Science.gov

Sample records for jma global model

  1. Tropical cyclone track forecasts using JMA model with ECMWF and JMA initial conditions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Munehiko; Nakazawa, Tetsuo; Aonashi, Kazumasa

    2012-05-01

    The JMA's Global Spectral Model (JMA/GSM) was run from the initial conditions of ECMWF, which are available in the YOTC data set, to distinguish between TC track prediction errors attributable to the initial conditions and those attributable to the NWP model. The average position error was reduced by about 10% by replacing the initial conditions, and in some cases, the predictions were significantly improved. In these cases, the low wavenumber component of the ECMWF analysis was found to account for most of the improvement. In addition, the observed tracks were captured by the JMA Typhoon Ensemble Prediction System (TEPS), which deals with initial condition uncertainties. In some cases, however, the replacement of the initial conditions did not improve the prediction even when the ECMWF forecast was accurate. In these cases, TEPS could not capture the observed track either, implying the need for dealing with uncertainties associated with the NWP model.

  2. Intensity and Development Forecasts of Tropical Cyclones by the JMA High-Resolution Global NWP Model: Impacts of Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Komori, T.; Kitagawa, H.

    2007-12-01

    It is widely considered that a spatial resolution of numerical weather prediction (NWP) model plays an important role for forecasting severe weather events such as tropical cyclones (TCs) and heavy rainfall. Under the KAKUSHIN project (funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology), the Japan Meteorological Agency (JMA) has developed a new Global Spectral Model (GSM) with a high horizontal resolution of about 20km and 60 vertical layers (hereafter called g20km GSMh), which is utilized to evaluate severe weather events in future climate. The 20km GSM will be operational in November 2007 replacing the current GSM with a horizontal resolution of about 60km and 40 vertical layers (hereafter called g60km GSMh). In the present study, we investigate how a model resolution impacts on TC forecasts because this resolution enhancement aims to improve the model's ability to forecast severe weather. Due to the more realistic model topography in higher horizontal resolution, the 20km GSM can give more accurate forecasts of orographic precipitation than the 60km GSM, especially over the area range of heavy precipitation. According to the statistically verified results, the enhancement of horizontal and vertical resolution appears to fairly improve the accuracy of TC intensity forecasts. However, for TC track forecasts, it may be more important to accurately represent large-scale environmental contexts surrounding the TC than to resolve the TC structure itself. In order to clarify resolution impacts on the TC intensity prediction, we categorize the TC intensity forecasts into three stages (development stage, maturation stage and dissipation stage). The results show that the effectiveness of the resolution enhancement is bigger in the development stage and relatively small in the maturation and dissipation stages. For the maturation and dissipation stages, improvement of physical processes seems to be more important than the resolution

  3. Improvement of Atmospheric CO2 Inversion Analysis at JMA

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Maki, T.; Machida, T.; Matsuda, H.; Sawa, Y.; Niwa, Y.

    2015-12-01

    The Japan Meteorological Agency (JMA) has developed a new inversion system of atmospheric CO2 mole fraction and flux for better understanding of global carbon budget and contribution to global carbon cycle studies. The new system introduces a newly developed on-line atmospheric tracer transport model (GSAM-TM). Its tracer transport process is directly coupled with a low resolution version (TL95) of JMA's operational global numerical weather prediction (NWP) model (JMA_GSM), using mass conservative semi-Lagrangian scheme and Arakawa-Shubert mass flux scheme for vertical convective transportation. It represents mass transportation, mass conservation, and structures of tracer distribution more precisely than JMA's previous transport model (CDTM), which is off-line tracer transport model using semi-Lagrangian scheme and Kuo-based convection scheme with multiplying globally uniform coefficient for mass conservation. The new system also introduces new a priori fluxes for fossil fuel consumption and oceanic CO2 exchange. In this study, we compare CO2 mole fraction field and flux estimates of the new system against that of current annual JMA analysis with CDTM. The new system represents better atmospheric CO2 distribution structure than the current system does especially vertical gradient around tropopause. Due to improvement of fossil fuel CO2 diffusion estimates, analyzed regional budget over Eurasian Continent changed clearly. Budgets for less observation area (South America and Africa) are also changed. Globally averaged atmospheric CO2 budget is not changed significantly. This new system is planned to be operationally implemented in 2016, and we will further improve the CO2 inversion analysis for understanding of carbon cycle.

  4. JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Saito, Kazuo; Shimbori, Toshiki; Draxler, Roland

    2015-01-01

    The World Meteorological Organization (WMO) convened a small technical task team of experts to produce a set of meteorological analyses to drive atmospheric transport, dispersion and deposition models (ATDMs) for the United Nations Scientific Committee on the Effects of Atomic Radiation's assessment of the Fukushima Daiichi Nuclear Power Plant (DNPP) accident. The Japan Meteorological Agency (JMA) collaborated with the WMO task team as the regional specialized meteorological center of the country where the accident occurred, and provided its operational 5-km resolution mesoscale (MESO) analysis and its 1-km resolution radar/rain gauge-analyzed precipitation (RAP) data. The JMA's mesoscale tracer transport model was modified to a regional ATDM for radionuclides (RATM), which included newly implemented algorithms for dry deposition, wet scavenging, and gravitational settling of radionuclide aerosol particles. Preliminary and revised calculations of the JMA-RATM were conducted according to the task team's protocol. Verification against Cesium 137 ((137)Cs) deposition measurements and observed air concentration time series showed that the performance of RATM with MESO data was significantly improved by the revisions to the model. The use of RAP data improved the (137)Cs deposition pattern but not the time series of air concentrations at Tokai-mura compared with calculations just using the MESO data. Sensitivity tests of some of the more uncertain parameters were conducted to determine their impacts on ATDM calculations, and the dispersion and deposition of radionuclides on 15 March 2011, the period of some of the largest emissions and deposition to the land areas of Japan. The area with high deposition in the northwest of Fukushima DNPP and the hotspot in the central part of Fukushima prefecture were primarily formed by wet scavenging influenced by the orographic effect of the mountainous area in the west of the Fukushima prefecture. PMID:24703334

  5. Ensemble flood forecasting to support dam water release operation using 10 and 2 km-resolution JMA Nonhydrostatic Model ensemble rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Otsuka, S.; Apip; Saito, K.

    2015-12-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency Nonhydrostatic Model are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolution. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km-resolution JMA-NHM ensemble simulation are more appropriate than the 10 km-resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1; a threshold value for flood control. The inflows with the 10 km-resolution ensemble rainfall are all considerably smaller than the observations, while, at least one simulated discharge out of 11 ensemble members with the 2 km-resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls show much better results than the original ensemble discharge simulations.

  6. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Takaya, Yuhei; Yasuda, Tamaki; Fujii, Yosuke; Matsumoto, Satoshi; Soga, Taizo; Mori, Hirotoshi; Hirai, Masayuki; Ishikawa, Ichiro; Sato, Hitoshi; Shimpo, Akihiko; Kamachi, Masafumi; Ose, Tomoaki

    2016-04-01

    This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981-2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño-Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system's ability to represent atmosphere-ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific-Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere-ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.

  7. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  8. Development of a Forecasting and Data Assimilation System for Asian Dust in the Japan Meteorological Agency (JMA)

    NASA Astrophysics Data System (ADS)

    Yumimoto, K.; Tanaka, T. Y.; Ogi, A.; Sekiyama, T. T.; Maki, T.; Murakami, H.; Kikuchi, M.; Nagao, T. M.

    2015-12-01

    Mineral dust, a major aerosol during springtime in East Asia, impacts various aspects including social activity, human health, climate and the ocean ecosystem. To mitigate the damage of severe dust storms, it is crucial to develop a forecasting and early warning system for Asian dust. Since 2007, the World Meteorological Organization (WMO) has taken the lead with 40 international partners to develop a Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The Japan Meteorological Agency (JMA) launched a numerical forecasting system for Asian dust in 2004, and completed a major renovation of the system in November 2014. In the renovation, we replaced a general circulation model (the JMA98 GCM) and dust emission scheme (based on wind velocity at 10 m) with new ones (the GSMUV GCM and a friction velocity based emission scheme). A 5-year validation exhibits that the renovation achieves better forecasting score (especially in short range forecast). Our group has resolution improvement (up to ~40 km) and implementation of data assimilation with satellite observations in the upcoming updates. A feasibility study on involving observations from Himawari-8 (JMA's new geostationary meteorological satellite) into the system is also conducted for better forecasting skill and toward robust early warning.

  9. Global Timber Model (GTM)

    EPA Science Inventory

    GTM is an economic model capable of examining global forestry land-use, management, and trade responses to policies. In responding to a policy, the model captures afforestation, forest management, and avoided deforestation behavior. The model estimates harvests in industrial fore...

  10. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  11. An Evaluation of the Practicability of Current Mapping Functions using Ray-traced Atmosphere Slant Delays from JMA Mesoscale Numerical Weather Data

    NASA Astrophysics Data System (ADS)

    Ichikawa, R.; Hobiger, T.; Koyama, Y.; Kondo, T.

    2008-12-01

    The Japan Meteorological Agency (JMA) meso-scale analysis data (MANAL data) which we used in our study provides temperature, humidity, and pressure values at the surface and at 21 height levels (which vary between several tens of meters and about 31 km), for each node in a 10km by 10 km grid that covers Japan islands, the surrounding ocean and eastern Eurasia. The 3-hourly operational products are available by JMA since March, 2006. We have simultaneously evaluated atmospheric parameters (equivalent zenith total delay and linear horizontal delay gradients) and position errors derived from slant path delays obtained by the KAshima RAytracing Tools (KARAT) through the MANAL data. Most of the early mapping functions developed for VLBI and GPS were based on the assumption of azimuthal isotropy. On the other hand, the recent geodetic analyses are carried out by applying the modern mapping functions based on the numerical weather analysis fields. The Global Mapping Function (GMF) by Boehm et al. (2006), and Vienna Mapping Function (VMF) by Boehm and Schuh (2004) have been successfully applied to remove the zenith hydrostatic delay in the recent years. In addition, the lateral spatial variation of wet delay is reduced by linear gradient estimation. Comparisons between KARAT-based slant delay and empirical mapping functions indicate large biases ranging from 18 to 90 mm, which is considered to be caused by significant variability of water vapor. Position error simulation reveal that the highly variability of the errors is clearly associated with severe atmospheric phenomena. Such simulation are very useful to investigate the characteristics of positioning errors generated by local atmospheric disturbances. Finally, we compared PPP processed position solutions using KARAT with those using the latest mapping functions covering a period of two week GEONET data. The KARAT solution is almost identical to the solution using GMF with linear gradient model, but some cases tends to

  12. Global Hail Model

    NASA Astrophysics Data System (ADS)

    Werner, A.; Sanderson, M.; Hand, W.; Blyth, A.; Groenemeijer, P.; Kunz, M.; Puskeiler, M.; Saville, G.; Michel, G.

    2012-04-01

    Hail risk models are rare for the insurance industry. This is opposed to the fact that average annual hail losses can be large and hail dominates losses for many motor portfolios worldwide. Insufficient observational data, high spatio-temporal variability and data inhomogenity have hindered creation of credible models so far. In January 2012, a selected group of hail experts met at Willis in London in order to discuss ways to model hail risk at various scales. Discussions aimed at improving our understanding of hail occurrence and severity, and covered recent progress in the understanding of microphysical processes and climatological behaviour and hail vulnerability. The final outcome of the meeting was the formation of a global hail risk model initiative and the launch of a realistic global hail model in order to assess hail loss occurrence and severities for the globe. The following projects will be tackled: Microphysics of Hail and hail severity measures: Understand the physical drivers of hail and hailstone size development in different regions on the globe. Proposed factors include updraft and supercooled liquid water content in the troposphere. What are the thresholds drivers of hail formation around the globe? Hail Climatology: Consider ways to build a realistic global climatological set of hail events based on physical parameters including spatial variations in total availability of moisture, aerosols, among others, and using neural networks. Vulnerability, Exposure, and financial model: Use historical losses and event footprints available in the insurance market to approximate fragility distributions and damage potential for various hail sizes for property, motor, and agricultural business. Propagate uncertainty distributions and consider effects of policy conditions along with aggregating and disaggregating exposure and losses. This presentation provides an overview of ideas and tasks that lead towards a comprehensive global understanding of hail risk for

  13. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  14. Global Energy Futures Model

    Energy Science and Technology Software Center (ESTSC)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  15. Global Energy Futures Model

    SciTech Connect

    Malczynski, Leonard; Baker, Arnold; Beyeler, Walt; Conrad, Stephen; Harris, David; Harris, Paul; Rexroth, Paul; Bixler, and Nathan

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

  16. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  17. Global Volcano Model

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  18. Global Modeling Activities and NAME

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Atlas, Robert (Technical Monitor)

    2002-01-01

    In this talk I will review global modeling activities in the United States that could contribute to and benefit from NAME activities. I will present some preliminary results from several global atmospheric general circulation model simulation experiments for the initial NAME model intercomparison project period of May-Oct 1990. These include an ensemble of medium resolution simulations, and a high resolution (one half degree) simulation. I will also discuss possible high resolution global data assimilation experiments that could be used to help validate the model simulations and assimilate planned NAME observations.

  19. Global nuclear material control model

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  20. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  1. Global/Local Dynamic Models

    SciTech Connect

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  2. A new global ionospheric model

    NASA Technical Reports Server (NTRS)

    Yip, K. W.; Vonroos, O. H.

    1975-01-01

    A new global ionospheric model was successfully implemented. The daytime portion of this model provides one-way ionospheric range corrections that compare favorably with those derived from the Mariner Venus/Mercury S- and X-band dual frequency Doppler data. For elevation angles, gamma higher than 30 deg and solar zenith angle less than 80 deg, this model provides calibrations accurate to a few centimeters. The calibrations provided by the nighttime model are also very reasonable. It is interesting to note that the daytime ionospheric calibrations derived from the current calibration scheme, DIEN/TIEN, are fairly close to those given by the new global model, especially in the temporal variations and thus the Doppler effects. The comparison between the nighttime model and DIEN/TIEN was based on the one-way ionospheric range corrections for three passes near the Mariner 9 encounter with Mars in 1971. They can differ by over 30%.

  3. Modelling the global coastal ocean.

    PubMed

    Holt, Jason; Harle, James; Proctor, Roger; Michel, Sylvain; Ashworth, Mike; Batstone, Crispian; Allen, Icarus; Holmes, Robert; Smyth, Tim; Haines, Keith; Bretherton, Dan; Smith, Gregory

    2009-03-13

    Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries. PMID:19087928

  4. Performance of JMA Earthquake Early Warning for the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0)

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Wakayama, A.; Ishigaki, Y.; Doi, K.

    2011-12-01

    This presentation outlines the Earthquake Early Warning of the Japan Meteorological Agency (JMA) for the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0). EEW has been operational nationwide in Japan by JMA since October, 2007. For JMA EEW, the hypocenter is determined by a combination of several techniques, using approximately 1,100 stations from the JMA network and the Hi-net network of NIED; magnitude is mainly from maximum displacement amplitudes. JMA EEWs are updated as available data increases with elapsed time. Accordingly EEWs are issued repeatedly with improving accuracy for a single earthquake. JMA EEWs are divided into two grades depending on the expected intensities. The JMA intensity scale is based on instrumental measurements in which not only the amplitude but also the frequency and duration of the shaking are considered. The 10-degree JMA intensity scale rounds off the instrumental intensity value to the integer. Intensities of 5 and 6 are divided into two degrees, namely 5-lower, 5-upper, 6-lower and 6-upper, respectively. Intensity 1 corresponds to ground motion that people can barely detect, and 7 is the upper limit. JMA EEWs are announced to general public when intensity 5-lower (or greater) is expected. The JMA EEW system was triggered for the Mw 9.0 earthquake when station OURI (138km from the epicenter) detected the initial P wave at 14:46:40.2 (Japan Standard Time). The first EEW, the first of 15 announcements, was issued 5.4 s later. The waveform started with small amplitude, which was comparable to noise level for displacement. The small amplitude does not indicate that the initial rupture of the Mw 9.0 event is large, and does not suggest a large magnitude event. By the fourth EEW, 8.6 s after the first trigger, the expected intensity exceeded the criteria of the warning to the general public. JMA issued the fourth EEW announcements to the general public of the Tohoku district, and then the warning was automatically broadcast

  5. Class Room Exercises Using JMA-59-Type Seismograms for Earthquake Study at High-School Level

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.; Furuta, S.; Hirota, N.

    2013-12-01

    The JMA-59-type electromagnetic seismograph was the standard seismograph for routine observations by the Japan Meteorological Agency (JMA) from the 1960's to the 1990's. Some features of those seismograms include 1) displacement wave records (electrically integrated from a velocity output by a moving-coil-type sensor), 2) ink records on paper (analog recording with time marks), 3) continuous drum recording for 12 h, and 4) lengthy operation time over several decades. However, the digital revolution in recording systems during the 1990's made these analog features obsolete, and their abundant and bulky paper-based records were stacked and sometimes disregarded in the library of every observatory. Interestingly, from an educational aspect, the disadvantages of these old-fashioned systems become highly advantageous for educational or outreach purposes. The updated digital instrument is essentially a 'black-box,' not revealing its internal mechanisms and being too fast for observing its signal processes. While the old seismometers and recording systems have been disposed of long since, stacks of analog seismograms continue to languish in observatories' back rooms. In our study, we develop some classroom exercises for studying earthquakes at the mid- to high-school level using these analog seismograms. These exercises include 1) reading the features of seismic records, 2) measuring the S-P time, 3) converting the hypocentral distance from Omori's distance formula, 4) locating the epicenter/hypocenter using the S-P times of surrounding stations, and 5) estimating earthquake magnitude using the Tsuboi's magnitude formula. For this calculation we developed a 'nomogram'--a graphical paper calculator created using a Python-based freeware tool named 'PyNomo.' We tested many seismograms and established the following rules: 1) shallow earthquakes are appropriate for using the Tsuboi's magnitude formula; 2) there is no saturation at peak amplitude; 3) seismograms make it easy to

  6. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  7. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  8. GEM - The Global Earthquake Model

    NASA Astrophysics Data System (ADS)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  9. Development of a Global Tropospheric Aerosol Chemical Transport Model MASINGAR and its Application to the Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Tanaka, T. Y.

    2002-12-01

    We are developing a new three-dimensional aerosol chemical transport model coupled with the MRI/JMA98 GCM, named Model of Aerosol Species IN the Global AtmospheRe (MASINGAR), for the study of atmospheric aerosols and related trace species. MASINGAR treats four major aerosol species that include nss-sulfate, carbonaceous, mineral dust, and sea-salt aerosols. The model accounts for large-scale advective transport, subgrid-scale eddy diffusive and convective transport, surface emission and deposition, wet deposition, as well as chemical reactions. The advective transport is calculated using the semi-Lagrangian transport scheme. Parameterization of convective transport is based on the convective mass flux by Arakawa-Schubert scheme. The space and time resolution of the model are variable, with a standard resolution of T42 (2.8ox2.8o) and 30 levels (up to 0.8hPa). In addition, the model has a built-in four-dimensional data assimilation with assimilated meteorological field, which enables the model to perform a realistic simulation on a specific period and short-period forecast of aerosols. The model was applied to the numerical forecasting of dust storm in spring, 2002, when the first intensive observational period of Aeolian Dust Experiment on the Climatic impact (ADEC) project was conducted. The model simulation of mineral dust aerosol suggests that the synoptic scale aerosol events can be simulated by MASINGAR.

  10. A Martian global groundwater model

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.

