Local Spread by Introgression.

    PubMed

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Ebitani, Takeshi; Izawa, Takeshi

    2015-09-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. © 2015 American Society of Plant Biologists. All rights reserved.

  7. Evaluating rice cultivars using subsurface drip irrigation (SDI)

    USDA-ARS?s Scientific Manuscript database

    Nearly 2.6 million acres of rice in the USA are produced using a flooded paddy system. However due to depletion of ground water, climate patterns that have resulted in reduced precipitation, and increasing competition with urban areas for water resources, the future of rice production in parts of th...

  8. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis

    USDA-ARS?s Scientific Manuscript database

    Weed-suppressive rice cultivars hold promise for improved and more economical weed management in rice. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but these phenomena are difficult to measure and not well understo...

  9. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice1

    PubMed Central

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You

    2015-01-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  10. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    PubMed

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Root distribution and interactions between allelopathic rice and c4 grass weed species as determined by 13c isotope discrimination analysis

    USDA-ARS?s Scientific Manuscript database

    Cultivars which carry allelopathic traits (traits that enable them to suppress weeds) could improve the economical management and sustainability of rice production. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but ...

  12. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    PubMed

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  13. Study on Analysis of Variance on the indigenous wild and cultivated rice species of Manipur Valley

    NASA Astrophysics Data System (ADS)

    Medhabati, K.; Rohinikumar, M.; Rajiv Das, K.; Henary, Ch.; Dikash, Th.

    2012-10-01

    The analysis of variance revealed considerable variation among the cultivars and the wild species for yield and other quantitative characters in both the years of investigation. The highly significant differences among the cultivars in year wise and pooled analysis of variance for all the 12 characters reveal that there are enough genetic variabilities for all the characters studied. The existence of genetic variability is of paramount importance for starting a judicious plant breeding programme. Since introduced high yielding rice cultivars usually do not perform well. Improvement of indigenous cultivars is a clear choice for increase of rice production. The genetic variability of 37 rice germplasms in 12 agronomic characters estimated in the present study can be used in breeding programme

  14. Registration of 'Jazzman' aromatic long-grain rice

    USDA-ARS?s Scientific Manuscript database

    Jazzman is a U.S.-bred Jasmine-type, soft-cooking aromatic long-grain rice cultivar (Oryza sativa L.) that is glabrous and has no seed dormancy. It was developed from a single cross using a modified pedigree breeding method at the Rice Research Station, Louisiana State University Agriculture Center,...

  15. Improved palatability and bio-functionality of super-hard rice by soaking in a barley-koji miso suspension.

    PubMed

    Nakamura, Sumiko; Nakano, Yohei; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2013-01-01

    Cooked grains of ae rice cultivars are too hard and non-sticky due to the presence of long-chain amylopectin, and ae rice cultivars are therefore called ``super-hard rice'' and cannot be used as table rice. However, they are promising in terms of their bio-functionality such as preventing diabetes. Miso (soybean paste) is a yeast-fermented food, made from steamed soybeans, salt, and inoculated cereals known as koji, made from rice, barley, or soybeans.We investigated the effects of soaking ae mutant rice cultivars in a miso suspension. Their chemical components, physical properties, and enzyme activities were measured under different conditions (milled rice before or after soaking in a 5% barley-koji miso suspension). Rice grains cooked after soaking in the miso suspension were less hard and more sticky than those cooked after soaking in water. Rice grains cooked after soaking in a 5% barley-koji miso suspension maintained high amounts of resistant starch and dietary fiber, and were fortified with polyphenols and isoflavones. Palatable and bio-functional ae rice could therefore be produced by cooking after soaking in a 5% barley-koji miso suspension.

  16. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    PubMed

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Genetic characterization and fine mapping of S25, a hybrid male sterility gene, on rice chromosome 12.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2018-02-10

    Hybrid male sterility genes are important factors in creating postzygotic reproductive isolation barriers in plants. One such gene, S25, is known to cause severe transmission ratio distortion in inter-subspecific progeny of cultivated rice Oryza sativa ssp. indica and japonica. To further characterize the S25 gene, we fine-mapped and genetically characterized the S25 gene using near-isogenic lines with reciprocal genetic backgrounds. We mapped the S25 locus within the 0.67-1.02 Mb region on rice chromosome 12. Further genetic analyses revealed that S25 substantially reduced male fertility in the japonica background, but not in the indica background. In first-generation hybrid progeny, S25 had a milder effect than it had in the japonica background. These results suggest that the expression of S25 is epistatically regulated by at least one partially dominant gene present in the indica genome. This finding supports our previous studies showing that hybrid male sterility due to pollen killer genes results from epistatic interaction with other genes that are hidden in the genetic background.

  18. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    PubMed

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  19. Addressing the dilemmas of measuring amylose in rice

    USDA-ARS?s Scientific Manuscript database

    Amylose content is a parameter that correlates with the cooking behaviour of rice. It is measured at the earliest possible stages of rice improvement programs to enable breeders to build the foundations of appropriate grain quality during cultivar development. Amylose is usually quantified by absorb...

  20. [Transgenic rice breeding for abiotic stress tolerance--present and future].

    PubMed

    Zhao, Feng-Yun; Zhang, Hui

    2007-01-01

    Environmental stresses and the continuing deterioration of arable land, along with an explosive increase in world population, pose serious threats to global agricultural production and food security. Improving the tolerance of the major crop plants to abiotic stresses has been a main goal in agriculture for a long time. As rice is considered one of the major crops, the development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice cultivars. In recent years, an array of stress-related genes has already been transferred to rice to improve its resistance against abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. This article focuses on the progress in the study of abiotic stress tolerance in transgenic rice breeding.

  1. Amplifying the benefits of agroecology by using the right cultivars.

    PubMed

    Noguera, D; Laossi, K-R; Lavelle, P; De Carvalho, M H Cruz; Asakawa, N; Botero, C; Barot, S

    2011-10-01

    Tropical soils are particularly vulnerable to fertility losses due to their low capacity to retain organic matter and mineral nutrients. This urges the development of new agricultural practices to manage mineral nutrients and organic matter in a more sustainable way while relying less on fertilizer inputs. Two methods pertaining to ecological engineering and agroecology have been tested with some success: (1) the addition of biochar to the soil, and (2) the maintenance of higher earthworm densities. However, modern crop varieties have been selected to be adapted to agricultural practices and to the soil conditions they lead to and common cultivars might not be adapted to new practices. Using rice as a model plant, we compared the responsiveness to biochar and earthworms of five rice cultivars with contrasted selection histories. These cultivars had contrasted responsivenesses to earthworms, biochar, and the combination of both. The mean relative increase in grain biomass, among all treatments and cultivars, was 94% and 32%, respectively, with and without fertilization. Choosing the best combination of cultivar and treatment led to a more than fourfold increase in this mean benefit (a 437% and a 353% relative increase in grain biomass, respectively, with and without fertilization). Besides, the more rustic cultivar, a local landrace adapted to diverse and difficult conditions, responded the best to earthworms in terms of total biomass, while a modern common cultivar responded the best in term of grain biomass. This suggests that cultivars could be selected to amplify the benefit of biochar- and earthworm-based practices. Overall, selecting new cultivars interacting more closely with soil organisms and soil heterogeneity could increase agriculture sustainability, fostering the positive feedback loop between soils and plants that has evolved in natural ecosystems.

  2. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen

    PubMed Central

    Song, Wenjing; Sun, Huwei; Li, Jiao; Gong, Xianpo; Huang, Shuangjie; Zhu, Xudong; Zhang, Yali; Xu, Guohua

    2013-01-01

    Background and Aims Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3−) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3− nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3− availability are not known. Methods Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3−, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. Key Results Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3− compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’. Conclusions The results indicate that higher NO3− responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’. PMID:24095838

  3. Molecular evolution of shattering loci in U.S. weedy rice

    PubMed Central

    Thurber, Carrie S.; Reagon, Michael; Gross, Briana L.; Olsen, Kenneth M.; Jia, Yulin; Caicedo, Ana L.

    2010-01-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms. PMID:20584132

  4. Molecular evolution of shattering loci in U.S. weedy rice.

    PubMed

    Thurber, Carrie S; Reagon, Michael; Gross, Briana L; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2010-08-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms.

  5. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    PubMed

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).

    PubMed

    Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin

    2018-04-01

    Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.

  7. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars.

    PubMed

    Liu, Houjun; Zhang, Chengxin; Wang, Junmei; Zhou, Chongjun; Feng, Huan; Mahajan, Manoj D; Han, Xiaori

    2017-03-01

    In this study, a soil pot experiment was conducted to investigate the changes in photosynthesis and antioxidative enzymes in two rice varieties (Shendao 6 and Shennong 265) supplied with iron (Fe), cadmium (Cd), and Fe and Cd together. The concentrations of Fe and Cd in the soil were 0, 1.0 g Fe·kg -1 and 0, 2.0 mg Cd·kg -1 , respectively. Photosynthetic indices and antioxidative enzyme activities were recorded at different rice growth stages. At the early stage, Cd showed a transient stimulatory effect on the photosynthetic rate of Shennong 265. For Shendao 6, however, Cd showed a transient stimulatory effect on photosynthetic rate, intercellular CO 2 concentration, stomatal conductance and transpiration efficiency. In addition, the results show that Cd can also enhance the superoxide dismutase (SOD) and peroxidase (POD) activities, but reduce the malondialdehyde (MDA) and soluble protein contents in the two rice cultivars. Subsequently, Cd starts to inhibit photosynthesis and SOD activity until the ripening stage, causing the lowest photosynthetic rate and SOD activity at this stage. In contrast, Fe alleviates the Cd-induced changes at earlier or later growth stage. Notably at the later growth stage, the results show that the interaction between Fe and Cd increases the SOD and catalase (CAT) activities, while decreasing the lipid peroxidation and promoting photosynthesis. As a result, it ultimately increases the biomass. The results from this study suggest that Fe (as Fe fertilizer) is a promising alternative for agricultural use to enhance the plant development and, simultaneously, to reduce Cd toxicity in extensively polluted soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    PubMed

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  9. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety.

    PubMed

    Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen

    2014-10-01

    This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  11. Identification of QTLs for rice brown spot resistance in backcross inbred lines derived from a cross between Koshihikari and CH45.

    PubMed

    Matsumoto, Kengo; Ota, Yuya; Seta, Satomi; Nakayama, Yukinori; Ohno, Teppei; Mizobuchi, Ritsuko; Sato, Hiroyuki

    2017-12-01

    Rice brown spot (BS), caused by Bipolaris oryzae , is one of the major diseases of rice in Japan. Quantitative resistance has been observed in local cultivars (e.g., CH45), but no economically useful resistant variety has been bred. Using simple sequence repeat (SSR) polymorphic markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between indica CH45 (resistant) and japonica Koshihikari (susceptible). On the basis of field disease evaluations in 2015 and 2016, four QTLs contributing to BS resistance were identified on chromosomes 2 ( qBSR2-kc ), 7 ( qBSR7-kc ), 9 ( qBSR9-kc ), and 11 ( qBSR11-kc ). The 'CH45' alleles at qBSR2-kc , qBSR7-kc , and qBSR11-kc and the 'Koshihikari' allele at qBSR9-kc increased resistance. The major QTL qBSR11-kc explained 23.0%-25.9% of the total phenotypic variation. Two QTLs ( qBSR9-kc and qBSR11-kc ) were detected in both years, whereas the other two were detected only in 2016. Genetic markers flanking these four QTLs will be powerful tools for marker-assisted selection to improve BS resistance.

  12. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on ¹³C isotope discrimination analysis.

    PubMed

    Gealy, David; Moldenhauer, Karen; Duke, Sara

    2013-02-01

    Weed-suppressive rice cultivars hold promise for improved and more economical weed management in rice. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but these phenomena are difficult to measure and not well understood. Thus, above-ground productivity, weed suppression, and root distribution of 11 rice cultivars and two weed species were evaluated in a drill-seeded, flood-irrigated system at Stuttgart, Arkansas, USA in a two-year study. The allelopathic cultivars, PI 312777 and Taichung Native 1 (TN-1), three other weed-suppressive cultivars, three indica-derived breeding selections, and three non-suppressive commercial cultivars were evaluated in field plots infested with barnyardgrass (Echinochloa crus-galli (L.) Beauv.) or bearded sprangletop (sprangletop, Leptochloa fusca (L.) Kunth var. fascicularis (Lam.) N. Snow). The allelopathic cultivars produced more tillers and suppressed both weed species to a greater extent than did the breeding selections or the non-suppressive cultivars. (13)C isotope discrimination analysis of mixed root samples to a depth of 15 cm revealed that the allelopathic cultivars typically produced a greater fraction of their total root mass in the surface 0-5 cm of soil depth compared to the breeding selections or the non-suppressive cultivars, which tended to distribute their roots more evenly throughout the soil profile. These trends in root mass distribution were apparent at both early (pre-flood) and late-season stages in weed-free and weed-infested plots. Cultivar productivity and root distribution generally responded similarly to competition with the two weed species, but barnyardgrass reduced rice yield and root mass more than did sprangletop. These findings demonstrate for the first time that roots of the allelopathic cultivars PI 312777 and TN-1 explore the upper soil profile more thoroughly than do non-suppressive cultivars under weed

  13. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.

  14. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  15. The Sequences of 1,504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    DOE PAGES

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; ...

    2017-06-02

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less

  16. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    PubMed

    Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V

    2015-04-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Threat to food security under current levels of ground level ozone: A case study for Indian cultivars of rice

    NASA Astrophysics Data System (ADS)

    Rai, Richa; Agrawal, Madhoolika; Agrawal, S. B.

    2010-11-01

    A higher ozone concentration in rural agricultural region poses threat to food production in developing countries. The present study was conducted to evaluate the growth, biomass accumulation and allocation pattern, quantitative and qualitative characteristics of grains for two tropical rice cultivars ( Oryza sativa L. cv NDR 97 and Saurabh 950) at ambient O 3 concentrations at a rural site in the Indo Gangetic plains of India. Percent inhibition in number of leaves was higher for NDR 97, but in leaf area for Saurabh 950 grown in non filtered chambers (NFCs) compared to filtered chambers (FCs). Higher inhibition in root biomass was recorded in Saurabh 950 and in leaf and standing dead biomass for NDR 97. During vegetative phase, relative growth rate showed more percent inhibition in Saurabh 950, but at reproductive phase in NDR 97. Net assimilation rate showed higher values for Saurabh 950 than NDR 97 in NFCs but percent inhibition in leaf area ratio was higher for former than latter cultivar in NFCs. The ozone resistance was higher in NDR 97 during vegetative phase, but in Saurabh 950 at reproductive phase. Number of grains was higher in NDR 97 than Saurabh 950, but test weight and weight of grains m -2 showed reverse trends. Concentrations of starch, protein, P, N, Ca, Mg and K decreased, while reducing and total soluble sugar increased in grains of both the cultivars in NFCs compared to FCs. The study concluded that under ambient condition of O 3 exposure, the two cultivars responded differently. Saurabh 950 favoured biomass translocation priority towards ear in reproductive phase and hence showed higher resistivity due to maintenance of higher test weight. NDR 97, however, showed better growth during vegetative period, but could not allocate efficiently to developing ears, hence higher number of unfilled grains in NFCs led lower test weight.

