Science.gov

Sample records for jet thrust vector

  1. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  2. An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Strykowski, Paul J.

    1997-01-01

    Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.

  3. Test stand for precise measurement of impulse and thrust vector of small attitude control jets

    NASA Technical Reports Server (NTRS)

    Woodruff, J. R.; Chisel, D. M.

    1973-01-01

    A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.

  4. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  5. Thrust-Vector Deflectors For Spacecraft

    NASA Technical Reports Server (NTRS)

    Soong, William C.

    1990-01-01

    Rotating shield steers thrust in desired direction. Report discusses use of thrust-vector deflectors (TVD's) to enhance controllability and reduce number of small rocket engines (thrustors) needed to control attitudes of artificial satellites. Developed in aircraft industry for use in jet engines. Principal advantages gained, lower cost and greater simplicity.

  6. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  7. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  8. Solid rocket thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.

  9. Analysis of stratified and closely spaced jets exhausting into a crossflow. [aerodynamic characteristics of lift-jet, vectored thrust, and lift fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Ziegler, H.; Woller, P. T.

    1973-01-01

    Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.

  10. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  11. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    NASA Astrophysics Data System (ADS)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  12. A flight evaluation of a vectored thrust jet V/STOL airplane during simulated instrument approaches using the Kestrel (XV-6A) airplane

    NASA Technical Reports Server (NTRS)

    Morello, S. A.; Person, L. H., Jr.; Shanks, R. E.; Culpepper, R. G.

    1972-01-01

    An in-flight investigation was made to determine the terminal-area operating problems of a vectored-thrust-jet vertical and short take-off landing (V/STOL) airplane under simulated instrument conditions. Handling-qualities data pertinent to the terminal-area approach and landing task are presented in the text, and additional documentation is included in the appendixes. Problems dealing with the cruise letdown to localizer capture, conversion to powered-lift flight, precise control of the glide slope, approach velocity or deceleration schedule, hover, and landing are discussed.

  13. Aerodynamics of thrust vectoring by Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Tseng, Jing-Biau; Lan, C. Edward

    1991-01-01

    Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex.

  14. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  15. Comparative investigation of multiplane thrust vectoring nozzles

    NASA Technical Reports Server (NTRS)

    Capone, F.; Smereczniak, P.; Spetnagel, D.; Thayer, E.

    1992-01-01

    The inflight aerodynamic performance of multiplane vectoring nozzles is critical to development of advanced aircraft and flight control systems utilizing thrust vectoring. To investigate vectoring nozzle performance, subscale models of two second-generation thrust vectoring nozzle concepts currently under development for advanced fighters were integrated into an axisymmetric test pod. Installed drag and vectoring performance characteristics of both concepts were experimentally determined in wind tunnel testing. CFD analyses were conducted to understand the impact of internal flow turning on thrust vectoring characteristics. Both nozzles exhibited drag comparable with current nonvectoring axisymmetric nozzles. During vectored-thrust operations, forces produced by external flow effects amounted to about 25 percent of the total force measured.

  16. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  17. Thrust Vector Control using movable probes

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Readey, Harvey

    1990-01-01

    A study was undertaken to determine if movable probes or struts positioned in the nozzle can be used to provide Thrust Vector Control of the Space Shuttle Solid Rocket Booster. The study employed CFD to determine estimates of the shock standoff distance from the probe. An empirical correlation was used to construct the shock shape and the pressure distribution generated by the probe. The TVC performance for a single and multiple number of probes was then used to determine requirements for a maximum thrust angle offset of 7.5 degrees. Consideration was given to what materials would be suitable for the probe and if active cooling is required. Based on the performance analysis and thermal requirements, a Probe Thrust Vector Control (PTVC) system was sized. Indications are that a PTVC system weight is in the 1500 1bm weight range, compared to the existing weight of 7500 1bm for the SRB nozzle gimble system.

  18. Ascent thrust vector control system test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available

  19. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  20. Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2003-01-01

    A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

  1. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  2. Nozzle Thrust Optimization While Reducing Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Gilinsky, M. M.

    1995-01-01

    A Bluebell nozzle design concept is proposed for jet noise reduction with minimal thrust loss or even thrust augmentation. A Bluebell nozzle has a sinusoidal lip line edge (chevrons) and a sinusoidal cross section shape with linear amplitude increasing downstream in the divergent nozzle part (corrugations). The experimental tests of several Bluebell nozzle designs have shown nose reduction relative to a convergent-divergent round nozzle with design exhaust number M(e) = 1.5. The best design provides an acoustic benefit near 4dB with about 1 percent thrust augmentation. For subsonic flow ((M(e)= 0.6)), the tests indicated that the present method for design of Bluebell nozzles gives less acoustic benefit and in most cases jet noise increased. The proposed designs incorporate analytical theory and 2D and 3D numerical simulations. Full Navier-Stokes and Euler solvers were utilized. Boundary layer effects were used. Several different designs were accounted for in the Euler applications.

  3. A review of thrust-vectoring schemes for fighter applications

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1978-01-01

    This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

  4. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  5. Thrust vector control using electric actuation

    SciTech Connect

    Bechtel, R.T.; Hall, D.K.

    1995-01-25

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  6. Experimental investigations of thrust vectoring systems for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Aoyagi, K.

    1977-01-01

    This paper presents a summary of two technology programs sponsored by NASA to investigate the characteristics of two thrust vectoring schemes for V/STOL aircraft. The operational capability of the VTOL aircraft is dependent on maximum utilization of the installed thrust in both the cruise and powered lift modes of flight. An effective thrust vectoring system on the cruise propulsion unit is therefore essential to provide maximum payload in hover and STOL plus minimum specific fuel consumption in loiter and cruise. Introducing a high by-pass ratio fan system, augmenting the gas generator thrust, as the propulsion system for VTOL aircraft places increased significance on the performance of the relatively short coupled thrust vectoring systems. The two programs discussed herein include both large-scale and small-scale tests of a vectoring hood system with a vented, internal-lip and swivel nozzle systems. These tests indicated that a satisfactory thrust vectoring system can be developed.

  7. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  8. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  9. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  10. Jet Propulsion with Special Reference to Thrust Augmenters

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1933-01-01

    An investigation of the possibility of using thrust augmented jets as prime movers was carried out. The augmentation was to be effected by allowing the jet to mix with the surrounding air in the presence of bodies which deflect the air set in motion by the jet.

  11. New Highly Dynamic Approach for Thrust Vector Control

    NASA Astrophysics Data System (ADS)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  12. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated

  13. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry

  14. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  15. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  16. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1992-01-01

    The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.

  17. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  18. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  19. Jet vectoring through nozzle asymmetry

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Rosakis, Alexandros; Gharib, Morteza

    2015-11-01

    Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  20. Experiments on the Thrust of a Synthetic Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Ayers, Bradley; Henoch, Charles; Johari, Hamid

    2014-11-01

    A set of water tunnel experiments were conducted to investigate the effect of crossflow on the thrust of a synthetic jet. This research was motivated by the desire to generate significant turning moments on a fully-submerged, supercavitating vehicle without using control fins or canards. The water tunnel model was a sting-mounted, 3-inch diameter cylindrical body interfaced to a 6-axis waterproof load cell. The synthetic jet actuator was contained within the model and the jet orifice located near the aft end of the model was oriented perpendicular to the mean flow. The actuator consisted of an externally controlled solenoid driving a piston into the cavity. The jet thrust was measured over a broad range of synthetic jet operating parameters, including the actuation frequency and duty cycle, as well as the jet-to-crossflow velocity ratios. Previous work which is based on the slug flow model of an individual vortex ring predicts the time-averaged thrust scales with the square of actuation frequency and the stroke length. The measurements will be compared with the theoretical predictions, and the results will be used to assess the effect of crossflow on the thrust of synthetic jet. Sponsored by the ONR-ULI program.

  1. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  2. Feedback control for counterflow thrust vectoring with a turbine engine: Experiment design and robust control design and implementation

    NASA Astrophysics Data System (ADS)

    Dores, Delfim Zambujo Das

    2005-11-01

    Engineering research over the last few years has successfully demonstrated the potential of thrust vector control using counterflow at conditions up to Mach 2. Flow configurations that include the pitch vectoring of rectangular jets and multi-axis vector control in diamond and axisymmetric nozzle geometries have been studied. Although bistable (on-off) fluid-based control has been around for some time, the present counterflow thrust vector control is unique because proportional and continuous jet response can be achieved in the absence of moving parts, while avoiding jet attachment, which renders most fluidic approaches unacceptable for aircraft and missile control applications. However, before this study, research had been limited to open-loop studies of counterflow thrust vectoring. For practical implementation it was vital that the counterflow scheme be used in conjunction with feedback control. Hence, the focus of this research was to develop and experimentally demonstrate a feedback control design methodology for counterflow thrust vectoring. This research focused on 2-D (pitch) thrust vectoring and addresses four key modeling issues. The first issue is to determine the measured variable to be commanded since the thrust vector angle is not measurable in real time. The second related issue is to determine the static mapping from the thrust vector angle to this measured variable. The third issue is to determine the dynamic relationship between the measured variable and the thrust vector angle. The fourth issue is to develop dynamic models with uncertainty characterizations. The final and main goal was the design and implementation of robust controllers that yield closed-loop systems with fast response times, and avoid overshoot in order to aid in the avoidance of attachment. These controllers should be simple and easy to implement in real applications. Hence, PID design has been chosen. Robust control design is accomplished by using ℓ1 control theory in

  3. Ground test of the D shaped vented thrust vectoring nozzle

    NASA Technical Reports Server (NTRS)

    Esker, D. W.

    1976-01-01

    Static ground tests of a large scale lift/cruise thrust vectoring nozzle were conducted to establish: (1) vectoring performance 'in' and 'out' of ground effect; (2) thrust spoilage capability; (3) compatibility of the nozzle with a turbotip fan; and (4) the nozzle structural temperature distribution. Vectoring performance of a short coupled, vented nozzle design on a large scale, (60%) basis was compared with small scale (4.5%) test nozzle results. The test nozzle was a "boilerplate" model of the MCAIR "D" vented nozzle configured for operation with the LF336/J85 turbotip lift fan system. Calibration of the LF336/J85 test fan with a simple convergent nozzle was performed with four different nozzle exit areas to establish reference thrust, nozzle pressure ratio, and nozzle corrected flow characteristics for comparison with the thrust vectoring nozzle data. Thrust vectoring tests with the 'D' vented nozzle were conducted over the range of vector angles between 0 and 117 deg for several different nozzle exit areas.

  4. Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1995-01-01

    A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.

  5. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  6. Thrust Characteristics of Multiple Lifting Jets in Ground Proximity

    NASA Technical Reports Server (NTRS)

    Davenport, Edwin E.; Spreeman, Kenneth P.

    1960-01-01

    An investigation has been made to determine the thrust characteristics within ground proximity of a series of models which might represent vertical take-off-and-landing (VTOL) aircraft with multiple exit jet engines exhausting vertically downward beneath a lifting surface. Variations in simulated engine configurations were provided by a series of nozzle insert plugs in which the number of jet exits, located symmetrically on a fixed circle, was varied, or the diameter of the circle was varied for a given number of jet exits. represent lifting surfaces, and high-pressure air was used to simulate jet-engine exhaust. Plywood plates were used to The results of the investigation showed that increasing the number of exits, such that an annular jet configuration was approached, provided more favorable thrust characteristics within ground proximity than any other variation in the geometry of these multiple jets. Tests of a configuration with two nozzles approximating a fan-in-wing VTOL aircraft with fans located at different spanwise locations indicated that the augmentation in thrust within ground proximity was greater for the arrangement with the more inboard location of the nozzles.

  7. Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle

    NASA Technical Reports Server (NTRS)

    Schirmer, Alberto W.; Capone, Francis J.

    1989-01-01

    In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

  8. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  9. Static internal performance of a two-dimensional convergent nozzle with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1985-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a two-dimensional convergent nozzle with a thrust-vectoring capability up to 60 deg. Vectoring was accomplished by a downward rotation of a hinged upper convergent flap and a corresponding rotation of a center-pivoted lower convergent flap. The effects of geometric thrust-vector angle and upper-rotating-flap geometry on internal nozzle performance characteristics were investigated. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 5.0.

  10. Thrust vector control for the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Counter, D. N.; Brinton, B. C.

    1975-01-01

    Thrust vector control (TVC) for the Space Shuttle Solid Rocket Motor (SRM) is obtained by omniaxis vectoring of the nozzle. The development and integration of the system are under the cognizance of Marshall Space Flight Center (MSFC). The nozzle and flexible bearing have been designed and will be built by Thiokol Corporation/Wasatch Division. The vector requirements of the system, the impact of multiple reuse on the components, and the unique problems associated with a large flexible bearing are discussed. The design details of each of the major TVC subcomponents are delineated. The subscale bearing development program and the overall development schedule also are presented.