    1991-01-01

    A global groundwater flow model was constructed for Mars to study hydrologic response under a variety of scenarios, improving and extending earlier simple cross sectional models. The model is capable of treating both steady state and transient flow as well as permeability that is anisotropic in the horizontal dimensions. A single near surface confining layer may be included (representing in these simulations a coherent permafrost layer). Furthermore, in unconfined flow, locations of complete saturation and seepage are determined. The flow model assumes that groundwater gradients are sufficiently low that DuPuit conditions are satisfied and the flow component perpendicular to the ground surface is negligible. The flow equations were solved using a finite difference method employing 10 deg spacing of latitude and longitude.

  11. Lessons Learned from Eight Years' Experience of Actual Operation, and Future Prospects of JMA Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Nishimae, Y.

    2015-12-01

    Since 2007, experiences of actual operation of EEW have been gained by the Japan Meteorological Agency (JMA). During this period, we have learned lessons from many M6- and M7-class earthquakes, and the Mw9.0 Tohoku earthquake. During the Mw9.0 Tohoku earthquake, JMA system functioned well: it issued a warning message more than 15 s before strong ground shaking in the Tohoku district (relatively near distance from the epicenter). However, it was not perfect: in addition to the problem of large extent of fault rupture, some false warning messages were issued due to the confusion of the system because of simultaneous multiple aftershocks which occurred at the wide rupture area. To address the problems, JMA will introduce two new methods into the operational system this year to start their tests, aiming at practical operation within a couple of years. One is Integrated Particle Filter (IPF) method, which is an integrated algorithm of multiple hypocenter determination techniques with Bayesian estimation, in which amplitude information is also used for hypocenter determination. The other is Propagation of Local Undamped Motion (PLUM) method, in which warning message is issued when strong ground shaking is detected at nearby stations around the target site (e.g., within 30 km). Here, hypocenter and magnitude are not required in PLUM. Aiming at application for several years later, we are investigating a new approach, in which current wavefield is estimated in real time, and then future wavefield is predicted time evolutionally from the current situation using physics of wave propagation. Here, hypocenter and magnitude are not necessarily required, but real-time observation of ground shaking is necessary. JMA also plans to predict long period ground motion (up to 8 s) with the EEW system for earthquake damage mitigation in high-rise buildings. Its test will start using the operational system in the near future.

  12. Modeling the global mercury cycle

    SciTech Connect

    Hudson, R.J.M. |

    1995-12-01

    A model of the global Hg cycle is presented and applied to analyze modern Hg budgets and the link between the anthropogenic Hg emissions and historical changes in deposition as recorded in lake sediments and bogs. Terrestrial systems appear to have been the principal sink of anthropogenic Hg. However, transport into the ocean interior via mixing and scavenging is also a significant sink of Hg and likely has limited any anthropogenically-derived increase in Hg volatilization from the surface ocean to no more than 50% above natural levels. We also consider how both the increase in air pollutants during the industrial era and their recent decrease in North America may have affected atmospheric Hg scavenging and the resulting records of Hg deposition rates in lake and bog sediments.

  13. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  14. A Global Climate Model for Instruction.

    ERIC Educational Resources Information Center

    Burt, James E.

    This paper describes a simple global climate model useful in a freshman or sophomore level course in climatology. There are three parts to the paper. The first part describes the model, which is a global model of surface air temperature averaged over latitude and longitude. Samples of the types of calculations performed in the model are provided.…

  15. The global ionosphere thermosphere model

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; Deng, Y.; Tóth, G.

    2006-05-01

    The recently created global ionosphere thermosphere model (GITM) is presented. GITM uses a three-dimensional spherical grid that can be stretched in both latitude and altitude, while having a fixed resolution in longitude. GITM is nontraditional in that it does not use a pressure-based coordinate system. Instead it uses an altitude-based grid and does not assume a hydrostatic solution. This allows the model to more realistically capture physics in the high-latitude region, where auroral heating is prevalent. The code can be run in a one-dimensional (1-D) or three-dimensional (3-D) mode. In 3-D mode, the modeling region is broken into blocks of equal size for parallelization. In 1-D mode, a single latitude and longitude is modeled by neglecting any horizontal transport or gradients, except in the ionospheric potential. GITM includes a modern advection solver and realistic source terms for the continuity, momentum, and energy equations. Each neutral species has a separate vertical velocity, with coupling of the velocities through a frictional term. The ion momentum equation is solved for assuming steady-state, taking into account the pressure, gravity, neutral winds, and external electric fields. GITM is an extremely flexible code—allowing different models of high-latitude electric fields, auroral particle precipitation, solar EUV inputs, and particle energy deposition to be used. The magnetic field can be represented by an ideal dipole magnetic field or a realistic APEX magnetic field. Many of the source terms can be controlled (switched on and off, or values set) by an easily readable input file. The initial state can be set in three different ways: (1) using an ideal atmosphere, where the user inputs the densities and temperature at the bottom of the atmosphere; (2) using MSIS and IRI; and (3) restarting from a previous run. A 3-D equinox run and a 3-D northern summer solstice run are presented. These simulations are compared with MSIS and IRI to show that the

  16. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  17. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  18. Web-Based Delivery System for Disaster Prevention Information Using a New Jma Dpi Xml Format and Amedas Data

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Mori, M.

    2012-07-01

    The Automated Meteorological Data Acquisition System (AMeDAS) Data is used along with compound disaster information for a geographic information system (GIS) by integration into the Japan Meteorological Agency (JMA) disaster prevention information XML data. A JMA XML format is a next generation format that contains weather warnings, tsunami warnings, and earthquake information, etc. However, it is not possible to process it by reading disaster prevention information XML Data and AMeDAS Data directly to the GIS system. Therefore, development of a program that converts the data structure is important to consolidate a variety of disaster prevention information on the GIS system. Information on escape routes and evacuation sites, etc. were given as points for regional meteorological observation forecasts using AMeDAS Data by disaster prevention information XML data and integrating it where the disaster was generated, giving a range of expansion of damage and a damage level. There are two main aims; the first is to deliver these compound data of disaster prevention information XML data and AMeDAS Data via the Internet. The second aim is to provide GIS files (shapefile format) of these data to such as local governments for their individual analysis. This was furthermore confirmed to enable the construction of a system using WebGIS (Google Maps) and Open Source Software GIS to monitor disaster information at low cost.

  19. Global models of planet formation and evolution

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Mollière, P.; Dittkrist, K.-M.; Jin, S.; Alibert, Y.

    2015-04-01

    Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of

  20. Global Resource Sharing: A Gateway Model.

    ERIC Educational Resources Information Center

    Miller, Rush G.; Zhou, Peter X.

    1999-01-01

    Describes the Gateway Service Center of Chinese Journal Publications that was established at the University of Pittsburgh to deliver digital copies of Chinese journal articles. Discusses the gateway model for global resource sharing as one component of a global virtual library and considers copyright, access versus ownership, and future…

  1. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME.

    PubMed

    Leadbetter, Susan J; Hort, Matthew C; Jones, Andrew R; Webster, Helen N; Draxler, Roland R

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition. PMID:24745690

  2. A model of global net ecosystem production

    SciTech Connect

    Potter, C.S.; Matson, P.A. ); Field, C.B.; Randerson, J. ); Vitousek, P.M.; Mooney, H.A. )

    1993-06-01

    We present an ecosystem modeling approach to resolve global climate and edaphic controls on seasonal NEP patterns. Global remote sensing, climate and land surface data sets are used as inputs to drive a terrestrial carbon cycle model at 1[degrees]lat/lon resolution. monthly net primary productivity (NPP) is calculated using surface radiation and NDVI to determine photosynthesis, which is subsequently adjusted by temperature, water and nitrogen stress factors. Total nitrogen availability is coupled to net mineralization rates from litter soil carbon pools. Soil respiration and NPP balance one another globally at around 60 Gt C yr[sup [minus]1]. The seasonal amplitude of global NEP is 1.2 Gt C. Although substantial month-to-month variation is observed for tropical forest areas, seasonal amplitude is driven globally by boreal and temperate forest ecosystems between 650 and 30[degrees] N latitude.

  3. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  4. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  5. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Blocker, Rhonda; Justus, C. G.

    1993-01-01

    4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.

  6. The Global Earthquake Model - Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Smolka, Anselm; Schneider, John; Stein, Ross

    2014-05-01

    The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange. Sharing of data and risk information, best practices, and approaches across the globe are key to assessing risk more effectively. Through consortium driven global projects, open-source IT development and collaborations with more than 10 regions, leading experts are developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. The year 2013 has seen the completion of ten global data sets or components addressing various aspects of earthquake hazard and risk, as well as two GEM-related, but independently managed regional projects SHARE and EMME. Notably, the International Seismological Centre (ISC) led the development of a new ISC-GEM global instrumental earthquake catalogue, which was made publicly available in early 2013. It has set a new standard for global earthquake catalogues and has found widespread acceptance and application in the global earthquake community. By the end of 2014, GEM's OpenQuake computational platform will provide the OpenQuake hazard/risk assessment software and integrate all GEM data and information products. The public release of OpenQuake is planned for the end of this 2014, and will comprise the following datasets and models: • ISC-GEM Instrumental Earthquake Catalogue (released January 2013) • Global Earthquake History Catalogue [1000-1903] • Global Geodetic Strain Rate Database and ModelGlobal Active Fault Database • Tectonic Regionalisation ModelGlobal Exposure Database • Buildings and Population Database • Earthquake Consequences Database • Physical Vulnerabilities Database • Socio-Economic Vulnerability and Resilience Indicators • Seismic

  7. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  8. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  9. Comparison of global and regional ionospheric models

    NASA Astrophysics Data System (ADS)

    Ranner, H.-P.; Krauss, S.; Stangl, G.

    2012-04-01

    Modelling of the Earth's ionosphere means the description of the variability of the vertical TEC (Total Electron Content) in dependence of geographic latitude and longitude, height, diurnal and seasonal variation as well as solar activity. Within the project GIOMO (next Generation near real-time IOnospheric MOdels) the objectives are the identification and consolidation of improved ionospheric modelling technologies. The global models Klobuchar (GPS) and NeQuick (currently in use by EGNOS, in future used by Galileo) are compared to the IGS (International GNSS Service) Final GIM (Global Ionospheric Map). Additionally a RIM (Regional Ionospheric Map) for Europe provided by CODE (Center for Orbit Determination in Europe) is investigated. Furthermore the OLG (Observatorium Lustbühel Graz) regional models are calculated for two test beds with different latitudes and extensions (Western Austria and the Aegean region). There are three different approaches, two RIMs are based on spherical harmonics calculated either from code or phase measurements and one RIM is based on a Taylor series expansion around a central point estimated from zero-difference observations. The benefits of regional models are the local flexibility using a dense network of GNSS stations. Near real-time parameters are provided within ten minutes after every clock hour. All models have been compared according to their general behavior, the ability to react upon extreme solar events and the robustness of estimation. A ranking of the different models showed a preference for the RIMs while the global models should be used within a fall-back strategy.

  10. Development of Global Magnetosphere Models of Jupiter

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.

    2004-01-01

    The objective of the proposal was to construct global magnetospheric models of Jupiter for the use of Jovian magnetospheric community. In the four years of the grant period we were able to achieve all of the stated science objectives. The work has resulted in: 1) A new structural model of Jovian current sheet; 2) Global thickness map of the current sheet; 3) Magnetic field models of the current sheet; 4) The global model of Jupiter's magnetospheric field including hinging and delay of the current sheet, sweepback of the magnetic field and the shielding field of the magnetopause. To accomplish our work, we assembled an exhaustive magnetic field data base from all of the spacecraft that have visited Jupiter (Pioneers 10 and 11, Voyagers 1 and 2, Ulysses and Galileo). The data were rotated into system III and JSM coordinates. We used the data at resolutions of 1 minute (for studies of the structure of the current sheet) and 10 minutes (for building the global model).

  11. Global model of the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Castro Lopez-Tarruella, F. Javier; Fernandez Ibarz, Jose M.

    2002-07-01

    During the conceptual design of the GTC (Gran Telescopio Canarias) it was suggested to develop a Global Model of the behaviour of the GTC system to be used as a tool for the system engineering. This Global Model should be a dynamical simulation capable to predict the pointing, tracking, guiding and image quality of the GTC system in several simulation scenarios depending on the behavior of each subsystem. It was decided to develop the simulation in the Matlab/Simulink« environment. The kernel of the Global Model was a Simulink® model of the telescope mechanics. The model included the structural dynamics, control loops of the main axis (azimuth, elevation and rotators), and load models (wind, gravity, seism). Each component included error sources inherent to it (cogging and ripple on motors, encoding errors, bearing run-out, etc). The model permitted large rotations in elevation axis, which was necessary to test pointing performances. A specific simulation was developed within the project office for the analysis of the image quality of the optical system. It includes polishing defects of the optical surfaces (M1 segments, M2 and M3), low spatial frequency distortions of the optical surfaces (due to fabrication, gravity of instability) and misalignment between the primary mirror segments.

  12. The Global 2000 Report to the President. Volume Three. Documentation on the Government's Global Sectoral Models: The Government's "Global Model."

    ERIC Educational Resources Information Center

    Barney, Gerald O., Ed.

    The third volume of the Global 2000 study presents basic information ("documentation") on the long-term sectoral models used by the U.S. government to project global trends in population, resources, and the environment. Its threefold purposes are: (1) to present all this basic information in a single volume, (2) to provide an explanation, in the…

  13. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Reid, J. S.; Benedetti, A.; Colarco, P. R.; da Silva, A.; Lu, S.; Sekiyama, T.; Tanaka, T. Y.; Baldasano, J. M.; Basart, S.; Brooks, M. E.; Eck, T. F.; Iredell, M.; Hansen, J. A.; Jorba, O. C.; Juang, H.-M. H.; Lynch, P.; Morcrette, J.-J.; Moorthi, S.; Mulcahy, J.; Pradhan, Y.; Razinger, M.; Sampson, C. B.; Wang, J.; Westphal, D. L.

    2015-01-01

    Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP) latest generation of quasi-operational aerosol models, 5-day aerosol optical thickness (AOT) forecasts are analyzed for December 2011 through November 2012 from four institutions: European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), NASA Goddard Space Flight Center (GSFC), and Naval Research Lab/Fleet Numerical Meteorology and Oceanography Center (NRL/FNMOC). For dust, we also include the National Oceanic and Atmospheric Administration-National Geospatial Advisory Committee (NOAA NGAC) product in our analysis. The Barcelona Supercomputing Centre and UK Met Office dust products have also recently become members of ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble) is used to create the ICAP Multi-Model Ensemble (ICAP-MME). The ICAP-MME is run daily at 00:00 UTC for 6-hourly forecasts out to 120 h. Basing metrics on comparisons to 21 regionally representative Aerosol Robotic Network (AERONET) sites, all models generally captured the basic aerosol features of the globe. However, there is an overall AOT low bias among models, particularly for high AOT events. Biomass burning regions have the most diversity in seasonal average AOT. The Southern Ocean, though low in AOT, nevertheless also has high diversity. With regard to root mean square error (RMSE), as expected the ICAP-MME placed first over all models worldwide, and was typically first or second in ranking against all models at individual sites. These results are encouraging; furthermore, as more global operational aerosol models come online, we expect their inclusion in a robust

  14. An online educational atmospheric global circulation model

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schott, C.; Forget, F.

    2015-10-01

    As part of online courses on exoplanets of Observatoire de Paris, an online tool designed to vizualise outputs of the Laboratoire de Métérologie Dynamique (LMD) Global Circulation Model (GCM) for various atmospheric circulation regimes has been developed. It includes the possibility for students to visualize 1D and 2D plots along with animations of atmospheric quantities such as temperature, winds, surface pressure, mass flux, etc... from a state-of-the-art model.

  15. Studying complex chemistries using PLASIMO's global model

    NASA Astrophysics Data System (ADS)

    Koelman, PMJ; Tadayon Mousavi, S.; Perillo, R.; Graef, WAAD; Mihailova, DB; van Dijk, J.

    2016-02-01

    The Plasimo simulation software is used to construct a Global Model of a CO2 plasma. A DBD plasma between two coaxial cylinders is considered, which is driven by a triangular input power pulse. The plasma chemistry is studied during this power pulse and in the afterglow. The model consists of 71 species that interact in 3500 reactions. Preliminary results from the model are presented. The model has been validated by comparing its results with those presented in Kozák et al. (Plasma Sources Science and Technology 23(4) p. 045004, 2014). A good qualitative agreement has been reached; potential sources of remaining discrepancies are extensively discussed.

  16. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  17. Modeling the Martian Atmosphere with the LMD Global Climate Model

    NASA Astrophysics Data System (ADS)

    Forget, F.; Millour, E.; Gonzalez-Galindo, F.; Lebonnois, S.; Madeleine, J.-B.; Meslin, P.-Y.; Montabone, L.; Spiga, A.; Hourdin, F.; Lefevre, F.; Montmessin, F.; Lewis, S. R.; Read, P.; Lopez-Valverde, M. A.; Gilli, G.

    2008-11-01

    The Global Climate Model developed at LMD (Paris) in collaboration with IAA (Spain), AOPP and the OU (UK) has been improved. It is used for many applications (water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc.).

  18. Global modelling of Cryptosporidium in surface water

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  19. Modeling global lightning distributions in a general circulation model

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    A general circulation model (GCM) is used to model global lightning distributions and frequencies. Both total and cloud-to-ground lightning frequencies are modeled using parameterizations that relate the depth of convective clouds to lightning frequencies. The model's simulations of lightning distributions in time and space show good agreement with available observations. The model's annual mean climatology shows a global lightning frequency of 77 flashes per second, with cloud-to-ground lightning making up 25% of the total. The maximum lightning activity in the GCM occurs during the Northern Hemisphere summer, with approximately 91% of all lightning occurring over continental and coastal regions.

  20. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2014-05-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water

  1. Global optimization of bilinear engineering design models

    SciTech Connect

    Grossmann, I.; Quesada, I.

    1994-12-31

    Recently Quesada and Grossmann have proposed a global optimization algorithm for solving NLP problems involving linear fractional and bilinear terms. This model has been motivated by a number of applications in process design. The proposed method relies on the derivation of a convex NLP underestimator problem that is used within a spatial branch and bound search. This paper explores the use of alternative bounding approximations for constructing the underestimator problem. These are applied in the global optimization of problems arising in different engineering areas and for which different relaxations are proposed depending on the mathematical structure of the models. These relaxations include linear and nonlinear underestimator problems. Reformulations that generate additional estimator functions are also employed. Examples from process design, structural design, portfolio investment and layout design are presented.

  2. Global dynamic modeling of a transmission system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Qian, W.

    1993-04-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  3. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  4. Global Urbanization Modeling Supported by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Smith, S.; Zhao, K.; Imhoff, M. L.; Thomson, A. M.; Bond-Lamberty, B. P.; Elvidge, C.

    2014-12-01

    Urbanization, one of the major human induced land cover and land use change, has profound impacts on the Earth system, and plays important roles in a variety of processes such as biodiversity loss, water and carbon cycle, and climate change. Accurate information on urban areas and their spatial distribution at the regional and global scales is important in both scientific and policy-making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) provide a potential way to map urban area and its dynamics economically and timely. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the DMSP/OLS NTL data. The sensitivity analysis demonstrates the robustness of the derived optimal thresholds and the reliability of the cluster-based method. Compared to existing threshold techniques, our method reduces the over- and under-estimation issue, when mapping urban extent over a large area. Using this cluster-based method, we built new global maps of 1-km urban extent from the NTL data (Figure 1) and evaluated its temporal dynamics from 1992 to 2013. Supported by the derived global urban maps and socio-economic drivers, we developed an integrated modeling framework by integrating a top-down macro-scale statistical model with a bottom-up urban growth model and projected future urban expansion.