  18. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    PubMed

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P < 0.05) reduced photosynthetic pigments (chlorophyll contents and carotenoids) and inducted oxidative stress with increased production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while

  19. Genomic variation associated with local adaptation of weedy rice during de-domestication

    PubMed Central

    Qiu, Jie; Zhou, Yongjun; Mao, Lingfeng; Ye, Chuyu; Wang, Weidi; Zhang, Jianping; Yu, Yongyi; Fu, Fei; Wang, Yunfei; Qian, Feijian; Qi, Ting; Wu, Sanling; Sultana, Most Humaira; Cao, Ya-Nan; Wang, Yu; Timko, Michael P.; Ge, Song; Fan, Longjiang; Lu, Yongliang

    2017-01-01

    De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like' forms. Weedy rice (Oryza sativa f. spontanea) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to japonica and indica weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication. PMID:28537247

  20. Rice: Characterizing the Environmental Response of a Gibberellic Acid-Deficient Rice for Use as a Model Crop

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Pinnock, Derek; Klassen, Steve; Bugbee, Bruce

    2004-01-01

    Rice (Oryza sativa L.) is a useful model crop plant. Rice was the first crop plant to have its complete genome sequenced. Unfortunately, even semi-dwarf rice cultivars are 60 to 90 an tail, and large plant populations cannot be grown in the confined volumes of greenhouses and growth chambers. We recently identified an extremely short (20 em tall) rice line, which is an ideal model for larger rice cultivars. We called this line "Super Dwarf rice." Here we report the response of Super Dwarf to temperature, photoperiod, photosynthetic photon flux (PPF), and factors that can affect time to head emergence. Vegetative biomass increased 6% per degree Celsius, with increasing temperature from 27 to 31 C. Seed yield decreased by 2% per degree Celsius rise in temperature, and as a result, harvest index decreased from 60 to 54%. The time to heading increased by 2 d for every hour above a 12-h photoperiod. Yield increased with increasing PPF up to the highest level tested at 1800 micro-mol/sq m/s (12-h photoperiod; 77.8 mol/sq m/d). Yield efficiency (grams per mole of photons) increased to 900 micro-mol/sq m/s and then slightly decreased at 1800 micro-mol/sq m/s . Heading was delayed by addition of gibberellic acid 3 (GA,) to the root zone but was hastened under mild N stress. Overall, short stature, high yield, high harvest index, and no extraordinary environmental requirements make Super Dwarf rice an excellent model plant for yield studies in controlled environments.

  1. Effects of allelic variations in starch synthesis-related genes on grain quality traits of Korean nonglutinous rice varieties under different temperature conditions

    PubMed Central

    Mo, Young-Jun; Jeung, Ji-Ung; Shin, Woon-Chul; Kim, Ki-Young; Ye, Changrong; Redoña, Edilberto D.; Kim, Bo-Kyeong

    2014-01-01

    Influences of allelic variations in starch synthesis-related genes (SSRGs) on rice grain quality were examined. A total of 187 nonglutinous Korean rice varieties, consisting of 170 Japonica and 17 Tongil-type varieties, were grown in the field and in two greenhouse conditions. The percentages of head rice and chalky grains, amylose content, alkali digestion value, and rapid visco-analysis characteristics were evaluated in the three different environments. Among the 10 previously reported SSRG markers used in this study, seven were polymorphic, and four of those showed subspecies-specific allele distributions. Six out of the seven polymorphic SSRG markers were significantly associated with at least one grain quality trait (R2 > 0.1) across the three different environments. However, the association level and significance were markedly lower when the analysis was repeated using only the 170 Japonica varieties. Similarly, the significant associations between SSRG allelic variations and changes in grain quality traits under increased temperature were largely attributable to the biased allele frequency between the two subpopulations. Our results suggest that within Korean Japonica varieties, these 10 major SSRG loci have been highly fixed during breeding history and variations in grain quality traits might be influenced by other genetic factors. PMID:24987303

  2. Isolation and identification of an allelopathic phenylethylamine in rice.

    PubMed

    Le Thi, Ho; Lin, Chung-Ho; Smeda, Reid J; Leigh, Nathan D; Wycoff, Wei G; Fritschi, Felix B

    2014-12-01

    Allelopathy is the process whereby an organic chemical (allelochemical) released from one plant influences the growth and development of other plants. Allelochemicals produced by specific rice (Oryza sativa L.) cultivars have potential to manage barnyard grass (Echinochloa crus-galli L.), a major yield-limiting weed species in rice production systems in Asia and North America. In this study, isolation and identification of an allelopathic compound, N-trans-cinnamoyltyramine (NTCT), in a Vietnamese rice cultivar 'OM 5930' was accomplished through bioassay-guided purification using reversed-phase liquid chromatography coupled with spectroscopic techniques, including tandem mass spectrometry, high resolution mass spectrometry, as well as one-dimensional and two-dimensional (1)H NMR and (13)C NMR spectroscopy. The identified compound, NTCT is considered a β-phenylethylamine. NTCT inhibited root and hypocotyl growth of cress (Lepidium sativum L.), barnyard grass and red sprangletop (Leptochloa chinensis L. Nees) at concentrations as low as 0.24 μM. The ED50 (concentration required for 50% inhibition) of NTCT on barnyard grass root and hypocotyl elongation were 1.35 and 1.85 μM, respectively. Results further demonstrated that mortality of barnyard grass and red sprangletop seedlings was >80% at a concentration of 2.4 μM of NTCT. By 20 days after transplanting, 0.425 nmol of NTCT per OM 5930 rice seedling was released into the culture solution. With concentrations of 42 μg g(-1) fresh weight, production of NTCT in intact rice plants can be considered high. These findings suggest that developing plants of Vietnamese rice cultivar OM 5930 release NTCT and may be utilized to suppress barnyard grass in rice fields. The potency of NTCT may encourage development of this compound as a bio-herbicide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.).

    PubMed

    Zhong, Chu; Cao, Xiaochuang; Bai, Zhigang; Zhang, Junhua; Zhu, Lianfeng; Huang, Jianliang; Jin, Qianyu

    2018-04-01

    Nitrogen metabolism is as sensitive to water stress as photosynthesis, but its role in plant under soil drying is not well understood. We hypothesized that the alterations in N metabolism could be related to the acclimation of photosynthesis to water stress. The features of photosynthesis and N metabolism in a japonica rice 'Jiayou 5' and an indica rice 'Zhongzheyou 1' were investigated under mild and moderate soil drying with a pot experiment. Soil drying increased non-photochemical quenching (NPQ) and reduced photon quantum efficiency of PSII and CO 2 fixation in 'Zhongzheyou 1', whereas the effect was much slighter in 'Jiayou 5'. Nevertheless, the photosynthetic rate of the two cultivars showed no significant difference between control and water stress. Soil drying increased nitrate reducing in leaves of 'Zhongzheyou 1', characterized by enhanced nitrate reductase (NR) activity and lowered nitrate content; whereas glutamate dehydrogenase (GDH), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were relative slightly affected. 'Jiayou 5' plants increased the accumulation of nitrate under soil drying, although its NR activity was increased. In addition, the activities of GDH, GOT and GPT were typically increased under soil drying. Besides, amino acids and soluble sugar were significantly increased under mild and moderate soil drying, respectively. The accumulation of nitrate, amino acid and sugar could serve as osmotica in 'Jiayou 5'. The results reveal that N metabolism plays diverse roles in the photosynthetic acclimation of rice plants to soil drying. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

  5. Low pH-Induced Changes of Antioxidant Enzyme and ATPase Activities in the Roots of Rice (Oryza sativa L.) Seedlings

    PubMed Central

    Zhang, Yi-Kai; Zhu, De-Feng; Zhang, Yu-Ping; Chen, Hui-Zhe; Xiang, Jing; Lin, Xian-Qing

    2015-01-01

    Soil acidification is the main problem in the current rice production. Here, the effects of low pH on the root growth, reactive oxygen species metabolism, plasma membrane functions, and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa L.) in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this trial, including Yongyou 12 (YY12, a japonica hybrid) and Zhongzheyou 1 (ZZY1, an indica hybrid). Higher H+ activity markedly decreased root length, the proportion of fine roots, and dry matter production, but induced a significant accumulation of hydrogen peroxide (H2O2), and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of copper/zinc superoxide dismutase 1 (Cu/Zn SOD1), copper/zinc superoxide dismutase 2 (Cu/Zn SOD2), catalase A (CATA) and catalase B (CATB) genes in YY12 and ZZY1 roots were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a significant decrease was observed in the expression of the P-type Ca2+-ATPases in roots at pH 3.5. The activities of antioxidant enzymes (SOD, CAT) and plasma membrane (PM) Ca2+-ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification. However, the expression levels of ascorbate peroxidase 1 (APX1) and PM H+-ATPase isoform 7 were up-regulated under H+ stress compared with the control. Significantly higher activities of APX and PM H+-ATPase could contribute to the adaptation of rice roots to low pH. PMID:25719552

  6. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice.

    PubMed

    Zhang, Bing-Lin; Ouyang, You-Nan; Xu, Jun-Ying; Liu, Ke

    2018-01-01

    The remobilization of cadmium (Cd) from shoots to grain is the key process to determine the Cd accumulation in grain. The apoplastic pH of plants is an important factor and signal in influencing on plant responding to environmental variation and inorganic elements uptake. It is proposed that pH of rice plants responds and influences on Cd remobilization from shoots to grain when rice is exposed to Cd stress. The results of hydroponic experiment showed that: pH of the rice leaf vascular bundles among 3 cultivars was almost increased, pH value of 1 cultivar was slightly increasing when rice plants were treated with Cd. The decrease degree of H + concentration in leaf vascular bundles was different among cultivars. The cultivar with higher decreasing in H + concentration, showed higher Cd transfer efficiency from shoots to grain. The H + concentration of leaf vascular bundles under normal condition was negatively correlated to cadmium accumulation in leaf. Moreover, pH change was related to Cd accumulation in shots and remobilization from shoots to grain. Uncovering the role of pH response is a key component for the understanding Cd uptake and remobilization mechanism for rice production. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains.

    PubMed

    Wytynck, Pieter; Rougé, Pierre; Van Damme, Els J M

    2017-11-01

    Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen-Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies.

    PubMed

    Yang, Xiaolu; Nian, Jinqiang; Xie, Qingjun; Feng, Jian; Zhang, Fengxia; Jing, Hongwei; Zhang, Jian; Dong, Guojun; Liang, Yan; Peng, Juli; Wang, Guodong; Qian, Qian; Zuo, Jianru

    2016-11-07

    Plants assimilate inorganic nitrogen absorbed from soil into organic forms as Gln and Glu through the glutamine synthetase/glutamine:2-oxoglutarate amidotransferase (GS/GOGAT) cycle. Whereas GS catalyzes the formation of Gln from Glu and ammonia, GOGAT catalyzes the transfer of an amide group from Gln to 2-oxoglutarate to produce two molecules of Glu. However, the regulatory role of the GS/GOGAT cycle in the carbon-nitrogen balance is not well understood. Here, we report the functional characterization of rice ABNORMAL CYTOKININ RESPONSE 1 (ABC1) gene that encodes a ferredoxin-dependent (Fd)-GOGAT. The weak mutant allele abc1-1 mutant shows a typical nitrogen-deficient syndrome, whereas the T-DNA insertional mutant abc1-2 is seedling lethal. Metabolomics analysis revealed the accumulation of an excessive amount of amino acids with high N/C ratio (Gln and Asn) and several intermediates in the tricarboxylic acid cycle in abc1-1, suggesting that ABC1 plays a critical role in nitrogen assimilation and carbon-nitrogen balance. Five non-synonymous single-nucleotide polymorphisms were identified in the ABC1 coding region and characterized as three distinct haplotypes, which have been highly and specifically differentiated between japonica and indica subspecies. Collectively, these results suggest that ABC1/OsFd-GOGAT is essential for plant growth and development by modulating nitrogen assimilation and the carbon-nitrogen balance. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    PubMed

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  10. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  11. Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice?1[OPEN

    PubMed Central

    Kadam, Niteen N.; Yin, Xinyou; Bindraban, Prem S.; Struik, Paul C.; Jagadish, Krishna S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice ‘IR64’ and ‘Apo’ adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice ‘Nagina 22’ had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. PMID:25614066

  12. Relationship of cooked rice nutritionally-important starch fractions with other physicochemical properties.

    USDA-ARS?s Scientific Manuscript database

    Sixteen rice cultivars representing 5 cytosine-thymine repeat (CTn) microsatellite genetic marker groups were analyzed for their cooked rice nutritionally-important starch fractions (rapidly digestible, slowly digestible, and resistant starch), basic grain quality indices (apparent amylose, crude pr...

  13. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA

  14. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells.

    PubMed

    Friedman, Mendel

    2013-11-13

    Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies.

  15. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  16. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  17. Diagnostic Assay for Rickettsia japonica

    PubMed Central

    Hanaoka, Nozomu; Matsutani, Minenosuke; Kawabata, Hiroki; Yamamoto, Seigo; Fujita, Hiromi; Sakata, Akiko; Azuma, Yoshinao; Ogawa, Motohiko; Takano, Ai; Watanabe, Haruo; Kishimoto, Toshio; Shirai, Mutsunori; Kurane, Ichiro

    2009-01-01

    We developed a specific and rapid detection system for Rickettsia japonica and R. heilongjiangensis, the causative agents of spotted fever, using a TaqMan minor groove binder probe for a particular open reading frame (ORF) identified by the R. japonica genome project. The target ORF was present only in R. japonica–related strains. PMID:19961684

  18. A gene block causing cross-incompatibility hidden in wild and cultivated rice.

    PubMed Central

    Matsubara, Kazuki; Khin-Thidar; Sano, Yoshio

    2003-01-01

    Unidirectional cross-incompatibility was detected in advanced generations of backcrossing between wild (Oryza rufipogon) and cultivated (O. sativa) rice strains. The near-isogenic line (NIL) of T65wx (Japonica type) carrying an alien segment of chromosome 6 from a wild strain gave a reduced seed setting only when crossed with T65wx as the male. Cytological observations showed that abortion of hybrid seeds occurred as a consequence of a failure of early endosperm development followed by abnormalities in embryo development. The genetic basis of cross-incompatibility reactions in the female and male was investigated by testcrosses using recombinant inbred lines (RILs) that were established through dissecting the introgressed segments of wild and cultivated (Indica type) strains. The results revealed that the cross-incompatibility reaction was controlled by Cif in the female and by cim in the male. When the female plant with Cif was crossed with the male plant with cim, a failure of early endosperm development was observed in the hybrid zygotes. Among cultivars of O. sativa, cim was distributed predominantly in the Japonica type but not in the Indica type. In addition, a dominant suppressor, Su-Cif, which changes the reaction in the female from incompatible to compatible was proposed to present near the centromere of chromosome 6 of the Indica type. Further, the death of young F(1) zygotes was controlled by the parental genotypes rather than by the genotype of the hybrid zygote itself since all three genes acted sporophytically, which strongly suggests an involvement of parent-of-origin effects. We discuss the results in relation to the origin of a crossing barrier as well as their maintenance within the primary gene pool. PMID:14504241

  19. A Novel Naturally Occurring Class I 5-Enolpyruvylshikimate-3-Phosphate Synthase from Janibacter sp. Confers High Glyphosate Tolerance to Rice

    PubMed Central

    Yi, Shu-yuan; Cui, Ying; Zhao, Yan; Liu, Zi-duo; Lin, Yong-jun; Zhou, Fei

    2016-01-01

    As glyphosate is a broad spectrum herbicide extensively used in agriculture worldwide, identification of new aroA genes with high level of glyphosate tolerance is essential for the development and breeding of transgenic glyphosate-tolerant crops. In this study, an aroA gene was cloned from a Janibacter sp. strain isolated from marine sediment (designated as aroAJ. sp). The purified aroAJ. sp enzyme has a Km value of 30 μM for PEP and 83 μM for S3P, and a significantly higher Ki value for glyphosate (373 μM) than aroAE. coli. AroAJ. sp is characterized as a novel and naturally occurring class I aroA enzyme with glyphosate tolerance. Furthermore, we show that aroAJ. sp can be used as an effective selectable marker in both japonica and indica rice cultivar. Transgenic rice lines were tested by herbicide bioassay and it was confirmed that they could tolerate up to 3360 g/ha glyphosate, a dosage four-fold that of the recommended agricultural application level. To our knowledge, it is the first report of a naturally occurring novel class I aroA gene which can be efficiently utilized to study and develop transgenic glyphosate-tolerant crops, and can facilitate a more economical and simplified weed control system. PMID:26754957

  20. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.