  11. Static investigation of a two-dimensional convergent-divergent exhaust nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1990-01-01

    An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.

  12. Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.

    1984-01-01

    An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

  13. Multiaxis thrust vectoring using axisymmetric nozzles and postexit vanes on an F/A-18 configuration vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Noffz, Gregory K.; Grafton, Sue B.; Mason, Mary L.; Peron, Lee R.

    1991-01-01

    A ground-based investigation was conducted on an operational system of multiaxis thrust vectoring using postexit vanes around an axisymmetric nozzle. This thrust vectoring system will be tested on the NASA F/A-18 High Alpha Research Vehicle (HARV) aircraft. The system provides thrust vectoring capability in both pitch and yaw. Ground based data were gathered from two separate tests at NASA Langley Research Center. The first was a static test in the 16-foot Transonic Tunnel Cold-Jet Facility with a 14.25 percent scale model of the axisymmetric nozzle and the postexit vanes. The second test was conducted in the 30 by 60 foot wind tunnel with a 16 percent F/A-18 complete configuration model. Data from the two sets are being used to develop models of jet plume deflection and thrust loss as a function of vane deflection. In addition, an aerodynamic interaction model based on plume deflection angles will be developed. Results from the scale model nozzle test showed that increased vane deflection caused exhaust plume turning. Aerodynamic interaction effects consisted primarily of favorable interaction of moments and unfavorable interaction of forces caused by the vectored jet plume.

  14. Evaluation of dual flow thrust vector nozzles with exhaust stream impingement

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Dobbins, Sean; Vaccarezza, Steven

    1992-01-01

    To supplement previous work performed by NASA, a cold-jet facility was established at the California Polytechnic State University, San Luis Obispo campus. The purpose of this facility is to continue the studies of cold flow multiaxis thrust vectoring conducted at the NASA Langley Research Center. A single nozzle test apparatus was completed and is presently operational. Included are the results of the single flow test envelope that was requested by NASA personnel. Details about the test apparatus are included in the Cal Poly Semi-Annual Progress report.

  15. Design of high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1991-01-01

    NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

  16. Thrust vector control algorithm design for the Cassini spacecraft

    NASA Technical Reports Server (NTRS)

    Enright, Paul J.

    1993-01-01

    This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.

  17. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  18. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  19. Attitude control of a spinning rocket via thrust vectoring

    SciTech Connect

    White, J.E.

    1990-12-19

    Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

  20. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  1. Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 deg to 70 deg

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Capone, Francis J.

    1995-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.

  2. Pressure distribution on a vectored-thrust V/STOL fighter in the transition-speed range. [wind tunnel tests to measure pressure distribution on body and wing

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Margason, R. J.

    1974-01-01

    A wind-tunnel investigation has been conducted in the Langley V/STOL tunnel with a vectored-thrust V/STOL fighter configuration to obtain detailed pressure measurements on the body and on the wing in the transition-speed range. The vectored-thrust jet exhaust induced a region of negative pressure coefficients on the lower surface of the wing and on the bottom of the fuselage. The location of the jet exhaust relative to the wing was a major factor in determining the extent of the region of negative pressure coefficients.

  3. Space transportation system solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1979-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the major portion of qualification and verification tests and is prepared to be cleared for the first Shuttle flight (STS-1). Substantiation data will include analytical and test data.

  4. Space Transportation System solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1980-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, failsafe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system completed the required qualification and verification tests and is certified for the intended application. Substantiation data include analytical and test data.

  5. Preliminary design study of a lateral-directional control system using thrust vectoring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.

  6. PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    1998-01-01

    An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.

  7. Selected Performance Measurements of the F-15 Active Axisymmetric Thrust-vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1998-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  8. Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1999-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  9. NLO Vector Boson Production With Light Jets

    SciTech Connect

    Bern, Z.; Diana, G.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Gleisberg, T.; Hoeche, S.; Ita, H.; Kosower, D.A.; Maitre, D.; Ozeren, K.

    2012-02-15

    In this contribution we present recent progress in the computation of next-to-leading order (NLO) QCD corrections for the production of an electroweak vector boson in association with jets at hadron colliders. We focus on results obtained using the virtual matrix element library BlackHat in conjunction with SHERPA, focusing on results relevant to understanding the background to top production. The production of a vector boson in association with several jets at the Large Hadron Collider (LHC) is an important background for other Standard Model processes as well as new physics signals. In particular, the production of a W boson in association with many jets is an important background for processes involving one or more top quarks. Precise predictions for the backgrounds are crucial to measurement of top-quark processes. Vector boson production in association with multiple jets is also a very important background for many SUSY searches, as it mimics the signatures of many typical decay chains. Here we will discuss how polarization information can be used as an additional handle to differentiate top pair production from 'prompt' W-boson production. More generally, ratios of observables, for example for events containing a W boson versus those containing a Z boson, are expected to be better-behaved as many uncertainties cancel in such ratios. Precise calculation of ratios, along with measurement of one of the two processes in the ratio, can be used in data-driven techniques for estimating backgrounds.

  10. An experimental investigation of thrust vectoring two-dimensional convergent-divergent nozzles installed in a twin-engine fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.

  11. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

  12. Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2007-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.

  13. An Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2004-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold: first, to add to the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. Second, to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and predicting what thrust augmentation values may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (having no mean component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the various measurements made. These include both thrust and Digital Particle Imaging Velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called Formation Number serves as a useful dimensionless number by which to characterize the jet and predict performance.

  14. Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Berrier, B. L.

    1982-01-01

    The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

  15. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  16. Static Investigation of a Multiaxis Thrust-Vectoring Nozzle With Variable Internal Contouring Ability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Mills, Charles T. L.; Mason, Mary L.

    1997-01-01

    The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.

  17. Solid rocket booster thrust vector control subsystem test report (D-1)

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1978-01-01

    The results of the sequence of tests performed on the space shuttle solid rocket booster thrust vector control subsystem are presented. The operational characteristics of the thrust vector control subsystem components, as determined from the tests, are discussed. Special analyses of fuel consumption, basic steady state characteristics, GN2 spin, and actuator displacement were reviewed which will aid in understanding the performance of the auxiliary power unit. The possibility of components malfunction is also discussed.

  18. Investigation of advanced thrust vectoring exhaust systems for high speed propulsive lift

    NASA Technical Reports Server (NTRS)

    Hutchison, R. A.; Petit, J. E.; Capone, F. J.; Whittaker, R. W.

    1980-01-01

    The paper presents the results of a wind tunnel investigation conducted at the NASA-Langley research center to determine thrust vectoring/induced lift characteristics of advanced exhaust nozzle concepts installed on a supersonic tactical airplane model. Specific test objectives include: (1) basic aerodynamics of a wing body configuration, (2) investigation of induced lift effects, (3) evaluation of static and forward speed performance, and (4) the effectiveness of a canard surface to trim thrust vectoring/induced lift forces and moments.

  19. Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Capone, Francis J.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.

  20. Static performance of nonaxisymmetric nozzles with yaw thrust-vectoring vanes

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Berrier, Bobby L.

    1988-01-01

    A static test was conducted in the static test facility of the Langley 16 ft Transonic Tunnel to evaluate the effects of post exit vane vectoring on nonaxisymmetric nozzles. Three baseline nozzles were tested: an unvectored two dimensional convergent nozzle, an unvectored two dimensional convergent-divergent nozzle, and a pitch vectored two dimensional convergent-divergent nozzle. Each nozzle geometry was tested with 3 exit aspect ratios (exit width divided by exit height) of 1.5, 2.5 and 4.0. Two post exit yaw vanes were externally mounted on the nozzle sidewalls at the nozzle exit to generate yaw thrust vectoring. Vane deflection angle (0, -20 and -30 deg), vane planform and vane curvature were varied during the test. Results indicate that the post exit vane concept produced resultant yaw vector angles which were always smaller than the geometric yaw vector angle. Losses in resultant thrust ratio increased with the magnitude of resultant yaw vector angle. The widest post exit vane produced the largest degree of flow turning, but vane curvature had little effect on thrust vectoring. Pitch vectoring was independent of yaw vectoring, indicating that multiaxis thrust vectoring is feasible for the nozzle concepts tested.

  1. Analysis of Thrust Vectoring Capabilities for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B .; Gromov, Konstantin; Murray, Emmanuell

    2005-01-01

    A strategy to mitigate the impact of the trajectory design of the Jupiter Icy Moons Orbiter (JIMO) on the attitude control design is described in this paper. This paper shows how the thrust vectoring control torques, i.e. the torques required to steer the vehicle, depend on various parameters (thrust magnitude, thrust pod articulation angles, and thrust moment arms). Rather than using the entire reaction control system (RCS) system to steer the spacecraft, we investigate the potential utilization of only thrust vectoring of the main ion engines for the required attitude control to follow the representative trajectory. This study has identified some segments of the representative trajectory where the required control torque may exceed the designed ion engine capability, and how the proposed mitigation strategy succeeds in reducing the attitude control torques to within the existing capability.

  2. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  3. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  4. Spreading characteristics and thrust of jets from asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1995-01-01

    The spreading characteristics of jets from several asymmetric nozzles are studied in comparison to those of an axisymmetric jet, over the Mach number (M(sub J)) range of 0.3 to 1.96. The effect of tabs in two cases, the axisymmetric nozzle fitted with four tabs and a rectangular nozzle fitted with two large tabs, is also included in the comparison. Compared to the axisymmetric jet, the asymmetric jets spread only slightly faster at subsonic conditions, while at supersonic conditions, when screech occurs, they spread much faster. Screech profoundly increases the spreading of all jets. The effect varies in the different stages of screech, and the corresponding unsteady flowfield characteristics are documented via phase-averaged measurement of the fluctuating total pressure. An organization and intensification of the azimuthal vortical structures under the screeching condition is believed to be responsible for the increased spreading. Curiously, the jet from a 'lobed mixer' nozzle spreads much less at supersonic conditions compared to all other cases. This is due to the absence of screech with this nozzle. Jet spreading for the two tab configurations, on the other hand, is significantly more than any of the no-tab cases. This is true in the subsonic regime, as well as in the supersonic regime in spite of the fact that screech is essentially eliminated by the tabs. The dynamics of the streamwise vortex pairs produced by the tabs cause the most efficient jet spreading thus far observed in the study.

  5. Experimental and theoretical comparison of the Probe Thrust Vector Control concept

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Lewis, Lynn

    1991-01-01

    A concept that offers an alternate method for thrust vector control of liquid or solid propellant rockets is the use of a solid body or probe that is inserted on demand through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternative to that of a gimbaled nozzle or a Liquid Injection Thrust Vector control system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment is time consuming and expensive, whereas a CFD assessment is time- and cost-effective. Two key requirements of the concept are PTVC vectoring performance and active cooling requirements for the probe to maintain its thermal and structural integrity. The objective of the work reported here is presentation of experimental subscale cold flow tests and comparison of these tests with CFD predictions and the response time of the PTVC system.

  6. Thrust-induced effects on subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration

    NASA Technical Reports Server (NTRS)

    Quinto, P. F.; Paulson, J. W., Jr.

    1983-01-01

    An investigation was conducted in the Langley 4 by 7 Meter Tunnel of the thrust induced effects on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing fighter aircraft. The investigation was conducted at Mach numbers from 0.14 to 0.17 over an angle-of-attack range from -2 deg to 26 deg. The major model variables were the spanwise blowing nozzle sweep angle and main nozzle vector angle along with trailing edge, flap deflections. The overall thrust coefficient (main and spanwise nozzles) was varied from 0 (jet off) to 2.0. The results indicate that the thrust-induced effects from the main nozzle alone were small and mainly due to boundary-layer control affecting a small area behind the nozzle. When the spanwise blowing nozzles were included, the induced effects were larger than the main nozzle alone and were due to both boundary layer control and induced circulation lift. No leading edge vortex effects were evident.

  7. On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise

    NASA Technical Reports Server (NTRS)

    McAninch, Gerry L.; Shepherd, Kevin P.

    2011-01-01

    The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.

  8. Experimental and Computational Investigation of Multiple Injection Ports in a Convergent-Divergent Nozzle for Fluidic Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.; Deere, Karen A.