  5. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  6. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF

  7. Improving global health education: development of a Global Health Competency Model.

    PubMed

    Ablah, Elizabeth; Biberman, Dorothy A; Weist, Elizabeth M; Buekens, Pierre; Bentley, Margaret E; Burke, Donald; Finnegan, John R; Flahault, Antoine; Frenk, Julio; Gotsch, Audrey R; Klag, Michael J; Rodriguez Lopez, Mario Henry; Nasca, Philip; Shortell, Stephen; Spencer, Harrison C

    2014-03-01

    Although global health is a recommended content area for the future of education in public health, no standardized global health competency model existed for master-level public health students. Without such a competency model, academic institutions are challenged to ensure that students are able to demonstrate the knowledge, skills, and attitudes (KSAs) needed for successful performance in today's global health workforce. The Association of Schools of Public Health (ASPH) sought to address this need by facilitating the development of a global health competency model through a multistage modified-Delphi process. Practitioners and academic global health experts provided leadership and guidance throughout the competency development process. The resulting product, the Global Health Competency Model 1.1, includes seven domains and 36 competencies. The Global Health Competency Model 1.1 provides a platform for engaging educators, students, and global health employers in discussion of the KSAs needed to improve human health on a global scale. PMID:24445206

  8. Improving Global Health Education: Development of a Global Health Competency Model

    PubMed Central

    Ablah, Elizabeth; Biberman, Dorothy A.; Weist, Elizabeth M.; Buekens, Pierre; Bentley, Margaret E.; Burke, Donald; Finnegan, John R.; Flahault, Antoine; Frenk, Julio; Gotsch, Audrey R.; Klag, Michael J.; Lopez, Mario Henry Rodriguez; Nasca, Philip; Shortell, Stephen; Spencer, Harrison C.

    2014-01-01

    Although global health is a recommended content area for the future of education in public health, no standardized global health competency model existed for master-level public health students. Without such a competency model, academic institutions are challenged to ensure that students are able to demonstrate the knowledge, skills, and attitudes (KSAs) needed for successful performance in today's global health workforce. The Association of Schools of Public Health (ASPH) sought to address this need by facilitating the development of a global health competency model through a multistage modified-Delphi process. Practitioners and academic global health experts provided leadership and guidance throughout the competency development process. The resulting product, the Global Health Competency Model 1.1, includes seven domains and 36 competencies. The Global Health Competency Model 1.1 provides a platform for engaging educators, students, and global health employers in discussion of the KSAs needed to improve human health on a global scale. PMID:24445206

  9. Skill of regional and global model forecast over Indian region

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Kishtawal, C. M.; Pal, P. K.

    2016-02-01

    The global model analysis and forecast have a significant impact on the regional model predictions, as global model provides the initial and lateral boundary condition to regional model. This study addresses an important question whether the regional model can improve the short-range weather forecast as compared to the global model. The National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) and the Weather Research and Forecasting (WRF) model are used in this study to evaluate the performance of global and regional models over the Indian region. A 24-h temperature and specific humidity forecast from the NCEP GFS model show less error compared to WRF model forecast. Rainfall prediction is improved over the Indian landmass when WRF model is used for rainfall forecast. Moreover, the results showed that high-resolution global model analysis (GFS4) improved the regional model forecast as compared to low-resolution global model analysis (GFS3).

  10. Statistical modeling of global soil NOx emissions

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyuan; Ohara, Toshimasa; Akimoto, Hajime

    2005-09-01

    On the basis of field measurements of NOx emissions from soils, we developed a statistical model to describe the influences of soil organic carbon (SOC) content, soil pH, land-cover type, climate, and nitrogen input on NOx emission. While also considering the effects of soil temperature, soil moisture change-induced pulse emission, and vegetation fire, we simulated NOx emissions from global soils at resolutions of 0.5° and 6 hours. Canopy reduction was included in both data processing and flux simulation. NOx emissions were positively correlated with SOC content and negatively correlated with soil pH. Soils in dry or temperate regions had higher NOx emission potentials than soils in cold or tropical regions. Needleleaf forest and agricultural soils had high NOx emissions. The annual NOx emission from global soils was calculated to be 7.43 Tg N, decreasing to 4.97 Tg N after canopy reduction. Global averages of nitrogen fertilizer-induced emission ratios were 1.16% above soil and 0.70% above canopy. Soil moisture change-induced pulse emission contributed about 4% to global annual NOx emission, and the effect of vegetation fire on soil NOx emission was negligible.

  11. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  12. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project. PMID:24765870

  13. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  14. Cooperative global security programs modeling & simulation.

    SciTech Connect

    Briand, Daniel

    2010-05-01

    The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reduce weapons of mass destruction and terrorism threats through international technical cooperation.

  15. Towards a Global Upper Mantle Attenuation Model

    NASA Astrophysics Data System (ADS)

    Karaoglu, Haydar; Romanowicz, Barbara

    2015-04-01

    Global anelastic tomography is crucial for addressing the nature of heterogeneity in the Earth's interior. The intrinsic attenuation manifests itself through dispersion and amplitude decay. These are contaminated by elastic effects such as (de)focusing and scattering. Therefore, mapping anelasticity accurately requires separation of elastic effects from the anelastic ones. To achieve this, a possible approach is to try and first predict elastic effects through the computation of seismic waveforms in a high resolution 3D elastic model, which can now be achieved accurately using numerical wavefield computations. Building upon the recent construction of such a whole mantle elastic and radially anisotropic shear velocity model (SEMUCB_WM1, French and Romanowicz, 2014), which will be used as starting model, our goal is to develop a higher resolution 3D attenuation model of the upper mantle based on full waveform inversion. As in the development of SEMUCB_WM1, forward modeling will be performed using the spectral element method, while the inverse problem will be treated approximately, using normal mode asymptotics. Both fundamental and overtone time domain long period waveforms (T>60s) will be used from a dataset of over 200 events observed at several hundred stations globally. Here we present preliminary results of synthetic tests, exploring different iterative inversion strategies.

  16. Development of an Integrated Global Energy Model

    SciTech Connect

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  17. Magnetohydrodynamic boundary conditions for global models

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1988-01-01

    Boundary conditions in the ionosphere and the upstream solar wind are important in determining the dynamics of global magnetohydrodynamic models of the magnetosphere. It is generally recognized that the orientation of the magnetic field in the upstream solar wind strongly modulates the rate of energy input into the magnetosphere by magnetic reconnection. However, other aspects of the upstream boundary conditions may determine whether the reconnection occurs in a patchy manner, as in flux transfer events, or in a global manner, as in the Paschmann et al. (1979) events. Ionospheric boundary conditions should also affect the reconnection process. For example, ionospheric line-tying can cause x-line motion in the outer magnetosphere. If it is assumed that auroras occur on field lines mapping to x-lines, then auroral motions are different than the local convective motion of the plasma in which they occur. Global magnetohydrodynamic models which incorporate both magnetospheric reconnection and ionospheric convection could be used to investigate the effect of reconnection and convection upon dayside and nightside auroral motions during the course of a magnetic substorm.

  18. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2007-11-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  19. A hydroclimatic model of global fire patterns

    NASA Astrophysics Data System (ADS)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  20. Progress in Global Multicompartmental Modelling of DDT

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Lammel, G.

    2009-04-01

    Dichlorophenyltrichloroethane, DDT, and its major metabolite dichlorophenyldichloroethylene, DDE, are long-lived in the environment (persistent) and circulate since the 1950s. They accumulate along food chains, cause detrimental effects in marine and terrestrial wild life, and pose a hazard for human health. DDT was widely used as an insecticide in the past and is still in use in a number of tropical countries to combat vector borne diseases like malaria and typhus. It is a multicompartmental substance with only a small mass fraction residing in air. A global multicompartment chemistry transport model (MPI-MCTM; Semeena et al., 2006) is used to study the environmental distribution and fate of dichlorodiphenyltrichloroethane (DDT). For the first time a horizontally and vertically resolved global model was used to perform a long-term simulation of DDT and DDE. The model is based on general circulation models for the ocean (MPIOM; Marsland et al., 2003) and atmosphere (ECHAM5). In addition, an oceanic biogeochemistry model (HAMOCC5.1; Maier-Reimer et al., 2005 ) and a microphysical aerosol model (HAM; Stier et al., 2005 ) are included. Multicompartmental substances are cycling in atmosphere (3 phases), ocean (3 phases), top soil (3 phases), and vegetation surfaces. The model was run for 40 years forced with historical agricultural application data of 1950-1990. The model results show that the global environmental contamination started to decrease in air, soil and vegetation after the applications peaked in 1965-70. In some regions, however, the DDT mass had not yet reached a maximum in 1990 and was still accumulating mass until the end of the simulation. Modelled DDT and DDE concentrations in atmosphere, ocean and soil are evaluated by comparison with observational data. The evaluation of the model results indicate that degradation of DDE in air was underestimated. Also for DDT, the discrepancies between model results and observations are related to uncertainties of

  1. Supermodeling With A Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Wiegerinck, Wim; Burgers, Willem; Selten, Frank

    2013-04-01

    In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra

  2. Mycorrhizal fungi and global land surface models?

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Fisher, J. B.; Shi, M.; Phillips, R.

    2013-12-01

    In the current generation of Land Surface Models (LSMs), the representation of coupled carbon (C) and nutrient cycles does not account for allocation of C by plants to mycorrhizal fungi in exchange for limiting nutrients. Given that the amount of C transferred to mycorrhizae can exceed 20% of net primary production (NPP), mycorrhizae can supply over half of the nitrogen (N) needed to support NPP, and that large majority of plants form associations with mycorrhizae; integrating these mechanisms into LSMs may significantly alter our understanding of the role of the terrestrial biosphere in mitigating climate change. Here, we present results from the integration of a mycorrhizal framework into a cutting-edge global plant nitrogen model -- Fixation & Uptake of Nitrogen (FUN; Fisher et al., 2010) -- that can be coupled into existing LSMs. In this mycorrhizal framework, the C cost of N acquisition varies as a function of mycorrhizal type with: (1) plants that support arbuscular mycorrhizae (AM) benefiting when N is plentiful and (2) plants that support ectomycorrhizae (ECM) benefiting when N is limiting. At the plot scale (15 x 15m), the My-FUN model improved predictions of retranslocation, N uptake, and the amount of C transferred into the soil relative to the base model across 45 plots that vary in mycorrhizal type in Indiana, USA. At the ecosystem scale, when we coupled this new framework into the Community Land Model (CLM-CN), the model estimated lower C uptake than the base model and more accurately predicted C uptake at the Morgan Monroe State Forest AmeriFlux site. These results suggest that the inclusion of a mycorrhizal framework into LSMs will enhance our ability to predict feedbacks between global change and the terrestrial biosphere.

  3. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  4. Global Exposure Modelling of Semivolatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Guglielmo, F.; Lammel, G.; Maier-Reimer, E.

    2008-12-01

    Organic compounds which are persistent and toxic as the agrochemicals γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorodiphenyltrichloroethane (DDT) pose a hazard for the ecosystems. These compounds are semivolatile, hence multicompartmental substances and subject to long-range transport (LRT) in atmosphere and ocean. Being lipophilic, they accumulate in exposed organism tissues and biomagnify along food chains. The multicompartmental global fate and LRT of DDT and lindane in the atmosphere and ocean have been studied using application data for 1980, on a decadal scale using a model based on the coupling of atmosphere and (for the first time for these compounds) ocean General Circulation Models (ECHAM5 and MPI-OM). The model system encompasses furthermore 2D terrestrial compartments (soil and vegetation) and sea ice, a fully dynamic atmospheric aerosol (HAM) module and an ocean biogeochemistry module (HAMOCC5). Large mass fractions of the compounds are found in soil. Lindane is also found in comparable amount in ocean. DDT has the longest residence time in almost all compartments. The sea ice compartment locally almost inhibits volatilization from the sea. The air/sea exchange is also affected , up to a reduction of 35 % for DDT by partitioning to the organic phases (suspended and dissolved particulate matter) in the global oceans. Partitioning enhances vertical transport in the sea. Ocean dynamics are found to be more significant for vertical transport than sinking associated with particulate matter. LRT in the global environment is determined by the fast atmospheric circulation. Net meridional transport taking place in the ocean is locally effective mostly via western boundary currents, upon applications at mid- latitudes. The pathways of the long-lived semivolatile organic compounds studied include a sequence of several cycles of volatilisation, transport in the atmosphere, deposition and transport in the ocean (multihopping substances). Multihopping is

  5. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  6. Heterogeneous Chemistry in Global Chemistry Transport Models

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Simpson, David; Schultz, Martin; Bott, Andreas

    2016-04-01

    The impact of six tropospheric heterogeneous reactions on ozone and nitrogen species was studied using two chemical transport models EMEP MSC-W and ECHAM6-HAMMOZ. Since heterogeneous reactions depend on reactant concentrations (in this study these are N_2O_5, NO_3, NO_2, O_3, HNO_3, HO_2) and aerosol surface area S_a, the modeled surface area of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in East Asia. Further, the impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. As previously shown, the analysis of the sensitivity runs shows that the globally most important heterogeneous reaction is the one of N_2O_5. Nevertheless, NO_2, NO_3, HNO3 and HO2 heterogeneous reactions gain relevance particular in East China due to presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is compared to the other heterogeneous reactions of minor relevance. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations when the heterogeneous reactions are incorporated. Impacts of emission changes on the importance of the heterogeneous chemistry will be discussed.

  7. Nasadem Global Elevation Model: Methods and Progress

    NASA Astrophysics Data System (ADS)

    Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q.; Rosen, P.; Shimada, J.; Simard, M.; Tung, W.

    2016-06-01

    NASADEM is a near-global elevation model that is being produced primarily by completely reprocessing the Shuttle Radar Topography Mission (SRTM) radar data and then merging it with refined ASTER GDEM elevations. The new and improved SRTM elevations in NASADEM result from better vertical control of each SRTM data swath via reference to ICESat elevations and from SRTM void reductions using advanced interferometric unwrapping algorithms. Remnant voids will be filled primarily by GDEM3, but with reduction of GDEM glitches (mostly related to clouds) and therefore with only minor need for secondary sources of fill.

  8. Robust calibration of a global aerosol model

    NASA Astrophysics Data System (ADS)

    Lee, L.; Carslaw, K. S.; Pringle, K. J.; Reddington, C.

    2013-12-01

    Comparison of models and observations is vital for evaluating how well computer models can simulate real world processes. However, many current methods are lacking in their assessment of the model uncertainty, which introduces questions regarding the robustness of the observationally constrained model. In most cases, models are evaluated against observations using a single baseline simulation considered to represent the models' best estimate. The model is then improved in some way so that its comparison to observations is improved. Continuous adjustments in such a way may result in a model that compares better to observations but there may be many compensating features which make prediction with the newly calibrated model difficult to justify. There may also be some model outputs whose comparison to observations becomes worse in some regions/seasons as others improve. In such cases calibration cannot be considered robust. We present details of the calibration of a global aerosol model, GLOMAP, in which we consider not just a single model setup but a perturbed physics ensemble with 28 uncertain parameters. We first quantify the uncertainty in various model outputs (CCN, CN) for the year 2008 and use statistical emulation to identify which of the 28 parameters contribute most to this uncertainty. We then compare the emulated model simulations in the entire parametric uncertainty space to observations. Regions where the entire ensemble lies outside the error of the observations indicate structural model error or gaps in current knowledge which allows us to target future research areas. Where there is some agreement with the observations we use the information on the sources of the model uncertainty to identify geographical regions in which the important parameters are similar. Identification of regional calibration clusters helps us to use information from observation rich regions to calibrate regions with sparse observations and allow us to make recommendations for

  9. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a

  10. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Walker, Raymond J.

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5RJ. The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by Cmax)(Delta)t/(Deltax less than 1 where Cmax is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is Cw and the flow speed is Cf, Cmax = Cw + Cf. Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute

  11. The Software Architecture of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  12. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  13. Modeling Nitrogen Isotopes in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Somes, C.; Schmittner, A.

    2008-12-01

    The nitrogen isotopic signal measured in marine sediments has the potential to be a valuable paleoceanographic proxy. It captures the response of different biological processes in the marine ecosystem including photosynthesis, nitrogen fixation, denitrification as well as processes within the food chain. A simple marine ecosystem model that includes the interactive cycling of nitrogen, phosphorus, and oxygen is augmented to record nitrogen isotopes in the University of Victoria Earth System Climate Model. New nitrogen isotopic tracers are employed at all trophic levels of the ecosystem. This includes the δ15N of nitrate, both classes of phytoplankton (nitrogen fixers and all other phytoplankton), zooplankton, and detritus. Despite a few shortcomings, it is shown that the nitrogen isotope model can capture the major trends observed in the modern climate. The ability to model nitrogen isotopes in a global coupled ocean- atmosphere-sea ice-ecosystem model gives us a unique opportunity to directly infer what physical and biological changes in the climate system are driving the δ15N signal on spatial and temporal scales. This is a valuable tool giving us tremendous insight on how to interpret the nitrogen isotopic signal.

  14. Global quantitative modeling of chromatin factor interactions.

    PubMed

    Zhou, Jian; Troyanskaya, Olga G

    2014-03-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the "chromatin codes") remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles--we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  15. Global Reference Atmospheric Model and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).

  16. Polynomial search and global modeling: Two algorithms for modeling chaos.

    PubMed

    Mangiarotti, S; Coudret, R; Drapeau, L; Jarlan, L

    2012-10-01

    Global modeling aims to build mathematical models of concise description. Polynomial Model Search (PoMoS) and Global Modeling (GloMo) are two complementary algorithms (freely downloadable at the following address: http://www.cesbio.ups-tlse.fr/us/pomos_et_glomo.html) designed for the modeling of observed dynamical systems based on a small set of time series. Models considered in these algorithms are based on ordinary differential equations built on a polynomial formulation. More specifically, PoMoS aims at finding polynomial formulations from a given set of 1 to N time series, whereas GloMo is designed for single time series and aims to identify the parameters for a selected structure. GloMo also provides basic features to visualize integrated trajectories and to characterize their structure when it is simple enough: One allows for drawing the first return map for a chosen Poincaré section in the reconstructed space; another one computes the Lyapunov exponent along the trajectory. In the present paper, global modeling from single time series is considered. A description of the algorithms is given and three examples are provided. The first example is based on the three variables of the Rössler attractor. The second one comes from an experimental analysis of the copper electrodissolution in phosphoric acid for which a less parsimonious global model was obtained in a previous study. The third example is an exploratory case and concerns the cycle of rainfed wheat under semiarid climatic conditions as observed through a vegetation index derived from a spatial sensor. PMID:23214661

  17. A global digital elevation model - GTOP030

    USGS Publications Warehouse

    1999-01-01

    GTOP030, the U.S. Geological Survey's (USGS) digital elevation model (DEM) of the Earth, provides the flrst global coverage of moderate resolution elevation data.  The original GTOP30 data set, which was developed over a 3-year period through a collaborative effort led by the USGS, was completed in 1996 at the USGS EROS Data Center in Sioux Falls, South Dakota.  The collaboration involved contributions of staffing, funding, or source data from cooperators including the National Aeronautics and Space Administration (NASA), the United Nations Environment Programme Global Resource Information Database (UNEP/GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografia e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR). In 1999, work was begun on an update to the GTOP030 data set. Additional data sources are being incorporated into GTOP030 with an enhanced and improved data set planned for release in 2000.

  18. Modeling Global Change in Local Places: Capturing Global Change and Local Impacts in a Global Land System Change Model

    NASA Astrophysics Data System (ADS)

    Verburg, P.; Eitelberg, D.; Ornetsmueller, C.; van Vliet, J.