    PubMed

    Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R

    1996-04-01

    We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.

  1. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress.

    PubMed

    Zhao, Qian; Zhou, Lujian; Liu, Jianchao; Du, Xiaoxia; Asad, Muhammad-Asad-Ullah; Huang, Fudeng; Pan, Gang; Cheng, Fangmin

    2018-01-01

    High temperature (HT) at meiosis stage is one of most important environment constraint affecting spikelet fertility and rice yield. In this paper, the effects of HT exposure at meiosis stage on the ROS (reactive oxygen species) accumulation, various superoxide dismutase (SOD, EC1.15.1.11) isozymes in developing anther, and its relationship with HT-induced decline in pollen viability and floret fertility were investigated by using four rice cultivars differing in heat tolerance under well-controlled climatic condition. Results showed that HT exposure significantly increased ROS level and malondialdehyde (MDA) content in rice anther, and this occurrence was strongly responsible for the HT-induced decline in pollen viability and harmful effect of HT adversity on floret fertility. However, the increased extent of ROS concentration in rice anther under HT exposure was greatly variable, depending on both the intensity and duration of HT exposure and different rice cultivars used. The SOD and CAT activities of HT-sensitive cultivars decreased more profoundly than those of HT-tolerant cultivars under the same HT regimes. Among various types of SOD enzymes, Cu/Zn-SODa expressed highly in rice anther and responded sensitively to HT exposure, while Cu/Zn-SODb expressed weakly in rice anther and preferentially in rice leaves. HT exposure suppressed the expression of Cu/Zn-SODa in developing anther, which was closely associated with the down-regulated transcripts of cCu/Zn-SOD1 gene. Hence, Cu/Zn-SODa may play a central role in the regulation of total SOD activity and ROS detoxification in rice anther as affected by HT exposure at meiosis stage. Copyright © 2017. Published by Elsevier Masson SAS.

  2. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    PubMed

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  3. Diachronic analysis of genetic diversity in rice landraces under on-farm conservation in Yunnan, China.

    PubMed

    Cui, Di; Li, Jinmei; Tang, Cuifeng; A, Xinxiang; Yu, Tengqiong; Ma, Xiaoding; Zhang, Enlai; Cao, Guilan; Xu, Furong; Qiao, Yongli; Dai, Luyuan; Han, Longzhi

    2016-01-01

    Diachronic analysis showed no significant changes in the level of genetic diversity occurred over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Rice (Oryza sativa L.) is one of the earliest domesticated crop species. Its genetic diversity has been declining as a result of natural and artificial selection. In this study, we performed the first analysis of the levels and patterns of nucleotide variation in rice genomes under on-farm conservation in Yunnan during a 27-year period of domestication. We performed large-scale sequencing of 600 rice accessions with high diversity, which were collected in 1980 and 2007, using ten unlinked nuclear loci. Diachronic analysis showed no significant changes in the level of genetic diversity occurring over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Population structure revealed that the rice landraces could be grouped into two subpopulations, namely the indica and japonica groups. Interestingly, the alternate distribution of indica and japonica rice landraces could be found in each ecological zone. The results of AMOVA showed that on-farm conservation provides opportunities for continued differentiation and variation of landraces. Therefore, dynamic conservation measures such as on-farm conservation (which is a backup, complementary strategy to ex situ conservation) should be encouraged and enhanced, especially in crop genetic diversity centers. The results of this study offered accurate insights into short-term evolutionary processes and provided a scientific basis for on-farm management practices.

  4. Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping

    PubMed Central

    Famoso, Adam N.; Zhao, Keyan; Clark, Randy T.; Tung, Chih-Wei; Wright, Mark H.; Bustamante, Carlos; Kochian, Leon V.; McCouch, Susan R.

    2011-01-01

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and

  5. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome

    USDA-ARS?s Scientific Manuscript database

    The domestication of Asian rice (Oryza sativa) was a complex process and substantial ambiguity remains regarding the timing, number, and locations of domestication events. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests at least two independent domesticati...

  6. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.

    PubMed

    Wang, M Y; Chen, A K; Wong, M H; Qiu, R L; Cheng, H; Ye, Z H

    2011-06-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg⁻¹ in soil) and a soil pot trial (control, 100 mg Cd kg⁻¹), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg⁻¹) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg⁻¹) in a pot trial, and (3) rates of ROL (15-31 mmol O₂ kg⁻¹ root d.w. h⁻¹). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Deciphering the Environmental Impacts on Rice Quality for Different Rice Cultivated Areas.

    PubMed

    Li, Xiukun; Wu, Lian; Geng, Xin; Xia, Xiuhong; Wang, Xuhong; Xu, Zhengjin; Xu, Quan

    2018-01-19

    Rice (Oryza sativa L.) is cultivated in a wide range of climatic conditions, and is one of mankind's major staple foods. The interaction of environmental factors with genotype effects major agronomic traits such as yield, quality, and resistance in rice. However, studies on the environmental factors affecting agronomic traits are often difficult to conduct because most environmental factors are dynamic and constantly changing. A series of recombinant inbred lines (RILs) derived from an indica/japonica cross were planted into four typical rice cultivated areas arranging from latitude N22° to N42°. The environmental data from the heading to mature (45 days) stages were recorded for each RIL in the four areas. We determined that light, temperature, and humidity significantly affected the milling quality and cooking quality overall the four areas. Within each area, these environmental factors mainly affected the head rice ratio, grain length, alkali consumption, and amylose and protein content. Moreover, the effect of these environmental factors dynamically changed from heading to mature stage. Compared to light and humidity, temperature was more stable and predictable, and night temperature showed a stronger correlation efficiency to cooking quality than day temperature, and the daily temperature range had contrary effects compared to day and night temperature on grain quality. The present study evaluated the critical phase during the grain filling stage by calculating the dynamic changes of correlation efficiency between the quality traits and climate parameters. Our findings suggest that the sowing date could be adjusted to improve rice quality so as to adjust for environmental changes.

  8. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain

    PubMed Central

    Jo, Yeong-Min; Cho, Kyoungwon; Lee, Hye-Jung; Lim, Sun-Hyung; Kim, Jin Sun; Kim, Young-Mi; Lee, Jong-Yeol

    2017-01-01

    Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice. PMID:29156580

  9. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa

    PubMed Central

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B.; Miras, Monaliza A.; Mendioro, Merlyn S.; Simon, Eliza V.; Lumanglas, Patrick D.; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S. V.; Ishimaru, Tsutomu

    2015-01-01

    A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5–2.0h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. PMID:25534925

  10. Economics of weed suppressive rice cultivars in flood- and furrow-irrigated systems

    USDA-ARS?s Scientific Manuscript database

    Weeds are a major constraint to rice production. In the U.S, weeds in rice are controlled primarily with synthetic herbicides. Intensive herbicide application in rice also has many potential drawbacks, resulting in environmental pollution, human health concerns, and development of weed resistance. B...

  11. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area.

    PubMed

    Gentile, C; Reig, C; Corona, O; Todaro, A; Mazzaglia, A; Perrone, A; Gianguzzi, G; Agusti, M; Farina, V

    2016-09-01

    In this paper the diversity of fruit quality within nine loquat cultivars, including five international affirmed cultivars (Algerie, Golden Nugget, Peluche, Bueno, El Buenet) and four local cultivars (Sanfilippara, Nespolone di Trabia, BRT20 and Claudia), were investigated in order to discriminate the variation in pomological characteristics, sensory profile, and antioxidant properties. Finally, to evaluate potential bioactivity, antiproliferative activity of hydrophilic extracts from loquat fruits was assessed, at dietary relevant concentrations, against three human epithelial cell lines. Even though the international cultivars confirmed an appropriate level of commercial qualities in association to high levels in antioxidant compounds, the local cultivars revealed the best performances in a wide range of chemical-physical and sensory characteristics. Concerning bioactivity, our results indicate that hydrophilic extracts from all tested cultivars showed concentration-dependent antiproliferative activity with a significant variability of effects between different cell lines and between different cultivars. HeLa cells, the most sensitive and hydrophilic extracts from Peluche, showed the highest inhibitory effect followed by Nespolone di Trabia and Claudia. The results of this trial provide useful information on the pomological traits and the not yet known specific nutritional and functional properties of loquat fruits. Our data, besides helping to promote specific local cultivars, could serve to establish a database that will permit to improve the utilization of specific genetic resources in breeding programs.

  12. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.

    PubMed

    Zhou, Yong; Zhu, Jinyan; Li, Zhengyi; Yi, Chuandeng; Liu, Jun; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Liang, Guohua

    2009-09-01

    Rice plant architecture is an important agronomic trait and a major determinant in high productivity. Panicle erectness is the preferred plant architecture in japonica rice, but the molecular mechanism underlying domestication of the erect panicle remains elusive. Here we report the map-based cloning of a major quantitative trait locus, qPE9-1, which plays an integral role in regulation of rice plant architecture including panicle erectness. The R6547 qPE9-1 gene encodes a 426-amino-acid protein, homologous to the keratin-associated protein 5-4 family. The gene is composed of three Von Willebrand factor type C domains, one transmembrane domain, and one 4-disulfide-core domain. Phenotypic comparisons of a set of near-isogenic lines and transgenic lines reveal that the functional allele (qPE9-1) results in drooping panicles, and the loss-of-function mutation (qpe9-1) leads to more erect panicles. In addition, the qPE9-1 locus regulates panicle and grain length, grain weight, and consequently grain yield. We propose that the panicle erectness trait resulted from a natural random loss-of-function mutation for the qPE9-1 gene and has subsequently been the target of artificial selection during japonica rice breeding.

  13. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.

    PubMed

    Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata

    2017-05-04

    The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.

  14. Analysis of rice PDR-like ABC transporter genes in sheath blight resistance

    USDA-ARS?s Scientific Manuscript database

    Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...

  15. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice

    USDA-ARS?s Scientific Manuscript database

    This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration ...

  16. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  17. Response of rice genotype to straighthead disease as influenced by arsenic level and water management practices in soil.

    PubMed

    Hua, Bin; Yan, Wengui; Yang, John

    2013-01-01

    Arsenic (As) uptake by rice plants and the straighthead disease induced by As-based herbicide are of environmental concerns. Bioavailability or mobility of inorganic As in soil has been reported to be significantly influenced by soil minerals such as iron (hydr) oxide; however, the interactions of organic As such as monosodium methanearsonate (MSMA) with soil minerals are little studied, thus largely unknown. In an effort to minimize the As uptake by rice and determine rice cultivar response to soil MSMA level, a field experiment was conducted on three rice cultivars grown in both MSMA-treated and -untreated soils under continuous or intermittent flood water management practices. Results indicated that the grain yield and the occurrence of straighthead disease were cultivar-dependent and influenced by soil As level and water management practices. Straighthead-resistant cultivars yielded more and had lower grain As than the susceptible ones. Elevated soil As with continuous flood management significantly reduced the grain yield of susceptible cultivars by >89% due to substantially increased straighthead, which were induced by increased As content in grains. Yield reduction by MSMA treatment could be partially mitigated with intermittent flood water practice. The As accumulation was found to be associated with soil iron redox transformation influenced by the water management. This study demonstrates that the selection of less As-susceptible cultivars and intermittent flood water practice could be effective means to lower the As accumulation in grains and minimize the occurrence of the As-induced straighthead symptom and yield reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Conspecific Crop-Weed Introgression Influences Evolution of Weedy Rice (Oryza sativa f. spontanea) across a Geographical Range

    PubMed Central

    Xia, Han-Bing; Wang, Wei; Xia, Hui; Zhao, Wei; Lu, Bao-Rong

    2011-01-01

    Background Introgression plays an important role in evolution of plant species via its influences on genetic diversity and differentiation. Outcrossing determines the level of introgression but little is known about the relationships of outcrossing rates, genetic diversity, and differentiation particularly in a weedy taxon that coexists with its conspecific crop. Methodology/Principal Findings Eleven weedy rice (Oryza sativa f. spontanea) populations from China were analyzed using microsatellite (SSR) fingerprints to study outcrossing rate and its relationship with genetic variability and differentiation. To estimate outcrossing, six highly polymorphic SSR loci were used to analyze >5500 progeny from 216 weedy rice families, applying a mixed mating model; to estimate genetic diversity and differentiation, 22 SSR loci were analyzed based on 301 weedy individuals. Additionally, four weed-crop shared SSR loci were used to estimate the influence of introgression from rice cultivars on weedy rice differentiation. Outcrossing rates varied significantly (0.4∼11.7%) among weedy rice populations showing relatively high overall Nei's genetic diversity (0.635). The observed heterozygosity was significantly correlated with outcrossing rates among populations (r2 = 0.783; P<0.001) although no obvious correlation between outcrossing rates and genetic diversity parameters was observed. Allelic introgression from rice cultivars to their coexisting weedy rice was detected. Weedy rice populations demonstrated considerable genetic differentiation that was correlated with their spatial distribution (r2 = 0.734; P<0.001), and possibly also influenced by the introgression from rice cultivars. Conclusions/Significance Outcrossing rates can significantly affect heterozygosity of populations, which may shape the evolutionary potential of weedy rice. Introgression from the conspecific crop rice can influence the genetic differentiation and possibly evolution of its coexisting

  19. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    USDA-ARS?s Scientific Manuscript database

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  20. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    PubMed

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  1. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa.

    PubMed

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B; Miras, Monaliza A; Mendioro, Merlyn S; Simon, Eliza V; Lumanglas, Patrick D; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S V; Ishimaru, Tsutomu

    2015-03-01

    A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice.

    PubMed

    Jeung, J U; Kim, B R; Cho, Y C; Han, S S; Moon, H P; Lee, Y T; Jena, K K

    2007-11-01

    Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement.

  3. The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species.

    PubMed

    Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott

    2005-09-01

    The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.

  4. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    PubMed

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  5. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice

    PubMed Central

    Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  6. Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Pharmacology Review

    PubMed Central

    Li, Yujie; Cai, Weiyan; Weng, Xiaogang; Li, Qi; Wang, Yajie; Chen, Ying; Zhang, Wei; Yang, Qing; Guo, Yan; Zhu, Xiaoxin; Wang, Hainan

    2015-01-01

    Lonicerae japonicae flos, a widely used traditional Chinese medicine (TCM), has been used for several thousand years in China. Chinese Pharmacopeia once included Lonicerae japonicae flos of Caprifoliaceae family and plants of the same species named Lonicerae flos in general in the same group. Chinese Pharmacopeia (2005 Edition) lists Lonicerae japonicae flos and Lonicerae flos under different categories, although they have the similar history of efficacy. In this study, we research ancient books of TCM, 4 main databases of Chinese academic journals, and MEDLINE/PubMed to verify the origins and effects of Lonicerae japonicae flos and Lonicerae flos in traditional medicine and systematically summarized the research data in light of modern pharmacology and toxicology. Our results show that Lonicerae japonicae flos and Lonicerae flos are similar pharmacologically, but they also differ significantly in certain aspects. A comprehensive systematic review and a standard comparative pharmacological study of Lonicerae japonicae flos and Lonicerae flos as well as other species of Lonicerae flos support their clinical safety and application. Our study provides evidence supporting separate listing of Lonicerae japonicae flos and Lonicerae flos in Chinese Pharmacopeia as well as references for revision of relevant pharmacopeial records dealing with traditional efficacy of Lonicerae japonicae flos and Lonicerae flos. PMID:26257818

  7. Morphological and starch structural characteristics of the Japonica rice mutant variety Seolgaeng for dry-milled flour

    USDA-ARS?s Scientific Manuscript database

    Producing fine, good quality rice flour is more difficult than wheat flour because the rice grain is harder. In this study, we analyzed the relationship between the morphology and starch of kernels from genetically different rice varieties that can be used to make dry-milled flour. The non-glutinous...

  8. The Influence of Different Processing Methods on Component Content of Sophora japonica

    NASA Astrophysics Data System (ADS)

    Ji, Y. B.; Zhu, H. J.; Xin, G. S.; Wei, C.