    2003-01-01

    A computational and experimental study was conducted to investigate the effects of multiple injection ports in a two-dimensional, convergent-divergent nozzle, for fluidic thrust vectoring. The concept of multiple injection ports was conceived to enhance the thrust vectoring capability of a convergent-divergent nozzle over that of a single injection port without increasing the secondary mass flow rate requirements. The experimental study was conducted at static conditions in the Jet Exit Test Facility of the 16-Foot Transonic Tunnel Complex at NASA Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios up to 10 with secondary nozzle pressure ratios up to 1 for five configurations. The computational study was conducted using the Reynolds Averaged Navier-Stokes computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. Internal nozzle performance was predicted for nozzle pressure ratios up to 10 with a secondary nozzle pressure ratio of 0.7 for two configurations. Results from the experimental study indicate a benefit to multiple injection ports in a convergent-divergent nozzle. In general, increasing the number of injection ports from one to two increased the pitch thrust vectoring capability without any thrust performance penalties at nozzle pressure ratios less than 4 with high secondary pressure ratios. Results from the computational study are in excellent agreement with experimental results and validates PAB3D as a tool for predicting internal nozzle performance of a two dimensional, convergent-divergent nozzle with multiple injection ports.

  9. Comparison of straight and 15 degree vectored nozzles using a six component thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Flake, Scott

    1991-01-01

    This project compared the forces and moments produced by straight and 15 degree vectored nozzles. Using the six component thrust stand in the engines laboratory at California Polytechnic State University, several trials were performed. This data was then reduced using first a computer program and then later an electronic spreadsheet. This reduced data was graphed and compared. As a result of these comparisons some unexpected forces were discovered. Several more tests were run including a zero thrust test and a statistical comparison were done to discover the source of these discrepancies. As a direct result several nozzle changes were made and significant revisions to the thrust stand are being made.

  10. Mixing and Noise Benefit Versus Thrust Penalty in Supersonic Jets Using Impingement Tones

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.

    1994-01-01

    This paper reports the results of an experimental investigation on the effect of impingement tones generated by obstacles of various geometries on the spreading of a supersonic jet flow. A rectangular supersonic jet was produced using a convergent-divergent nozzle that was operated near its design point (with shocks minimized). The immersion of obstacles in the flow produced an intense impingement tone which then propagated upstream (as feedback) to the jet lip and excited the antisymmetric hydrodynamic mode in the jet, thus setting up a resonant self-sustaining loop. The violent flapping motion of the jet due to excitation of the antisymmetric mode, combined with the unsteady wakes of the obstacles, produced large changes in jet mixing. It was possible to control the frequency and amplitude of the impingement tone excitation by varying the nozzle-to-obstacle distance and the obstacle immersion. By proper shaping of the obstacles it was possible to reduce the thrust penalty significantly.

  11. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  12. Multiaxis aircraft control power from thrust vectoring at high angles of attack

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Mason, M. L.

    1986-01-01

    Extensive research programs conducted at the Langley Research Center have shown that thrust vectoring can be provided by multifunction (nonaxisymmetric) nozzles. Most of this research has been conducted on pitch vectoring at both static and forward flight conditions. Recent efforts have been aimed at evaluating yaw vectoring concepts at static (wind off) conditions. This paper summarizes results for three different twin-engine fighter configurations tested over a Mach number range of 0.15 to 2.47 at angles of attack up to 35 deg. The objective of these investigations was to determine the multiaxis control power characteristics provided by thrust vectoring. All three configurations employed two-dimensional convergent-divergent nozzles which provided pitch vectoring by differential deflection of the upper and lower nozzle divergent flaps. Three different means of yaw vectoring were tested: (1) a translating nozzle sidewall; (2) yaw flaps located in the nozzle sidewalls; and (3) canted nozzles. These investigations were conducted in the Langley 16-Foot Transonic Tunnel and the Lewis 10x10-Foot Supersonic Tunnel. Longitudinal and direction control power from thrust vectoring was greater than that provided by aerodynamic control effectors at low speed or at high angles of attack.

  13. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  14. Solid rocket booster thrust vector control subsystem verification test (V-2) report

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1979-01-01

    The results of the verification testing sequence V-2 performed on the space shuttle solid rocket booster thrust vector control subsystem are presented. A detailed history of the hot firings plus additional discussion of the auxiliary power unit and the hydraulic component performance is presented. The test objectives, data, and conclusions are included.

  15. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  16. The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, Morteza

    2001-11-01

    A jet or pulse ejected into quiescent fluid is referred to as a starting jet and engenders vortex ring formation due to the roll up of the jet shear layer as the pulse is ejected. The recent work of Gharib et al. [JFM, 360, 121-140 (1998)] demonstrated that vortex rings generated by starting jets will stop entraining circulation (pinch off) for sufficiently large values of the ratio of the length of the ejected pulse to the nozzle diameter (L/D). The effect of this pinch-off phenomenon on the thrust and impulse generated by a starting jet is studied using a piston-cylinder arrangement to produce pulses of water into water for a range of L/D. The results show a maximum in the average thrust during a pulse for L/D just before pinch off occurs. This optimum exists because a vortex ring contributes more impulse per unit L/D than the jet trailing a pinched-off vortex ring. The propulsive benefit provided by the leading vortex ring is due to over-pressure at the nozzle exit, which can be related to the acceleration of ambient fluid during ring formation by entrainment and added mass effects. The implications for pulsatile propulsion will be discussed.

  17. The significance of vortex ring formation to the impulse and thrust of a starting jet

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Gharib, M.

    2003-05-01

    The recent work of Gharib, Rambod, and Shariff [J. Fluid Mech. 360, 121 (1998)] studied vortex rings formed by starting jets generated using a piston-cylinder mechanism. Their results showed that vortex rings generated from starting jets stop forming and pinch off from the generating jet for sufficiently large values of the piston stroke to diameter ratio (L/D), suggesting a maximization principle may exist for propulsion utilizing starting jets. The importance of vortex ring formation and pinch off to propulsion, however, rests on the relative contribution of the leading vortex ring and the trailing jet (which appears after pinch off) to the impulse supplied to the flow. To resolve the relative importance of the vortex ring and trailing jet for propulsion, a piston-cylinder mechanism attached to a force balance is used to investigate the impulse and thrust generated by starting jets for L/D ratios in the range 2-8. Two different velocity programs are used, providing two different L/D values beyond which pinch off is observed, in order to determine the effect of vortex ring pinch off. Measurements of the impulse associated with vortex ring formation show it to be much larger than that expected from the jet velocity alone and proportionally larger than that associated with a trailing jet for L/D large enough to observe pinch off. The latter result leads to a local maximum in the average thrust during a pulse near L/D values associated with vortex rings whose circulation has been maximized. These results are shown to be related to the nozzle exit over-pressure generated during vortex ring formation. The over-pressure is in turn shown to be associated with the acceleration of ambient fluid by vortex ring formation in the form of added and entrained mass.

  18. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  19. Performance and human factors results from thrust vectoring investigations in simulated air combat

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.; Meintel, A. J., Jr.

    1980-01-01

    In support of research related to advanced fighter technology, the Langley Differential Maneuvering Simulator (DMS) has been used to investigate the effects of advanced aerodynamic concepts, parametric changes in performance parameters, and advanced flight control systems on the combat capability of fighter airplanes. At least five studies were related to thrust vectoring and/or inflight thrust reversing. The aircraft simulated ranged from F-4 class to F-15 class, and included the AV-8 Harrier. This paper presents an overview of these studies including the assumptions involved, trends of results, and human factors considerations that were found.

  20. Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Bolonkin, Alexander

    2000-01-01

    The NASA Dryden Flight Research Center is exploring the optimum thrust-vector angle on aircraft. Simple aerodynamic performance models for various phases of aircraft flight are developed and optimization equations and algorithms are presented in this report. Results of optimal angles of thrust vectors and associated benefits for various flight regimes of aircraft (takeoff, climb, cruise, descent, final approach, and landing) are given. Results for a typical wide-body transport aircraft are also given. The benefits accruable for this class of aircraft are small, but the technique can be applied to other conventionally configured aircraft. The lower L/D aerodynamic characteristics of fighters generally would produce larger benefits than those produced for transport aircraft.

  1. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emel'yanov, V. N.; Denisikhin, S. V.

    2016-05-01

    A numerical simulation of the hydrodynamic effects arising in the process of work of the vectorable thrust nozzle of a solid-propellant rocket engine has been performed. The fields of the flows of combustion products in the channel of a charge, the prenozzle space, and the nozzle unit were calculated for different angles of vectoring of the nozzle. The distributions of the gasdynamic parameters of the flow of combustion products in the prenozzle space, corresponding to their efflux from the cylindrical and star-shaped channels of charges, were compared. The formation of a vortex flow in the neighborhood of the back cover of the nozzle was considered.

  2. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emel'yanov, V. N.; Denisikhin, S. V.

    2016-06-01

    A numerical simulation of the hydrodynamic effects arising in the process of work of the vectorable thrust nozzle of a solid-propellant rocket engine has been performed. The fields of the flows of combustion products in the channel of a charge, the prenozzle space, and the nozzle unit were calculated for different angles of vectoring of the nozzle. The distributions of the gasdynamic parameters of the flow of combustion products in the prenozzle space, corresponding to their efflux from the cylindrical and star-shaped channels of charges, were compared. The formation of a vortex flow in the neighborhood of the back cover of the nozzle was considered.

  3. Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation

    NASA Technical Reports Server (NTRS)

    Zwerneman, W. D.; Eller, B. G.

    1994-01-01

    For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.

  4. Experimental investigation of the interaction of a thrust reverser jet with an external subsonic flow

    NASA Astrophysics Data System (ADS)

    Charbonnier, J.-M.; Deckers, K.; Wens, G.

    1993-11-01

    An experimental modelization of a door-type thrust reverser is conducted in a subsonic wind tunnel. The geometry of the model is defined in order to simulate both the internal and external flow of a real thrust reverser. Different door configurations are studied for a selected value of the mass flux injection ratio of three. Visualizations illustrate qualitatively the jet interaction, and extensive mean velocity and pressure measurements are conducted in sections perpendicular to the upstream flow direction with a five hole probe. The total pressure losses and the drag force produced by the thrust reverser are deduced from the measurements. As a result, it shows that the smaller opening angle of the door (56 deg), with a becquet deflection of 15 deg gives the larger drag force. In addition to the classical pair of counter rotating vortices observed in jet in cross flow interactions, a second pair of counter rotating vortices below the main pair is found. The vorticity field is described with good agreement by a simple vortex model simulating the two pairs of vortices.

  5. Dryden/Edwards 1994 Thrust-Vectoring Aircraft Fleet - F-18 HARV, X-31, F-16 MATV

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The three thrust-vectoring aircraft at Edwards, California, each capable of flying at extreme angles of attack, cruise over the California desert in formation during flight in March 1994. They are, from left, NASA's F-18 High Alpha Research Vehicle (HARV), flown by the NASA Dryden Flight Research Center; the X-31, flown by the X-31 International Test Organization (ITO) at Dryden; and the Air Force F-16 Multi-Axis Thrust Vectoring (MATV) aircraft. All three aircraft were flown in different programs and were developed independently. The NASA F-18 HARV was a testbed to produce aerodynamic data at high angles of attack to validate computer codes and wind tunnel research. The X-31 was used to study thrust vectoring to enhance close-in air combat maneuvering, while the F-16 MATV was a demonstration of how thrust vectoring could be applied to operational aircraft.

  6. Periodic Excitation for Jet Vectoring and Enhanced Spreading

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    1999-01-01

    The effects of periodic excitation on the evolution of a turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit and excitation was introduced at the junction between the jet exit and the diffuser inlet. The introduction of high amplitude periodic excitation at the jet exit enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Vectoring is achieved by applying the excitation over a fraction of the circumference of the circular jet, enhancing its spreading rate on the excited side and its tendency to reattach to that side. Static deflection studies demonstrate that the presence of the wide-angle diffuser increases the effectiveness of the added periodic momentum due to a favorable interaction between the excitation, the jet shear-layer and the diffuser wall. This point was further demonstrated by the evolution of a wave packet that was excited in the jet shear-layer. Strong amplification of the wave packet was measured with a diffuser attached to the jet exit. The turbulent jet responds quickly (10-20 msec) to step changes in the level of the excitation input. The response scales with the jet exit velocity and is independent of the Reynolds number. Jet deflection angles were found to be highly sensitive to the relative direction between the excitation and the jet flow and less sensitive to the excitation frequency. The higher jet deflection angles were obtained for a diffuser length of about two diameters and for diffusers with half-angles greater than 15 degrees.

  7. An investigation of corner separation within a thrust augmenter having Coanda jets

    NASA Technical Reports Server (NTRS)

    Seiler, M. R.

    1979-01-01

    The development of separation in corners of thrust augmentor wings having Coanda jets was investigated using hot film surface sensors and pressure transducers. Separation on the test augmentor began at a corner very close to the augmentor exit and then rapidly proceeded upstream. Measurements of the pressure fields in the corner region indicated that a modified form of the Stratford criterion could be used to predict the onset of separation. Testing was conducted over a range of nozzle pressure ratios, aspect ratios, diffuser angles, and designs of the boundary layer and Coanda nozzles.