    2015-12-01

    Global land use models are driven by demands for food and urban space. However, at the same time many transitions in land use and land cover are driven by societal changes and the demand for a wide range of landscape functions or ecosystem services, including the conservation of biodiversity, regulation of climate and floods, and recreation. Some of these demands lead to tele-connected land use change through the transport of good and services, others are place-based and shape the local realities of land system change. Most current land use change models focus on land cover changes alone and ignore the importance of changes in land management and landscape configuration that affect climate, biodiversity and the provisioning of ecosystem services. This talk will present an alternative approach to global land use modelling based on the simulation of changes in land systems in response to a wide set of ecosystem service demands. Simulations at global scale illustrate that accounting for demands for livestock products, carbon sequestration and biological conservation (following the Aichi targets) leads to different outcomes of land change models and allows the identification of synergies between carbon and biodiversity targets. An application in Laos indicates the complex transitions in land systems and landscapes that occur upon the transition from shifting cultivation to permanent agriculture and tree-crop plantations. We discuss the implications of such land system representations for Earth system modelling.

  19. Aeras: A next generation global atmosphere model

    SciTech Connect

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  20. Aeras: A next generation global atmosphere model

    DOE PAGESBeta

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  1. Global tectonics from mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, N.

    2015-12-01

    The motions of the surface of the Earth are described using the theory of Plate Tectonics. Despite the fact that this theory has shaped modern geosciences it has some limitations, and among them the impossibility to evaluate the forces at the origin of the surface displacements and deformations. Hence important questions remain difficult to solve like the origin of the sizes of plates, forces driving mountain building or supercontinent dispersal... Tremendous progresses have been made in the past 15 years in mantle convection modelling. Especially, modern convection codes can solve for motion equations with complex material properties. Since the early 2000's, the development of pseudo-plastic rheologies contributed to produce convection models with plate-like behaviour: plates naturally emerge and interact with the flow in a self-organized manner. Using such models in 3D spherical geometry (computed with StagYY - Tackley, 2008), I will show that important questions on the global tectonics of the planet can be addressed now: the distribution of seafloor ages, the distribution of plate area, the lifetime of small and large plates or modes of plate reorganizations. Tackley, P.J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171, 7-18 (2008).

  2. Integrated assessment models of global climate change

    SciTech Connect

    Parson, E.A.; Fisher-Vanden, K.

    1997-12-31

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs.

  3. A global electric circuit model within a community climate model

    NASA Astrophysics Data System (ADS)

    Lucas, G. M.; Baumgaertner, A. J. G.; Thayer, J. P.

    2015-12-01

    To determine the complex dependencies of currents and electric fields within the Global Electric Circuit (GEC) on the underlying physics of the atmosphere, a new modeling framework of the GEC has been developed for use within global circulation models. Specifically, the Community Earth System Modeling framework has been utilized. A formulation of atmospheric conductivity based on ion production and loss mechanisms (including galactic cosmic rays, radon, clouds, and aerosols), conduction current sources, and ionospheric potential changes due to the influence of external current systems are included. This paper presents a full description of the calculation of the electric fields and currents within the model, which now includes several advancements to GEC modeling as it incorporates many processes calculated individually in previous articles into a consistent modeling framework. This framework uniquely incorporates effects from the troposphere up to the ionosphere within a single GEC model. The incorporation of a magnetospheric potential, which is generated by a separate magnetospheric current system, acts to modulate or enhance the surface level electric fields at high-latitude locations. This produces a distinct phasing signature with the GEC potential that is shown to depend on the observation location around the globe. Lastly, the model output for Vostok and Concordia, two high-latitude locations, is shown to agree with the observational data obtained at these sites over the same time period.

  4. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  5. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    SciTech Connect

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  6. Dynamic Global Forest and Agriculture Model (D-GFAM)

    EPA Science Inventory

    D-GFAM was created by introduction of aggregate crop and livestock sectors to the Global Timber Model. D-GFAM maximizes net present value of global welfare in the forestry, crop, and livestock sectors by choosing outputs, land areas and inputs. Global consumption for each product...

  7. A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION

    SciTech Connect

    Feng Xueshang; Jiang Chaowei; Xiang Changqing; Zhao Xuepu; Wu, S. T. E-mail: cwjiang@spaceweather.ac.cn E-mail: xpzhao@sun.stanford.edu

    2012-10-10

    This work is devoted to the construction of a data-driven model for the study of the dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetic field. The data-driven model consists of a surface flux transport (SFT) model and a global three-dimensional (3D) magnetohydrodynamic (MHD) coronal model. The SFT model is employed to produce the global time-varying and self-consistent synchronic snapshots of the photospheric magnetic field as the input to drive our 3D numerical global coronal AMR-CESE-MHD model on an overset grid of Yin-Yang overlapping structure. The SFT model and the 3D global coronal model are coupled through the boundary condition of the projected characteristic method. Numerical results of the coronal evolution from 1996 September 4 to October 29 provide a good comparison with multiply observed coronal images.

  8. A Data-driven Model for the Global Coronal Evolution

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Xiang, Changqing; Zhao, Xuepu; Wu, S. T.

    2012-10-01

    This work is devoted to the construction of a data-driven model for the study of the dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetic field. The data-driven model consists of a surface flux transport (SFT) model and a global three-dimensional (3D) magnetohydrodynamic (MHD) coronal model. The SFT model is employed to produce the global time-varying and self-consistent synchronic snapshots of the photospheric magnetic field as the input to drive our 3D numerical global coronal AMR-CESE-MHD model on an overset grid of Yin-Yang overlapping structure. The SFT model and the 3D global coronal model are coupled through the boundary condition of the projected characteristic method. Numerical results of the coronal evolution from 1996 September 4 to October 29 provide a good comparison with multiply observed coronal images.

  9. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  10. Global emissions inventories to aid atmospheric modelers

    NASA Astrophysics Data System (ADS)

    Graedel, T. E.

    Computer projections of changes in global atmospheric chemistry could become more accurate and more easily compared with the availability of standard global emissions inventories. Starting in 1994, the Global Emissions Inventory Activity (GEIA) began to finalize gridded global emissions inventories and distribute them to atmospheric scientists. GEIA operates under the auspices of the International Global Atmospheric Chemistry (IGAC) Project, a cooperative effort of several hundred atmospheric scientists from more than 30 countries. The purpose of the IGAC Project is to measure, understand, and predict changes in global atmospheric chemistry, particularly those contributing to global problems such as acid rain, depletion of stratospheric ozone, greenhouse warming, and increased oxidant levels that damage biota.A 1992 survey by participants in the GEIA project [Graedel et al., 1993] showed that suitable emissions inventories are rarely available. The chlorofluorocarbon inventory, regarded as well quantified, was unavailable in gridded form. Inventories for CO2, CH4, NOx, SO2, reduced sulfur, and radon were regarded as having excess uncertainty, inadequate spatial resolution, or both; inventories for other chemical species were sketchy or nonexistent. Temporal resolution was almost uniformly poor. The survey made it clear that internally consistent, rigorously developed, gridded inventories with adequate spatial and temporal resolution would be valuable.

  11. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  12. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  13. Global gravity field models and their use for geophysical modelling

    NASA Astrophysics Data System (ADS)

    Pail, R.

    2015-12-01

    During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative

  14. Offline tracer transport modeling with global WRF model data

    NASA Astrophysics Data System (ADS)

    Belikov, Dmitry; Maksytov, Shamil; Zaripov, Radomir; Bart, Andrey; Starchenko, Alexander

    2013-04-01

    This work describes the one-way coupling between a global configuration of the Weather Research and Forecasting (WRF) weather prediction model (http://wrf-model.org/) and the National Institute for Environmental Studies (NIES) three-dimensional offline chemical transport model (version NIES-08.1i). The primary motivation for developing this coupled model has been to reduce transport errors in global-scale simulation of greenhouse gases through a more detailed description of the meteorological conditions. We have implemented a global configuration of WRF model (version 3.4.1, ARW core) with 2.5 degree horizontal resolution and 32 vertical levels. The WRF model was driving with NCEP Final Analysis (FNL) reanalysis using combined techniques: FDDA + Cyclic Incremental Correction (like in intermittent data assimilation). Time-averaged mass-coupled horizontal velocities on sigma levels with approach supposed by Nehrkorn et al. (2010) are calculated to drive NIES TM. The NIES TM is designed to simulate natural and anthropogenic synoptic-scale variations in atmospheric constituents at diurnal, seasonal and interannual timescales. The model uses a mass-conservative flux-form formulation that consists of a third-order van Leer advection scheme and a horizontal dry-air mass flux correction. The horizontal latitude-longitude grid is a reduced rectangular grid (i.e., the grid size is doubled several times approaching the poles), with an initial spatial resolution of 2.5 deg x 2.5 deg and 32 vertical levels from the surface up to the level of 3 hPa. A simulations of the atmospheric tracer are used to evaluate the performance of the coupled WRF-NIES model. Simulated distributions are validated against in situ observations and compared with output from "standard" version of NIES TM driven by the Japanese 25-year Reanalysis/the Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS) dataset. Fields calculated by WRF and used to drive NIES TM were also evaluated

  15. Latest updates in global flood modelling: channel bifurcation and global river width database

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.; Kanae, S.; Hirabayashi, Y.; O'Loughlin, F.; Trigg, M. A.; Bates, P. D.

    2014-12-01

    Global flood modelling is a relatively new framework in earth system studies, and there still exist many rooms for improving model physics. A typical grid size of global models (generally >5 km) is coarser than the scale of the topography of river channels and floodplains, therefore flood dynamics in global flood models is represented by sub-grid parameterization. Here, we introduce two latest updates in flood dynamics parameterization, i.e. channel bifurcation scheme and global river width database. The upstream-downstream relationship of model grids is prescribed (i.e. parameterized) by a river network map, where each grid has been assumed to have only one downstream grid. We abandoned this "only one downstream" assumption, and succeeded to represent channel bifurcation in a global flood model. The new bifurcation scheme was tested in the Mekong River, and showed the importance of channel bifurcation in mega-delta hydrodynamics. Channel cross-sectional shape has been parameterized using an empirical equation of discharge (or drainage area), and it is a major source of uncertainties in global flood modelling. We recently developed a fully-automated algorithm to calculate river width from satellite water mask. By applying this algorithm to SRTM Water Body Data, the Global Width Database for Large Rivers (GWD-LR) was constructed. The difference between the satellite-based width and empirically-estimated width is very large, suggesting the difficulty of river width parameterization by an empirical equation. Improvement in flood dynamics parameterization reduces uncertainties in global flood simulations. This enables advanced validation/calibration of global flood models, such as direct comparison against satellite altimeters. A future strategy for advanced model validation/calibration will be mentioned in the conference presentation.

  16. Development of mpi_EPIC model for global agroecosystem modeling

    SciTech Connect

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; Schuchart, Joseph; Kline, Keith L.; Wei, Yaxing; Ricciuto, Daniel M.; Wullschleger, Stan D.; Post, Wilfred M.; Izaurralde, R. Cesar

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmental effects.

  17. Development of mpi_EPIC model for global agroecosystem modeling

    DOE PAGESBeta

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; Schuchart, Joseph; Kline, Keith L.; Wei, Yaxing; Ricciuto, Daniel M.; Wullschleger, Stan D.; Post, Wilfred M.; Izaurralde, R. Cesar

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less

  18. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration's Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ???100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  19. Modeling of reservoir operation in UNH global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  20. Collisionless Reconnection in Global Modeling of Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Gombosi, T.; de Zeeuw, D.; Toth, G.

    2006-12-01

    Recent advances in small-scale kinetic modeling of magnetic reconnection significantly improved our understanding of physical mechanisms controlling the dissipation in the vicinity of the reconnection site in collisionless plasma. However the progress in studies of small-scale geometries was not very helpful for large scale simulations. Global magnetosphere simulations usually include non-ideal processes in terms of numerical dissipation and/or ad hoc anomalous resistivity. To understand the role of magnetic reconnection in global evolution of magnetosphere and to place spacecraft observations into global context it is desirable to perform global simulations with physically motivated model of dissipation that are capable to reproduce reconnection rates observed in kinetic models. In our efforts to bridge the gap between small scale kinetic modeling and global simulations we introduced an approach that allows to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. We utilized the global MHD code BATSRUS and incorporate primary mechanism controlling the dissipation in the vicinity of the reconnection site in terms of non-gyrotropic corrections to the induction equation. We demonstrated that nongyrotropic effects can significantly alter the global magnetosphere evolution. Our approach allowed for the first time to model loading/unloading cycle in response to steady southward IMF driving. We will extend our approach to cases with nonzero IMF By and analyze the effects of solar wind parameters and ionospheric conductance on reconnection rate and global magnetosphere dynamics.

  1. Global stability for a class of discrete SIR epidemic models.

    PubMed

    Enatsu, Yoichi; Nakata, Yukihiko; Muroya, Yoshiaki

    2010-04-01

    In this paper, we propose a class of discrete SIR epidemic models which are derived from SIR epidemic models with distributed delays by using a variation of the backward Euler method. Applying a Lyapunov functional technique, it is shown that the global dynamics of each discrete SIR epidemic model are fully determined by a single threshold parameter and the effect of discrete time delays are harmless for the global stability of the endemic equilibrium of the model. PMID:20462293

  2. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  3. Modeling the Global Workplace Using Emerging Technologies

    ERIC Educational Resources Information Center

    Dorazio, Patricia; Hickok, Corey

    2008-01-01

    The Fall 2006 term of COM495, Senior Practicum in Communication, offered communication and information design students the privilege of taking part in a transatlantic intercultural virtual project. To emulate real world experience in today's global workplace, these students researched and completed a business communication project with German…

  4. Global Futures: a multithreaded execution model for Global Arrays-based applications

    SciTech Connect

    Chavarría-Miranda, Daniel; Krishnamoorthy, Sriram; Vishnu, Abhinav

    2012-05-31

    We present Global Futures (GF), an execution model extension to Global Arrays, which is based on a PGAS-compatible Active Message-based paradigm. We describe the design and implementation of Global Futures and illustrate its use in a computational chemistry application benchmark (Hartree-Fock matrix construction using the Self-Consistent Field method). Our results show how we used GF to increase the scalability of the Hartree-Fock matrix build to up to 6,144 cores of an Infiniband cluster. We also show how GF's multithreaded execution has comparable performance to the traditional process-based SPMD model.

  5. Atmospheric Sulfur Cycle Simulated in The Global Model GOCART: Model Description and Global Properties

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann; Mueller, Jean-Francois; Thompson, Anne M.

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the simulated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources contribute 339% and 67% respectively to the total sulfate burden. A sulfate production efficiency of 0.41 - 0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount oi sulfate produced to the total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990, we estimate a total sulfate production of 39 Tg S /yr with 36% and 64% respectively from in-air and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the Mt. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore, a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.

  6. Global Model Analysis by Parameter Space Partitioning

    ERIC Educational Resources Information Center

    Pitt, Mark A.; Kim, Woojae; Navarro, Daniel J.; Myung, Jay I.

    2006-01-01

    To model behavior, scientists need to know how models behave. This means learning what other behaviors a model can produce besides the one generated by participants in an experiment. This is a difficult problem because of the complexity of psychological models (e.g., their many parameters) and because the behavioral precision of models (e.g.,…

  7. Model of globally coupled Duffing flows

    NASA Astrophysics Data System (ADS)

    Shimada, Tokuzo; Moriya, Takanobu

    2014-03-01

    A Duffing oscillator in a certain parameter range shows period-doubling that has the same Feigenbaum ratio as the logistic map, which is an important issue in universality in chaos. In this paper a globally coupled lattice of Duffing flows (GCFL), which is a natural extension of the globally coupled logistic map lattice (GCML), is constructed. It is observed that GCFL inherits various intriguing properties of GCML and that universality at the level of elements is thus lifted to that of systems. Phase diagrams for GCFL are determined, which are essentially the same as those for GCML. Similar to the two-clustered periodic attractor of GCML, the GCFL two-clustered attractor exhibits a successive period-doubling with an increase of population imbalance between the clusters (\\vartheta -bifurcation). A nontrivial distinction between the GCML and GCFL attractors that originates from the symmetry in the Duffing equation is investigated in detail.

  8. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  9. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  10. A Data-Driven Evolution Model for the Global Corona

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Jiang, C.; Xiang, C. Q.; Wu, S.

    2011-12-01

    In this work we have developed a new time-dependent global corona model for the study of dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetogram. A surface flux transport (SFT) model is employed to produce the time-varying and self-consistent magnetogram with synoptic map as input. The global corona model is established with our newly-developed numerical code AMR-CESE-MHD on an overset grid of Yin-Yang overlapping structure. The SFT model and the three-dimensional global corona model is coupled through the boundary condition of projected-characteristic method. Numerical study of the coronal evolution from Carrington rotation 1913 to 1915 presents results comparable with multi-observed coronal images.

  11. Global scale, physical models of the F region ionosphere

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.

    1989-01-01

    Consideration is given to the development and verification of global computer models of the F-region which simulate the interactions between physical processes in the ionosphere. The limitations of the physical models are discussed, focusing on the inputs to the ionospheric system such as magnetospheric electric field and auroral precipitation. The possibility of coupling ionospheric models with thermospheric and magnetospheric models is examined.

  12. A new global GIS architecture based on STQIE model

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Guo, Shide; Pu, Guoliang; Sun, Min

    2007-06-01

    Global GIS is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. A new Global GIS architecture based on STQIE model is designed in this paper, according to the computer cluster theory, the space-time integration technology and the virtual real technology. There is four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. In this paper a global 3D prototype system is developed taking advantage of C++ language according to the above thought. This system integrated the simulation system with GIS, and supported display of multi-resolution DEM, image and multi-dimensional static or dynamic 3D objects.

  13. Statistical Properties of Downscaled CMIP3 Global Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Tyan, S.; Thrasher, B.; Maurer, E. P.; Tebaldi, C.

    2009-12-01

    Spatial downscaling of global climate model projections adds physically meaningful spatial detail, and brings the results down to a scale that is more relevant to human and ecological systems. Statistical/empirical downscaling methods are computationally inexpensive, and thus can be applied to large ensembles of global climate model projections. Here we examine some of the statistical properties of a large ensemble of empirically downscale global climate projections. The projections are the CMIP3 global climate model projections that were performed by modeling groups around the world and archived by the Program for Climate Model Diagnosis and Intercomparison at Lawrence Livermore National Laboratory. Downscaled versions of 112 of these simulations were created on 2007 and are archived at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html. The downscaling methodology employed, “Bias Correction/Spatial Downscaling” (BCSD), includes a correction of GCM biases relative to observations during a historical reference period, as well as empirical downscaling to grid scale of ~12 km. We analyzed these downscaled projections and some of the original global model results to assess effects of the bias correction and downscaling on the statistical properties of the ensemble. We also assessed uncertainty in the climate response to increased greenhouse gases from initial conditions relative to the uncertainty introduced by choice of global climate model.

  14. Spherical harmonic analysis for verfication of a global atmospheric model

    NASA Technical Reports Server (NTRS)

    Christidis, Z.; Spar, J.

    1979-01-01

    Surface spherical harmonics were used to analyze the horizontal fields of various quantities generated by a global climate model. Also, the computed monthly mean forecast fields were compared with the corresponding observed fields.

  15. Modeling monthly mean variation of the solar global irradiation

    NASA Astrophysics Data System (ADS)

    Vindel, J. M.; Polo, J.; Zarzalejo, L. F.

    2015-01-01

    The monthly mean variation of the solar global reaching the Earth's surface has been characterized at a global level by a regression model. This model considers the monthly variation itself (to different horizons and even the maximum annual variation) as the study variable, and it is applied without using data corresponding to measured meteorological variable. Two explicative variables have been used, the variation of the extraterrestrial irradiation and the variation of the clear sky global horizontal irradiation. The work has been carried out from datasets including average global daily solar irradiation for each month of the year measured on the ground. The model quality has been proven to be very dependent of the temporal variation considered, in such a way that higher variations, that is to say, higher distances between months, lead to an improvement in the model outcomes.

  16. Global Models of Growth and Competition

    PubMed Central

    Gilpin, Michael E.; Ayala, Francisco J.