    2017-12-01

    The purpose of this experiment is to understand the effect of different processing methods on the content of active ingredients in Sophora japonica, and to determine the content of rutin and quercetin in Sophora japonica under different processing methods by UV spectrophotometry of the content determination. So as to compare the effect of different processing methods on the active ingredient content of Sophora japonica. Experiments can be seen in the rutin content: Fried Sophora japonica>Vinegar sunburn Sophora> Health products Sophora japonica> Charred sophora flower, Vinegar sunburn Sophora and Fried Sophora japonica difference is not obvious; Quercetin content: Charred sophora flower> Fried Sophora japonica> Vinegar sunburn Sophora>Health products Sophora japonica. It is proved that there are some differences in the content of active ingredients in Sophora japonica in different processing methods. The content of rutin increased with the increase of the processing temperature, but the content decreased after a certain temperature; Quercetin content will increase gradually with time.

  9. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    PubMed

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  10. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  11. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    NASA Astrophysics Data System (ADS)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  12. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    PubMed

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  13. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice.

    PubMed

    Kim, HyunJung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Doyle, Jeff J; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R

    2016-12-01

    Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Six wild subpopulations were identified, with 25 % of accessions classified as admixed. Three of the wild groups were genetically and geographically closely related to the O. sativa subpopulations, indica, aus and japonica, and carried O. sativa introgressions; the other three wild groups were genetically divergent, had unique chloroplast haplotypes, and were located at the geographical extremes of the species range. The genetic subpopulations were significantly correlated (r 2  = 0.562) with traditional species designations, O. rufipogon (perennial) and O. nivara (annual), differentiated based on morphology and life history. A wild diversity panel of 95 purified (inbred) accessions was developed for future genetic studies. Our results suggest that the cultivated aus subpopulation is most closely related to an annual wild relative, japonica to a perennial wild relative, and indica to an admixed population of diverse annual and perennial wild ancestors. Gene flow between ORSC and O. sativa is common in regions where rice is cultivated, threatening the identity and diversity of wild ORSC populations. The three geographically isolated ORSC populations harbor variation rarely seen in cultivated rice and provide a unique window into the genetic composition of ancient rice subpopulations.

  14. Antixenosis and Antibiosis Resistance in Rice Cultivars against Chilo suppressalis (Walker) (Lepidoptera: Crambidae).

    PubMed

    Tabari, M A; Fathi, S A A; Nouri-Ganbalani, G; Moumeni, A; Razmjou, J

    2017-08-01

    The striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an important pest afflicting rice in most rice-growing countries in the world. Deliniating the categories of resistance in rice genotypes under field conditions could be helpful in managment of this pest. Two categories of resistance, antixenosis and antibiosis, were examined in ten popular and diverse rice genotypes of different origin that had been selected for their resistance to the striped stem borer in a previous study. Significant differences were found between genotypes for the number of egg masses, number of eggs, preference index, larval and pupal weight, larval development time, larval survival rate, larval mine length, and leaf trichome density. It was found that the rice genotypes Novator, A7801, and Nemat had the more pronounced antixenosis-type resistance, whereas AB1 and Shirodi had better antiobiosis-type resistance. Interestingly, the rice genotype AN-74 for which Nemat is the parental line showed both types of resistance and could be effectively used in an integrated pest management of the rice striped stem borer.

  15. Impact of insecticide-manipulated defoliation by Japanese beetle (Popillia japonica) on grapevines from vineyard establishment through production.

    PubMed

    Hammons, Derrick L; Kaan Kurtural, S; Potter, Daniel A

    2010-05-01

    Japanese beetle (JB), Popillia japonica Newman, is a severe pest of grapes in the southeastern USA where viticulture is a growing industry. This study evaluated the impact of foliar injury from JB field populations on growth, fruit ripening, berry composition and yield of young vines of six cultivars from vineyard establishment through the first year of production. Three spray regimes, carbaryl applied every 7 or 14 days, or no insecticide, were used to manipulate levels of defoliation by JB. Cultivars varied in susceptibility and response to defoliation by JB. Some (e.g. Norton) showed reduced vine growth and delayed post-veraison increase in total soluble sugars and pH, as well as reduced cluster number and weight, berries per cluster and yield. Others (e.g. Concord) showed little or no measurable impact from JB. Notably, the biweekly spray regime was as effective as weekly sprays in mitigating the impacts of defoliation. Foliar loss from JB feeding can set back establishment and productivity of young grapevines. Nevertheless, many growers can reduce spray frequency without compromising the benefits of JB management. Even susceptible cultivars can tolerate low to moderate (<20%) levels of defoliation, and some are resistant enough to be grown without treating for JB.

  16. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52.

    PubMed

    Tamura, Yasumori; Hattori, Makoto; Yoshioka, Hirofumi; Yoshioka, Miki; Takahashi, Akira; Wu, Jianzhong; Sentoku, Naoki; Yasui, Hideshi

    2014-07-29

    The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (brown planthopper resistance 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent biotype of BPH. BPH2 was widely incorporated in elite rice cultivars and was well-cultivated in many Asian countries as a favorable gene resource in rice breeding against BPH. However, BPH2 was rendered ineffective by a virulent biotype of BPH in rice fields in Asia. In this study, we suggest that BPH2 can be reused by combining with other BPH resistance genes, such as BPH25, to ensure durable resistance to BPH.

  17. Map-based Cloning and Characterization of a Brown Planthopper Resistance Gene BPH26 from Oryza sativa L. ssp. indica Cultivar ADR52

    PubMed Central

    Tamura, Yasumori; Hattori, Makoto; Yoshioka, Hirofumi; Yoshioka, Miki; Takahashi, Akira; Wu, Jianzhong; Sentoku, Naoki; Yasui, Hideshi

    2014-01-01

    The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (BROWN PLANTHOPPER RESISTANCE 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site–leucine-rich repeat (CC–NBS–LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent biotype of BPH. BPH2 was widely incorporated in elite rice cultivars and was well-cultivated in many Asian countries as a favorable gene resource in rice breeding against BPH. However, BPH2 was rendered ineffective by a virulent biotype of BPH in rice fields in Asia. In this study, we suggest that BPH2 can be reused by combining with other BPH resistance genes, such as BPH25, to ensure durable resistance to BPH. PMID:25076167

  18. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    PubMed

    Zhao, Keyan; Wright, Mark; Kimball, Jennifer; Eizenga, Georgia; McClung, Anna; Kovach, Michael; Tyagi, Wricha; Ali, Md Liakat; Tung, Chih-Wei; Reynolds, Andy; Bustamante, Carlos D; McCouch, Susan R

    2010-05-24

    The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers. In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations. Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  19. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    PubMed

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.).

    PubMed

    Guha, Titir; Ravikumar, K V G; Mukherjee, Amitava; Mukherjee, Anita; Kundu, Rita

    2018-04-12

    Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L -1 ) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L -1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L -1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L -1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Responses of Super Rice (Oryza sativa L.) to Different Planting Methods for Grain Yield and Nitrogen-Use Efficiency in the Single Cropping Season

    PubMed Central

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS. PMID:25111805

  2. Responses of super rice (Oryza sativa L.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.

    PubMed

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

  3. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    PubMed Central

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  4. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    PubMed

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  5. Serine Proteases-Like Genes in the Asian Rice Gall Midge Show Differential Expression in Compatible and Incompatible Interactions with Rice

    PubMed Central

    Sinha, Deepak Kumar; Lakshmi, Mulagondla; Anuradha, Ghanta; Rahman, Shaik J.; Siddiq, Ebrahimali A.; Bentur, Jagadish S.; Nair, Suresh

    2011-01-01

    The Asian rice gall midge, Orseolia oryzae (Wood-Mason), is a serious pest of rice. Investigations into the gall midge-rice interaction will unveil the underlying molecular mechanisms which, in turn, can be used as a tool to assist in developing suitable integrated pest management strategies. The insect gut is known to be involved in various physiological and biological processes including digestion, detoxification and interaction with the host. We have cloned and identified two genes, OoprotI and OoprotII, homologous to serine proteases with the conserved His87, Asp136 and Ser241 residues. OoProtI shared 52.26% identity with mosquito-type trypsin from Hessian fly whereas OoProtII showed 52.49% identity to complement component activated C1s from the Hessian fly. Quantitative real time PCR analysis revealed that both the genes were significantly upregulated in larvae feeding on resistant cultivar than in those feeding on susceptible cultivar. These results provide an opportunity to understand the gut physiology of the insect under compatible or incompatible interactions with the host. Phylogenetic analysis grouped these genes in the clade containing proteases of phytophagous insects away from hematophagous insects. PMID:21686154

  6. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    PubMed

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  8. Cluster analysis of lowland and upland rice cultivars based on grain quality attributes

    USDA-ARS?s Scientific Manuscript database

    Rice is cropped in many countries all over the world and plays an important role in human nutrition as well as in agricultural economics, besides its social importance. Embrapa Rice and Beans is responsible for national rice enhancement programs and is conducting breeding projects to increase yield ...

  9. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  10. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  11. Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature.

    PubMed

    Hirotsu, Naoki; Makino, Amane; Ushio, Ayuko; Mae, Tadahiko

    2004-05-01

    Effects of low temperature on chlorophyll (Chl) fluorescence, gas exchange rate, the amounts of xanthophyll cycle pigments (Xp) and the activities of several antioxidant enzymes were examined in the 8th leaf of two rice (Oryza sativa L.) cultivars (japonica and indica types) and rbcS antisense rice. All plants were grown hydroponically at 25/20 degrees C (day/night), and then exposed to 20/17 degrees C (day/night) after full expansion of the 8th leaf, or exposed to either 20/17 degrees C or 15/13 degrees C (day/night) during the expansion of the 8th leaf. All plants exposed to low temperatures showed a decrease in CO(2) assimilation rate without photoinhibition, and increases in the fraction of thermal dissipation in PSII, and in the electron flux through the water-water cycle (WWC) were observed. Although the increase of thermal dissipation was associated with increases in the ratio of carotenoids to Chl, the ratio of Xp to carotenoids and the de-epoxidation state of Xp, the increase of the electron flux of WWC was not accompanied by an increase in the activities of antioxidant enzymes. Such photoprotective responses did not differ between during and after full expansion of the leaf, and did not differ among the three genotypes. Quantitative analyses on the dissipation of excess light energy showed that thermal dissipation makes a larger contribution than WWC. Thus, although low temperature led to a decrease in CO(2) assimilation, rice potentially coped with the excess light energy by increasing the thermal dissipation and the electron flux of WWC under low temperature irrespective of leaf development and genotypes.

  12. Genome-wide DNA polymorphism in the indica rice varieties RGD-7S and Taifeng B as revealed by whole genome re-sequencing.

    PubMed

    Fu, Chong-Yun; Liu, Wu-Ge; Liu, Di-Lin; Li, Ji-Hua; Zhu, Man-Shan; Liao, Yi-Long; Liu, Zhen-Rong; Zeng, Xue-Qin; Wang, Feng

    2016-03-01

    Next-generation sequencing technologies provide opportunities to further understand genetic variation, even within closely related cultivars. We performed whole genome resequencing of two elite indica rice varieties, RGD-7S and Taifeng B, whose F1 progeny showed hybrid weakness and hybrid vigor when grown in the early- and late-cropping seasons, respectively. Approximately 150 million 100-bp pair-end reads were generated, which covered ∼86% of the rice (Oryza sativa L. japonica 'Nipponbare') reference genome. A total of 2,758,740 polymorphic sites including 2,408,845 SNPs and 349,895 InDels were detected in RGD-7S and Taifeng B, respectively. Applying stringent parameters, we identified 961,791 SNPs and 46,640 InDels between RGD-7S and Taifeng B (RGD-7S/Taifeng B). The density of DNA polymorphisms was 256.8 SNPs and 12.5 InDels per 100 kb for RGD-7S/Taifeng B. Copy number variations (CNVs) were also investigated. In RGD-7S, 1989 of 2727 CNVs were overlapped in 218 genes, and 1231 of 2010 CNVs were annotated in 175 genes in Taifeng B. In addition, we verified a subset of InDels in the interval of hybrid weakness genes, Hw3 and Hw4, and obtained some polymorphic InDel markers, which will provide a sound foundation for cloning hybrid weakness genes. Analysis of genomic variations will also contribute to understanding the genetic basis of hybrid weakness and heterosis.

  13. Genetic analysis of genetic basis of a physiological disorder "straighthead’’ in rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Straighthead is a physiological disorder in rice that causes yield losses and is a serious threat to rice production worldwide. Identification of QTL conferring resistance will help develop resistant cultivars for straighthead control. We conducted linkage mapping to identify QTL involved with strai...

  14. Characteristics and Application Analysis of Traditional Chinese Medicine Containing Sophora Japonica

    NASA Astrophysics Data System (ADS)

    Wei, Zhenzhen; Feng, Suxiang; Fang, Xiaoyan; Miao, Mingsan

    2018-01-01

    Purposes: To sum up the characteristics of Chinese medicine with Sophora Japonica and provide reference for the research, development and utilization of the Chinese medicine of Sophora japonica in the future. Methods: The author sums up the forms, functions, indications, usage, dosage and contraindications of the proprietary Chinese medicine containing Sophora Japonica in the Chinese Pharmacopoeia and the Ministerial standards. In addition, we will inquire about the clinical application of proprietary Chinese medicine containing Sophora japonica in the China National Knowledge Infrastructure (CNKI). Results: The proprietary Chinese medicine containing Sophora Japonica was widely used in the treatment of various diseases in clinic, but it was taken orally and without any external use of Chinese patent medicine. Moreover, in most of the proprietary Chinese medicine, Sophora japonica was used as a supplement; In addition, the causes of adverse reactions were not analyzed, and the safety of the drugs needed to be further analyzed. Conclusions: To make clear the role of Sophora japonica in proprietary Chinese medicine, we can develop the Chinese medicine new dosage forms of Sophora japonica; The Chinese medicine is made up of a variety of single herbs, some are toxic drugs, when an adverse reaction occurs, We should analyze the specific causes and avoid the occurrence of adverse reactions. In addition, Sophora japonica is a traditional herbal medicine and food in China; we can expand the application in other areas and explore the pharmacological and toxicological pathology.

  15. Nuclear and chloroplast diversity and phenotypic distribution of rice (Oryza sativa L.) germplasm from the democratic people’s republic of Korea (DPRK; North Korea)

    PubMed Central

    2014-01-01

    Background Rice accounts for 43% of staple food production in the Democratic People’s Republic of Korea (DPRK). The most widely planted rice varieties were developed from a limited number of ancestral lines that were repeatedly used as parents in breeding programs. However, detailed pedigrees are not publicly available and little is known about the genetic, phenotypic, and geographical variation of DPRK varieties. Results We evaluated 80 O. sativa accessions from the DPRK, consisting of 67 improved varieties and 13 landraces. Based on nuclear SSR analysis, we divide the varieties into two genetic groups: Group 1 corresponds to the temperate japonica subpopulation and represents 78.75% of the accessions, while Group 2 shares recent ancestry with indica varieties. Interestingly, members of Group 1 are less diverse than Group 2 at the nuclear level, but are more diverse at the chloroplast level. All Group 2 varieties share a single Japonica maternal-haplotype, while Group 1 varieties trace maternal ancestry to both Japonica and Indica. Phenotypically, members of Group 1 have shorter grains than Group 2, and varieties from breeding programs have thicker and wider grains than landraces. Improved varieties in Group 1 also show similar and/or better levels of cold tolerance for most traits, except for spikelet number per panicle. Finally, geographic analysis demonstrates that the majority of genetic variation is located within regions that have the most intensive rice cultivation, including the Western territories near the capital city Pyungyang. This is consistent with the conscious and highly centralized role of human selection in determining local dispersion patterns of rice in the DPRK. Conclusions Diversity studies of DPRK rice germplasm revealed two genetic groups. The most widely planted group has a narrow genetic base and would benefit from the introduction of new genetic variation from cold tolerant landraces, wild accessions, and/or cultivated gene pools to

  16. Genetic variation of germination cold tolerance in Japanese rice germplasm

    PubMed Central

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-01-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080

  17. Genetic variation of germination cold tolerance in Japanese rice germplasm.

    PubMed

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-09-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.