  8. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  9. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  10. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  11. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed for use in thrust vectoring control law development and real-time aircraft simulation. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. This paper includes a description of a method to account for axial thrust loss resulting from thrust vectoring and the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000-ft altitude and at Mach 0.7, 35,000-ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  12. Solid rocket booster thrust vector control V-2 off-nominal testing

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1981-01-01

    The results of the V-2 off nominal test sequence performed on the space shuttle solid rocket booster thrust vector control (SRB TVC) system are reported. The TVC subsystem was subjected to 19 off nominal test conditions. The test sequence consisted of: 8 burp starts, 30 hot firings, 14 GN2 spin tests, and 3 servicing passive system tests. It is concluded that the TVC subsystem operated nominally in response to the given commands and test conditions. Test objectives, detail results, and data are included.

  13. Design development of the Apollo command and service module thrust vector attitude control systems

    NASA Technical Reports Server (NTRS)

    Peters, W. H.

    1978-01-01

    Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.

  14. Direct numerical simulation of vector-controlled free jets

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ao, K.; Shakouchi, T.; Ando, T.

    2011-12-01

    We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.

  15. The effects on propulsion-induced aerodynamic forces of vectoring a partial-span rectangular jet at Mach numbers from 0.40 to 1.20

    NASA Technical Reports Server (NTRS)

    Capone, F. J.

    1975-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to determine the induced lift characteristics of a vectored thrust concept in which a rectangular jet exhaust nozzle was located in the fuselage at the wing trailing edge. The effects of nozzle deflection angles of 0 deg to 45 deg were studied at Mach numbers from 0.4 to 1.2, at angles of attack up to 14 deg, and with thrust coefficients up to 0.35. Separate force balances were used to determine total aerodynamic and thrust forces as well as thrust forces which allowed a direct measurement of jet turning angle at forward speeds. Wing pressure loading and flow characteristics using oil flow techniques were also studied.

  16. Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.

  17. Performance of twin two-dimensional wedge nozzles including thrust vectoring and reversing effects at speeds up to Mach 2.20

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Maiden, D. L.

    1977-01-01

    Transonic tunnel and supersonic pressure tunnel tests were reformed to determine the performance characteristics of twin nonaxisymmetric or two-dimensional nozzles with fixed shrouds and variable-geometry wedges. The effects of thrust vectoring, reversing, and installation of various tails were also studied. The investigation was conducted statically and at flight speeds up to a Mach number of 2.20. The total pressure ratio of the simulated jet exhaust was varied up to approximately 26 depending on Mach number. The Reynolds number per meter varied up to 13.20 x 1 million. An analytical study was made to determine the effect on calculated wave drag by varying the mathematical model used to simulate nozzle jet-exhaust plume.

  18. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  19. Low speed aerodynamic characteristics of a vectored thrust V/STOL transport with two lift/cruise fans

    NASA Technical Reports Server (NTRS)

    Renselaer, D. J.

    1977-01-01

    A wind tunnel test was conducted to obtain power on low speed characteristics of a twin fan vectored thrust V/STOL transport aircraft. Longitudinal, as well as some lateral directional data, were analyzed. Hover, STOL, and conventional flight modes were investigated. Determination of STOL characteristics, hover characteristics, roll control effectiveness and aircraft attitude were evaluated. The study also included various means to improve the lifting capability of the aircraft such as by application of fuselage strakes, exhaust vanes capable of shifting the thrust vector aft, and external flap blowing for STOL performance.

  20. Pneumatic motor powered Thrust Vector Control (TVC) for liquid propelled launch vehicles

    NASA Astrophysics Data System (ADS)

    Malone, Mark C.; Evans, P. S.

    1992-02-01

    Recent studies performed for the Titan 4 launch vehicle indicate significant potential advantages in replacing the current stage 1 and 2 recirculating hydraulic TVC (thrust vector control) system with a PMA (pneumatic mechanical actuation) system. Some of the advantages of a PMA system over the recirculating hydraulic system include reduced part count and weight, reduced maintenance and life-cycle cost, and improved mission reliability. PMA technology, used in aircraft applications since the 1960s, is well suited in launch vehicle TVC applications where an existing pneumatic pressure source is available. A typical pneumatic motor TVC consists of a pneumatic power source, a dual rotor pneumatic motor, a gear box, a ball screw actuator, and the associated closed-loop servo-control elements. One key issue with implementing this mechanical approach is designing a TVC system to withstand large load transient disturbances during liquid engine starting. Hydraulic actuator transient loads have exceeded 60,000 lb(sub f) for a 30,000 lb(sub f) stall design actuator during ground starts of the Titan 3B, Stage 1 engine. A PMA TVC system must also withstand these start transients without imparting excessive reaction loads to the engine nozzle and thrust structure. Work completed to date with Martin Marietta to examine pneumatic motor powered TVC options and technology benefits is presented. The load transient issue is discussed along with potential solutions and the associated trades. General background on PMA technology and experience base is also presented.

  1. Altitude testing of a flight weight, self-cooled, 2D thrust vectoring exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Wooten, W. H.; Blozy, J. T.; Speir, D. W.; Lottig, R. A.

    1984-01-01

    The Augmented Deflector Exhaust Nozzle (ADEN) was tested in PSL-3 at NASA-Lewis Research Center using an F404 engine. The ADEN is a flight weight Single Expansion Ramp Nozzle with thrust vectoring, an internal cooling system utilizing the available engine fan flow, and a variable area throat controlled by the engine control system. Test conditions included dry and max A/B operation at nozzle pressure ratios from 2.0 to 15.0. High nozzle pressure loading was simulated to verify structural integrity at near maximum design pressure. Nozzle settings covered the full range in throat area and + or - 15 deg deflection angle. Test results demonstrated expected aerodynamic performance, cooling system effectiveness, control system stability, and mechanical integrity.

  2. Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.

    1990-01-01

    The study presents results obtained at the compressor face of a 9.2-percent scale vectored thrust model in ground effects from Phases I and II of a test program to evaluate the hot ingestion phenomena and control techniques, and to conduct flow visualization of the model flowfield in and out of ground effects, respectively. A description of the model, facility, a new model support system, and a sheet laser illumination system are provided. The findings contain the compressor face pressure and temperature distortions, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also presented.

  3. Classifier based on support vector machine for JET plasma configurationsa)

    NASA Astrophysics Data System (ADS)

    Dormido-Canto, S.; Farias, G.; Vega, J.; Dormido, R.; Sánchez, J.; Duro, N.; Vargas, H.; Murari, A.; Jet-Efda Contributors

    2008-10-01

    The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.

  4. Quantitative evaluation of a thrust vector controlled transport at the conceptual design phase

    NASA Astrophysics Data System (ADS)

    Ricketts, Vincent Patrick

    The impetus to innovate, to push the bounds and break the molds of evolutionary design trends, often comes from competition but sometimes requires catalytic political legislature. For this research endeavor, the 'catalyzing legislation' comes in response to the rise in cost of fossil fuels and the request put forth by NASA on aircraft manufacturers to show reduced aircraft fuel consumption of +60% within 30 years. This necessitates that novel technologies be considered to achieve these values of improved performance. One such technology is thrust vector control (TVC). The beneficial characteristic of thrust vector control technology applied to the traditional tail-aft configuration (TAC) commercial transport is its ability to retain the operational advantage of this highly evolved aircraft type like cabin evacuation, ground operation, safety, and certification. This study explores if the TVC transport concept offers improved flight performance due to synergistically reducing the traditional empennage size, overall resulting in reduced weight and drag, and therefore reduced aircraft fuel consumption. In particular, this study explores if the TVC technology in combination with the reduced empennage methodology enables the TAC aircraft to synergistically evolve while complying with current safety and certification regulation. This research utilizes the multi-disciplinary parametric sizing software, AVD Sizing, developed by the Aerospace Vehicle Design (AVD) Laboratory. The sizing software is responsible for visualizing the total system solution space via parametric trades and is capable of determining if the TVC technology can enable the TAC aircraft to synergistically evolve, showing marked improvements in performance and cost. This study indicates that the TVC plus reduced empennage methodology shows marked improvements in performance and cost.

  5. Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Vaccarezza, Stephen E.; Dobbins, Sean

    1992-01-01

    This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees.

  6. Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes

    NASA Astrophysics Data System (ADS)

    Carpenter, Thomas W.; Vaccarezza, Stephen E.; Dobbins, Sean

    1992-12-01

    This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees.

  7. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  8. Computational Issues Associated with Temporally Deforming Geometries Such as Thrust Vectoring Nozzles

    NASA Technical Reports Server (NTRS)

    Boyalakuntla, Kishore; Soni, Bharat K.; Thornburg, Hugh J.; Yu, Robert

    1996-01-01

    During the past decade, computational simulation of fluid flow around complex configurations has progressed significantly and many notable successes have been reported, however, unsteady time-dependent solutions are not easily obtainable. The present effort involves unsteady time dependent simulation of temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such grids for every time step. Traditional grid generation techniques have been tried and demonstrated to be inadequate to such simulations. Non-Uniform Rational B-splines (NURBS) based techniques provide a compact and accurate representation of the geometry. This definition can be coupled with a distribution mesh for a user defined spacing. The present method greatly reduces cpu requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. A thrust vectoring nozzle has been chosen to demonstrate the capability as it is of current interest in the aerospace industry for better maneuverability of fighter aircraft in close combat and in post stall regimes. This current effort is the first step towards multidisciplinary design optimization which involves coupling the aerodynamic heat transfer and structural analysis techniques. Applications include simulation of temporally deforming bodies and aeroelastic problems.

  9. Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.

    2010-01-01

    The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.

  10. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  11. Independent Orbiter Assessment (IOA): Assessment of the ascent thrust vector control actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  12. Robust vibration suppression of an adaptive circular composite plate for satellite thrust vector control

    NASA Astrophysics Data System (ADS)

    Yan, Su; Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2008-03-01

    In this paper, a novel application of adaptive composite structures, a University of Hawaii at Manoa (UHM) smart composite platform, is developed for the Thrust Vector Control (TVC) of satellites. The device top plate of the UHM platform is an adaptive circular composite plate (ACCP) that utilizes integrated sensors/actuators and controllers to suppress low frequency vibrations during the thruster firing as well as to potentially isolate dynamic responses from the satellite structure bus. Since the disturbance due to the satellite thruster firing can be estimated, a combined strategy of an adaptive disturbance observer (DOB) and feed-forward control is proposed for vibration suppression of the ACCP with multi-sensors and multi-actuators. Meanwhile, the effects of the DOB cut-off frequency and the relative degree of the low-pass filter on the DOB performance are investigated. Simulations and experimental results show that higher relative degree of the low-pass filter with the required cut-off frequency will enhance the DOB performance for a high-order system control. Further, although the increase of the filter cut-off frequency can guarantee a sufficient stability margin, it may cause an undesirable increase of the control bandwidth. The effectiveness of the proposed adaptive DOB with feed-forward control strategy is verified through simulations and experiments using the ACCP system.

  13. Two-DOF precision platform for spacecraft thrust vector control: control strategies and simulations

    NASA Astrophysics Data System (ADS)

    Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2004-07-01

    This paper presents control strategies and simulations of a two-DOF precision platform as an adaptive thruster mount structure with precision positioning and active vibration suppression capabilities for thrust vector control of space satellites. First, the configuration of the two-DOF precision platform is introduced, which is an intelligent tripod with two in-plane rotational degrees of freedom for the top device-plate. Precision positioning of this platform is achieved using active members that extend or contract to tilt the top device-plate where the thruster is mounted. Kinematic analysis of the platform is then presented and followed by two control strategies; namely local control strategy and global control strategy. In the local control strategy, the motion of each active member is controlled locally according to the kinematical feature of the platform and the local sensor information to achieve the desired tilt of the top device-plate. In the global control strategy, the motion of each active member is adjusted according to the system level information from a tilt sensor. Fuzzy logic control is employed and the two control strategies are simulated and compared.

  14. Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Thomas B.

    2011-01-01

    An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.

  15. The influence of plasma actuators material and geometry on the electromagnetic characteristics of the discharge and the specific thrust of synthetic jets

    NASA Astrophysics Data System (ADS)

    Bocharnikov, V. M.; Golub, V. V.; Kazantseva, K. A.

    2015-11-01

    It was examined the effect of electrode material on the value of specific thrust of the synthetic jets produced by symmetric actuator. The dependences of specific thrust on the distance between external electrodes for copper, aluminium, nickel and titanium was made. A considerable effect of the shape of the external electrodes on the electric field and current density in the tape drive and the specific thrust of the synthetic jet were investigated. The role of autoelectronic emission on the current in streamers and the value of volume force acting on the stream were also evaluated.