    1973-01-01

    Very precise data on the dynamics of a competitive system of two species of Drosophila have been obtained. By a curvilinear regression approach, analytical models of competition have been fitted. By statistical and biological criteria of simplicity, reality, generality, and accuracy, the best of these models has been chosen. This model represents an extension of the Lotka-Volterra model of competition; it adds a fourth parameter that controls the degree of nonlinearity in intraspecific growth regulation. It represents a similar extension of the logistic model of population growth. PMID:4519647

  17. The Global Gridded Crop Model Intercomparison (GGCMI) (Invited)

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.

    2013-12-01

    In 2012 AgMIP led a Global Gridded Crop Model (GGCM) Intercomparison fast-track project in coordination with the PIK-led Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP). This fast-track included 7 GGCMs and updated the state of knowledge on climate change vulnerabilities and impacts using modern global high-resolution models driven by climate model output from CMIP5. This fast-track culminated with the January 31st submission of 6 papers to a PNAS special issue. Initial results indicate the potential of global gridded crop model simulations and the need to further improve understanding of mechanisms, assumptions, and uncertainties of model design and execution; these are best addressed in a coordinated model intercomparison project at continental and global scale. In Spring 2013, we developed a new set of protocols for the next phase of the GGCMI, which will run for 3 years and include 3 overlapping stages of increasing duration: 1) Historical simulation and model evaluation 2) Analysis of model sensitivity to CTWN (carbon, temperature, water, and nitrogen) 3) Coordinated regional and global climate assessment In this talk we will summarize some key finding from the 2012 fast-track assessment and present preliminary results from Phase 2.1: Historical simulation and model evaluation. In this stage, models are being run using various observation and reanalysis-based historical weather products so that they can be evaluated over the historical period globally and in various key interest regions, so that inter-model differences can be compared against the variation induced by the choice of historical data product, and so that historical extreme events can be evaluated in a multi-model framework. The project currently includes 17 modeling groups from 11 countries, along with several other major data partners, and simulations are being performed over the Summer and Fall of 2013.

  18. A traceability framework for diagnostics of global land models

    NASA Astrophysics Data System (ADS)

    Luo, Yiqi; Xia, Jianyang; Liang, Junyi; Jiang, Lifen; Shi, Zheng; KC, Manoj; Hararuk, Oleksandra; Rafique, Rashid; Wang, Ying-Ping

    2015-04-01

    The biggest impediment to model diagnostics and improvement at present is model intractability. The more processes incorporated, the more difficult it becomes to understand or evaluate model behavior. As a result, uncertainty in predictions among global land models cannot be easily diagnosed and attributed to their sources. We have recently developed an approach to analytically decompose a complex land model into traceable components based on mutually independent properties of modeled core biogeochemical processes. As all global land carbon models share those common properties, this traceability framework is applicable to all of them to improve their tractability. Indeed, we have applied the traceability framework to improve model diagnostics in several aspects. First, we have applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model and Community Land Model version 3.5 (CLM3.5) to identify sources of those model differences. The major causes of different predictions were found to be parameter setting related to carbon input and baseline residence times between the two models. Second, we have used the framework to diagnose impacts of adding nitrogen processes into CABLE on its carbon simulation. Adding nitrogen processes not only reduces net primary production but also shortens residence times in the CABLE model. Third, the framework helps isolate components of CLM3.5 for data assimilation. Data assimilation with global land models has been computationally extremely difficult. By isolating traceable components, we have improved parameterization of CLM3.4 related to soil organic decomposition, microbial kinetics and carbon use efficiency, and litter decomposition. Further, we are currently developing the traceability framework to analyze transient simulations of models that were involved in the coupled Model Intercomparison Project Phase 5 (CMIP5) to improve our understanding on parameter space of global carbon models. This

  19. Multi-Scale Modeling of Global of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; DeZeeuw, D.; Gombosi, T.

    2010-01-01

    To understand the role of magnetic reconnection in global evolution of magnetosphere and to place spacecraft observations into global context it is essential to perform global simulations with physically motivated model of dissipation that is capable to reproduce reconnection rates predicted by kinetic models. In our efforts to bridge the gap between small scale kinetic modeling and global simulations we introduced an approach that allows to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. We utilized the high resolution global MHD code BATSRUS and incorporate primary mechanism controlling the dissipation in the vicinity of reconnection sites in terms of kinetic corrections to induction and energy equations. One of the key elements of the multiscale modeling of magnetic reconnection is identification of reconnection sites and boundaries of surrounding diffusion regions where non-MHD corrections are required. Reconnection site search in the equatorial plane implemented in our previous studies is extended to cusp and magnetopause reconnection, as well as for magnetotail reconnection in realistic asymmetric configurations. The role of feedback between the non-ideal effects in diffusion regions and global magnetosphere structure and dynamics will be discussed.

  20. Usefulness and limitations of global flood risk models

    NASA Astrophysics Data System (ADS)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel

    2016-04-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  1. [The population problem in global modeling].

    PubMed

    Naidenova, P

    1986-01-01

    Developments during the past 15 years in population modeling are critically reviewed. The author notes that while population variables were treated as endogenous in earlier models developed by the Club of Rome, later models have treated such variables as exogenous. The need to link demographic factors to structural changes and economic growth, in accordance with Marxist-Leninist population theory, is noted. (SUMMARY IN ENG AND RUS) PMID:12280533

  2. Including eddies in global ocean models

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.

  3. Challenges in Global Land Use/Land Cover Change Modeling

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2011-12-01

    For the purposes of projecting and anticipating human-induced land use change at the global scale, much work remains in the systematic mapping and modeling of world-wide land uses and their related dynamics. In particular, research has focused on tropical deforestation, loss of prime agricultural land, loss of wild land and open space, and the spread of urbanization. Fifteen years of experience in modeling land use and land cover change at the regional and city level with the cellular automata model SLEUTH, including cross city and regional comparisons, has led to an ability to comment on the challenges and constraints that apply to global level land use change modeling. Some issues are common to other modeling domains, such as scaling, earth geometry, and model coupling. Others relate to geographical scaling of human activity, while some are issues of data fusion and international interoperability. Grid computing now offers the prospect of global land use change simulation. This presentation summarizes what barriers face global scale land use modeling, but also highlights the benefits of such modeling activity on global change research. An approach to converting land use maps and forecasts into environmental impact measurements is proposed. Using such an approach means that multitemporal mapping, often using remotely sensed sources, and forecasting can also yield results showing the overall and disaggregated status of the environment.

  4. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  5. The status and challenge of global fire modelling

    NASA Astrophysics Data System (ADS)

    Hantson, Stijn; Arneth, Almut; Harrison, Sandy P.; Kelley, Douglas I.; Prentice, I. Colin; Rabin, Sam S.; Archibald, Sally; Mouillot, Florent; Arnold, Steve R.; Artaxo, Paulo; Bachelet, Dominique; Ciais, Philippe; Forrest, Matthew; Friedlingstein, Pierre; Hickler, Thomas; Kaplan, Jed O.; Kloster, Silvia; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stephane; Melton, Joe R.; Meyn, Andrea; Sitch, Stephen; Spessa, Allan; van der Werf, Guido R.; Voulgarakis, Apostolos; Yue, Chao

    2016-06-01

    Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.

  6. Regional forecasting with global atmospheric models; Fourth year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  7. Four-Dimensional Global Reference-Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Johnson, Dale; Blocker, Rhonda S.

    1988-01-01

    Four-Dimensional Global Reference Atmosphere Model (GRAM) computer program developed from empirical atmospheric model generating values for pressure, density, temperature, and winds, from ground to orbital altitudes. Is amalgamation of two empirical atmospheric models for low and high atmosphere with newly-developed latitude-and longitude-dependent model for middle atmosphere. UNIVAC version written in UNIVAC FORTRAN. DEC VAX version of GRAM written in FORTRAN 77. Applications include simulation of reentry trajectories of external tanks, studies of global circulation and diffusion and generation of plots or data for comparison.

  8. An eddy-resolving model of the Global Ocean

    NASA Astrophysics Data System (ADS)

    Ibrayev, Rashit; Khabeev, Renat; Kalmykov, Vladimir; Ushakov, Konstantin

    2013-04-01

    We present results of eddy-resolving simulation of the global ocean with INM-IO general circulation model. The global grid employs tripole layout, has 0.1-degree horizontal resolution, and uses 49 vertical levels. The ocean model coupled with sea ice and atmospheric boundary layer sub-models. We address to the problem of effective implementation of the numerical code on parallel computers. The model was developed in the Institute of Numerical Mathematics (INM) and P.P.Shirshov Institute of Oceanology (IO). The global simulations were performed with atmospheric conditions based on repeat annual cycle of the normal year - CORE dataset. We present an overview from 75-year spinup. The model results are quite good when compared to observations. We discuss the results of sensitivity of AMOC to the fresh water input due to Greenland ice sheet melting.

  9. A Global Hydrological Model with Reservoir Operation Scheme: Global and Regional Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Masaki, Y.; Mateo, C.; Kanae, S.; Oki, T.

    2013-12-01

    More than 45000 large dams have been constructed all over the world, and their total storage capacity exceeds 7000 km3 which corresponds to approximately 20% of the total annual global river discharge. Explicit incorporation of reservoir operation is indispensable for global-/macro-scale hydrological models, since their storage capacity and potential of altering flow regime are too large to neglect. Our presentation consists of three parts. In the first part, the H08 model, a global hydrological model with reservoir operation scheme is introduced. The H08 model includes an algorithm to estimate reservoir operating rules of individual reservoirs. This enables us to apply the model to the regions and periods with no recorded reservoir operation. The key concepts and challenges of the model are discussed. In the second part, the role of reservoirs in water scarcity is globally assessed. In many parts of the world, local people are suffered from temporal variability in precipitation and river flow. The contribution of reservoirs to water scarcity alleviation is quantitatively and globally assessed. The assessment is extended to the future periods utilizing the latest climate and socio-economic scenarios. In the last part, a regional model application is introduced. The Chao Phraya River in Thailand was suffered from a severe flood in 2011. Vast area was inundated for months and the economic damages reached 40 billion USD. The Chao Phraya River has two major reservoirs and their role is crucial for both water use and flood control. The H08 model is substantially enhanced and applied to the basin to reproduce the 2011 floods. The tradeoff between water use and flood control was investigated by changing reservoir operation options.

  10. Towards a 1km resolution global flood risk model

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Neal, Jeff; Sampson, Chris; Smith, Andy

    2014-05-01

    Recent advances in computationally efficient numerical algorithms and new High Performance Computing architectures now make high (1-2km) resolution global hydrodynamic models a realistic proposition. However in many areas of the world the data sets and tools necessary to undertake such modelling do not currently exist. In particular, five major problems need to be resolved: (1) the best globally available terrain data (SRTM) was generated from X-band interferometric radar data which does not penetrate vegetation canopies and which has significant problems in determining ground elevations in urban areas; (2) a global river bathymetry data set does not currently exist; (3) most river channels globally are less than the smallest currently resolvable grid scale (1km) and therefore require a sub-grid treatment; (4) a means to estimate the magnitude of the T year flood at any point along the global river network does not currently exist; and (5) a large proportion of flood losses are generated by off-floodplain surface water flows which are not well represented in current hydrodynamic modelling systems. In this paper we propose solutions to each of these five issues as part of a concerted effort to develop a 1km (or better) resolution global flood hazard model. We describe the new numerical algorithms, computer architectures and computational resources used, and demonstrate solutions to the five previously intractable problems identified above. We conduct a validation study of the modelling against satellite imagery of major flooding on the Mississippi-Missouri confluence plain in the central USA before outlining a proof-of-concept regional study for SE Asia as a step towards a global scale model. For SE Asia we simulate flood hazard for ten different flood return periods over the entire Thailand, Cambodia, Vietnam, Malaysia and Laos region at 1km resolution and show that the modelling produces coherent, consistent and sensible simulations of extent and water depth.

  11. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations

    DOE PAGESBeta

    Zhang, Xiaotong; Liang, Shunlin; Wang, Guoxin; Yao, Yunjun; Jiang, Bo; Cheng, Jie

    2016-03-10

    Solar radiation incident at the Earth’s surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55) using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth’s Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs andmore » surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from 2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. Lastly, ffter removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.« less

  12. Efficient stencil assembly in global geodynamic models

    NASA Astrophysics Data System (ADS)

    Bauer, Simon; Mohr, Marcus; Rüde, Ulrich; Wittmann, Markus

    2016-04-01

    In mantle circulation models the simulation domain is a thick spherical shell representing the earth's mantle. Typically, finite elements are the method of choice to account for the spherical geometry. The wide range of length scales involved in earth dynamics is a major challenge. Capturing localized features such as faulted plate boundaries requires local resolutions in the order of

  13. Global ocean modeling on the Connection Machine

    SciTech Connect

    Smith, R.D.; Dukowicz, J.K.; Malone, R.C.

    1993-10-01

    The authors have developed a version of the Bryan-Cox-Semtner ocean model (Bryan, 1969; Semtner, 1976; Cox, 1984) for massively parallel computers. Such models are three-dimensional, Eulerian models that use latitude and longitude as the horizontal spherical coordinates and fixed depth levels as the vertical coordinate. The incompressible Navier-Stokes equations, with a turbulent eddy viscosity, and mass continuity equation are solved, subject to the hydrostatic and Boussinesq approximations. The traditional model formulation uses a rigid-lid approximation (vertical velocity = 0 at the ocean surface) to eliminate fast surface waves. These waves would otherwise require that a very short time step be used in numerical simulations, which would greatly increase the computational cost. To solve the equations with the rigid-lid assumption, the equations of motion are split into two parts: a set of twodimensional ``barotropic`` equations describing the vertically-averaged flow, and a set of three-dimensional ``baroclinic`` equations describing temperature, salinity and deviations of the horizontal velocities from the vertically-averaged flow.

  14. Radiative heating in global climate models

    SciTech Connect

    Baer, F.; Arsky, N.; Rocque, K.

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  15. Global Attenuation Model of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2015-12-01

    We present a three-dimensional shear attenuation model based on a massive surface wave data-set (372,629 Rayleigh waveforms analysed in the period range 50-300s by Debayle and Ricard, 2012). For each seismogram, this approach yields depth-dependent path average models of shear velocity and quality factor, and a set of fundamental and higher-mode dispersion and attenuation curves. We combine these attenuation measurements in a tomographic inversion after a careful rejection of the noisy data. We first remove data likely to be biased by a poor knowledge of the source. Then we assume that waves corresponding to events having close epicenters and recorded at the same station sample the same elastic and anelastic structure, we cluster the corresponding rays and average the attenuation measurements. Logarithms of the attenuations are regionalized using the non-linear east square formalism of Tarantola and Valette (1982), resulting in attenuation tomographic maps between 50s and 300s. After a first inversion, outlyers are rejected and a second inversion yields a moderate variance reduction of about 20%. We correct the attenuation curves for focusing effect using the linearized ray theory of Woodhouse and Wong (1986). Accounting for focussing effects allows building tomographic maps with variance reductions reaching 40%. In the period range 120-200s, the root mean square of the model perturbations increases from about 5% to 20%. Our 3-D attenuation models present strong agreement with surface tectonics at period lower than 200s. Areas of low attenuation are located under continents and areas of high attenuation are associated with oceans. Surprisingly, although mid oceanic ridges are located in attenuating regions, their signature, even if enhanced by focusing corrections, remains weaker than in the shear velocity models. Synthetic tests suggests that regularisation contributes to damp the attenuation signature of ridges, which could therefore be underestimated.

  16. Observed nighttime conductance alters modeled global hydrology and carbon budgets

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D. L.; Zeppel, M. J. B.; Fisher, R. A.; Tawfik, A.

    2015-12-01

    The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land surface models typically reduce stomatal conductance to nearly zero at night. Here, we apply observed nighttime stomatal conductance values to a global land surface model, to better constrain carbon and water budgets. We find that our modifications increase transpiration up to 5 % globally, reduce modeled available soil moisture by up to 50 % in semi-arid regions, and increase the importance of the land surface on modulating energy fluxes. Carbon gain declines up to ~ 4 % globally and > 25 % in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.

  17. Global detailed geoid computation and model analysis

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Vincent, S.

    1974-01-01

    Comparisons and analyses were carried out through the use of detailed gravimetric geoids which we have computed by combining models with a set of 26,000 1 deg x 1 deg mean free air gravity anomalies. The accuracy of the detailed gravimetric geoid computed using the most recent Goddard earth model (GEM-6) in conjunction with the set of 1 deg x 1 deg mean free air gravity anomalies is assessed at + or - 2 meters on the continents of North America, Europe, and Australia, 2 to 5 meters in the Northeast Pacific and North Atlantic areas, and 5 to 10 meters in other areas where surface gravity data are sparse. The R.M.S. differences between this detailed geoid and the detailed geoids computed using the other satellite gravity fields in conjuction with same set of surface data range from 3 to 7 meters.

  18. Modelling of global change at the mesopause

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Brasseur, G.

    2003-04-01

    Significant negative temperature trend at the northern hemisphere mesospause for winter season has been documented by different methods of observations. For studying mechanisms of the mesopause cooling, simulations with the use of the chemical dynamical radiative two-dimensional model named SOCRATES are used. Probable mechanisms of the observed cooling of the mesosphere and lower thermosphere can be of radiation as well as dynamical nature. Among these are changes in contents of greenhouse gases and changes in gravity wave momentum deposition affecting the meridional circulation in the upper mesosphere. Combined increase for the last 50 year, in accordance with the observed trends, in contents of CO2, methane, N2O, and water vapor as well as the lower troposphere warming results in a simulated cooling of a few K at the mesopause for winter and summer seasons. This shows that the trends in the contents of greenhouse gases and the lower troposphere temperature are not the only (and, probably, not the main) reason of the large cooling in the upper mesosphere, at least in the framework of a two-dimensional model. Long-term changes in the circulation resulting in changes of gravity wave momentum and energy deposition, which affects the circulation in the middle atmosphere, could also be responsible for this effect. As an example, the doubling of the model gravity wave forcing results in an essential cooling by several K at the northern hemisphere mesopause in winter. The simulated effect of combined changes in contents of greenhouse gases, low troposphere temperature, and doubling of the gravity wave forcing is the cooling of the model mesopause by 8-10 K in the middle-to-high latitudes of the northern hemisphere in winter, along with insignificant thermal effect in summer.

  19. CONSTABLE: A Global Climate Model for Classroom Use.

    ERIC Educational Resources Information Center

    Cerveny, Randall S.; And Others

    1985-01-01

    Described is the global climate model CONSTABLE (Climatic One-Dimensional Numerical Simulation of the Annual Balance of Latitudinal Energy), which can be used in undergraduate and graduate level climatology courses. Classroom exercises that can be used with the model are also included. (RM)

  20. Modeling the Electrical Characteristics of the Global Electric Circuit

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Lehto, E.; Baumgaertner, A. J.; Thayer, J. P.; Forbes, J. M.; Zhang, X.

    2013-12-01

    Earth's global electric circuit (GEC) embodies the electrical pathways by which currents flow from electrified clouds to the ionosphere and return through fair weather regions to the earth's surface. To investigate this pathway, an analytic model based on others' previous work has been developed to produce global estimates of atmospheric currents, electric fields, and potential distributions of the GEC. The atmosphere between the ground and the ionosphere is composed of complex current sources and conductivity distributions. In the global electric circuit, lightning events act as current generators maintaining the potential difference between the earth and ionosphere. An analytic solution to Poisson's equation was applied to the GEC, allowing for a steady-state calculation of global distributions in potential, electric fields and currents for specified conductivity distributions and current sources. The global distribution of current sources provided on a monthly basis by a recently developed empirical model of Wilson currents. Analytic representations of global conductivities are implemented that include large-scale changes in the galactic cosmic ray flux. A novel numeric solver for Poisson's equation was also developed to enable analysis of more complex distributions of conductivity, i.e. cloud and aerosol effects. These models allow one to determine how different lightning and conductivity distributions impact the electrical characteristics of the GEC.