  18. Predicting temporal shifts in the spring occurrence of overwintered Scotinophara lurida (Hemiptera: Pentatomidae) and rice phenology in Korea with climate change.

    PubMed

    Lee, Hyoseok; Kang, Wee Soo; Ahn, Mun Il; Cho, Kijong; Lee, Joon-Ho

    2016-01-01

    Climate change could shift the phenology of insects and plants and alter their linkage in space and time. We examined the synchrony of rice and its insect pest, Scotinophara lurida (Burmeister), under the representative concentration pathways (RCP) 8.5 climate change scenario by comparing the mean spring immigration time of overwintered S. lurida with the mean rice transplanting times in Korea. The immigration time of S. lurida was estimated using an overwintered adult flight model. The rice transplanting time of three cultivars (early, medium, and medium-late maturing) was estimated by forecasting the optimal cultivation period using leaf appearance and final leaf number models. A temperature increase significantly advanced the 99% immigration time of S. lurida from Julian day 192.1 in the 2000s to 178.4 in the 2050s and 163.1 in the 2090s. In contrast, rice transplanting time was significantly delayed in the early-maturing cultivar from day 141.2 in the 2000s to 166.7 in the 2050s and 190.6 in the 2090s, in the medium-maturing cultivar from day 130.6 in the 2000s to 156.6 in the 2050s and 184.7 in the 2090s, and in the medium-late maturing cultivar from day 128.5 in 2000s to 152.9 in the 2050s and 182.3 in the 2090s. These simulation results predict a significant future phenological asynchrony between S. lurida and rice in Korea.

  19. Predicting temporal shifts in the spring occurrence of overwintered Scotinophara lurida (Hemiptera: Pentatomidae) and rice phenology in Korea with climate change

    NASA Astrophysics Data System (ADS)

    Lee, Hyoseok; Kang, Wee Soo; Ahn, Mun Il; Cho, Kijong; Lee, Joon-Ho

    2016-01-01

    Climate change could shift the phenology of insects and plants and alter their linkage in space and time. We examined the synchrony of rice and its insect pest, Scotinophara lurida (Burmeister), under the representative concentration pathways (RCP) 8.5 climate change scenario by comparing the mean spring immigration time of overwintered S. lurida with the mean rice transplanting times in Korea. The immigration time of S. lurida was estimated using an overwintered adult flight model. The rice transplanting time of three cultivars (early, medium, and medium-late maturing) was estimated by forecasting the optimal cultivation period using leaf appearance and final leaf number models. A temperature increase significantly advanced the 99 % immigration time of S. lurida from Julian day 192.1 in the 2000s to 178.4 in the 2050s and 163.1 in the 2090s. In contrast, rice transplanting time was significantly delayed in the early-maturing cultivar from day 141.2 in the 2000s to 166.7 in the 2050s and 190.6 in the 2090s, in the medium-maturing cultivar from day 130.6 in the 2000s to 156.6 in the 2050s and 184.7 in the 2090s, and in the medium-late maturing cultivar from day 128.5 in 2000s to 152.9 in the 2050s and 182.3 in the 2090s. These simulation results predict a significant future phenological asynchrony between S. lurida and rice in Korea.

  20. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    PubMed

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).

    PubMed

    Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing

    2011-07-01

    Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.

  2. Inheritance of starch paste viscosity is directly associated with a rice Waxy gene exon 10 SNP marker

    USDA-ARS?s Scientific Manuscript database

    Apparent amylose content is a key element for characterizing a rice cultivar for cooking quality. However, cultivars with similar apparent amylose content can have widely varying quality attributes, including major parameters of starch paste viscosity. It has been postulated that the presence of a r...

  3. Determining total phenolic content and total antioxidant capacity of loquat cultivars grown in Hatay.

    PubMed

    Polat, A Aytekin; Calişkan, Oğuzhan; Serçe, Sedat; Saraçoğlu, Onur; Kaya, Cemal; Ozgen, Mustafa

    2010-01-01

    Several fruit characteristics of five loquat (Eriobotrya japonica (Thunb.) Lindl.) cultivars/selections grown in Dörtyol, Hatay, Turkey were investigated in 2008. The cultivars/selections included 'Baduna 5', Güzelyurt 1, 'Hafif Cukurgöbek', 'Ottaviani,' and Type 1. The characteristics evaluated included fruit weight, width, length, seed number and weight, flesh/seed ratio, total soluble solids (TSS), pH, acidity, total phenolic (TP) content, and total antioxidant capacity (TAC), determined by the ferric reducing antioxidant power (FRAP) assay. The analyses were conducted by three replicates, with 30 fruits in each replicate. The results indicated that there were significant differences among the cultivars, for all the traits tested. For example, 'Hafif Cukurgöbek' and 'Ottaviani' had smaller fruits than others, although 'Hafif Cukurgöbek' had heavier seeds. The flesh/seed ratio was the highest in Type 1, while 'Hafif Cukurgöbek' had the highest pH and high soluble solids. 'Baduna 5' and 'Hafif Cukurgöbek' had the highest acidity. The TP ranged from 129 ('Baduna 5') to 578 ('Hafif Cukurgöbek') mg gallic acid equivalent (GAE)/kg fresh fruit (fw). 'Hafif Cukurgöbek' also had the highest FRAP mean (12.1 mmol Trolox Equivalent (TE)/kg fw). The results suggest that loquat cultivars have a variable range of TP content and a relatively high total antioxidant capacity, which is crucial for human health.

  4. Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome.

    PubMed

    Inoue, Haruhiko; Nakamura, Mitsuru; Mizubayashi, Tatsumi; Takahashi, Akira; Sugano, Shoji; Fukuoka, Shuuichi; Hayashi, Nagao

    2017-12-01

    Rice blast is the most serious disease afflicting rice and there is an urgent need for the use of disease resistance (R) genes in blast tolerance breeding programs. Pb1 is classified as a quantitative resistance gene and it does not have fungal specificity. Pb1-mediated resistance develops in the latter stages of growth. However, some cultivars, such as Kanto209 (K209), cultivar name Satojiman, despite possessing Pb1, do not exert resistance to rice blast during the reproductive stage. We found that the expression of WRKY45 gene downstream of Pb1 was weakly induced by rice blast inoculation at the full heading stage in K209. Genetic analysis using the SNP-based Golden Gate assay of K209 crossing with Koshihikari Aichi SBL (KASBL) found at least four regions related to the resistance in the rice genome (Chr8, Chr9, Chr7, Chr11). Mapping of QTL related to Chr7 confirmed the existence of factors that were required for the resistance of Pb1 in the 22 to 23 Mbp region of the rice genome. We clarified how the K209 cultivar is vulnerable to the blast disease despite possessing Pb1 and found the DNA marker responsible for the quantitative resistance of Pb1. We identified the QTL loci required for Pb1-mediated resistance to rice panicle blast. Pb1 was negatively dependent on at least three QTLs, 7, 9 and 11, and positively dependent on one, QTL 8, in the K209 genome. This finding paves the way for creating a line to select optimal QTLs in order to make use of Pb1-mediated resistance more effectively.

  5. Northward expansion of paddy rice in northeastern Asia during 2000-2014

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Zhang, G.; Menarguez, M. A.; Choi, C. Y.; Qin, Y.; Luo, P.; Zhang, Y.; Moore, B.

    2016-04-01

    Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including northeastern (NE) China, North Korea, South Korea, and Japan, from 2000 to 2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16°N to 43.70°N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecosystem services should be paid more attention to in the future.

  6. Northward expansion of paddy rice in northeastern Asia during 2000-2014.

    PubMed

    Dong, J; Xiao, X; Zhang, G; Menarguez, M A; Choi, C Y; Qin, Y; Luo, P; Zhang, Y; Moore, B

    2016-04-28

    Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including Northeastern (NE) China, North Korea, South Korea, and Japan, from 2000-2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16 °N to 43.70 °N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecological services should be paid more attention in the future.

  7. Negative gravitactic behavior of Caenorhabditis japonica dauer larvae.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-04-15

    Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism.

  8. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  9. Sensory Characteristics and Consumer Acceptance of Frozen Cooked Rice by a Rapid Freezing Process Compared to Homemade and Aseptic Packaged Cooked Rice

    PubMed Central

    Kwak, Han Sub; Kim, Hye-Gyeong; Kim, Hyun Suk; Ahn, Yong Sik; Jung, Kyunghee; Jeong, Hyo-Young; Kim, Tae Hyeong

    2013-01-01

    Descriptive analysis and consumer acceptance tests were conducted with frozen (FCR), homemade (HCR), and aseptic-packaged (ACR) cooked rice products from two cultivars–IM and SD. FCR was prepared using a rapid freezing process, which may provide consumers with a quality similar to that of HCR. The intensity of the flavors of roasted, glutinous rice, rice cake, and rice starch and the textures of glutinousness, moistness, chunkiness, adhesiveness, and squishiness were all greater in the FCR as compared to the HCR and ACR (p<0.05) in IM and SD cultivars. The differences in sensory characteristics between the FCR and ACR were larger than the equivalent differences between the FCR and HCR. Overall consumer acceptance ratings for FCR in overall aspect, appearance, aroma, and texture were not significantly different compared to those for HCR (p>0.05); however, in most cases these factors showed significant differences when compared with ACR (p<0.05). From partial least square regression analysis, cooked rice was positively related to sweet, transparency, glossiness, roasted, glutinousness, chunkiness, moistness, glutinous rice, adhesiveness, rice shape, rice starch, and squishiness attributes but negatively related to raw rice, old rice, old rice aroma, a particle feeling, off-aroma, white color, scatteredness, slickness, size of cooked rice, and firmness attributes. PMID:24471112

  10. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.).

    PubMed

    Nada, Reham M; Abogadallah, Gaber M

    2016-04-01

    Rice has shallow, weak roots, but it is unknown how much increase in yield potential could be achieved if the root/shoot ratio is corrected. Removing all tillers except the main one, in a japonica (Sakha 101) and an indica (IR64) rice cultivar, instantly increased the root/shoot ratio from 0.21 to 1.16 in Sakha 101 and from 0.16 to 1.46 in IR64. Over 30 days after detillering, the root/shoot ratios of the detillered plants decreased to 0.49 in Sakha 101 and 0.46 in IR64 but remained significantly higher than in the controls. The detillered plants showed two- or fourfold increase in the main tiller fresh weight, as a consequence of more positive midday leaf relative water content (RWC), and consistently higher rates of stomatal conductance and photosynthesis, but not transpiration, compared with the controls. The enhanced photosynthesis in Sakha 101 after detillering resulted from both improved water status and higher Rubisco contents whereas in IR64, increasing the Rubisco content did not contribute to improving photosynthesis. Detillering did not increase the carbohydrate contents of leaves but prevented starch depletion at the end of grain filling. The leaf protein content during vegetative and reproductive stages, the grain filling rate, the number of filled grains per panicle were greatly improved, bringing about 38.3 and 35.9% increase in the harvested grain dry weight per panicle in Sakha 101 and IR64, respectively. We provide evidence that improving the root performance by increasing the root/shoot ratio would eliminate the current limitations to photosynthesis and growth in rice. © 2015 Scandinavian Plant Physiology Society.

  11. Disease reactions of IRRI near-isogenic rice lines to U.S. isolates of Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Rice blast, caused by Magnaporthe oryzae, is a destructive disease of rice. The use of resistant cultivars is the most effective way to manage this disease. However, to be effective, it is necessary to know how the isolates of the pathogen within a population respond to specific resistance genes. Tw...

  12. Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Muhidin; Syam’un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-05-01

    Upland red rice (Oryza sativa) contains anthocyanin, a phenolic compounds that can act as antioxidants and functional food for human dietary. The content of functional food on upland red rice is influenced by shading condition, but the production is also influenced by environmental condition, especially the availability of light. The study aims is to assess and analyze the effect of shade on the growth and production of upland red rice. The research was conducted using the quantitative method to obtain the optimal shading condition that can increase the rice anthocyanin content and relatively high production. The research was arranged in split plot design, with shade as main plot and the different of cultivar as sub plot with three replications. The shading treatment consist of 4 levels as follows: n1=shade level < 25 %, n2=shade level 25-50%, n3=shade level 50-75% and n4=shade level > 75%. The cultivar tested were (v1) = Labandiri, (v2) = Jangkobembe, (v3) = Ranggohitam, and (v4) = Paedara. The rice planted in between teak wood trees with different age and level of canopy. The research reveals that shades had an effect in decreasing plant production (the higher level of shade, the higher the decrease level of production), but the shades can improve the quality of red rice through the increase of anthocyanin content.

  13. Quantification of tocopherols, tocotrienols, and γ-oryzanol contents and their distribution in some commercial rice varieties in Taiwan.

    PubMed

    Huang, Shao-Hua; Ng, Lean-Teik

    2011-10-26

    The eight vitamin E isomers [α-, β-, γ-, and δ-tocopherols (T) and α-, β-, γ-, and δ-tocotrienols (T3)] and γ-oryzanol are known to possess diverse biological activities. This study examined the contents of these compounds and their distribution in 16 commercial rice varieties in Taiwan. Results showed that the order of vitamin E, total T, total T3, and γ-oryzanol contents was rice bran > brown rice > rice husk > polished rice. γ-T3 was the highest vitamin E isomer present in all rice samples, while β-T, β-T3, δ-T, and δ-T3 were present in trace amounts. The Japonica varieties contained a higher total T, total T3, and γ-oryzanol than the Indica varieties. They also have a higher level of α-T and α-T3 but a lower level of γ-T and γ-T3 than the Indica varieties. However, no obvious difference in total T, total T3, and γ-oryzanol content was noted between black- and red-colored rice varieties.

  14. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.

    PubMed

    Huang, Jian; Zhang, Kewei; Shen, Yi; Huang, Zejun; Li, Ming; Tang, Ding; Gu, Minghong; Cheng, Zhukuan

    2009-03-01

    Recent completion of rice genome sequencing has revealed that more than 40% of its genome consists of repetitive sequences, and most of them are related to inactive transposable elements. In the present study, a transposable element, nDaiZ0, which is induced by tissue culture with high frequency, was identified by sequence analysis of an allelic line of the golden hull and internode 2 (gh2) mutant, which was integrated into the forth exon of GH2. The 528-bp nDaiZ0 has 14-bp terminal inverted repeats (TIRs), and generates an 8-bp duplication of its target sites (TSD) during its mobilization. nDaiZs are non-autonomous transposons and have no coding capacity. Bioinformatics analysis and southern blot hybridization showed that at least 16 copies of nDaiZ elements exist in the japonica cultivar Nipponbare genome and 11 copies in the indica cultivar 93-11 genome. During tissue culture, only one copy, nDaiZ9, located on chromosome 5 in the genome of Nipponbare can be activated with its transposable frequency reaching 30%. However, nDaiZ9 was not present in the 93-11 genome. The larger elements, DaiZs, were further identified by database searching using nDaiZ0 as a query because they share similar TIRs and subterminal sequences. DaiZ can also generate an 8-bp TSD. DaiZ elements contain a conserved region with a high similarity to the hAT dimerization motif, suggesting that the nDaiZ-DaiZ transposon system probably belongs to the hAT superfamily of class II transposons. Phylogenetic analysis indicated that it is a new type of plant hAT-like transposon. Although nDaiZ is activated by tissue culture, the high transposable frequency indicates that it could become a useful gene tagging system for rice functional genomic studies. In addition, the mechanism of the high transposable ability of nDaiZ9 is discussed.

  15. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  16. Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods

    PubMed Central

    Deborah, Dondapati Annekitty; Vipparla, Abhilash; Anuradha, Ghanta; Siddiq, Ebrahimali Abubacker; Vemireddy, Lakshminarayana Reddy

    2013-01-01

    Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei’s genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s. PMID:23805204

  17. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.