  16. Thrust vectoring effects of a transverse gas injection into a supersonic cross flow of an axisymmetric convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.

    2013-03-01

    The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.

  17. Thrust-vector control of a three-axis stabilized upper-stage rocket with fuel slosh dynamics

    NASA Astrophysics Data System (ADS)

    Rubio Hervas, Jaime; Reyhanoglu, Mahmut

    2014-05-01

    This paper studies the thrust vector control problem for an upper-stage rocket with fuel slosh dynamics. The dynamics of a three-axis stabilized spacecraft with a single partially-filled fuel tank are formulated and the sloshing propellant is modeled as a multi-mass-spring system, where the oscillation frequencies of the mass-spring elements represent the prominent sloshing modes. The equations of motion are expressed in terms of the three-dimensional spacecraft translational velocity vector, the attitude, the angular velocity, and the internal coordinates representing the slosh modes. A Lyapunov-based nonlinear feedback control law is proposed to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. A simulation example is included to illustrate the effectiveness of the control law.

  18. Large-Scale Wind-Tunnel Tests of Exhaust Ingestion Due to Thrust Reversal on a Four-Engine Jet Transport during Ground Roll

    NASA Technical Reports Server (NTRS)

    Tolhurst, William H., Jr.; Hickey, David H.; Aoyagi, Kiyoshi

    1961-01-01

    Wind-tunnel tests have been conducted on a large-scale model of a swept-wing jet transport type airplane to study the factors affecting exhaust gas ingestion into the engine inlets when thrust reversal is used during ground roll. The model was equipped with four small jet engines mounted in nacelles beneath the wing. The tests included studies of both cascade and target type reversers. The data obtained included the free-stream velocity at the occurrence of exhaust gas ingestion in the outboard engine and the increment of drag due to thrust reversal for various modifications of thrust reverser configuration. Motion picture films of smoke flow studies were also obtained to supplement the data. The results show that the free-stream velocity at which ingestion occurred in the outboard engines could be reduced considerably, by simple modifications to the reversers, without reducing the effective drag due to reversed thrust.

  19. Application of the scalar and vector potentials to the aerodynamics of jets

    NASA Technical Reports Server (NTRS)

    Russell, H. L.; Skifstad, J. G.

    1973-01-01

    The applicability of a method based on the Stokes potentials (vector and scalar potentials) to computations associated with the aerodynamics of jets was examined. The aerodynamic field near the nozzle could be represented and that the influence of a nonuniform velocity profile at the nozzle exit plane could be determined. Also computations were made for an axisymmetric jet exhausting into a quiescient atmosphere. The velocity at the axis of the jet, and the location of the half-velocity points along the jet yield accurate aerodynamic field computations. Inconsistencies among the different theoretical characterizations of jet flowfields are shown.

  20. Jet production in association with vector bosons or top quarks

    NASA Astrophysics Data System (ADS)

    Blumenschein, Ulla

    2015-11-01

    The LHC experiments ATLAS and CMS have measured V + jets and tt¯ + jets final states over a large energy range in data collected between 2010 and 2012 at s = 7TeV and s = 8TeV. The results have been compared to pQCD calculations at NLO and have been used to validate novel Monte Carlo techniques.

  1. Preliminary Characterization of the Altair Lunar Lander Slosh Dynamics and Some Implications for the Thrust Vector Control Design

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Arturo

    2010-01-01

    This paper describes a conceptual design of the Thrust Vector Control (TVC) system and preliminary modeling of propellant slosh, for the Altair Lunar Lander. Altair is a vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. One key GN&C function is the commanding of effectors that control attitude and impart delta V on the vehicle, utilizing both reaction control system (RCS) thrusters and throttling and TVC gimbaling of the vehicle main engine. Both the Altair descent and ascent modules carry fuel tanks. During thrusting maneuvers, the sloshing of liquid fuels in partially filled tanks can interact with the controlled system in such a way as to cause the overall system to be unstable. These fuel tanks must be properly placed, relative to the spacecraft's c.m., to avoid any unstable interactions. Following this will be a discussion of propellant slosh modeling work performed for the present vehicle configuration, including slosh frequency and participatory fluid mass predictions. Knowing the range of slosh mode frequencies over mission phases, the TVC bandwidth must be carefully selected so as not to excite the slosh modes at those frequencies. The likely need to increase the damping factor of slosh modes via baffles will also be discussed. To conclude, a discussion of operations procedures aimed at minimizing TVC-slosh interactions will be given.

  2. Static internal performance of a thrust vectoring and reversing two-dimensional convergent-divergent nozzle with an aft flap

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1986-01-01

    The static internal performance of a multifunction nozzle having some of the geometric characteristics of both two-dimensional convergent-divergent and single expansion ramp nozzles has been investigated in the static-test facility of the Langley 16-Foot Transonic Tunnel. The internal expansion portion of the nozzle consisted of two symmetrical flat surfaces of equal length, and the external expansion portion of the nozzle consisted of a single aft flap. The aft flap could be varied in angle independently of the upper internal expansion surface to which it was attached. The effects of internal expansion ratio, nozzle thrust-vector angle (-30 deg. to 30 deg., aft flap shape, aft flap angle, and sidewall containment were determined for dry and afterburning power settings. In addition, a partial afterburning power setting nozzle, a fully deployed thrust reverser, and four vertical takeoff or landing nozzle, configurations were investigated. Nozzle pressure ratio was varied up to 10 for the dry power nozzles and 7 for the afterburning power nozzles.

  3. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  4. Flow visualization studies of the internal flow characteristics in a simulated mixed flow vectored thrust ASTOVL engine configuration

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Ferraro, P. J.; Flood, J. D.; Grey, R. E.; Wazyniak, J. A.

    1991-01-01

    The characteristics of internal flowfields in a Mixed Flow Vectored Thrust (MFVT) propulsion system for Short Take Off and Vertical Landing (STOVL) fighter aircraft were investigated using flow visualization techniques. A highly parametric 14 percent scale transparent model was used to simulate the MFVT propulsion system. The working medium was water. The mixing between the fan and core flow was studied using flow visualization for a variety of geometrical and flow parameters including three bypass ratio variations. The flow visualization technique involves the use of laser light sheet for illumination and fluorescent dye or air bubbles as tracers. Results indicate the existence of a strong vortex flowfield in the hover mode of operation that is responsible for good mixing between the fan and core flows.

  5. F-15B ACTIVE with thrust vectoring nozzles on test stand at sunrise

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This November 13, 1995, photograph of the F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) at NASA's Dryden Flight Research Center, Edwards, California, shows the aircraft on a test stand at sunrise. Not shown in this photograph are the aircraft's two new Pratt & Whitney nozzles that can turn up to 20 degrees in any direction. These nozzles give the aircraft thrust control in the pitch (up and down) and yaw (left and right) directions. This will reduce drag and increase fuel economy or range as compared with conventional aerodynamic controls, which increase the retarding forces (drag) acting upon the aircraft. These tests could result in significant performance increases for military and commercial aircraft. The research program is the product of a collaborative effort by NASA, the Air Force's Wright Laboratory, Pratt & Whitney, and McDonnell Douglas Aerospace. The aircraft was originally built as an F-15B (Serial #71-0290).

  6. Vector Boson Jets with BlackHat and Sherpa

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, Lance J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2010-08-25

    We review recent NLO QCD results for W, Z + 3-jet production at hadron colliders, computing using BlackHat and SHERPA, and including also some new results for Z + 3-jet production for the LHC at 7 TeV. We report new progress towards the NLO cross section for W + 4-jet production. In particular, we show that the virtual matrix elements produced by BlackHat are numerically stable. We also show that with an improved integrator and tree-level matrix elements from BlackHat, SHERPA produces well-behaved real-emission contributions. As an illustration, we present the real-emission contributions - including dipole-subtraction terms - to the p{sub T} distribution of the fourth jet, for a single subprocess with the maximum number of gluons.

  7. Configuration management and automatic control of an augmentor wing aircraft with vectored thrust

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Sridhar, B.; Meyer, G.

    1979-01-01

    An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.

  8. A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system

    NASA Astrophysics Data System (ADS)

    Páscoa, José C.; Dumas, Antonio; Trancossi, Michele; Stewart, Paul; Vucinic, Dean

    2013-09-01

    The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.

  9. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  10. A computer model for liquid jet atomization in rocket thrust chambers

    NASA Astrophysics Data System (ADS)

    Giridharan, M. G.; Lee, J. G.; Krishnan, A.; Yang, H. Q.; Ibrahim, E.; Chuech, S.; Przekwas, A. J.

    1991-12-01

    The process of atomization has been used as an efficient means of burning liquid fuels in rocket engines, gas turbine engines, internal combustion engines, and industrial furnaces. Despite its widespread application, this complex hydrodynamic phenomenon has not been well understood, and predictive models for this process are still in their infancy. The difficulty in simulating the atomization process arises from the relatively large number of parameters that influence it, including the details of the injector geometry, liquid and gas turbulence, and the operating conditions. In this study, numerical models are developed from first principles, to quantify factors influencing atomization. For example, the surface wave dynamics theory is used for modeling the primary atomization and the droplet energy conservation principle is applied for modeling the secondary atomization. The use of empirical correlations has been minimized by shifting the analyses to fundamental levels. During applications of these models, parametric studies are performed to understand and correlate the influence of relevant parameters on the atomization process. The predictions of these models are compared with existing experimental data. The main tasks of this study were the following: development of a primary atomization model; development of a secondary atomization model; development of a model for impinging jets; development of a model for swirling jets; and coupling of the primary atomization model with a CFD code.

  11. Jets and Vector Bosons in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    de la Cruz, Begoña

    2013-11-01

    This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  12. Thrust and drag characteristics of a convergent-divergent nozzle with various exhaust jet temperatures

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Wilcox, Fred A

    1954-01-01

    An investigation was conducted in the 8-by-6 foot supersonic wind tunnel on the effect of exhaust-gas temperatures on the external and internal characteristics of a convergent-divergent nozzle having an area expansion ratio of 1.83. Data were obtained over a pressure-ratio range from 1 to 20 at free-stream Mach numbers of 1.6 and 2.0 for exhaust temperatures of 860 degrees, 1650 degrees, and 2000 degrees R. Results of this investigation indicated that generally both the internal and external performance characteristics were only slightly affected by a large change in jet temperature. The small differences in performance which did occur were predicted satisfactorily from theoretical considerations.

  13. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  14. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  15. Closed-Loop Simulation Study of the Ares I Upper Stage Thrust Vector Control Subsystem for Nominal and Failure Scenarios

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Fulton, Chris; Connolly, Joe; Hunker, Keith

    2010-01-01

    As a replacement to the current Shuttle, the Ares I rocket and Orion crew module are currently under development by the National Aeronautics and Space Administration (NASA). This new launch vehicle is segmented into major elements, one of which is the Upper Stage (US). The US is further broken down into subsystems, one of which is the Thrust Vector Control (TVC) subsystem which gimbals the US rocket nozzle. Nominal and off-nominal simulations for the US TVC subsystem are needed in order to support the development of software used for control systems and diagnostics. In addition, a clear and complete understanding of the effect of off-nominal conditions on the vehicle flight dynamics is desired. To achieve these goals, a simulation of the US TVC subsystem combined with the Ares I vehicle as developed. This closed-loop dynamic model was created using Matlab s Simulink and a modified version of a vehicle simulation, MAVERIC, which is currently used in the Ares I project and was developed by the Marshall Space Flight Center (MSFC). For this report, the effects on the flight trajectory of the Ares I vehicle are investigated after failures are injected into the US TVC subsystem. The comparisons of the off-nominal conditions observed in the US TVC subsystem with those of the Ares I vehicle flight dynamics are of particular interest.

  16. A static investigation of a simultaneous pitch and yaw thrust vectoring 2-D C-D nozzle

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1988-01-01

    An investigation has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance and flow-turning capability of a two-dimensional convergent-divergent nozzle. Thrust vectoring in the pitch plane was provided by rotation of the divergent flaps. The exhaust stream was turned in the yaw direction by deflection of yaw flaps hinged at the end of the nozzle sidewalls. The yaw flap hinge location was varied along the divergent region of the nozzle at four locations including the exit plane and the throat plane. The three hinge locations upstream of the nozzle exit plane required the downstream corners of both upper and lower divergent flaps to be cut off to eliminate interference when the yaw flaps were deflected. Three different lengths of yaw flaps were tested at several angles of deflection. The nozzle simulated a dry power setting with an expansion ratio typical of subsonic cruise and was tested at nozzle pressure ratios from 2.0 to 7.0.