  1. Combined discriminative global and generative local models for visual tracking

    NASA Astrophysics Data System (ADS)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  2. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  3. A Global View Beyond the Standard Model

    SciTech Connect

    Not Available

    2008-01-20

    By 1973, the theoretical foundations of the Standard Model of fundamental interactions had been completed. In the decades that followed, new particles and phenomena predicted by the Standard Model were discovered in a dramatic series of experiments at laboratories around the world. This began with the discovery of the charm quark at SLAC and Brookhaven, predicted by Glashow, Illiopoulos and Maiani from flavor properties of the SM. The W and Z bosons were produced directly in experiments at CERN, and signals of energetic gluons were observed at DESY. Experiments eventually found a full third generation of fermions, culminating with the discovery of the top quark and tau neutrino at Fermilab. During this same period, major theoretical advances made it possible to push the accuracy of Standard Model predictions. This allowed compelling tests of the SM at the level of radiative corrections, and to test the predictions of QCD in the confining domain. Thus experiments confirmed the quantum dynamics of the SM, and validated the CKM picture of flavor mixing and CP violation. While this process took a long time, and may have appeared frustrating to many to just achieve the confirmation of the 'standard' theory, the outcome of these 30-odd years is now a cornerstone of our understanding of the natural world, occupying a deserved place next to Maxwell's electromagnetism, to relativity, and to quantum mechanics. The timescale and size of this enterprise, at the same time, gives us a benchmark for the magnitude of the efforts that may be required to go beyond the Standard Model to the next level of fundamental understanding. New ideas and theories have been put forward in the attempt to understand great questions left unanswered by the Standard Model. These theories attempt to explain why nature needs both gravitational and gauge interactions, and why their energy scales are so different. They address the possible origins of matter-antimatter asymmetry, of particle masses, and

  4. Reconstruction of Groundwater Depletion Using a Global Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Van Beek, L. P.; Bierkens, M. F.

    2014-12-01

    Groundwater is a crucial part of the global water cycle. It is the world's largest accessible source of fresh water to satisfy human water needs. During times of droughts it sustains river flows and evaporation in areas with shallow water tables. However, most global scale hydrological models do not include a lateral groundwater flow component due to a lack of consistent global-scale hydrogeological information. Such data is needed to arrive at a more realistic physical representation of the groundwater system allowing for the simulation of groundwater head dynamics and lateral flows including abstractions in confined and unconfined aquifers. This improved process description is indispensable to understand the effects of past and future climate variations and human dependence on global water resources. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model presenting confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR-GLOBWB (van Beek et al. 2011) via recharge and surface water levels. The aquifer parameterization is based on available global data-sets on lithology (Hartmann and Moosdorf 2011) and permeability (Gleeson et al. 2011) and newly derived estimates of aquifer depth and thickness of confining layers from an integration of lithological and topographical information. In a sensitivity analysis the model is run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and recharge (Wada et al 2012) are evaluated. Trends and fluctuations of groundwater head and streamflow are studied in response to human groundwater use and climate variability, as well as revealing hotspots and magnitude of global groundwater depletion.

  5. Global specialized stroke care delivery models.

    PubMed

    Theofanidis, Dimitrios; Savopoulos, Christos; Hatzitolios, Apostolos

    2016-03-01

    Stroke services still vary enormously from country to country, with many countries providing no special services at all. The aim of this article is to provide a concise overview of the various types of acute stroke delivery systems at present available and critically describe merits and shortcomings. A systematic literature review was undertaken from 1990 to July 2014. Several models for stroke services have been developed mostly in the past 3 decades, mainly in the Western world. These include state-of-the-art stroke services ranging from highly specialized stroke centers to mobile stroke units for the community. In this light, the recommendations of the structure and organization of stroke units and stroke centers by the European Stroke Organization were recently published. What differentiates the various models of stroke care delivery across the globe is the diversity of services ranging from low key conventional care to highly sophisticated facilities with life saving interventional features via integrated stroke care infrastructure. Effective in-hospital care for stroke should start in the emergency department where a swift and appropriate diagnosis should be made. The role of all brain neuroimaging procedures should have a defined a priori and proper demarcation between actions according to updated stroke care pathways and clinical protocols, which should be followed closely. These essential actions initiated by well-trained staff in the emergency department, should then be carried on in dedicated stroke facilities that is, a stroke unit. PMID:26897346

  6. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  7. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  8. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes

    USGS Publications Warehouse

    Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; McGuire, A.D.

    1999-01-01

    Annual and seasonal net primary productivity estimates (NPP) of 15 global models across latitudinal zones and biomes are compared. The models simulated NPP for contemporary climate using common, spatially explicit data sets for climate, soil texture, and normalized difference vegetation index (NDVI). Differences among NPP estimates varied over space and time. The largest differences occur during the summer months in boreal forests (50??to 60??N) and during the dry seasons of tropical evergreen forests. Differences in NPP estimates are related to model assumptions about vegetation structure, model parameterizations, and input data sets.

  9. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Wagner, William (Technical Monitor)

    2001-01-01

    The solar corona, the hot, tenuous outer atmosphere of the Sun, exhibits many fascinating phenomena on a wide range of scales. One of the ways that the Sun can affect us here at Earth is through the large-scale structure of the corona and the dynamical phenomena associated with it, as it is the corona that extends outward as the solar wind and encounters the Earth's magnetosphere. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to develop increasingly realistic models of the large-scale solar corona, so that we can understand the underlying properties of the coronal magnetic field that lead to the observed structure and evolution of the corona. We describe the work performed under this contract.

  10. Modeling and Global Optimization of DNA separation

    PubMed Central

    Fahrenkopf, Max A.; Ydstie, B. Erik; Mukherjee, Tamal; Schneider, James W.

    2014-01-01

    We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606

  11. Modeling and Global Optimization of DNA separation.

    PubMed

    Fahrenkopf, Max A; Ydstie, B Erik; Mukherjee, Tamal; Schneider, James W

    2014-05-01

    We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606

  12. Hippocampal neurogenesis in the new model of global cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Kisel, A. A.; Chernysheva, G. A.; Smol'yakova, V. I.; Savchenko, R. R.; Plotnikov, M. B.; Khodanovich, M. Yu.

    2015-11-01

    The study aimed to evaluate the changes of hippocampal neurogenesis in a new model of global transient cerebral ischemia which was performed by the occlusion of the three main vessels (tr. brachiocephalicus, a. subclavia sinistra, and a. carotis communis sinistra) branching from the aortic arch and supplying the brain. Global transitory cerebral ischemia was modeled on male rats (weight = 250-300 g) under chloral hydrate with artificial lung ventilation. Animals after the same surgical operation without vessel occlusion served as sham-operated controls. The number of DCX-positive (doublecortin, the marker of immature neurons) cells in dentate gyrus (DG) and CA1-CA3 fields of hippocampus was counted at the 31st day after ischemia modeling. It was revealed that global cerebral ischemia decreased neurogenesis in dentate gyrus in comparison with the sham-operated group (P<0.05) while neurogenesis in CA1-CA3 fields was increased as compared to the control (P<0.05).

  13. A high-resolution global flood hazard model

    NASA Astrophysics Data System (ADS)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  14. A model of global convection in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Krimigis, S. M.

    1989-09-01

    Voyager observations of Jupiter's magnetosphere are compared with the planetary wind model in which corotation must break down outside some Alfven critical radius and a centrifugally driven wind outflow must develop. It is found that the model does not agree with the observations. A new global convection model for the Jovian magnetosphere is proposed, based on models of quasi-stationary plasma convection in the earth's magnetosphere. The model predicts a substantial dawn-dusk asymmetry in the structure, dynamics, and plasma composition of the magnetopause and magnetosheath. The model also predicts a region of cross-tail flow in the nightside plasma sheet containing a substantial admixture of solar wind plasma.

  15. Representing plant hydraulics in a global Earth system model.

    NASA Astrophysics Data System (ADS)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  16. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  17. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Harberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. ne primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase 1 aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  18. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-1 10 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  19. Mars Global Surveyor: Aerobraking and Observations Support Using a Mars Global Circulation Model

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1997-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-110 km) for seasonal dates and locations during Phase I aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars' middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.

  20. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  1. A bottom-up evolution of terrestrial ecosystem modeling theory, and ideas toward global vegetation modeling

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1992-01-01

    A primary purpose of this review is to convey lessons learned in the development of a forest ecosystem modeling approach, from it origins in 1973 as a single-tree water balance model to the current regional applications. The second intent is to use this accumulated experience to offer ideas of how terrestrial ecosystem modeling can be taken to the global scale: earth systems modeling. A logic is suggested where mechanistic ecosystem models are not themselves operated globally, but rather are used to 'calibrate' much simplified models, primarily driven by remote sensing, that could be implemented in a semiautomated way globally, and in principle could interface with atmospheric general circulation models (GCM's).

  2. ITG: A New Global GNSS Tropospheric Correction Model.

    PubMed

    Yao, Yibin; Xu, Chaoqian; Shi, Junbo; Cao, Na; Zhang, Bao; Yang, Junjian

    2015-01-01

    Tropospheric correction models are receiving increasing attentions, as they play a crucial role in Global Navigation Satellite System (GNSS). Most commonly used models to date include the GPT2 series and the TropGrid2. In this study, we analyzed the advantages and disadvantages of existing models and developed a new model called the Improved Tropospheric Grid (ITG). ITG considers annual, semi-annual and diurnal variations, and includes multiple tropospheric parameters. The amplitude and initial phase of diurnal variation are estimated as a periodic function. ITG provides temperature, pressure, the weighted mean temperature (Tm) and Zenith Wet Delay (ZWD). We conducted a performance comparison among the proposed ITG model and previous ones, in terms of meteorological measurements from 698 observation stations, Zenith Total Delay (ZTD) products from 280 International GNSS Service (IGS) station and Tm from Global Geodetic Observing System (GGOS) products. Results indicate that ITG offers the best performance on the whole. PMID:26196963

  3. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  4. A fully-implicit model of the global ocean circulation

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; de Niet, Arie C.

    2003-12-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

  5. ITG: A New Global GNSS Tropospheric Correction Model

    PubMed Central

    Yao, Yibin; Xu, Chaoqian; Shi, Junbo; Cao, Na; Zhang, Bao; Yang, Junjian

    2015-01-01

    Tropospheric correction models are receiving increasing attentions, as they play a crucial role in Global Navigation Satellite System (GNSS). Most commonly used models to date include the GPT2 series and the TropGrid2. In this study, we analyzed the advantages and disadvantages of existing models and developed a new model called the Improved Tropospheric Grid (ITG). ITG considers annual, semi-annual and diurnal variations, and includes multiple tropospheric parameters. The amplitude and initial phase of diurnal variation are estimated as a periodic function. ITG provides temperature, pressure, the weighted mean temperature (Tm) and Zenith Wet Delay (ZWD). We conducted a performance comparison among the proposed ITG model and previous ones, in terms of meteorological measurements from 698 observation stations, Zenith Total Delay (ZTD) products from 280 International GNSS Service (IGS) station and Tm from Global Geodetic Observing System (GGOS) products. Results indicate that ITG offers the best performance on the whole. PMID:26196963

  6. Nonstationarity signatures in the dynamics of global nonlinear models.

    PubMed

    Aguirre, L A; Letellier, C

    2012-09-01

    The aim of this paper is to learn how to recognize a posteriori signatures that nonstationarity leaves on global models obtained from data. To this end the effects of nonstationarity on the dynamics of such models are reported for two benchmarks. Parameters of the Rössler and Lorenz models are varied to produce nonstationary data. It is shown that not only the rate of change of the varying parameter but also which recorded variable is used to estimate global models may have visible effects on the results, which are system-dependent and therefore difficult to generalize. Although the effects of nonstationarity are not necessarily obvious from the phase portraits, the first-return map to a Poincaré section is a much more adequate tool to recognize such effects. Three examples of models previously obtained from experimental data are analyzed in the light of the concepts discussed in this paper. PMID:23020475

  7. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. PMID:25555206

  8. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  9. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  10. Is a substantial global bioenergy system feasible? A spatial analysis using a dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Erbrecht, T.; Lucht, W.; Lotze-Campem, H.

    2007-12-01

    Avoiding dangerous climate change requires drastic reductions in greenhouse gas emissions. However, the global demand for energy is projected to grow by more than 50 % until 2030 (IEA, 2006) and therefore actions are urgently required to decarbonize the global economy. Second generation bioenergy systems are promoted as a way forward to displace large amounts of fossil fuels with renewable materials, thereby increasing energy security and stabilizing atmospheric greenhouse gas concentrations. At the same time, concerns are being raised regarding the sustainability of large-scale dedicated biomass plantations with regard to extensive mono- cultures, irrigation and fertilization requirements. We use a dynamic global vegetation model (DGVM) including current agriculture to simulate the effects of rising competition for land when an additional spatially extensive production system for a new commodity, bioenergy, is added to the global land use mix under continued increase in global population size as well as per capita energy consumption. How much land is needed for a significant bioenergy generation if sufficient food production is warranted and what are the consequences for the terrestrial biosphere? To assess the potential impacts of a significant global bioenergy sector, we produced a selection of scenarios based on prior assumptions of total bioenergy demand, progress in conversion technologies and the availability of cultivable land limited by food requirements and biodiversity protection. We present the corresponding land use patterns as well as their impacts on the terrestrial carbon balance, evapotranspiration fluxes and irrigation demand. We find that an area of up to 50 % the size of current agricultural land is needed for the cultivation of ligno-cellulosic crops to satisfy high bioenergy demands. Carbon fluxes into the atmosphere caused by the removal of natural vegetation can equal those of 8 years of fossil fuel combustion.

  11. Should precipitation influence dust emission in global dust models?

    NASA Astrophysics Data System (ADS)

    Okin, Gregory

    2016-04-01

    Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.

  12. A geodetic plate motion and Global Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Blewitt, Geoffrey; Klein, Elliot C.

    2014-10-01

    present a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities. This Global Strain Rate Model (GSRM v.2.1) is a vast improvement over its predecessor both in terms of amount of data input as in an increase in spatial model resolution by factor of ˜2.5 in areas with dense data coverage. We determined 6739 velocities from time series of (mostly) continuous GPS measurements; i.e., by far the largest global velocity solution to date. We transformed 15,772 velocities from 233 (mostly) published studies onto our core solution to obtain 22,511 velocities in the same reference frame. Care is taken to not use velocities from stations (or time periods) that are affected by transient phenomena; i.e., this data set consists of velocities best representing the interseismic plate velocity. About 14% of the Earth is allowed to deform in 145,086 deforming grid cells (0.25° longitude by 0.2° latitude in dimension). The remainder of the Earth's surface is modeled as rigid spherical caps representing 50 tectonic plates. For 36 plates we present new GPS-derived angular velocities. For all the plates that can be compared with the most recent geologic plate motion model, we find that the difference in angular velocity is significant. The rigid-body rotations are used as boundary conditions in the strain rate calculations. The strain rate field is modeled using the Haines and Holt method, which uses splines to obtain an self-consistent interpolated velocity gradient tensor field, from which strain rates, vorticity rates, and expected velocities are derived. We also present expected faulting orientations in areas with significant vorticity, and update the no-net rotation reference frame associated with our global velocity gradient field. Finally, we present a global map of recurrence times for Mw=7.5 characteristic earthquakes.

  13. A Simplified GIS Approach to Modeling Global Leaf Water Isoscapes

    PubMed Central

    West, Jason B.; Sobek, Adam; Ehleringer, James R.

    2008-01-01

    The stable hydrogen (δ2H) and oxygen (δ18O) isotope ratios of organic and inorganic materials record biological and physical processes through the effects of substrate isotopic composition and fractionations that occur as reactions proceed. At large scales, these processes can exhibit spatial predictability because of the effects of coherent climatic patterns over the Earth's surface. Attempts to model spatial variation in the stable isotope ratios of water have been made for decades. Leaf water has a particular importance for some applications, including plant organic materials that record spatial and temporal climate variability and that may be a source of food for migrating animals. It is also an important source of the variability in the isotopic composition of atmospheric gases. Although efforts to model global-scale leaf water isotope ratio spatial variation have been made (especially of δ18O), significant uncertainty remains in models and their execution across spatial domains. We introduce here a Geographic Information System (GIS) approach to the generation of global, spatially-explicit isotope landscapes ( = isoscapes) of “climate normal” leaf water isotope ratios. We evaluate the approach and the resulting products by comparison with simulation model outputs and point measurements, where obtainable, over the Earth's surface. The isoscapes were generated using biophysical models of isotope fractionation and spatially continuous precipitation isotope and climate layers as input model drivers. Leaf water δ18O isoscapes produced here generally agreed with latitudinal averages from GCM/biophysical model products, as well as mean values from point measurements. These results show global-scale spatial coherence in leaf water isotope ratios, similar to that observed for precipitation and validate the GIS approach to modeling leaf water isotopes. These results demonstrate that relatively simple models of leaf water enrichment combined with spatially

  14. Applying modeling Results in designing a global tropospheric experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A set of field experiments and advanced modeling studies which provide a strategy for a program of global tropospheric experiments was identified. An expanded effort to develop space applications for trospheric air quality monitoring and studies was recommended. The tropospheric ozone, carbon, nitrogen, and sulfur cycles are addressed. Stratospheric-tropospheric exchange is discussed. Fast photochemical processes in the free troposphere are considered.

  15. A Global Model of Paradigm Development in Sociology of Education.

    ERIC Educational Resources Information Center

    Mahler, Fred

    1985-01-01

    Education is usually seen as an institution aimed at providing the skilled human resources needed for economic growth. Education should also help future citizens develop a better and more just world. A global model that stresses the cultural component of the interrelation between society and education is presented. (RM)

  16. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  17. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  18. On Vertically Global, Horizontally Local Models for Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Pessah, Martin E.

    2015-10-01

    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.

  19. The Research University in Transition: The Emerging Global Model

    ERIC Educational Resources Information Center

    Mohrman, Kathryn; Ma, Wanhua; Baker, David

    2008-01-01

    In a knowledge intensive society, the research university is a key institution for social and economic development. Focused on the discovery of new knowledge and the development of the next generation of scholars, research universities are also becoming more international in focus. This article presents the Emerging Global Model (EGM) of the…

  20. Representation of fires and fire emissions in global climate models

    NASA Astrophysics Data System (ADS)

    Pechony, O.; Shindell, D. T.

    2009-12-01

    Wildfires influence global climate through emissions of greenhouse gases, aerosols, and aerosol precursors. There is therefore an ongoing effort to incorporate representation of wildfires in climate models. We have developed an algorithm that allows determination of worldwide flammability conditions from vegetation density and a set of meteorological parameters: precipitation, relative humidity, and temperature. These parameters are readily available, and are well verified on a global scale. Given a distribution of ignition sources, this method provides the distribution of fire counts, which is easily verified against satellite records. Further, using techniques commonly applied to satellite data, modeled fire counts are used to estimate variations in fire emissions. We use two ignition source models: one incorporates anthropogenic and lightning ignitions, and anthropogenic fire suppression; the other assumes ubiquitous ignition source. We evaluate the model using GPCP precipitation, NCEP/NCAR temperature and relative humidity, and MODIS Leaf Area Index as a proxy for global vegetation density. Information on global lightning distribution is derived from the OTD satellite sensor. For estimating the number of anthropogenic ignition sources, we incorporate the Venevsky et al. [2002] method. Effectiveness of fire suppression is assumed to increase exponentially with increasing population density. With both ignition models the algorithm reproduces the spatial distribution and the seasonal variations of global fires observed with MODIS and VIRS satellite instruments reasonably well. Accounting for anthropogenic influence has a profound advantage in heavily populated areas, where anthropogenic effects dominate. Global monthly carbon fire emissions, estimated from modeled fire counts using emissions-per-firecount maps derived by van der Werf et al. [2006], are in good correspondence with GFED estimates. The ability of the model to reproduce long-term interannual

  1. Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models

    NASA Astrophysics Data System (ADS)

    Giuntoli, I.; Vidal, J.-P.; Prudhomme, C.; Hannah, D. M.