    PubMed

    Suzuki, Kei; Yamaji, Naoki; Costa, Alex; Okuma, Eiji; Kobayashi, Natsuko I; Kashiwagi, Tatsuhiko; Katsuhara, Maki; Wang, Cun; Tanoi, Keitaro; Murata, Yoshiyuki; Schroeder, Julian I; Ma, Jian Feng; Horie, Tomoaki

    2016-01-19

    Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the

  18. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    PubMed

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  19. Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms.

    PubMed

    Jwa, Nam-Soo; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Yonekura, Masami; Han, Oksoo; Iwahashi, Hitoshi; Rakwal, Randeep

    2006-01-01

    Rice, a first cereal crop whose draft genome sequence from two subspecies (japonica-type cv. Nipponbare and indica-type 93-11) was available in 2002, along with its almost complete genome sequence in 2005, has drawn the attention of researchers worldwide because of its immense impact on human existence. One of the most critical research areas in rice is to discern the self-defense mechanism(s), an innate property of all living organisms. The last few decades have seen scattered research into rice responses to diverse environmental stimuli and stress factors. Our understanding on rice self-defense mechanism has increased considerably with accelerated research during recent years mainly due to identification and characterization of several defense/stress-related components, genes, proteins and secondary metabolites. As these identified components have been used to study the defense/stress pathways, their compilation in this review will undoubtedly help rice (and others) researchers to effectively use them as a potential marker for better understanding, and ultimately, in defining rice (and plant) self-defense response pathways.

  20. Resistance of upland-rice lines to root-knot nematode, Meloidogyne incognita.

    PubMed

    Souza, D C T; Botelho, F B S; Rodrigues, C S; Furtini, I V; Smiderle, E C; de Matos, D L; Bruzi, A T

    2015-12-21

    Despite the benefits of crop rotation, occurrence of nematodes is a common problem for almost all crops within the Cerrado biome, especially for rice. The use of resistant cultivars is one of the main methods for control of nematodes. Thus, the present study aimed to evaluate the reaction of 36 upland-rice lines, with desirable agronomic characteristics, according to their resistance to root-knot nematodes (Meloidogyne incognita). The experimental design was entirely randomized with four replications. Each plot of land consisted of two rice plants in a 3-L vase. The plants were inoculated with 1000 eggs and eventual juveniles of the respective nematodes. Fifty-five days after the inoculation, the roots and the aerial part of the plant were weighed and the egg mass (EM) as well as the reproduction factor (Rf) were estimated. It was determined that the isolated use of EM was not beneficial in selecting rice lines resistant to the root-knot nematode. This procedure must, therefore, take into account the egg counting and the Rf, in order to improve the reliability of the selection. In our study, 30 evaluated lines were observed to be resistant. Among the recommended cultivars, only BRS Monarca had its performance susceptible to the studied nematode species.

  1. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    PubMed

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  2. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    PubMed

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  4. Reducing arsenic accumulation in rice grain through iron oxide amendment

    USDA-ARS?s Scientific Manuscript database

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  5. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers.

    PubMed

    Kim, Suk-Man; Sohn, Jae-Keun

    2005-08-31

    This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

  6. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch.

    PubMed

    Nakamura, Sumiko; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2015-01-01

    Not only amylose but also amylopectin greatly affects the gelatinization properties of rice starch and the quality of cooked rice grains. We here characterized the starches of 32 rice cultivars and evaluated the relationship between their iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch (RS) content, and chain length distribution of amylopectin. We found that the iodine absorption curve differed among the various sample rice cultivars. Using the wavelength at which absorbance becomes maximum on iodine staining of starch (λmax), we propose a novel index, "new λmax" (AAC/(λmax of sample rice starches-λmax of glutinous rice starch)). We developed the novel estimation formulae for AAC, RS contents, and amylopectin fractions with the use of λmax and "new λmax." These formulae would lead to the improved method for estimating starch properties using an easy and rapid iodine colorimetric method.

  7. Systematic review for geo-authentic Lonicerae Japonicae Flos.

    PubMed

    Yang, Xingyue; Liu, Yali; Hou, Aijuan; Yang, Yang; Tian, Xin; He, Liyun

    2017-06-01

    In traditional Chinese medicine, Lonicerae Japonicae Flos is commonly used as anti-inflammatory, antiviral, and antipyretic herbal medicine, and geo-authentic herbs are believed to present the highest quality among all samples from different regions. To discuss the current situation and trend of geo-authentic Lonicerae Japonicae Flos, we searched Chinese Biomedicine Literature Database, Chinese Journal Full-text Database, Chinese Scientific Journal Full-text Database, Cochrane Central Register of Controlled Trials, Wanfang, and PubMed. We investigated all studies up to November 2015 pertaining to quality assessment, discrimination, pharmacological effects, planting or processing, or ecological system of geo-authentic Lonicerae Japonicae Flos. Sixty-five studies mainly discussing about chemical fingerprint, component analysis, planting and processing, discrimination between varieties, ecological system, pharmacological effects, and safety were systematically reviewed. By analyzing these studies, we found that the key points of geo-authentic Lonicerae Japonicae Flos research were quality and application. Further studies should focus on improving the quality by selecting the more superior of all varieties and evaluating clinical effectiveness.

  8. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    PubMed Central

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  9. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation.

    PubMed

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun; Lu, Bao-Rong

    2018-02-01

    Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice ( Oryza rufipogon ) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars ( O. sativa ), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression.

  10. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice.

    PubMed

    Paiva, Flávia Fernandes; Vanier, Nathan Levien; Berrios, Jose De J; Pinto, Vânia Zanella; Wood, Delilah; Williams, Tina; Pan, James; Elias, Moacir Cardoso

    2016-01-15

    This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration of red rice proteins than black rice proteins to the endosperm as a result of parboiling. Parboiling reduced the ash content of red rice while no difference was determined in black rice. Gelatinized starch granules from both genotypes showed similar appearance. There was a decrease in relative crystallinity on both black and red rice subjected to parboiling, which was an indicative of crystallites disruption. Polishing removed more than 90% of free phenolics for both genotypes, while parboiling allowed the partial preservation of free phenolics content in polished rice. Parboiling induced an increase in the cooking time of red rice, but a decrease in the cooking time of black rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluating the sensory properties of unpolished Australian wild rice.

    PubMed

    Tikapunya, Tiparat; Henry, Robert J; Smyth, Heather

    2018-01-01

    Australian wild rices are genetically distinct from commercially cultivated rices and present new opportunities for the development of improved rice cultivars. Before use in rice breeding, the eating and cooking properties of Australian wild rice must first be understood as these are key factors in determining rice quality and consumer acceptance. Samples of Australian wild rice (taxa B) were collected and evaluated together with a commercial Canadian wild rice (Zizania aquatic L.), Oryza sativa L.cv. Nipponbare, and selected commercial rices including long grain, medium grain, basmati, red basmati, and red rice. Cooking profiles were established, physical traits were measured and conventional descriptive analysis techniques were used to compare the sensory properties of the unpolished rices. Twenty six descriptors, together with definitions, were developed with a panel of twelve experienced assessors including aroma, flavour, texture and aftertaste attributes. Results reveal that the Australian wild rice had a mild aroma and flavour similar to that of red rice and red basmati but without the lingering aftertaste. In terms of texture, the wild rice was firmer, and somewhat crunchy and chewy rather than soft and fluffy despite requiring a longer cooking time. The sensory, physical and cooking profiles indicate that Australian wild rice has a high potential for commercialization in itself and provides a suitable genetic source for breeding programs, particularly in the coloured rice market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    PubMed

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the

  13. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    PubMed

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  14. Linkage Block and Recombination Suppression at the Pi-ta locus at the Centromere Region of Rice Chromosome 12

    USDA-ARS?s Scientific Manuscript database

    The Pi-ta gene, located near the centromeric region of chromosome 12 is an effective resistance gene to Magnaporthe oryzae that causes rice blast disease. Pi-ta has been incorporated into diverse resistant rice cultivars by classical plant breeding in the southern US and worldwide. Previously, la...

  15. Boron toxicity in rice (Oryza sativa L.). I. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity.

    PubMed

    Ochiai, K; Uemura, S; Shimizu, A; Okumoto, Y; Matoh, T

    2008-06-01

    Boron toxicity tolerance of rice plants was studied. Modern japonica subspecies such as Koshihikari, Nipponbare, and Sasanishiki were tolerant, whereas indica subspecies such as Kasalath and IR36 were intolerant to excessive application of boron (B), even though their shoot B contents under B toxicity were not significantly different. Recombinant inbred lines (RILs) of japonica Nekken-1 and indica IR36 were used for quantitative trait locus (QTL) analysis to identify the gene responsible for B toxicity tolerance. A major QTL that could explain 45% of the phenotypic variation was detected in chromosome 4. The QTL was confirmed using a population derived from a recombinant inbred line which is heterogenic at the QTL region. The QTL was also confirmed in other chromosome segment substitution lines (CSSLs).

  16. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    PubMed

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  17. Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment

    PubMed Central

    Chen, Charles P.; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-01-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol−1 above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety ‘Koshihikari’. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2]. PMID:24443497

  18. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Rice methylmercury exposure and mitigation: a comprehensive review

    USGS Publications Warehouse

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  20. Rice Methylmercury Exposure and Mitigation: A Comprehensive Review

    PubMed Central

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509

  1. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage.

    PubMed

    Chen, Jianlin; Tang, Liang; Shi, Peihua; Yang, Baohua; Sun, Ting; Cao, Weixing; Zhu, Yan

    2017-03-01

    High temperature causes negative effects on grain yield and quality of rice (Oryza sativa L.). In this study, the effects of short-term high temperature (SHT) on grain quality and starch granules were investigated in two rice cultivars Nanjing 41 (NJ41, heat-sensitive) and Wuxiangjing 14 (WJ14, heat-tolerant) at post-anthesis stage (anthesis and early grain-filling stage). The results of rice quality analysis showed that chalky rate and chalkiness increased while brown rice rate, milled rice rate, and head rice rate decreased in two rice cultivars with the increase of high temperature and prolonged duration. Moreover, SHT stress reduced the accumulation of amylose as well as starch accumulation. The starch accumulation and eating quality were more sensitive to SHT than the appearance and milling quality. The starch structure data observed by scanning electron microscope further showed that the starch granules are arranged loosely and more single starch granules appeared after SHT treatment. The extent of change in rice quality and starch traits of WJ14 under SHT was lower than that of NJ41. The effects of SHT at anthesis stage were greater than that at grain-filling stage. Taken together, the results could help further understand the physiological and biochemical processes governing rice quality under high-temperature conditions.

  2. Comparative Proteomic Analysis of the Stolon Cold Stress Response between the C4 Perennial Grass Species Zoysia japonica and Zoysia metrella

    PubMed Central

    Xuan, Jiping; Song, Yufeng; Zhang, Hongxiao; Liu, Jianxiu; Guo, Zhongren; Hua, Yuelou

    2013-01-01

    Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysia japonica , cv. Meyer (cold-tolerant) and Z . metrella , cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant. PMID:24086619

  3. Evaluating Korean rice genotypes and landraces for octacosanol contents and antioxidant activity.

    PubMed

    Cho, Yang-Hee; Farhoudi, Rozbeh; Farooq, Muhammad; Lee, Dong-Jin

    2017-12-01

    Increase in the average life span and interest in correlation between food and human health have led to researches to find and utilise the functional materials in rice. Octacosanol in rice grain is well known for its potential benefit. This study was conducted to evaluate the Korean rice (Oryza sativa L.) genotypes and landraces for octacosanol contents and antioxidant activity. Octacosanol contents in 223 cultivars of Korean rice ranged from 0.78 to 6.06 mg 100 g -1 . Thirteen genotypes and landraces had high contents of octacosanol (4 mg 100 g -1 ). The antioxidant activity in Korean rice ranged from 12 to 96%. Among the tested genotypes and landraces, red-coloured rice accessions had more than 90% antioxidant activity. Genotypes with high level of octacosanol and antioxidant activity may be useful for rice breeders to develop functional varieties and food processing as nutraceutical materials.

  4. Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey1[OPEN

    PubMed Central

    Zheng, Guangyong; Hamdani, Saber; Essemine, Jemaa; Song, Qingfeng; Wang, Hongru

    2017-01-01

    Mining natural variations is a major approach to identify new options to improve crop light use efficiency. So far, successes in identifying photosynthetic parameters positively related to crop biomass accumulation through this approach are scarce, possibly due to the earlier emphasis on properties related to leaf instead of canopy photosynthetic efficiency. This study aims to uncover rice (Oryza sativa) natural variations to identify leaf physiological parameters that are highly correlated with biomass accumulation, a surrogate of canopy photosynthesis. To do this, we systematically investigated 14 photosynthetic parameters and four morphological traits in a rice population, which consists of 204 U.S. Department of Agriculture-curated minicore accessions collected globally and 11 elite Chinese rice cultivars in both Beijing and Shanghai. To identify key components responsible for the variance of biomass accumulation, we applied a stepwise feature-selection approach based on linear regression models. Although there are large variations in photosynthetic parameters measured in different environments, we observed that photosynthetic rate under low light (Alow) was highly related to biomass accumulation and also exhibited high genomic inheritability in both environments, suggesting its great potential to be used as a target for future rice breeding programs. Large variations in Alow among modern rice cultivars further suggest the great potential of using this parameter in contemporary rice breeding for the improvement of biomass and, hence, yield potential. PMID:28739819

  5. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.)

    PubMed Central

    Zubair, Muhammad; Anwar, Farooq; Ashraf, Muhammad; Uddin, Md. Kamal

    2012-01-01

    The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), Δ5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods. PMID:22605998

  6. [Study on Commercial Specification of Lonicerae Japonicae Flos].

    PubMed

    Zhou, Jie; Zou, Lin; Liu, Wei; Bian, Li-hua; Wang, Xiao; Zhang, Yong-qing; Dan, Staerk

    2015-04-01

    To provide the basis data for the institute of commercial specification standard of Lonicerae Japonicae Flos. 39 samples of Lonicerae Japonicae Flos commercial of different grades in market were collected, and vernier caliper and electronic balance were used to measure the numbers of flower bud and blooming rate per 0. 5 g, contamination content, browning degree, milden and rot, length, upside diameter, middle diameter and bottom diameter of Lonicerae Japonicae Flos. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, galuteolin,3,5-icaffeoylquinic acid and 4,5-dicaffeoylquinic acid were detected by HPLC. Correlation analysis, principal component analysis and cluster analysis were used by SPSS to analyze all index data,and the correlation of appearance characteristics and intrinsic active constituents was discussed. The numbers of flower bud and blooming rate per 0. 5 g, contamination content and browning degree were principal component indexes. The length of flower bud showed a significant correlation with galuteolin content, and the browning degree and upside diameter showed a significant correlation with chlorogenic acid content. Lonicerae Japonicae Flos commercial should be divided into four specification grades by sieved indexes.

  7. Compositional analyses of white, brown and germinated forms of popular Malaysian rice to offer insight into the growing diet-related diseases.

    PubMed

    Abubakar, Bilyaminu; Yakasai, Hafeez Muhammad; Zawawi, Norhasnida; Ismail, Maznah

    2018-04-01

    Diet-related metabolic diseases, and especially obesity, are metabolic disorders with multifactorial aetiologies. Diet has been a cornerstone in both the aetiology and management of this metabolic disorders. Rice, a staple food for over half of the world's population, could be exploited as part of the solution to check this menace which has been skyrocketing in the last decade. The present study investigated nine forms of rice from three widely grown Malaysian rice cultivars for in vitro and in vivo (glycaemic index and load) properties that could translate clinically into a lower predisposition to diet-related diseases. The germinated brown forms of MRQ 74 and MR 84 rice cultivars had high amylose content percentages (25.7% and 25.0%), high relative percentage antioxidant scavenging abilities of 85.0% and 91.7%, relatively low glycaemic indices (67.6 and 64.3) and glycaemic load (32.3 and 30.1) values, and modest glucose uptake capabilities of 33.69% and 31.25%, respectively. The results show that all things being equal, rice cultivars that are germinated and high in amylose content when compared to their white and low amylose counterparts could translate into a lower predisposition to diet-related diseases from the dietary point of view in individuals who consume this cereal as a staple food. Copyright © 2017. Published by Elsevier B.V.