  17. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; Foster, John V.; Bundick, W. Thomas; Connelly, Patrick J.; Kelly, John W.; Pahle, Joseph W.; Thomas, Michael; Wichman, Keith D.; Wilson, R. Joseph

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  18. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  19. Thrust and mass flow characteristics of four 36 inch diameter tip turbine fan thrust vectoring systems in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Esker, D. W.; Roddiger, H. A.

    1979-01-01

    The calibration tests carried out on the propulsion system components of a 70 percent scale, powered model of a NASA 3-fan V/STOL aircraft configuration are described. The three X3/6B/T58 turbotip fan units used in the large scale powered model were tested on an isolated basis over a range of ground heights from H/D of 1.02 to infinity. A higher pressure ratio LF336/J85 fan unit was tested over a range of ground heights from 1.55 to infinity. The results of the test program demonstrated that: (1) the thrust and mass flow performance of the X376B/T58 nose lift unit is essentially constant for H/D variations down to 1.55; at H/D 1.02 back pressurization of the fan exit occurs and is accompanied by an increase in thrust of five percent; (2) a change in nose fan exit hub shape from flat plate to hemispherical produces no significant difference in louvered lift nozzle performance for height variations from H/D = 1.02 to infinity; (3) operation of the nose lift nozzle at the higher fan pressure ratio generated by the LF336/J85 fan system causes no significant change in ground proximity performance down to an H/D of 1.55, the lowest height tested with this unit; and (4) the performance of the left and right X376B/T58 lift/cruise units in the vertical lift mode remains unchanged, within plus or minus two percent for the range of ground heights from H/D = 1.02 to infinity.

  20. Design of supersonic Coanda jet nozzles

    NASA Technical Reports Server (NTRS)

    Bevilaqua, Paul M.; Lee, John D.

    1987-01-01

    The thrust vectoring of supersonic Coanda jets was improved by designing a nozzle to skew the initial jet velocity profile. A new nozzle design procedure, based on the method of characteristics, was developed to design a nozzle which produces a specified exit velocity profile. The thrust vectoring of a simple convergent nozzle, a convergent-divergent nozzle, and a nozzle which produces a skewed velocity profile matched to the curvature of the Coanda surface were expermentially compared over a range of pressure ratios from 1.5 to 3.5. Elimination of the expansion shocks with the C-D nozzle is shown to greatly improve the thrust vectoring; elimination of turning shocks with the skewed profile nozzle further improves the vectoring.

  1. Performance characteristics of a variable-area vane nozzle for vectoring an ASTOVL exhaust jet up to 45 deg

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Esker, Barbara S.

    1993-01-01

    Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.

  2. Effects of upper-surface blowing and thrust vectoring on low-speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1975-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the low-speed aerodynamic characteristics of a large-scale arrow-wing supersonic transport configured with engines mounted above the wing for upper surface blowing, and conventional lower surface engines with provisions for thrust vectoring. A limited number of tests were conducted for the upper surface engine configuration in the high lift condition for beta = 10 in order to evaluate lateral directional characteristics, and with the right engine inoperative to evaluate the engine out condition.

  3. Support vector machine-based feature extractor for L/H transitions in JET

    SciTech Connect

    Gonzalez, S.; Vega, J.; Pereira, A.; Ramirez, J. M.; Dormido-Canto, S.; Collaboration: JET-EFDA Contributors

    2010-10-15

    Support vector machines (SVM) are machine learning tools originally developed in the field of artificial intelligence to perform both classification and regression. In this paper, we show how SVM can be used to determine the most relevant quantities to characterize the confinement transition from low to high confinement regimes in tokamak plasmas. A set of 27 signals is used as starting point. The signals are discarded one by one until an optimal number of relevant waveforms is reached, which is the best tradeoff between keeping a limited number of quantities and not loosing essential information. The method has been applied to a database of 749 JET discharges and an additional database of 150 JET discharges has been used to test the results obtained.

  4. Evaluation of dual flow thrust vectored nozzles with exhaust stream impingement. MS Thesis Final Technical Report, Oct. 1990 - Jul. 1991

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.

    1991-01-01

    The main objective of this project was to predict the expansion wave/oblique shock wave structure in an under-expanded jet expanding from a convergent nozzle. The shock structure was predicted by combining the calculated curvature of the free pressure boundary with principles and governing equations relating to oblique shock wave and expansion wave interaction. The procedure was then continued until the shock pattern repeated itself. A mathematical model was then formulated and written in FORTRAN to calculate the oblique shock/expansion wave structure within the jet. In order to study shock waves in expanding jets, Schlieren photography, a form of flow visualization, was employed. Thirty-six Schlieren photographs of jets from both a straight and 15 degree nozzle were taken. An iterative procedure was developed to calculate the shock structure within the jet and predict the non-dimensional values of Prandtl primary wavelength (w/rn), distance to Mach Disc (Ld) and Mach Disc radius (rd). These values were then compared to measurements taken from Schlieren photographs and experimental results. The results agreed closely to measurements from Schlieren photographs and previously obtained data. This method provides excellent results for pressure ratios below that at which a Mach Disc first forms. Calculated values of non-dimensional distance to the Mach Disc (Ld) agreed closely to values measured from Schlieren photographs and published data. The calculated values of non-dimensional Mach Disc radius (rd), however, deviated from published data by as much as 25 percent at certain pressure ratios.

  5. Simulator evaluation of a perspective clipped-pole display and a thrust-vector controller for VTOL zero-zero landings

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Greif, R. K.

    1975-01-01

    Five pilots participated in a simulator study to evaluate design features of a perspective clipped pole display and a side arm thrust vector controller for potential applications to VTOL zero visibility landings. Analyses of objective measures by a t test for related means showed significant learning effects, but did not show significant performance differences among display conditions. A mean longitudinal touchdown velocity of less than 4 knots, a mean vertical touchdown velocity of less than 1.22m/sec, and a mean longitudinal position error of approximately 15.24 m were attained during the final 10 trials of the experiment. The conclusion that adequate airspeed and altitude cues could be obtained from the glideslope and runway poles is supported by the absence of significant performance differences among display conditions.

  6. The scaling of model test results to predict intake hot gas reingestion for STOVL aircraft with augmented vectored thrust engines

    NASA Technical Reports Server (NTRS)

    Penrose, C. J.

    1987-01-01

    The difficulties of modeling the complex recirculating flow fields produced by multiple jet STOVL aircraft close to the ground have led to extensive use of experimental model tests to predict intake Hot Gas Reingestion (HGR). Model test results reliability is dependent on a satisfactory set of scaling rules which must be validated by fully comparable full scale tests. Scaling rules devised in the U.K. in the mid 60's gave good model/full scale agreement for the BAe P1127 aircraft. Until recently no opportunity has occurred to check the applicability of the rules to the high energy exhaust of current ASTOVL aircraft projects. Such an opportunity has arisen following tests on a Tethered Harrier. Comparison of this full scale data and results from tests on a model configuration approximating to the full scale aircraft geometry has shown discrepancies between HGR levels. These discrepancies although probably due to geometry and other model/scale differences indicate some reexamination of the scaling rules is needed. Therefore the scaling rules are reviewed, further scaling studies planned are described and potential areas for further work are suggested.

  7. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  8. NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging

    NASA Astrophysics Data System (ADS)

    Kallweit, S.; Lindert, J. M.; Maierhöfer, P.; Pozzorini, S.; Schönherr, M.

    2016-04-01

    We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the O penLoops matrix-element generator combined with the Munich and Sherpa Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms at the TeV scale. In this kinematic regime, important observables such as the jet transverse momentum or the total transverse energy are strongly sensitive to multijet emissions. As a result, fixed-order NLO QCD+EW predictions are plagued by huge QCD corrections and poor theoretical precision. To remedy this problem we present an approximate method that allows for a simple and reliable implementation of NLO EW corrections in the MePs@Nlo multijet merging framework. Using this general approach we present an inclusive simulation of vector-boson production in association with jets that guarantees NLO QCD+EW accuracy in all phase-space regions involving up to two resolved jets.

  9. Search for vector-like quark production in the lepton+jets and dilepton+jets final states using 5.4 fb-1 of Run II data

    SciTech Connect

    Caughron, Seth

    2011-01-01

    The Standard Model of particle physics provides an excellent description of particle interactions at energies up to ~1 TeV, but it is expected to fail above that scale. Multiple models developed to describe phenomena above the TeV scale predict the existence of very massive, vector-like quarks. A search for single electroweak production of such particles in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV is performed in the W+jets and Z+jets channels. The data were collected by the DØ detector at the Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4 fb-1. Events consistent with a heavy object decaying to a vector boson and a jet are selected. We observe no significant excess in comparison to the background prediction and set 95% confidence level upper limits on production cross sections for vector-like quarks decaying to W+jet and Z+jet. Assuming a vector-like quark -- standard model quark coupling parameter $\\tilde{κ}$qQ of unity, we exclude vector-like quarks with mass below 693 GeV for decays to W+jet and mass below 449 GeV for decays to Z+jet. These represent the most sensitive limits to date.

  10. Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

    NASA Astrophysics Data System (ADS)

    Candelise, Vieri

    2016-07-01

    The production of a vector boson (V = W, Z) in association with jets is can be used for a precise test of perturbative QCD and is a dominant background process in many searches for physics beyond the Standard Model. The differential cross section measurements from CMS and ATLAS collaborations would be presented, and several theoretical predictions at leading order (LO) and next-to leading order (NLO) are compared to data, after the deconvolution of detector effects, with proton-proton collisions at a center of mass energy of 7, 8 and 13 TeV at LHC.

  11. Abdominal thrusts

    MedlinePlus

    ... call 911 . If the person loses consciousness, start CPR . If you are not comfortable performing abdominal thrusts, ... American Red Cross. First Aid/CPR/AED Participant's Manual. 2nd ... Red Cross; 2014. Berg RA, Hemphill R, Abella BS, et al. Part 5: ...

  12. Pulsed Ejector Thrust Amplification Tested and Modeled

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  13. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  14. Vector control of two-dimensional turbulent free jet by both-side flaps

    NASA Astrophysics Data System (ADS)

    Enokida, K.; Okamoto, T.

    1985-05-01

    This paper presents an experimental investigation of the characteristics of a two-dimensional turbulent jet deflected by the flaps attached at both sides of the nozzle. It was found that the deflection angle was nearly equal to the flap angle when the flap angle was less than the critical angle and it approached the deflection angle for one-side flap. And the length of potential core, decay of maximum velocity and spread of jet were varied with the flap angle, but were unchanged by the flap width.

  15. Model-reference attitude control and reaction control jet engine placement for space shuttle

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    Analytical studies on the theoretical aspects of thrust vector control of large space vehicles were conducted. A system for attitude control of the space shuttle vehicle was developed. Major accomplishments of the project are: (1) investigation of a model-reference adaptive control scheme for controlling the space shuttle attitude and (2) determination of optimum placement of reaction control jet engines on space shuttles.

  16. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  17. Air admixture to exhaust jets

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1953-01-01

    The problem of thrust increase by air admixture to exhaust jets of rockets, turbojet, ram- and pulse-jet engines is investigated theoretically. The optimum ratio of mixing chamber pressure to ambient pressure and speed range for thrust increase due to air admixture is determined for each type of jet engine.

  18. A study of multi-jet production in association with an electroweak vector boson

    DOE PAGESBeta

    Frederix, R.; Frixione, S.; Papaefstathiou, A.; Prestel, S.; Torrielli, P.

    2016-02-19

    Here, we consider the production of a single Z or W boson in association with jets at the LHC. We compute the corresponding cross sections by matching NLO QCD predictions with the Herwig++ and Pythia8 parton showers, and by merging all of the underlying matrix elements with up to two light partons at the Born level. We compare our results with several 7-TeV measurements by the ATLAS and CMS collaborations, and overall we find a good agreement between theory and data.

  19. A study of multi-jet production in association with an electroweak vector boson

    DOE PAGESBeta

    Frederix, R.; Frixione, S.; Papaefstathiou, A.; Prestel, S.; Torrielli, P.

    2016-02-19

    We consider the production of a single Z or W boson in association with jets at the LHC. We compute the corresponding cross sections by matching NLO QCD predictions with the Herwig++ and Pythia 8 parton showers, and by merging all of the underlying matrix elements with up to two light partons at the Born level. Lastly, we compare our results with several 7-TeV measurements by the ATLAS and CMS collaborations, and overall we find a good agreement between theory and data.

  20. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  1. Effects of nozzle exit location and shape propulsion-induced aerodynamic characteristics due to vectoring twin nozzles at Mach numbers from 0.40 to 1.2

    NASA Technical Reports Server (NTRS)

    Capone, F. J.