    2015-05-01

    Projections of changes in the hydrological cycle from global hydrological models (GHMs) driven by global climate models (GCMs) are critical for understanding future occurrence of hydrological extremes. However, uncertainties remain large and need to be better assessed. In particular, recent studies have pointed to a considerable contribution of GHMs that can equal or outweigh the contribution of GCMs to uncertainty in hydrological projections. Using six GHMs and five GCMs from the ISI-MIP multi-model ensemble, this study aims: (i) to assess future changes in the frequency of both high and low flows at the global scale using control and future (RCP8.5) simulations by the 2080s, and (ii) to quantify, for both ends of the runoff spectrum, GCMs and GHMs contributions to uncertainty using a two-way ANOVA. Increases are found in high flows for northern latitudes and in low flows for several hotspots. Globally, the largest source of uncertainty is associated with GCMs, but GHMs are the greatest source in snow-dominated regions. More specifically, results vary depending on the runoff metric, the temporal (annual and seasonal) and regional scale of analysis. For instance, uncertainty contribution from GHMs is higher for low flows than it is for high flows, partly owing to the different processes driving the onset of the two phenomena (e.g. the more direct effect of the GCMs' precipitation variability on high flows). This study provides a comprehensive synthesis of where future hydrological extremes are projected to increase and where the ensemble spread is owed to either GCMs or GHMs. Finally, our results underline the need for improvements in modelling snowmelt and runoff processes to project future hydrological extremes and the importance of using multiple GCMs and GHMs to encompass the uncertainty range provided by these two sources.

  2. A New Global Core Plasma Model of the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-12-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a global, continuous in value and gradient, representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities and temperatures in the plasmasphere for five ion species. These and other works enable a new more robust empirical model of thermal in the inner magnetosphere that will be presented.

  3. Global Climate Models of Titan, Uranus, and Neptune

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Orton, G.; West, R.

    2007-12-01

    We present the formulation of and some results from global climate models for Titan, Uranus, and Neptune. The model for Titan is a fully three-dimensional, modified version of NCAR's terrestrial global climate model, CAM-3. It includes forcing by Saturn's gravitational tides, a treatment of the planetary boundary layer and surface interactions, scattering and absorption of short-wave radiation, and absorption and emission of long-wave radiation. The physical properties and distribution of aerosols are constrained by Cassini observations. The climate models for Uranus and Neptune are two-dimensional, radiative-diffusive models which calculate sensible heat fluxes and latent-heat fluxes due to ortho-para hydrogen conversion in terms of a mixing-length formulation. The vertical pressure range in these models extends from 100 bars up to 0.1 mbar. Our main goal for the 2-d models is to establish the relative roles of sensible and ortho-para latent-heat fluxes in transporting heat laterally and vertically. We are also currently developing three-dimensional models of Uranus and Neptune based on modification of CAM-3. We will discuss how the parameterization of heat fluxes in the 2-d models can be adapted to model small-scale convection in the presence of ortho-para conversion in the 3-d models. This research is supported by the NASA Outer Planet Research Program.

  4. A computer model of global thermospheric winds and temperatures

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Roble, R. G.; Spencer, N. W.

    1987-01-01

    Output data from the NCAR Thermospheric GCM and a vector-spherical-harmonic (VSH) representation of the wind field are used in constructing a computer model of time-dependent global horizontal vector neutral wind and temperature fields at altitude 130-300 km. The formulation of the VSH model is explained in detail, and some typical results obtained with a preliminary version (applicable to December solstice at solar maximum) are presented graphically. Good agreement with DE-2 satellite measurements is demonstrated.

  5. Global health educational engagement - a tale of two models.

    PubMed

    Rassiwala, Jasmine; Vaduganathan, Muthiah; Kupershtok, Mania; Castillo, Frank M; Evert, Jessica

    2013-11-01

    Global health learning experiences for medical students sit at the intersection of capacity building, ethics, and education. As interest in global health programs during medical school continues to rise, Northwestern University Alliance for International Development, a student-led and -run organization at Northwestern University Feinberg School of Medicine, has provided students with the opportunity to engage in two contrasting models of global health educational engagement.Eleven students, accompanied by two Northwestern physicians, participated in a one-week trip to Matagalpa, Nicaragua, in December 2010. This model allowed learning within a familiar Western framework, facilitated high-volume care, and focused on hands-on experiences. This approach aimed to provide basic medical services to the local population.In July 2011, 10 other Feinberg students participated in a four-week program in Puerto Escondido, Mexico, which was coordinated by Child Family Health International, a nonprofit organization that partners with native health care providers. A longer duration, homestays, and daily language classes hallmarked this experience. An intermediary, third-party organization served to bridge the cultural and ethical gap between visiting medical students and the local population. This program focused on providing a holistic cultural experience for rotating students.Establishing comprehensive global health curricula requires finding a balance between providing medical students with a fulfilling educational experience and honoring the integrity of populations that are medically underserved. This article provides a rich comparison between two global health educational models and aims to inform future efforts to standardize global health education curricula. PMID:24072106

  6. A high-resolution global-scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  7. GLEAM version 3: Global Land Evaporation Datasets and Model

    NASA Astrophysics Data System (ADS)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  8. Global solution for a chemotactic haptotactic model of cancer invasion

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  9. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    NASA Astrophysics Data System (ADS)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  10. Sequestering by global symmetries in Calabi-Yau string models

    NASA Astrophysics Data System (ADS)

    Andrey, Christopher; Scrucca, Claudio A.

    2011-10-01

    We study the possibility of realizing an effective sequestering between visible and hidden sectors in generic heterotic string models, generalizing previous work on orbifold constructions to smooth Calabi-Yau compactifications. In these theories, genuine sequestering is spoiled by interactions mixing chiral multiplets of the two sectors in the effective Kähler potential. These effective interactions however have a specific current-current-like structure and can be interpreted from an M-theory viewpoint as coming from the exchange of heavy vector multiplets. One may then attempt to inhibit the emergence of generic soft scalar masses in the visible sector by postulating a suitable global symmetry in the dynamics of the hidden sector. This mechanism is however not straightforward to implement, because the structure of the effective contact terms and the possible global symmetries is a priori model-dependent. To assess whether there is any robust and generic option, we study the full dependence of the Kähler potential on the moduli and the matter fields. This is well known for orbifold models, where it always leads to a symmetric scalar manifold, but much less understood for Calabi-Yau models, where it generically leads to a non-symmetric scalar manifold. We then examine the possibility of an effective sequestering by global symmetries, and argue that whereas for orbifold models this can be put at work rather naturally, for Calabi-Yau models it can only be implemented in rather peculiar circumstances.

  11. Comparing global soil models to soil carbon profile databases

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Harden, J. W.; He, Y.; Lawrence, D. M.; Nave, L. E.; O'Donnell, J. A.; Treat, C.; Sulman, B. N.; Kane, E. S.

    2015-12-01

    As global soil models begin to consider the dynamics of carbon below the surface layers, it is crucial to assess the realism of these models. We focus on the vertical profiles of soil C predicted across multiple biomes form the Community Land Model (CLM4.5), using different values for a parameter that controls the rate of decomposition at depth versus at the surface, and compare these to observationally-derived diagnostics derived from the International Soil Carbon Database (ISCN) to assess the realism of model predictions of carbon depthattenuation, and the ability of observations to provide a constraint on rates of decomposition at depth.

  12. A New Global Core Plasma Model of the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-01-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, makes possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented.

  13. Five challenges for stochastic epidemic models involving global transmission

    PubMed Central

    Britton, Tom; House, Thomas; Lloyd, Alun L.; Mollison, Denis; Riley, Steven; Trapman, Pieter

    2016-01-01

    The most basic stochastic epidemic models are those involving global transmission, meaning that infection rates depend only on the type and state of the individuals involved, and not on their location in the population. Simple as they are, there are still several open problems for such models. For example, when will such an epidemic go extinct and with what probability (questions depending on the population being fixed, changing or growing)? How can a model be defined explaining the sometimes observed scenario of frequent mid-sized epidemic outbreaks? How can evolution of the infectious agent transmission rates be modelled and fitted to data in a robust way? PMID:25843384

  14. Bacteria in the ECHAM5-HAM global climate model

    NASA Astrophysics Data System (ADS)

    Sesartic, A.; Lohmann, U.; Storelvmo, T.

    2011-01-01

    Bacteria are the most active naturally occuring ice nuclei (IN) due to the ice nucleation active proteins on their surface, which serve as active sites for ice nucleation. Their potential impact on clouds and precipitation is not well known and needs to be investigated. Bacteria as a new aerosol species were introduced into the global climate model (GCM) ECHAM5-HAM. The inclusion of bacteria acting as IN in a GCM leads to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path can be observed, specifically in the boreal regions where tundra and forests act as sources of bacteria.

  15. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  16. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation

  17. Global optical model potential for A=3 projectiles

    SciTech Connect

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-15

    A global optical model potential (GDP08) for {sup 3}He projectiles has been obtained by simultaneously fitting the elastic scattering data of {sup 3}He from targets of 40{<=}A{sub T}{<=}209 at incident energies of 30{<=}E{sub inc}{<=}217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of {sup 3}H as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for {sup 3}He-nucleus and {sup 3}H-nucleus scattering from different targets of 6{<=}A{sub T}{<=}232 at incident energies of 4{<=}E{sub inc}{<=}450 MeV. The optical potential for the doubly-magic nucleus {sup 40}Ca, the low-energy correction to the real potential for nuclei with 58 < or approx. A{sub T} < or approx. 120 at E{sub inc}<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  18. A Global Optical Model Potential for A=3 Projectiles

    SciTech Connect

    Pang, Dr. Dan Yang; Roussel-Chomaz, Dr. Patricia; Savajols, Dr. Herve; Varner Jr, Robert L; Wolski, R.

    2009-01-01

    A global optical model potential (GDP08) for 3He pro jectile has been obtained by simultaneously fitting the elastic scattering data of 3 He from targets of 40<=AT<=209 at incident energies between 30<=Einc<=217 MeV. Uncertainties and correlation coefficients between the global potential param- eters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of the 3H as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for the 3He- and 3H-nucleus scattering from different targets of 6<=AT<=232 at incident energies between 4<=Einc<=450 MeV. The optical potential for the doubly-magic nucleus 40 Ca, the low-energy correction to the real potential for nuclei with 58<=AT<=120 at Einc < 30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  19. Global optical model potential for A=3 projectiles

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-01

    A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  20. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  1. Reconstruction of groundwater depletion using a global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  2. Modeling of the Lunar Global Seismic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Toyokuni, G.; Takenaka, H.; Ishihara, Y.; Zhao, D.

    2012-12-01

    We calculate global seismic wave propagation on cross sections of the realistic whole Lunar structure models. The U.S. Apollo missions installed five seismometers on the lunar surface. Seismograms obtained during 1969 to 1977 have widely been used for investigation of the lunar interior. For example, many researchers have been working on construction of the 1-D structure models (e.g., Nakamura, 1983, textit{JGR}; Garcia et al., 2011, textit{PEPI}). Zhao et al. (2008, textit{Chinese Sci. Bull.}) further estimated the 3-D velocity structure of the Moon by applying seismic tomography to the moonquake traveltime data. Now the Japanese next lunar mission ``SELENE-II'' is planning installation of broad-band seismometers, which are expected to greatly increase resolution of the lunar interior images. Looking back on investigation history of the Earth's interior, our knowledge has been enhanced by mutual progress of observation and numerical methods. Increased enthusiasm for the Moon exploration in recent years strongly requires developing a method for numerical modeling of global seismic wave propagation based on our current knowledge of the lunar interior. We have been constructing numerical schemes using the finite-difference method (FDM) for accurate and efficient modeling of global seismic wave propagation through realistic Earth models with lateral heterogeneity (e.g., Toyokuni et al., 2005, textit{GRL}; Toyokuni & Takenaka, 2006, textit{EPS}). Our scheme calculates the 3-D equations of seismic waves in spherical coordinates only on a 2-D cross section of the whole Earth including a seismic source and receivers (``spherical 2.5-D FDM''), which enables global waveform modeling with a similar computation time and memory as for 2-D modeling with consideration of full 3-D geometrical spreading. This time we apply it to model global seismic wave propagation in the whole Moon. In the presentation, we will show numerical examples using 1-D models by Nakamura (1983, textit

  3. Prediction of Plate Motions and Stresses from Global Dynamic Models

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Holt, W. E.

    2011-12-01

    Predicting plate motions correctly has been a challenge for global dynamic models. In addition to predicting plate motions, a successful model must also explain the following features: plate rigidity, plate boundary zone deformation, as well as intraplate stress patterns and deformation. In this study we show that, given constraints from shallow lithosphere structure, history of subduction, and first order features from whole mantle tomography, it is possible to achieve a high level of accuracy in predicting plate motions and lithosphere deformation within plate boundary zones. Best-fit dynamic models presently provide an RMS velocity misfit of global surface motions (compared at 63,000 spaced points in the GSRM NNR model [Kreemer et al., 2006]) of order 1 cm/yr. We explore the relative contribution of shallow lithosphere structure vs. whole mantle convection in affecting surface deformation as well as plate motions. We show that shallow lithosphere structure that includes topography and lateral density variations in the lithosphere is an integral part of global force balance. Its inclusion in geodynamic models is essential in order to match observations of surface motions and stresses, particularly within continental zones of deformation. We also argue that stiff slabs may not be as important as has been previously claimed in controlling plate motion and lithosphere deformation. An important result of this study is the calibration of absolute stress magnitudes in the lithosphere, verified through benchmarking using whole mantle convection models. Given additional constraints of the matching of surface motions, we also calibrate the absolute effective lithosphere viscosities. Best-fit models require plates with effective viscosities of order 1023 Pa-s, with plate boundary zones possessing effective viscosities 1-3 orders of magnitude weaker. Given deviatoric stress magnitudes within the lithosphere of order 10 - 60 MPa, our global models predict less than 2 mm

  4. Development of human impact modeling in global hydrology

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wada, Y.

    2015-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments comparing water availability with water use. These first efforts mostly relied on statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by proxy by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand. In this talk we review the evolution of human impact modelling in global hydrology, e.g.: confronting yearly water demand with water availability using a water scarcity index; calculating a water scarcity index at monthly time scale; adding groundwater depletion; adding dams and reservoirs; fully integrating water use (abstraction, application, consumption, return flow) in the hydrology; simulating the effects of land use change. A number of challenges are identified that hamper the further development of current water use modelling as well as prohibit realistic modelling of future water use. We also speculate on pathways to overcome these challenges.

  5. Global atmospheric and ocean modeling on the connection machine

    SciTech Connect

    Atlas, S.R.

    1993-12-01

    This paper describes the high-level architecture of two parallel global climate models: an atmospheric model based on the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI model, and an ocean model descended from the Bryan-Cox-Semtner ocean general circulation model. These parallel models are being developed as part of a long-term research collaboration between Los Alamos National Laboratory (LANL) and the GFDL. The goal of this collaboration is to develop parallel global climate models which are modular in structure, portable across a wide variety of machine architectures and programming paradigms, and provide an appropriate starting point for a fully coupled model. Several design considerations have emerged as central to achieving these goals. These include the expression of the models in terms of mathematical primitives such as stencil operators, to facilitate performance optimization on different computational platforms; the isolation of communication from computation to allow flexible implementation of a single code under message-passing or data parallel programming paradigms; and judicious memory management to achieve modularity without memory explosion costs.

  6. A Comparative Analysis of Global Cropping Systems Models and Maps

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W.

    2013-12-01

    Agricultural practices have dramatically altered the land cover of the Earth, but the spatial extent and intensity of these practices is often difficult to catalogue. Cropland accounts for nearly 15 million km2 of the Earth's land cover - amounting to 12% of the Earth's ice-free land surface - yet information on the distribution and performance of specific crops is often available only through national or sub-national statistics. While remote sensing products offer spatially disaggregated information, those currently available on a global scale are ill-suited for many applications due to the limited separation of crop types within the area classified as cropland. Recently, however, there have been multiple independent efforts to incorporate the detailed information available from statistical surveys with supplemental spatial information to produce a spatially explicit global dataset specific to individual cropss for the year 2000. While these datasets provide analysts and decision makers with improved information on global cropping systems, the final global cropping maps differ from one another substantially. This study aims to explore and quantify systematic similarities and differences between four major global cropping systems products: the monthly irrigated and rainfed crop areas around the year 2000 (MIRAC2000) dataset, the spatial production allocation model (SPAM), the global agro-ecological zone (GAEZ) dataset, and the dataset developed by Monfreda et al., 2008. The analysis explores not only the final cropping systems maps but also the interdependencies of each product, methodological differences and modeling assumptions, which will provide users with information vital for discerning between datasets in selecting a product appropriate for each intended application.

  7. Modeling the fate of methane hydrates under global warming

    NASA Astrophysics Data System (ADS)

    Kretschmer, Kerstin; Biastoch, Arne; Rüpke, Lars; Burwicz, Ewa

    2015-05-01

    Large amounts of methane hydrate locked up within marine sediments are vulnerable to climate change. Changes in bottom water temperatures may lead to their destabilization and the release of methane into the water column or even the atmosphere. In a multimodel approach, the possible impact of destabilizing methane hydrates onto global climate within the next century is evaluated. The focus is set on changing bottom water temperatures to infer the response of the global methane hydrate inventory to future climate change. Present and future bottom water temperatures are evaluated by the combined use of hindcast high-resolution ocean circulation simulations and climate modeling for the next century. The changing global hydrate inventory is computed using the parameterized transfer function recently proposed by Wallmann et al. (2012). We find that the present-day world's total marine methane hydrate inventory is estimated to be 1146 Gt of methane carbon. Within the next 100 years this global inventory may be reduced by ˜0.03% (releasing ˜473 Mt methane from the seafloor). Compared to the present-day annual emissions of anthropogenic methane, the amount of methane released from melting hydrates by 2100 is small and will not have a major impact on the global climate. On a regional scale, ocean bottom warming over the next 100 years will result in a relatively large decrease in the methane hydrate deposits, with the Arctic and Blake Ridge region, offshore South Carolina, being most affected.

  8. Rapid Geometric Correction of SSC Terrasar-X Images with Direct Georeferencing, Global dem and Global Geoid Models

    NASA Astrophysics Data System (ADS)

    Vassilaki, D. I.; Stamos, A. A.; Ioannidis, C.

    2013-05-01

    In this paper a process for rapid geometric correction of slant range SAR images is presented. The process is completely independent of ground control information thanks to the direct georeferencing method capabilities offered by the TerraSAR-X sensor. The process is especially rapid due to the use of readily available global DEMs and global geoid models. An additional advantage of this process is its flexibility. If a more accurate local DEM or local geoid model is readily available it can be used instead of the global DEM or global geoid model. The process is applied to geometrically correct a SSC TerraSAR-X image over a sub-urban mountainous area using the SRTM and the ASTER global DEMs and the EGM2008 global geoid model. Additionally two local, more accurate DEMs, are used. The accuracy of the process is evaluated by independent check points.

  9. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  10. Can global hydrological models reproduce large scale river flood regimes?