  8. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    PubMed Central

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  9. Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami.

    PubMed

    Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young

    2017-05-01

    This study was carried out to determine the physicochemical properties of giant embryo rice "Seonong 17" and "Keunnunjami" in comparison with the normal embryo rice. Scanning electron microscopy revealed that Seonong 17 and Keunnunjami have larger embryo and that starch granules from Keunnunjami were more tightly packed with smaller air spaces between granules. Seonong 17 exhibited the lowest amylose content. Keunnunjami showed the highest protein content, pasting temperature, peak and breakdown viscosities, and gelatinization temperature and enthalpy. Both giant embryo rice samples contained significantly higher amounts of essential amino acids and unsaturated fatty acids than the normal rice. Proteomic analysis using two-dimensional gel electrophoresis revealed differences in the protein profile of Seonong 17 and Keunnunjami. The results could serve as baseline information in evaluating the quality of these two giant embryo rice cultivars and provide a better understanding of their potential uses and food industry applications.

  10. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  13. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea

    PubMed Central

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-01-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386

  14. Molecular breeding for the development of multiple disease resistance in Basmati rice.

    PubMed

    Singh, Atul; Singh, Vikas K; Singh, S P; Pandian, R T P; Ellur, Ranjith K; Singh, Devinder; Bhowmick, Prolay K; Gopala Krishnan, S; Nagarajan, M; Vinod, K K; Singh, U D; Prabhu, K V; Sharma, T R; Mohapatra, T; Singh, A K

    2012-01-01

    Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding

  15. QTLs for early tiller production and relationships with rapid seedling growth and increased panicle number in rice

    USDA-ARS?s Scientific Manuscript database

    The ideal plant type, or idiotype, for rice is to create a moderate number of tillers, not too few or yield will be decreased by production of too few seed heads, nor too many which will divert energy and nutrients away from grain into excessive stems and leaves. While the rice cultivars grown toda...

  16. Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure.

    PubMed

    Wu, Jianzhong; Fujisawa, Masaki; Tian, Zhixi; Yamagata, Harumi; Kamiya, Kozue; Shibata, Michie; Hosokawa, Satomi; Ito, Yukiyo; Hamada, Masao; Katagiri, Satoshi; Kurita, Kanako; Yamamoto, Mayu; Kikuta, Ari; Machita, Kayo; Karasawa, Wataru; Kanamori, Hiroyuki; Namiki, Nobukazu; Mizuno, Hiroshi; Ma, Jianxin; Sasaki, Takuji; Matsumoto, Takashi

    2009-12-01

    Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.

  17. Hypolipidemic effects of starch and γ-oryzanol from wx/ae double-mutant rice on BALB/c.KOR-Apoe(shl) mice.

    PubMed

    Nakaya, Makoto; Shojo, Aiko; Hirai, Hiroaki; Matsumoto, Kenji; Kitamura, Shinichi

    2013-01-01

    waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.

  18. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development

    PubMed Central

    Wen, Chi-Kuang

    2013-01-01

    In Arabidopsis, the ethylene-receptor signal output occurs at the endoplasmic reticulum and is mediated by the Raf-like protein CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) but is prevented by overexpression of the CTR1 N terminus. A phylogenic analysis suggested that rice OsCTR2 is closely related to CTR1, and ectopic expression of CTR1p:OsCTR2 complemented Arabidopsis ctr1-1. Arabidopsis ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE SENSOR1 physically interacted with OsCTR2 on yeast two-hybrid assay, and green fluorescence protein-tagged OsCTR2 was localized at the endoplasmic reticulum. The osctr2 loss-of-function mutation and expression of the 35S:OsCTR2 1–513 transgene that encodes the OsCTR2 N terminus (residues 1–513) revealed several and many aspects, respectively, of ethylene-induced growth alteration in rice. Because the osctr2 allele did not produce all aspects of ethylene-induced growth alteration, the ethylene-receptor signal output might be mediated in part by OsCTR2 and by other components in rice. Yield-related agronomic traits, including flowering time and effective tiller number, were altered in osctr2 and 35S:OsCTR2 1–513 transgenic lines. Applying prolonged ethylene treatment to evaluate ethylene effects on rice without compromising rice growth is technically challenging. Our understanding of roles of ethylene in various aspects of growth and development in japonica rice varieties could be advanced with the use of the osctr2 and 35S:OsCTR2 1–513 transgenic lines. PMID:24006427

  19. Evaluation and first-year field testing of efficient vesicular arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings.

    PubMed

    Secilia, J; Bagyaraj, D J

    1994-07-01

    Grain yields of the rice cultivar 'Prakash' were improved upon inoculation with Glomus intraradices and G. fasciculatum, by 11% and 8%, respectively, compared with an uninoculated control. The results indicate that the amount of phosphate fertilizer usually applied to rice may be decreased by 50%, without affecting yield, if G. intraradices is inoculated.

  20. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph19(t).

    PubMed

    Chen, J W; Wang, L; Pang, X F; Pan, Q H

    2006-04-01

    Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F(2) populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F(1) plants and the two F(2) populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F(2) populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning.

  1. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms.

    PubMed

    Kim, Yeon-Hee; Kim, Jeong Hwan; Jin, Hyung-Joo; Lee, Si Young

    2013-06-01

    Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 μg/ml and the MBCs were 125-1000 μg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 μg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 μg/ml, respectively. The MICs were 250 and 62.5 μg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice.

    PubMed

    Matic, Slavica; Gullino, Maria L; Spadaro, Davide

    2017-06-01

    Bakanae disease, one of the most noteworthy seedborne rice diseases, is caused by Fusarium fujikuroi, a member of the Gibberella fujikuroi species complex. The decreasing availability of chemical seed-dressing products over the last few years has raised the concerns of rice seed companies regarding bakanae disease. Therefore, new research trends require a deeper investigation into the main aspects of bakanae disease through interactions between rice and F. fujikuroi, in order to find new resistant or tolerant cultivars and alternative bakanae disease control strategies, as well as to develop more sensitive molecular diagnostic techniques. Here, some new aspects of F. fujikuroi epidemiology and pathogenicity, as well as its interactions with rice, are reported, and recent approaches applied to control bakanae disease are summarized.

  3. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    PubMed

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  4. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    PubMed

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  5. Determining total phenolic content and total antioxidant capacity of loquat cultivars grown in Hatay

    PubMed Central

    Polat, A. Aytekin; Çalişkan, Oğuzhan; Serçe, Sedat; Saraçoğlu, Onur; Kaya, Cemal; Özgen, Mustafa

    2010-01-01

    Several fruit characteristics of five loquat (Eriobotrya japonica (Thunb.) Lindl.) cultivars/selections grown in Dörtyol, Hatay, Turkey were investigated in 2008. The cultivars/selections included ‘Baduna 5’, Güzelyurt 1, ‘Hafif Çukurgöbek’, ‘Ottaviani,’ and Type 1. The characteristics evaluated included fruit weight, width, length, seed number and weight, flesh/seed ratio, total soluble solids (TSS), pH, acidity, total phenolic (TP) content, and total antioxidant capacity (TAC), determined by the ferric reducing antioxidant power (FRAP) assay. The analyses were conducted by three replicates, with 30 fruits in each replicate. The results indicated that there were significant differences among the cultivars, for all the traits tested. For example, ‘Hafif Çukurgöbek’ and ‘Ottaviani’ had smaller fruits than others, although ‘Hafif Çukurgöbek’ had heavier seeds. The flesh/seed ratio was the highest in Type 1, while ‘Hafif Çukurgöbek’ had the highest pH and high soluble solids. ‘Baduna 5’ and ‘Hafif Çukurgöbek’ had the highest acidity. The TP ranged from 129 (‘Baduna 5’) to 578 (‘Hafif Çukurgöbek’) mg gallic acid equivalent (GAE)/kg fresh fruit (fw). ‘Hafif Çukurgöbek’ also had the highest FRAP mean (12.1 mmol Trolox Equivalent (TE)/kg fw). The results suggest that loquat cultivars have a variable range of TP content and a relatively high total antioxidant capacity, which is crucial for human health. PMID:20548929

  6. Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding.

    PubMed

    Valarmathi, P; Kumar, G; Robin, S; Manonmani, S; Dasgupta, I; Rabindran, R

    2016-08-01

    Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease.

  7. Species-specific and female host-biased ectophoresy in the roundworm Caenorhabditis japonica

    NASA Astrophysics Data System (ADS)

    Yoshiga, Toyoshi; Ishikawa, Yuji; Tanaka, Ryusei; Hironaka, Mantaro; Okumura, Etsuko

    2013-02-01

    Caenorhabditis japonica is a bacteriophagous nematode species that was discovered on the semi-social burrower bug, Parastrachia japonensis, which demonstrates egg-guarding and provisioning behaviors. To understand the life history of C. japonica in relation to P. japonensis, we demonstrated the specificity of this association and fluctuations in nematode number on the insect throughout the year. C. japonica dauer larvae (DL), larvae in a nonfeeding diapause stage, were predominantly found as clumps on the adult female insects but rarely found on the male insects in all populations examined. This female-biased association was consistent throughout the year, but after the nymphs hatched, nematodes were not detected on the mother insects showing provisioning behavior. DL appeared on the nymphs, and the number of DL on the newly emerged female insects gradually increased thereafter. C. japonica has never been detected on other invertebrates collected from the P. japonensis habitat thus far. Our data suggest that the life cycles of C. japonica and P. japonensis are synchronized.

  8. Clay is everything: archaeological analyses of colonial period inland swamp rice embankments

    Treesearch

    Andrew Agha

    2016-01-01

    Rice became the market export crop in the early eighteenth century that made South Carolina become an economic and agricultural powerhouse after many exotic tropical cultivars failed (Carney and Porcher 1993, Carney 1996, 2001, Littlefield 1981, Fields-Black 2008).

  9. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization.

    PubMed

    Chen, Zhe; Tang, Ye-Tao; Yao, Ai-Jun; Cao, Jian; Wu, Zhuo-Hao; Peng, Zhe-Ran; Wang, Shi-Zhong; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-12-01

    Cadmium uptake in rice is believed to be mediated by the Fe transport system. Phyto-available Cd can be changed by Fe fertilization of substrates. This work investigated whether and how Fe fertilization affects mitigation of Cd accumulation in paddy rice. A 90-d soil column experiment was conducted to study the change of Cd and Fe availability in soil after Fe fertilization (ionic and chelated Fe). A low-Cd accumulating cultivar (TY116) and a high-Cd accumulating cultivar (JY841) were grown in two Cd-polluted paddy soils amended with chelated Fe fertilizers. Additionally, both cultivars were grown in hydroponics to compare Fe-related gene expression in EDDHAFe-deficient and EDDHAFe-sufficient roots. The column experiment showed that EDTANa 2 Fe(II) and EDDHAFe(III) fertilization had a better mitigation effect on soil Cd availability compared to FeSO 4 ·7H 2 O. Moreover, the field experiment demonstrated that these two chelated fertilizations could reduce Cd concentrations in brown rice by up to 80%. Iron concentrations in the brown rice were elevated by Fe chelates. Compared to EDDHAFe(III), EDTANa 2 Fe(II) fertilization had a stronger mitigation effect by generating more EDTANa 2 Cd(II) in the soil solution to decrease phyto-available Cd in the soil. While EDDHAFe(III) fertilization could increase soil pH and decrease soil Eh which contributed to decreasing phyto-available Cd in a contaminated soil. In the hydroponic experiment, Fe sufficiency significantly reduced Cd concentrations in above-ground organs. In some cases, the expression of OsIRT1, OsNRAMP1 and OsNRAMP5 was inhibited under Fe sufficiency relative to Fe deficiency conditions. These results suggest that mitigation of rice Cd by Fe chelate fertilization results from a decrease in available Cd in substrates and the inhibition of the expression of several Fe-related genes in the IRT and NRAMP families. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Exogenous superoxide dismutase may lose its antidotal ability on rice leaves

    USDA-ARS?s Scientific Manuscript database

    Leaf diffusates of the resistant rice cultivars suppressed spore germination of blast fungus (Magnaporthe grisea). Bovine Cu-Zn superoxide dismutase (SOD) added to the diffusate abolished its toxicity. However, the enzyme added to the inoculum did not affect the toxicity of the diffusate. Even the s...

  11. Fractionation of the rice bran layer and quantification of vitamin E, oryzanol, protein, and rice bran saccharide

    PubMed Central

    Schramm, Rebecca; Abadie, Alicia; Hua, Na; Xu, Zhimin; Lima, Marybeth

    2007-01-01

    Value-added processing with respect to rice milling has traditionally treated the rice bran layer as a homogenous material that contains significant concentrations of high-value components of interest for pharmaceutical and nutraceutical applications. Investigators have shown that high-value components in the rice bran layer vary from differences in kernel-thickness, bran fraction, rice variety, and environmental conditions during the growing season. The objectives of this study were to quantify the amount of rice bran removed at pre-selected milling times and to correlate the amount of rice bran removed at each milling time with the concentration of vitamin E, gamma-oryzanol, rice bran saccharide, and protein obtained. The ultimate goal of this research is to show that rice bran fractionation is a useful method to obtain targeted, nutrient-rich bran samples for value-added processing. Two long grain rice cultivars, Cheniere and Cypress, were milled at discrete times between 3 and 40 seconds using a McGill mill to obtain bran samples for analysis. Results showed that the highest oryzanol and protein concentrations were found in the outer portion of the rice bran layer, while the highest rice bran saccharide concentration was found in the inner portion of the bran layer. Vitamin E concentration showed no significant difference across the bran layer within a variety, though the highest magnitude of concentration occurs within the first 10 seconds of milling for both varieties. To extract the higher concentration of oryzanol and protein only the outer portion of the bran layer requires processing, while to extract the higher concentration of rice bran saccharide, only the inner portion of the bran layer requires processing. Rice bran fractionation allows for the selective use of portions of the bran layer and is advantageous for two reasons: (1) bran fractions contain higher concentrations of components of interest with respect to the overall bran layer average, and

  12. Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga.

    PubMed

    Arbelaez, Juan D; Moreno, Laura T; Singh, Namrata; Tung, Chih-Wei; Maron, Lyza G; Ospina, Yolima; Martinez, César P; Grenier, Cécile; Lorieux, Mathias; McCouch, Susan

    Two populations of interspecific introgression lines (ILs) in a common recurrent parent were developed for use in pre-breeding and QTL mapping. The ILs were derived from crosses between cv Curinga, a tropical japonica upland cultivar, and two different wild donors, Oryza meridionalis Ng. accession (W2112) and Oryza rufipogon Griff. accession (IRGC 105491). The lines were genotyped using genotyping-by-sequencing (GBS) and SSRs. The 32 Curinga/ O. meridionalis ILs contain 76.73 % of the donor genome in individual introgressed segments, and each line has an average of 94.9 % recurrent parent genome. The 48 Curinga/ O. rufipogon ILs collectively contain 97.6 % of the donor genome with an average of 89.9 % recurrent parent genome per line. To confirm that these populations were segregating for traits of interest, they were phenotyped for pericarp color in the greenhouse and for four agronomic traits-days to flowering, plant height, number of tillers, and number of panicles-in an upland field environment. Seeds from these IL libraries and the accompanying GBS datasets are publicly available and represent valuable genetic resources for exploring the genetics and breeding potential of rice wild relatives.

  13. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  14. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review.