    1976-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to determine the induced lift characteristics of a vectored-thrust concept in which jet-exhaust nozzles were located in the fuselage at or near the wing trailing edge. The effects of moving twin rectangular nozzles rearward from the wing trailing edge and of round nozzles at the trailing edge only were studied at Mach numbers from 0.4 to 1.2, angles of attack up to 14 deg, and thrust coefficients up to 0.35. Nozzle deflection angle varied from 0 deg to 45 deg. Separate force balances were used to determine both total aerodynamic and thrust forces and thrust forces alone which allowed for a direct measurement of jet turning angle at forward speeds. The Reynolds number per meter varied from 8.20 x 1 million to 13.12 x 1 million.

  2. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  3. Flight-Determined, Subsonic, Lateral-Directional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and Comparisons to the Basic F-18 and Predicted Derivatives

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1999-01-01

    The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-1 8 High Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood parameter identification technique. State noise is accounted for in the identification formulation and is used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed maneuvers provided independent control surface inputs, eliminating problems of identifiability related to correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of angles of attack between 10deg and 70deg and compared to flight estimates from the basic F-18 aircraft and to predictions from ground and wind tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small uncertainty levels. Significant differences were found between flight and prediction; however, some of these differences may be attributed to differences in the range of sideslip or input amplitude over which a given derivative was evaluated, and to differences between the HARV external configuration and that of the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences in variable ranges and the lack of HARV maneuvers at certain angles of attack.

  4. Thrust and propulsive efficiency from an instructive viewpoint

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2010-09-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static pressures that act on engine surfaces. Such an alternative, but equivalent, method can offer insights into some special examples of jet engine thrust that contradict commonly held beliefs. One such example is provided by the engine bellmouth that is used for testing jet engines on the ground. The static pressure distribution clearly shows that the engine bellmouth actually experiences forward thrust. Another example is provided by the conic exhaust nozzle that is used at the end of some jet engines. The static pressure distribution shows that the conic nozzle does not experience any forward thrust (although the nozzle increases the overall thrust of an engine through higher pressures upstream of the nozzle). Following these examples, a basis for conceptualizing propulsive efficiency is discussed. This illustrates that it is more efficient to have a smaller acceleration of a large amount of air than a larger acceleration of a smaller amount of air.

  5. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  6. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  7. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  8. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  9. Field of Flow About a Jet and Effect of Jets on Stability of Jet-Propelled Airplanes

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S.

    1946-01-01

    A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.

  10. Variable thrust cartridge

    DOEpatents

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  11. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  12. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  13. Simulations of directed energy thrust on rotating asteroids

    NASA Astrophysics Data System (ADS)

    Griswold, Janelle; Madajian, Jonathan; Johansson, Isabella; Pfau, Krysten; Lubin, Philip; Hughes, Gary B.; Gilkes, Aidan; Meinhold, Peter; Motta, Caio; Brashears, Travis; Zhang, Qicheng

    2015-09-01

    Asteroids that threaten Earth could be deflected from their orbits using directed energy to vaporize the surface, because the ejected plume creates a reaction thrust that alters the asteroid's trajectory. One concern regarding directed energy deflection is the rotation of the asteroid, as this will reduce the average thrust magnitude and modify the thrust direction. Flux levels required to evaporate surface material depend on surface material composition and albedo, thermal, and bulk mechanical properties of the asteroid, and rotation rate. The observed distribution of asteroid rotation rates is used, along with an estimated range of material and mechanical properties, as input to a 3D thermal-physical model to calculate the resultant thrust vector. The model uses a directed energy beam, striking the surface of a rotating sphere with specified material properties, beam profile, and rotation rate. The model calculates thermal changes in the sphere, including vaporization and mass ejection of the target material. The amount of vaporization is used to determine a thrust magnitude that is normal to the surface at each point on the sphere. As the object rotates beneath the beam, vaporization decreases, as the temperature drops and causes both a phase shift and magnitude decrease in the average thrust vector. A surface integral is calculated to determine the thrust vector, at each point in time, producing a 4D analytical model of the expected thrust profile for rotating objects.

  14. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  15. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems. All data gathered in this investigation are contained in the CD-ROM.

  16. Re-Educating Jet-Engine-Researchers to Stay Relevant

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  17. Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-06-12

    We performed a search for a vector-like heavy T quark that is produced in pairs and that decays to a top quark and a Higgs boson. The data analysed correspond to an integrated luminosity of 19.7 fb-1collected with the CMS detector in proton-proton collisions at √s=8 TeV. For T quarks with large mass values the top quarks and Higgs bosons can have significant Lorentz boosts, so that their individual decay products often overlap and merge. Methods are applied to resolve the substructure of such merged jets. We also derived upper limits on the production cross section of a T quarkmore » with mass between 500 and 1000 GeV/c 2. If the T quark decays exclusively to tH, the observed (expected) lower limit on the mass of the T quark is 745 (773) GeV/c 2 at 95% confidence level. For the first time an algorithm is used for tagging boosted Higgs bosons that is based on a combination of jet substructure information and b tagging.« less

  18. Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    SciTech Connect

    Khachatryan, Vardan

    2015-06-12

    We performed a search for a vector-like heavy T quark that is produced in pairs and that decays to a top quark and a Higgs boson. The data analysed correspond to an integrated luminosity of 19.7 fb-1collected with the CMS detector in proton-proton collisions at √s=8 TeV. For T quarks with large mass values the top quarks and Higgs bosons can have significant Lorentz boosts, so that their individual decay products often overlap and merge. Methods are applied to resolve the substructure of such merged jets. We also derived upper limits on the production cross section of a T quark with mass between 500 and 1000 GeV/c 2. If the T quark decays exclusively to tH, the observed (expected) lower limit on the mass of the T quark is 745 (773) GeV/c 2 at 95% confidence level. For the first time an algorithm is used for tagging boosted Higgs bosons that is based on a combination of jet substructure information and b tagging.

  19. Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Ali, M. A. B. Md; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bierwagen, K.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-06-01

    A search is performed for a vector-like heavy T quark that is produced in pairs and that decays to a top quark and a Higgs boson. The data analysed correspond to an integrated luminosity of 19.7 fb-1 collected with the CMS detector in proton-proton collisions at TeV. For T quarks with large mass values the top quarks and Higgs bosons can have significant Lorentz boosts, so that their individual decay products often overlap and merge. Methods are applied to resolve the substructure of such merged jets. Upper limits on the production cross section of a T quark with mass between 500 and 1000 GeV/ c 2 are derived. If the T quark decays exclusively to tH, the observed (expected) lower limit on the mass of the T quark is 745 (773) GeV/ c 2 at 95% confidence level. For the first time an algorithm is used for tagging boosted Higgs bosons that is based on a combination of jet substructure information and b tagging. [Figure not available: see fulltext.

  20. Observation of electroweak W+jets production and kinematic tests of vector boson fusion using the atlas detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Dattagupta, Aparajita

    The first observation of electroweak W+jets production in the Vector Boson Fusion (VBF) topology using the ATLAS detector at the Large Hadron Collider (LHC) is presented. VBF probes the triple gauge vertex, a rare process that is validated in this measurement, and has begun to be explored in the Higgs sector. The signal in W boson production presented in this thesis is measured using proton-proton collisions at [special characters omitted] and 8 TeV at a statistical significance of greater than 5 standard deviations. Studies of the event kinematics are also presented via differential cross-section measurements as a function of various observables that are sensitive to VBF production. These are the first differential cross-section measurements for the VBF process. Results reflect the most precise measurements of electroweak and strong interactions in this kinematic domain. These measurements will serve as a reference point for related analyses using data at higher collision energies at the LHC. Results from this thesis will also contribute towards improving our theoretical understanding of the largest irreducible background in this analysis coming from strongly produced W+jets. Measurements presented, when representing potential backgrounds, will also be useful to studies of top quark and Higgs production, as well as new physics searches that deal with similar backgrounds.

  1. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  2. Study of Vector Boson Scattering and Search for New Physics in Events with Two Same-Sign Leptons and Two Jets

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2015-02-01

    A study of vector boson scattering in p p collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb-1 collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W -boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W±W± and W Z processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

  3. Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Aldá Júnior, W L; Alves, G A; Brito, L; Correa Martins Junior, M; Dos Reis Martins, T; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Heister, A; Hindrichs, O; Klein, K; Ostapchuk, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D

    2015-02-01

    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons. PMID:25699433

  4. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  5. Axisymmetric and non-axisymmetric exhaust jet induced effects on a V/STOL vehicle design. Part 3: Experimental technique

    NASA Technical Reports Server (NTRS)

    Schnell, W. C.

    1982-01-01

    The jet induced effects of several exhaust nozzle configurations (axisymmetric, and vectoring/modulating varients) on the aeropropulsive performance of a twin engine V/STOL fighter design was determined. A 1/8 scale model was tested in an 11 ft transonic tunnel at static conditions and over a range of Mach Numbers from 0.4 to 1.4. The experimental aspects of the static and wind-on programs are discussed. Jet effects test techniques in general, fow through balance calibrations and tare force corrections, ASME nozzle thrust and mass flow calibrations, test problems and solutions are emphasized.

  6. Thrust stand for low-thrust liquid pulsed rocket engines.

    PubMed

    Xing, Qin; Zhang, Jun; Qian, Min; Jia, Zhen-yuan; Sun, Bao-yuan

    2010-09-01

    A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz. PMID:20887003

  7. Editorial on Future Jet Technologies

    NASA Astrophysics Data System (ADS)

    Gal-Or, Benjamin

    2014-12-01

    The jet engine is the prime flight controller in post-stall flight domains where conventional flight control fails, or when the engine prevents catastrophes in training, combat, loss of all airframe hydraulics (the engine retains its own hydraulics), loss of one engine, pilot errors, icing on the wings, landing gear and runway issues in takeoff and landing and in bad-whether recoveries. The scientific term for this revolutionary technology is "jet-steering", and in engineering practice - "thrust vectoring", or "TV". Jet-Steering in advanced fighter aircraft designs is integrated with stealth technology. The resulting classified Thrust-Vectoring-Stealth ("TVS") technology has generated a second jet-revolution by which all Air-&-Sea-Propulsion Science and R&D are now being reassessed. Classified F-22, X-47B/C and RQ-180 TVS-vehicles stand at the front of this revolution. But recent transfers of such sensitive technologies to South Korea and Japan [1-5], have raised various fundamental issues that are evaluated by this editorial-review. One, and perhaps a key conclusion presented here, means that both South Korea and Japan may have missed one of their air-&-sea defenses: To develop and field low-cost unmanned fleets of jet-drones, some for use with expensive, TVS-fighter aircraft in highly congested areas. In turn, the U.S., EU, Russia and China, are currently developing such fleets at various TVS levels and sizes. China, for instance, operates at least 15,000 drones ("UAVs") by 2014 in the civilian sector alone. All Chinese drones have been developed by at least 230 developers/manufacturers [1-16]. Mobile telecommunication of safe links between flyers and combat drones ("UCAVs") at increasingly deep penetrations into remote, congested areas, can gradually be purchased-developed-deployed and then operated by extant cader of tens of thousands "National Champion Flyers" who have already mastered the operation of mini-drones in free-to-all sport clubs under national

  8. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    NASA Astrophysics Data System (ADS)

    Lee, Mokin

    actuators. Two types of the jet-thruster systems are developed: a set of six bi-directional jet-thrusters and a set of twelve uni-directional jet-thrusters. Jet-thrust, a nonconservative force acting on the satellite, contributes to generalized forces in Lagrange's equations. The relationship between them can be represented in a linear algebraic matrix equation. Theoretical jet-thrust control is determined in the form of continuous control command by solving the algebraic matrix equation. For thrust management, the simplex method, the modified minimum vector 2-norm solution, or ad-hoc solutions are used to obtain non-negative jet-thrust input command for uni-directional jet-thrusters. Continuous-time thrust input control from thrust management are modulated into on-off pulsed-jet thrust control command by pulse-width pulse-frequency (PWPF) modulation. For each thruster, there are five PWPF parameters to be adjusted, based on static and dynamic analysis. The actuation frequency of a jet thruster depends on the five parameters. It is concluded that by considering the shift in the center of mass of flexible satellites, simultaneous control of the librational motions and flexible modes of flexible satellites are possible with on-off pulsed jet thrusters.

  9. Laboratory study of jet-noise suppressors

    NASA Technical Reports Server (NTRS)

    Arndt, R. E. A.; Fuchs, H. V.; Michel, U.

    1978-01-01

    Experiments on four different types of subsonic jet-noise suppressors are reported. The suppressors were compared to a clean circular jet on an equal-thrust per unit-exit-area basis. On this basis the noise production of the different jets varied only slightly, in contrast to some results reported previously.