    PubMed

    He, Xirui; Bai, Yajun; Zhao, Zefeng; Wang, Xiaoxiao; Fang, Jiacheng; Huang, Linhong; Zeng, Min; Zhang, Qiang; Zhang, Yajun; Zheng, Xiaohui

    2016-07-01

    Sophora japonica (Fabaceae), also known as Huai (Chinese: ), is a medium-sized deciduous tree commonly found in China, Japan, Korea, Vietnam, and other countries. The use of this plant has been recorded in classical medicinal treatises of ancient China, and it is currently recorded in both the Chinese Pharmacopoeia and European Pharmacopoeia. The flower buds and fruits of S. japonica, also known as Flos Sophorae Immaturus and Fructus Sophorae in China, are most commonly used in Asia (especially in China) to treat hemorrhoids, hematochezia, hematuria, hematemesis, hemorrhinia, uterine or intestinal hemorrhage, arteriosclerosis, headache, hypertension, dysentery, dizziness, and pyoderma. To discuss feasible trends for further research on S. japonica, this review highlights the botany, ethnopharmacology, phytochemistry, biological activities, and toxicology of S. japonica based on studies published in the last six decades. Information on the S. japonica was collected from major scientific databases (SciFinder, PubMed, Elsevier, SpringerLink, Web of Science, Google Scholar, Medline Plus, China Knowledge Resource Integrated (CNKI), and "Da Yi Yi Xue Sou Suo (http://www.dayi100.com/login.jsp)" for publications between 1957 and 2015 on S. japonica. Information was also obtained from local classic herbal literature, government reports, conference papers, as well as PhD and MSc dissertations. Approximately 153 chemical compounds, including flavonoids, isoflavonoids, triterpenes, alkaloids, polysaccharides, amino acids, and other compounds, have been isolated from the leaves, branches, flowers, buds, pericarps, and/or fruits of S. japonica. Among these compounds, several flavonoids and isoflavonoids comprise the active constituents of S. japonica, which exhibit a wide range of biological activities in vitro and in vivo such as anti-inflammatory, antibacterial, antiviral, anti-osteoporotic, antioxidant, radical scavenging, antihyperglycemic, antiobesity, antitumor, and

  15. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis.

    PubMed

    Chen, Pingli; Shen, Zhikang; Ming, Luchang; Li, Yibo; Dan, Wenhan; Lou, Guangming; Peng, Bo; Wu, Bian; Li, Yanhua; Zhao, Da; Gao, Guanjun; Zhang, Qinglu; Xiao, Jinghua; Li, Xianghua; Wang, Gongwei; He, Yuqing

    2018-01-01

    Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes ( PG5a , Wx , AGPS2a , RP6 , and, RM1 ). Several starch-metabolism-related genes ( AGPS2a , OsACS6 , PUL , GBSSII , and ISA2 ) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6 , RM1 , Wx , and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would

  16. Biases in simulation of the rice phenology models when applied in warmer climates

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, T.; Yang, X.; Simelton, E.

    2015-12-01

    The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.

  17. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen.

    PubMed

    Siciliano, Ilenia; Amaral Carneiro, Greice; Spadaro, Davide; Garibaldi, Angelo; Gullino, Maria Lodovica

    2015-09-23

    Fusarium fujikuroi, the causal agent of bakanae disease, is the main seedborne pathogen on rice. To understand the basis of rice resistance, a quantitative method to simultaneously detect phytohormones and phytoalexins was developed by using HPLC-MS/MS. With this method dynamic profiles and possible interactions of defense-related phytohormones and phytoalexins were investigated on two rice cultivars, inoculated or not with F. fujikuroi. In the resistant cultivar Selenio, the presence of pathogen induced high production of phytoalexins, mainly sakuranetin, and symptoms of bakanae were not observed. On the contrary, in the susceptible genotype Dorella, the pathogen induced the production of gibberellin and abscisic acid and inhibited jasmonic acid production, phytoalexins were very low, and bakanae symptoms were observed. The results suggested that a wide range of secondary metabolites are involved in plant defense against pathogens and phytoalexin synthesis could be an important factor for rice resistance against bakanae disease.

  18. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    PubMed Central

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  19. Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice

    PubMed Central

    Bindusree, Ganigara; Natarajan, Purushothaman; Kalva, Sukesh

    2017-01-01

    Fragrance of rice is an important trait that confers a large economic benefit to the farmers who cultivate aromatic rice varieties. Several aromatic rice varieties have limited geographic distribution, and are endowed with variety-specific unique fragrances. BADH2 was identified as a fragrance gene in 2005, and it is essential to identify the fragrance alleles from diverse geographical locations and genetic backgrounds. Seeragasamba is a short-grain aromatic rice variety of the indica type, which is cultivated in a limited area in India. Whole genome sequencing of this variety identified a new badh2 allele (badh2-p) with an 8 bp insertion in the promoter region of the BADH2 gene. When the whole genome sequences of 76 aromatic varieties in the 3000 rice genome project were analyzed, the badh2-p allele was present in 13 varieties (approximately 17%) of both indica and japonica types. In addition, the badh2-p allele was present in 17 varieties that already had the loss-of-function allele, badh2-E7. Taken together, the frequency of badh2-p allele (approximately 40%) was found to be greater than that of the badh2-E7 allele (approximately 34%) among the aromatic rice varieties. Therefore, it is suggested to include badh2-p as a predominant allele when screening for fragrance alleles in aromatic rice varieties. PMID:29190814

  20. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis.

    PubMed

    Salunkhe, Arvindkumar Shivaji; Poornima, R; Prince, K Silvas Jebakumar; Kanagaraj, P; Sheeba, J Annie; Amudha, K; Suji, K K; Senthil, A; Babu, R Chandra

    2011-09-01

    Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212-RM302-RM8085-RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.

  1. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica

    PubMed Central

    Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin

    2016-01-01

    Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341

  2. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci

    NASA Astrophysics Data System (ADS)

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J.

    2016-07-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation.

  3. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    PubMed

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  4. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  5. A preliminary study on identification of Thai rice samples by INAA and statistical analysis

    NASA Astrophysics Data System (ADS)

    Kongsri, S.; Kukusamude, C.

    2017-09-01

    This study aims to investigate the elemental compositions in 93 Thai rice samples using instrumental neutron activation analysis (INAA) and to identify rice according to their types and rice cultivars using statistical analysis. As, Mg, Cl, Al, Br, Mn, K, Rb and Zn in Thai jasmine rice and Sung Yod rice samples were successfully determined by INAA. The accuracy and precision of the INAA method were verified by SRM 1568a Rice Flour. All elements were found to be in a good agreement with the certified values. The precisions in term of %RSD were lower than 7%. The LODs were obtained in range of 0.01 to 29 mg kg-1. The concentration of 9 elements distributed in Thai rice samples was evaluated and used as chemical indicators to identify the type of rice samples. The result found that Mg, Cl, As, Br, Mn, K, Rb, and Zn concentrations in Thai jasmine rice samples are significantly different but there was no evidence that Al is significantly different from concentration in Sung Yod rice samples at 95% confidence interval. Our results may provide preliminary information for discrimination of rice samples and may be useful database of Thai rice.

  6. The gymnastics of epigenomics in rice.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2018-01-01

    Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.

  7. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling

    USDA-ARS?s Scientific Manuscript database

    Recent studies have reported the health benefits of pigmented rice cultivars due to the presence of bioactive compounds in its bran layer of caryopsis. This study evaluated the proximate composition, colour, total flavonoids, anthocyanins and proanthocyanidins contents, as well as the total phenolic...

  8. Response Variability across Diverse Rice Accessions under Rising Temperature and Increasing Atmospheric Carbon Dioxide

    USDA-ARS?s Scientific Manuscript database

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  9. Calcium may help decrease rice straighthead in a silt loam soil

    USDA-ARS?s Scientific Manuscript database

    Straighthead is a physiological disease in rice which causes blanking of the panicle and can result in complete yield loss. Using the US cultivar Cocodrie and three breeding lines, 8-18, 8-9 and 12-38, we tested the effect of Calcium (Ca) application on straighthead symptoms in the greenhouse. Three...

  10. Identification of a new locus conferring antixenosis to the brown planthopper in rice cultivar Swarnalata (Oryza sativa L.).

    PubMed

    Qiu, Y F; Cheng, L; Liu, F; Li, R B

    2013-08-29

    The brown planthopper [Nilaparvata lugens (Stål); BPH] has caused severe damage to rice production. The identification of resistance genes and the development of BPH-resistant varieties are economical and effective ways to manage this pest. Using an F2 population from a cross between the Indica cultivars 93-11 and Swarnalata, we mapped the Qbph-8 locus to a 7.3-cM region on chromosome 8 in two tests, flanked by the markers RM339 and RM515. In this population, Qbph-8 explained 7.7 and 6.6% of the phenotypic variance of BPH preference in both tests. In the BPH host choice test, the average number of settled BPHs on the Qbph-8 plants was less than that on the 93-11 plants over the 24- to 120-h observation period. Furthermore, less BPH insects were observed on the BPH6+Qbph-8 plant compared with the BPH6 plant or Qbph-8 plant, indicating a stronger antixenotic effect shown in the gene pyramiding plants. Hence, this locus can be pyramided with other BPH resistance genes and applied to breed-resistant varieties, which possibly can improve the resistance level and durable resistance to the BPH.

  11. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  12. Field Performance of an Indica x Tropical Japonica Rice Mapping Population under AWD Stress

    USDA-ARS?s Scientific Manuscript database

    Alternating-wetting-drying (AWD) is an emerging rice irrigation management system that has the potential ability to reduce both irrigation water use and emissions of the greenhouse gas, methane. Based on preliminary experiments, 15 (F10) recombinant inbred lines (RILs) showing diversity for root an...

  13. Characterization of functional trait diversity among Indian cultivated and weedy rice populations

    PubMed Central

    Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.

    2016-01-01

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282

  14. Relationship of Rice Grain Amylose, Gelatinization Temperature and Pasting Properties for Breeding Better Eating and Cooking Quality of Rice Varieties

    PubMed Central

    Wang, Xiaoqian; Franje, Neil Johann; Revilleza, Jastin Edrian; Xu, Jianlong; Li, Zhikang

    2016-01-01

    A total of 787 non-waxy rice lines– 116 hybrids and 671 inbreds–were used to study the apparent amylose content (AAC), gelatinization temperature (GT), and rapid visco analyzer (RVA) pasting viscosity properties of rice starch to understand their importance in breeding better rice varieties. The investigated traits showed a wide range of diversity for both hybrid (HG) and inbred (IG) groups. The combinations of the different categories of AAC and GT were random in HG but were non-random in IG. For inbred lines, the high level of AAC tended to combine with the low level of GT, the intermediate level of AAC tended to have high or intermediate GT, and the low level of AAC tended to have high or low GT. Some stable correlations of the AAC, GT, and RVA properties may be the results derived from the physicochemical relationships among these traits, which rice breeders could utilize for selection in advanced breeding generations. Through cluster analysis, IG and HG were divided into 52 and 31 sub-clusters, respectively. Identifying the cultivars having AAC, GT, and RVA properties similar to that of popular high-quality rice varieties seems to be an interesting strategy and could be directly used for adaptation trials to breed high-quality rice varieties in targeted areas in a more customized manner. PMID:27992591

  15. Space environment induced mutations prefer to occur at polymorphic sites of rice genomes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, M.; Cheng, Z.; Sun, Y.

    To explore the genomic characteristics of rice mutants induced by space environment, space-induced mutants 971-5, 972-4, and R955, which acquired new traits after space flight such as increased yield, reduced resistance to rice blast, and semi-dwarfism compared with their on-ground controls, 971ck, 972ck, and Bing95-503, respectively, together with other 8 japonica and 3 indica rice varieties, 17 in total, were analyzed by amplified fragment length polymorphism (AFLP) method. We chose 16 AFLP primer-pairs which generated a total of 1251 sites, of which 745 (59.6%) were polymorphic over all the genotypes. With the 16 pairs of primer combinations, 54 space-induced mutation sites were observed in 971-5, 86 in 972-4, and 5 in R955 compared to their controls, and the mutation rates were 4.3%, 6.9% and 0.4%, respectively. Interestingly, 75.9%, 84.9% and 100% of the mutation sites identified in 971-5, 972-4, and R955 occurred in polymorphic sites. This result suggests that the space environment preferentially induced mutations at polymorphic sites in rice genomes and might share a common mechanism with other types of mutagens. It also implies that polymorphic sites in genomes are potential "hotspots" for mutations induced by the space environment.

  16. Comparative Transcriptome Analyses of Gene Expression Changes Triggered by Rhizoctonia solani AG1 IA Infection in Resistant and Susceptible Rice Varieties.

    PubMed

    Zhang, Jinfeng; Chen, Lei; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Cheng, Yuanzhi; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2017-01-01

    Rice sheath blight, caused by Rhizoctonia solani , is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48, and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses suggested that most DEGs and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.

  17. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.

    PubMed

    Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo

    2017-12-01

    The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P < 0.05), and FMBC 2 performed better than FMBC 1 did. Furthermore, exposure to 2% FMBC 2 decreased the total As concentration in the grain by 68.9-78.3%. The addition of FMBC increased the ratio of essential amino acids in the grain, decreased As availability in the soil, and significantly increased the Fe and Mn plaque contents. The reduced As accumulation in rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Varietal differences in the growth responses of rice to an arbuscular mycorrhizal fungus under natural upland conditions.

    PubMed

    Sisaphaithong, Thongkhoun; Hanai, Shinichi; Tomioka, Rie; Kobae, Yoshihiro; Tanaka, Aiko; Yano, Katsuya; Takenaka, Chisato; Hata, Shingo

    2017-01-02

    Seedlings of three rice (Oryza sativa L.) varieties (one indica, ARC5955; and two japonica, Nipponbare and Koshihikari) with or without pre-colonization by the arbuscular mycorrhizal fungus Funneliformis mosseae were transplanted into an upland field and grown to maturity. Pre-colonization had no effect on the yield of Nipponbare or Koshihikari. However, pre-colonized ARC5955 exhibited a strong tendency toward increased yield, which was accompanied by increases in the percentage of ripened grain and the 1000-grain weight. The rice roots were also colonized by indigenous arbuscular mycorrhizal fungi in the field, but these had only limited effects on shoot biomass and grain yields. We speculate that F. mosseae may have exhibited priority effects, allowing it to dominate the rice roots. There was no significant difference in the contents of most mineral elements in the shoots of pre-colonized ARC5955 at harvest, indicating that some other factor is responsible for the observed yield increase.

  19. Relative resistance or susceptibility of maple (Acer) species, hybrids and cultivars to six arthropod pests of production nurseries.

    PubMed

    Seagraves, Bonny L; Redmond, Carl T; Potter, Daniel A

    2013-01-01

    Maples (Acer spp.) in production nurseries are vulnerable to numerous arthropod pests that can stunt or even kill the young trees. Seventeen cultivars representing various Acer species and hybrids were evaluated for extent of infestation or injury by shoot and trunk borers (Proteoteras aesculana, Chrysobothris femorata), potato leafhopper (Empoasca fabae), Japanese beetle (Popillia japonica), maple spider mite (Oligonychus aceris) and calico scale (Eulecanium cerasorum). Evaluations were done in replicated field plots in central and western Kentucky. All of the maples were susceptible, to varying degrees, to one or more key pest(s). Red maples (A. rubrum) were relatively vulnerable to potato leafhopper injury and borers but nearly free of Japanese beetle feeding and spider mites. Sugar maples sustained conspicuous Japanese beetle damage but had very low mite populations, whereas the opposite was true for Freeman maples (A. × freemanii). A. campestre was heavily infested by calico scale. Within each species or hybrid there were cultivar differences in degree of infestation or damage by particular pests. The results should help growers to focus pest management efforts on those plantings at greatest risk from particular pests, and to choose cultivars requiring fewer insecticide inputs to produce a quality tree. Copyright © 2012 Society of Chemical Industry.

  20. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.

    PubMed

    Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai

    2010-06-01

    The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.