  10. Environmental Thrust Handbook.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This handbook was prepared as a tool to assist U. S. Department of Agriculture (USDA) employees coordinate their resources and efforts to help people improve their environment. Twenty-two projects are outlined as potential environmental thrusts at the community level. It is the role of USDA employees to encourage and assist, in every way possible,…

  11. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ashpis, David E.; Laun, Matthew C.

    2013-11-01

    DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.

  12. Static Performance of a Wing-Mounted Thrust Reverser Concept

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  13. Monte Mountain thrust, additional confirmation of the central Nevada thrust

    SciTech Connect

    Chamberlain, A.K. ); Chamberlain, R.L. )

    1990-05-01

    The Monte Mountain thrust, a newly identified thrust exposed in the Timpahute Range, east central Nevada places porous Devonian reservoir rocks over rich Mississippian source rocks at the peak oil generating window. The thrust provides insurmountable evidence of a thrust model that may lead to discovery of giant oil and gas fields along the 400-mi long central Nevada thrust belt. The Timpahute Range lies a little over 50 mi on strike to the south of the prolific Grant Canyon field. Scattered remnants of the north-trending thrust belt are obscured by parallel valleys of Tertiary valley fill and volcanics. The fact that the east-west-trending Timpahute Range could contain exposures of the north-south-trending central Nevada thrust belt attracted them to the range, Familiarity with the stratigraphic section led to the discovery of the thrust. As much as 750 ft of Devonian Guilmette sandstones, in the hanging wall just above the thrust contact have been erroneously mapped as Mississippian Scotty Wash sandstones. These Devonian sandstones could be excellent reservoir rocks. Sandstones in the Guilmette increase in thickness westward. East-vergent thrusting has juxtaposed plates of thicker Guilmette sandstones with plates of thinner sandstones, Reconstruction of Devonian paleogeography provides a clue to the amount of displacement along thrust boundaries.

  14. Study on the characteristics of supersonic Coanda jet

    NASA Astrophysics Data System (ADS)

    Matsuo, Shigeru; Setoguchi, Toshiaki; Kudo, Takemasa; Yu, Shen

    1998-09-01

    Techniques using Coanda effect have been applied to the fluid control devices. In this field, experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit, thrust vectoring of supersonic Coanda jets and so on. It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic Coanda jet in detail. In the present study, the effects of pressure ratios and nozzle configurations on the characteristics of the supersonic Coanda jet have been investigated experimentally by a schlieren optical method and pressure measurements. Furthermore, Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration. k - ɛ model was used in the computations. The effects of initial conditions on Coanda flow were investigated numerically. As a result, the simulated flow fields were compared with experimental data in good agreement qualitatively.

  15. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  16. Advanced thrust chamber designs

    NASA Technical Reports Server (NTRS)

    Dietrich, F. J.; Leach, A. E.

    1971-01-01

    A regeneratively cooled thrust chamber has been designed and fabricated, consisting of an inner TD nickel liner which was spin formed, welded, and machined and an outer shell of electroformed nickel. Coolant channels were produced in the outer surface of the inner liner by the electric discharge machining process before electroforming the shell. Accessory manifolds and piping were attached by welding. Manufacturing processes employed are described.

  17. Aeroacoustics of hot jets

    NASA Astrophysics Data System (ADS)

    Viswanathan, K.

    2004-10-01

    A systematic study has been undertaken to quantify the effect of jet temperature on the noise radiated by subsonic jets. Nozzles of different diameters were tested to uncover the effects of Reynolds number. All the tests were carried out at Boeing's Low Speed Aeroacoustic Facility, with simultaneous measurement of thrust and noise. It is concluded that the change in spectral shape at high jet temperatures, normally attributed to the contribution from dipoles, is due to Reynolds number effects and not dipoles. This effect has not been identified before. A critical value of the Reynolds number that would need to be maintained to avoid the effects associated with low Reynolds number has been estimated to be {˜}400 000. It is well-known that large-scale structures are the dominant generators of noise in the peak radiation direction for high-speed jets. Experimental evidence is presented that shows the spectral shape at angles close to the jet axis from unheated low subsonic jets to be the same as from heated supersonic jets. A possible mechanism for the observed trend is proposed. When a subsonic jet is heated with the Mach number held constant, there is a broadening of the angular sector in which peak radiation occurs. Furthermore, there is a broadening of the spectral peak. Similar trends have been observed at supersonic Mach numbers. The spectral shapes in the forward quadrant and in the near-normal angles from unheated and heated subsonic jets also conform to the universal shape obtained from supersonic jet data. Just as for unheated jets, the peak frequency at angles close to the jet axis is independent of jet velocity as long as the acoustic Mach number is less than unity. The extensive database generated in the current test programme is intended to provide test cases with high-quality data that could be used for the evaluation of theoretical/semi-theoretical jet noise prediction methodologies.

  18. Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Werner, Roger A.; Wolter, John D.

    2010-01-01

    CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.

  19. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  20. Investigation of a Full-scale, Cascade-type Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Kohl, Robert C; Algranti, Joseph S

    1957-01-01

    A double set of turning vanes was carried inside the jet tailpipe. To produce reverse thrust, the tailpipe opens into two side sections and the turning vanes move outward to form a V-shaped cascade, which deflects the exhaust-gas flow. Forward and reverse net thrust were measured over a range of engine speeds with the airplane stationary. Taxi tests were made to determine the comparative stopping distances using wheel braking and reverse thrust separately, and a combination of both. The effect of turning-vane spacing on thrust-reverser performance was determined by scale-model tests using unheated air.

  1. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.

    PubMed

    Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y

    2007-11-01

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster. PMID:18052505

  2. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters

    SciTech Connect

    Nagao, N.; Yokota, S.; Komurasaki, K.; Arakawa, Y.

    2007-11-15

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.

  3. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  4. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  5. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  6. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  7. Predicted flight characteristics of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.

    1972-01-01

    An existing deHavilland C-8A airplane has been modified into an augmentor wing flight test vehicle. Research objectives are to verify the augmentor flap concept and to produce data for STOL airworthiness criteria. The Modified C-8A provides the means for jet-STOL flight research down to a 60 knot approach speed. The airplane has a high thrust-to-weight ratio, high-lift flap system, vectored thrust, powerful flight controls, and lateral-directional stability augmentation system. Normal performance and handling qualities are expected to be satisfactory. Analysis and piloted simulator results indicate that stability and control characteristics in conventional flight are rated satisfactory. Handling qualities in the STOL regime are also generally satisfactory, although pilot workload is high about the longitudinal axis.

  8. Controls on thrust belt curvature, Wyoming-Idaho thrust belt

    SciTech Connect

    Montgomery, J.M. Jr. . Dept. of Geological Sciences)

    1993-04-01

    Structural curvature in the northern part of the Wyoming-Idaho thrust belt (WITB) may be the result of either along-strike variations in pre-thrust stratigraphy or a buttress which physically concentrated shortening, or possibly both. Most thrust sheets of the WITB strike northward and were translated eastward, but in the Snake River Range (SRR) (the northernmost range in the WITB), structural strike curves from northward to nearly westward. Structural cross sections of the SRR are generally drawn in a radial pattern creating a volumetric imbalance in regional palinspastic restorations. Stratigraphic separation diagrams of major, through-going thrust faults in the SRR show extensive cut off in upper Paleozoic strata. New measured sections of upper Paleozoic stratigraphy at locations in several major thrust sheets of the WITB and in the foreland, new structural cross sections and mapping, and existing paleomagnetic data are used in a new interpretation of the origin of structural curvature in the WITB. Published paleomagnetic data require counterclockwise rotation of frontal thrust sheets along the northern boundary of the WITB, but no rotation of eastward-translated thrust sheets farther south along most of the WITB. Evidence for both a pre-existing west-trending depositional margin and rotation of frontal thrust sheets suggests that buttressing and modification of structural strike occurred along an oblique ramp where differences in stratigraphic thickness and possible pre-existing fault partitioning of the Paleozoic strata are localized.

  9. Thrust Generating Mechanism of Nozzle Powered by Single Laser Pulse

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hong, Yanji; She, Jinhu; Cao, Zhengrui; Wang, Junhua

    2006-05-01

    Using Sedov's strong explosion theory, the process of gas dynamics after air is broken down under the irradiation of single laser pulse is analyzed, and the analytic formulas of the fluid field parameters of the gas disturbed by shock wave inside the nozzle are educed. The theoretical values are validated by numerical simulation, and the thrust generating mechanism is disclosed. The result indicates that the thrust generated by the interaction of laser induced shock wave and nozzle is equal to the one generated by the reactive jet on nozzle exit during a period, but the trends of the thrust-time evolvement are different, which provides some available information for further study of the mechanism of air-breathing laser propulsion.

  10. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  11. Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2014-11-04

    This article presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of $\\sqrt{s}=7\\;{\\rm Te}{\\rm V}$ and correspond to an integrated luminosity of $4.6\\;{\\rm f}{{{\\rm b}}^{-1}}$. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum ${{p}_{{\\rm T}}}\\gt 320\\;{\\rm Ge}{\\rm V}$ and pseudorapidity $|\\eta |\\lt 1.9$, is measured to be ${{\\sigma }_{W+Z}}=8.5\\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.

  12. Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2014-11-04

    This article presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy ofmore » $$\\sqrt{s}=7\\;{\\rm Te}{\\rm V}$$ and correspond to an integrated luminosity of $$4.6\\;{\\rm f}{{{\\rm b}}^{-1}}$$. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum $${{p}_{{\\rm T}}}\\gt 320\\;{\\rm Ge}{\\rm V}$$ and pseudorapidity $$|\\eta |\\lt 1.9$$, is measured to be $${{\\sigma }_{W+Z}}=8.5\\pm 1.7$$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.« less

  13. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  14. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  15. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  16. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  17. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  18. A Simple Model of Pulsed Ejector Thrust Augmentation

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Deloof, Richard L. (Technical Monitor)

    2003-01-01

    A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.

  19. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  20. Secondary production of massive quarks in thrust

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Mateu, Vicent; Pietrulewicz, Piotr

    2016-01-01

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+e- → hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(ΛQCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  1. Aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed with forward-swept wings and canards. [transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Capone, F. J.

    1983-01-01

    The Langley 16 foot transonic tunnel was used to determine the aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed in a wing-body configuration with forward-swept wings. The configuration was tested with and without fixed canards. The test conditions included free-stream Mach numbers of 0.60, 0.90, and 1.20. The model angle of attack ranged from -2 deg to 14 deg; the nozzle pressure ratio ranged from 1.0 (jet off) to 9.0. The Reynolds number based on the wing mean aerodynamic chord varied from 3.0 x 10 to the 6th power to 4.8 x 10 to the 6th power, depending on Mach number. Aerodynamic characteristics were analyzed to determine the effects of thrust vectoring and the canard effects on the wing-afterbody-nozzle and the wing-afterbody portions of the model. Thrust vectoring had no effect on the angle of attack for the onset of flow separation on the wing but resulted in reduced drag at angle-of-attack values above that required for wing flow separation. The canard was found to have little effect on the thrust-induced lift resulting from vectoring, since canard effects occurred primarily on the wing.

  2. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  3. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  4. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  5. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  6. Micro thrust and heat generator

    SciTech Connect

    Garcia, E.J.

    1995-12-31

    The present invention relates generally to micromachines such as microengines or micromotors. More specifically, the invention is directed to a micro rocket which functions as a source of heat and thrust, and utilizes chemical energy to drive or power micromechanical apparatuses. The invention is adaptable to applications involving defense, bio-medical, manufacturing, consumer product, aviation, automotive, computer, inspection, and safety systems. A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachine techniques (LIGA).

  7. The deflection of a jet by confining surfaces

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1981-01-01

    Thrust vectoring can be provided by the turning of a jet exhaust by the presence of confining surfaces. This approach is analogous to the upper surface blowing (USB) concept. Mean velocities, velocity autocorrelations, and pressure-velocity correlations are measured. From the autocorrelation curves, the Taylor microscales and the integral length scales are calculated. Convection velocities are calculated from the velocity space-time correlations. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of a circular nozzle, and the resultant effects on the flow field are determined. In addition, two velocity ratios (exit plane velocity to ambient stream velocity) are examined. The velocity measurements were made with a laser Doppler velocimeter in conjunction with a phase locked-loop processor. Pressure measurements were made using a 1/8th inch condensor type microphone.

  8. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  9. Army (MANTECH) thrust area concept: Optics thrust area

    NASA Astrophysics Data System (ADS)

    Kopacz, Stanley P.

    1992-04-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  10. Army (MANTECH) Thrust Area Concept: Optics Thrust Area

    NASA Technical Reports Server (NTRS)

    Kopacz, Stanley P.

    1992-01-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.