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Flörke, Martina

    2013-04-01

    River flooding remains one of the most severe natural hazards. On the one hand, major flood events pose a serious threat to human well-being, causing deaths and considerable economic damage. On the other hand, the periodic occurrence of flood pulses is crucial to maintain the functioning of riverine floodplains and wetlands, and to preserve the ecosystem services the latter provide. In many regions, river floods reveal a distinct seasonality, i.e. they occur at a particular time during the year. This seasonality is related to regionally dominant flood generating processes which can be expressed in river flood types. While in data-rich regions (esp. Europe and North America) the analysis of flood regimes can be based on observed river discharge time series, this data is sparse or lacking in many other regions of the world. This gap of knowledge can be filled by global modeling approaches. However, to date most global modeling studies have focused on mean annual or monthly water availability and their change over time while simulating discharge extremes, both floods and droughts, still remains a challenge for large scale hydrological models. This study will explore the ability of the global hydrological model WaterGAP3 to simulate the large scale patterns of river flood regimes, represented by seasonal pattern and the dominant flood type. WaterGAP3 simulates the global terrestrial water balance on a 5 arc minute spatial grid (excluding Greenland and Antarctica) at a daily time step. The model accounts for human interference on river flow, i.e. water abstraction for various purposes, e.g. irrigation, and flow regulation by large dams and reservoirs. Our analysis will provide insight in the general ability of global hydrological models to reproduce river flood regimes and thus will promote the creation of a global map of river flood regimes to provide a spatially inclusive and comprehensive picture. Understanding present-day flood regimes can support both flood risk

  11. Understanding the processes of tropical cyclogenesis in global models

    NASA Astrophysics Data System (ADS)

    Fuentes-Figueroa, Marangelly

    This thesis is the result of research activity performed from 2005 to 2009 at the Laboratory for Atmospheres of National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), under the guidance of Dr. Oreste Reale. The present study describes some fundamental properties occurring in global models in order to spontaneously produce tropical cyclones in the Eastern Tropical North Atlantic (ETNA). The NASA finite-volume General Circulation Model (GEOS-4 and GEOS-5), the NCEP Global Forecast System (GFS) global model, and the European Centre for Medium-Range Weather Forecast (ECMWF) Nature Run outputs were analyzed in a set of diagnostic studies to understand how different global models with different configurations can produce tropical cyclogenesis. Diagnostics performed were classified in two groups according to the experimental configurations: simulations dependent on initializations (GEOS-4, GEOS-5 - version 2.0, and GFS) and free running simulations (ECMWF Nature Run). Objectives methods were developed to identify some controlling factors in the development of tropical cyclones and were applied to all the data generated for this study, focusing mainly on the ETNA. Global model outputs of nine tropical systems during three Atlantic hurricane seasons (2004-2006) were used and compared. The verification of the Kuo necessary condition for barotropic instability and the kinetic energy transfer across spatial scales are found to be important mechanisms by which tropical cyclogenesis can develop in global models. The main result of this work is that a vertically-aligned barotropically unstable column appears during cyclogenesis, predominantly controlled by the large scale forcing. With the exception of the Nature Run, which is not dependent on initialization, the actual roles of the Data Assimilation System (DAS) and the forecasting system cannot be rigorously separated in these experiments. Therefore, in the third part of this thesis the impact

  12. A Process-based Model of Global Lichen Productivity

    NASA Astrophysics Data System (ADS)

    Porada, P.; Kleidon, A.

    2012-04-01

    Lichens and biotic crusts are abundant in most ecosystems of the world. They are the main autotrophic organisms in many deserts and at high altitudes and they can also be found in large amounts as epiphytes in some forests, especially in the boreal zone. They are characterised by a great variety of physiological properties, such as growth form, productivity or color. Due to the vast land surface areas covered by lichens, they may contribute significantly to the global terrestrial net carbon uptake. Furthermore, they potentially play an important role with respect to nutrient cycles in some ecosystems and they have the ability to enhance weathering at the surface on which they grow. A possible way to quantify these processes at the global scale is presented here in form of a process-based lichen model. This approach is based on the concepts used in many dynamical vegetation models and extends these methods to account for the specific properties of lichens. Hence, processes such as photosynthesis, respiration and water exchange are implemented as well as important trade-offs like photosynthetic capacity versus respiratory load and water content versus CO2 conductivity. The great physiological variability of lichens is incorporated directly into the model through ranges of possible parameter values, which are randomly sampled. In this way, many artificial lichen "species" are created and climate then acts as a filter to determine the species which are able to survive permanently. By averaging over the surviving "species", the model predicts lichen productivity as a function of climate input data such as temperature, radiation and precipitation at the global scale. Consequently, the contribution of lichens to the global carbon balance can be quantified. Moreover, global patterns of lichen biodiversity and other properties can be illustrated. The model can be extended to account for the nutrient dynamics of lichens, such as nitrogen fixation and the acquisition and

  13. Global discharge modelling experiments with the TIGGE archive

    NASA Astrophysics Data System (ADS)

    Zsoter, Ervin; Smith, Paul; Dutra, Emanuel; Pappenberger, Florian; Wetterhall, Fredrik; Bogner, Konrad; Balsamo, Gianpaolo; Richardson, David; Di Giuseppe, Francesca

    2015-04-01

    In this study we derived and analysed global ensemble discharge forecasts for TIGGE (THORPEX Interactive Grand Global Ensemble) models using the modelling and technical infrastructure available at ECMWF. We focussed on the global characteristics of discharge with special emphasis on the analysis of errors stemming from different segments of the production system and also on the post-processing possibilities of the data. The modelling work was based on the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land) land-surface model used operationally at ECMWF. The offline version of HTESSEL was extended to accommodate ensemble forecast runs from TIGGE and the climate and initial conditions were taken from ERA Interim. Finally the model output runoff was coupled to the CaMa-Flood distributed global river routing model to provide river discharge. The initial state of the river network for the routing was provided by 30-year ERA Interim HTESSEL integration coupled with CaMa-Flood. The production of the daily discharge forecasts up to 10 days covered the period 2008-2013 for four TIGGE models (ECMWF, UKMO, NCEP and CMA) for about 400 global river catchments with upstream area over 40000 km2. The impact of the HTESSEL atmospheric forcing on the discharge was investigated as it played a crucial role in the experiments. The sensitivity analysis to the forcing parameter choices showed some interesting behaviour in the impact of wind, radiation, temperature, humidity and precipitation on the global discharge forecasts. The positive influence of the improved ERA Interim precipitation forcing (GPCP v2.0 corrected) on the quality of the initial river flow in the forecast routing was also highlighted. To help interpreting the discharge performance two of the HTESSEL atmospheric forcing parameters, 2m temperature and 24-hour total precipitation were verified and the performance characteristics explored using four TIGGE models and the equal weight multi-model

  14. Global Characterization of Model Parameter Space Using Information Topology

    NASA Astrophysics Data System (ADS)

    Transtrum, Mark

    A generic parameterized model is a mapping between parameters and data and is naturally interpreted as a prediction manifold embedded in data space. In this interpretation, known as Information Geometry, the Fisher Information Matrix (FIM) is a Riemannian metric that measures the identifiability of the model parameters. Varying the experimental conditions (e.g., times at which measurements are made) alters both the FIM and the geometric properties of the model. However, several global features of the model manifold (e.g., edges and corners) are invariant to changes in experimental conditions as long as the FIM is not singular. Invariance of these features to changing experimental conditions generates an ''Information Topology'' that globally characterizes a model's parameter space and reflects the underlying physical principles from which the model was derived. Understanding a model's information topology can give insights into the emergent physics that controls a system's collective behavior, identify reduced models and describe the relationship among them, and determine which parameter combinations will be difficult to identify for various experimental conditions.

  15. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  16. Mouse Transient Global Ischemia Two-Vessel Occlusion Model

    PubMed Central

    Pontarelli, Fabrizio; Ofengeim, Dimitry; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2016-01-01

    Transient global ischemia in rodents induces delayed death of hippocampal CA1 neurons, as well as in some hilar neurons of the dentate gyrus, medium aspiny neurons of the striatum, pyramidal neurons in neocortical layers II, V and VI, and Purkinje neurons of the cerebellum. In contrast to focal ischemia that mimics regional stroke in humans, this model of global ischemia mimics the brain injury that occurs after human cardiac arrest. Early events include caspase activation, cleavage of anti-death Bcl-2 family proteins and large mitochondrial channel activity. Genetically engineered mice provide opportunities for study such as the knock-in mouse expressing a caspase-resistant form of Bcl-xL found to exhibit markedly reduced mitochondrial channel activity and reduced vulnerability to ischemia-induced neuronal death1. It is therefore relevant to adapt and develop a simple protocol for producing transient global ischemia in mouse2. The two-vessel occlusion model has been specifically developed to provide optimal outcomes in mouse and offers several advantages over the four-vessel occlusion model traditionally used in rat including the relative ease of the procedure as well as only a single day of surgery. However it should be noted that this procedure has a higher morbidity rate compared to other ischemia models as well as a higher degree of variability. These two disadvantages necessitate the use of a larger cohort of animals, which for many healthy breeding transgenic animals is a non-deterring factor.

  17. A global model study of silane/hydrogen discharges

    NASA Astrophysics Data System (ADS)

    Danko, Stephan; Bluhm, Dirk; Bolsinger, Valentin; Dobrygin, Wladislaw; Schmidt, Oliver; Brinkmann, Ralf Peter

    2013-10-01

    An algorithm to automatically build a general global chemical model on the basis of a set of chemical reactions is developed for capacitively coupled discharges. The methodology is applied to silane/hydrogen discharge regimes relevant for the deposition of microcrystalline silicon thin films for solar cell fabrication. The input parameters of the model are merely the process conditions such as absorbed power, pressure, gas flow, gas mixture and gap distance as well as the electron energy distribution function. Computational time is less than 30 s for an analytical description of the electron energy distribution and less than 40 s in the case of a look-up table for one set of process parameters for a silane/hydrogen gas mixture. The electron Boltzmann equation solver BOLSIG+ is used to determine the most appropriate electron energy distribution depending on different process conditions of this application. The numerical results of the global model are compared with measurements of silane depletion from the literature and show good agreement. A wide range of process conditions relevant for the deposition of thin-film silicon is covered. An analysis of the effect of different process conditions on the resulting plasma composition is performed. This shows the potential of a global model for silane/hydrogen discharges.

  18. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  19. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  20. Modeling Selective Availability of the NAVSTAR Global Positioning System

    NASA Technical Reports Server (NTRS)

    Braasch, Michael

    1990-01-01

    As the development of the NAVSTAR Global Positioning System (GPS) continues, there will increasingly be the need for a software centered signal model. This model must accurately generate the observed pseudorange which would typically be encountered. The observed pseudorange varies from the true geometric (slant) range due to range measurement errors. Errors in range measurement stem from a variety of hardware and environment factors. These errors are classified as either deterministic or random and, where appropriate, their models are summarized. Of particular interest is the model for Selective Availability which is derived from actual GPS data. The procedure for the determination of this model, known as the System Identification Theory, is briefly outlined. The synthesis of these error sources into the final signal model is given along with simulation results.

  1. On the global dynamics of a chronic myelogenous leukemia model

    NASA Astrophysics Data System (ADS)

    Krishchenko, Alexander P.; Starkov, Konstantin E.

    2016-04-01

    In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.

  2. Global land use data for integrated assessment modeling

    SciTech Connect

    Ramankutty, Navin

    2005-12-12

    Changes in land use and land cover have been one of the major drivers of global change over the last three centuries. Detailed spatially-explicit data sets characterizing these historical land cover changes are now emerging. By synthesizing remotely-sensed land cover classification data sets with historical land use census data, our research group has developed comprehensive databases of historical land use and land cover change. Moreover, we are building estimates of the land suitability for agriculture to predict the constraints on future land use. In this project, we have interacted with the Global Trade and Analysis Project (GTAP) at Purdue University, to adapt our land use data for use with the GTAP database, a baseline database widely used by the integrated assessment modeling community. Moreover, we have developed an interactive website for providing these newly emerging land use data products for the integrated assessment (IA) community and to the climate modeling community.

  3. Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  4. Evaluation of annual, global seismicity forecasts, including ensemble models

    NASA Astrophysics Data System (ADS)

    Taroni, Matteo; Zechar, Jeremy; Marzocchi, Warner

    2013-04-01

    In 2009, the Collaboratory for the Study of the Earthquake Predictability (CSEP) initiated a prototype global earthquake forecast experiment. Three models participated in this experiment for 2009, 2010 and 2011—each model forecast the number of earthquakes above magnitude 6 in 1x1 degree cells that span the globe. Here we use likelihood-based metrics to evaluate the consistency of the forecasts with the observed seismicity. We compare model performance with statistical tests and a new method based on the peer-to-peer gambling score. The results of the comparisons are used to build ensemble models that are a weighted combination of the individual models. Notably, in these experiments the ensemble model always performs significantly better than the single best-performing model. Our results indicate the following: i) time-varying forecasts, if not updated after each major shock, may not provide significant advantages with respect to time-invariant models in 1-year forecast experiments; ii) the spatial distribution seems to be the most important feature to characterize the different forecasting performances of the models; iii) the interpretation of consistency tests may be misleading because some good models may be rejected while trivial models may pass consistency tests; iv) a proper ensemble modeling seems to be a valuable procedure to get the best performing model for practical purposes.

  5. A global model of natural volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Guenther, Alex; Hewitt, C. Nicholas; Erickson, David; Fall, Ray; Geron, Chris; Graedel, Tom; Harley, Peter; Klinger, Lee; Lerdau, Manuel; McKay, W. A.; Pierce, Tom; Scholes, Bob; Steinbrecher, Rainer; Tallamraju, Raja; Taylor, John; Zimmerman, Pat

    1995-05-01

    Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5°×0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10-20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.

  6. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  7. Global model for the lithospheric strength and effective elastic thickness

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  8. Correction to "Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model"

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Koster, Randal D.; Kau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kokdama, Yuji

    2012-01-01

    The website information describing the forcing meteorological data used for the land surface model (LSM) simulation, which were observed at an Automated Meteorological Station CAWS) at the Sapporo District Meteorological Observatory maintained by the Japan Meteorological Agency (JMA), was missing from the text. The 1-hourly data were obtained from the website of Kisyoutoukeijouhou (Information for available JMA-observed meteorological data in the past) on the website of JMA (in Japanese) (available at: http://www.jma.go.jpijmaimenulreport.html). The measurement height information of 59.5 m for the anemometer at the Sapporo Observatory was also obtained from the website of JMA (in Japanese) (available at: http://www.jma.go.jp/jma/menu/report.html). In addition, the converted 10-m wind speed, based on the AWS/JMA data, was further converted to a 2-m wind speed prior to its use with the land model as a usual treatment of off-line Catchment simulation. Please ignore the ice absorption data on the website mentioned in paragraph [15] which was not used for our calculations (but the data on the website was mostly the same as the estimated ice absorption coefficients by the following method because they partially used the same data by Warren [1984]). We calculated the ice absorption coefficients with the method mentioned in the same paragraph, for which some of the refractive index data by Warren [1984] were used and then interpolated between wavelengths, and also mentioned in paragraph [20] for the visible (VIS) and near-infrared (NIR) ranges. The optical data we used were interpolated between wavelengths as necessary.

  9. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  10. Improved data for integrated modeling of global environmental change

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  11. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1992-01-01

    Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.

  12. A global model of carbon-nutrient interactions

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Gildea, Patricia; Vorosmarty, Charles; Mellilo, Jerry M.; Peterson, Bruce J.

    1985-01-01

    The global biogeochemical model presented has two primary objectives. First, it characterizes natural elemental cycles and their linkages for the four elements significant to Earth's biota: C, N, S, and P. Second, it describes changes in these cycles due to human activity. Global nutrient cycles were studied within the drainage basins of several major world rivers on each continent. The initial study region was the Mississippi drainage basin, concentrating on carbon and nitrogen. The model first establishes the nutrient budgets of the undisturbed ecosystems in a study region. It then uses a data set of land use histories for that region to document the changes in these budgets due to land uses. Nutrient movement was followed over time (1800 to 1980) for 30 ecosystems and 10 land use categories. A geographically referenced ecological information system (GREIS) was developed to manage the digital global data bases of 0.5 x 0.5 grid cells needed to run the model: potential vegetation, drainage basins, precipitation, runoff, contemporary land cover, and FAO soil maps of the world. The results show the contributions of land use categories to river nutrient loads on a continental scale; shifts in nutrient cycling patterns from closed, steady state systems to mobile transient or open, steady state systems; soil organic matter depletion patterns in U.S. agricultural lands; changing nutrient ratios due to land use changes; and the effect of using heavy fertilizer on aquatic systems.

  13. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  14. Further improvements on a global nuclear mass model

    SciTech Connect

    Liu Min; Wang Ning; Deng Yangge; Wu Xizhen

    2011-07-15

    The semi-empirical macroscopic-microscopic mass formula is further improved by considering some residual corrections. The rms deviation from 2149 known nuclear masses is significantly reduced to 336 keV, even lower than that achieved with the best of the Duflo-Zuker models. The {alpha}-decay energies of super-heavy nuclei, the Garvey-Kelson relations, and the isobaric multiplet mass equation (IMME) can be reproduced remarkably well with the model, and the predictive power of the mass model is good. With a systematic study of 17 global nuclear mass models, we find that the quadratic form of the IMME is closely related to the accuracy of nuclear mass calculations when the Garvey-Kelson relations are reproduced reasonably well. Fulfilling both the IMME and the Garvey-Kelson relations seem to be two necessary conditions for improving the quality of the model prediction. Furthermore, the {alpha}-decay energies of super-heavy nuclei should be used as an additional constraint on global nuclear mass models.

  15. Validation of Global Gravitational Field Models in Norway

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Sprlak, M.; Gerlach, C.

    2015-03-01

    We compare global gravitational field models obtained from GOCE to terrestrial datasets over Norway. Models based on the time-wise and the direct approaches are validated against height anomalies, free-air gravity anomalies, and deflections of the vertical. The spectral enhancement method is employed to overcome the spectral inconsistency between the gravitational models and the terrestrial datasets. All models are very similar up to degree/order 160. Higher degrees/orders improved systematically as more observations from GOCE were made available throughout five releases of data. Release 5 models compare well with EGM2008 up to degree/order 220. Validation by height anomalies suggests possible GOCE improvements to the gravity field over Norway between degree/order 100-200.

  16. The 5'×5' global geoid model GGM2016

    NASA Astrophysics Data System (ADS)

    Shen, WenBin; Han, Jiancheng

    2016-04-01

    We provide an updated 5'×5' global geoid model GGM2016, which is determined based on the shallow layer method (Shen 2006). We choose an inner surface S below the EGM2008 geoid, and the layer bounded by the inner surface S and the Earth's geographical surface E is referred to as the shallow layer. The Earth's geographical surface E is determined by the digital topographic model DTM2006.0 combining with the DNSC2008 mean sea surface. We determine the 3D shallow layer model (SLM) using the refined crust density model CRUST1.0-5min, which is an improved 5'×5' density model of the CRUST1.0 with taking into account the corrections of the areas covered by ice sheets and the land-ocean crossing regions. Based on the SLM and the gravity field EGM2008 defined outside the Earth's geographical surface E, we determine the gravity field EGM2008S defined in the region outside the inner surface S, extending the gravity field's definition domain from the domain outside E to the domain outside S. Based on the geodetic equation W(P)=W0, where W0 is the geopotential constant on the geoid, we determine a 5'×5' global geoid model GGM2016, which provides both the 5'×5' grid values and spherical harmonic coefficient expressions. Comparisons show that the GGM2016 fits the globally available GPS/leveling points better than the EGM2008 geoid. This study is supported by National 973 Project China (grant Nos. 2013CB733301 and 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41429401, 41128003, 41021061).

  17. Improved data for integrated modeling of global environmental change

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  18. Will a perfect global model agree with perfect observations?

    NASA Astrophysics Data System (ADS)

    Schutgens, N.; Gryspeerdt, E.; Tsyro, S.; Weigum, N.; Partridge, D.; Goto, D.; Schulz, M.; Stier, P.

    2015-12-01

    Global aerosol models and observations differ strongly in their spatio-temporal sampling. Model results are typical of large gridboxes (200 by 200 km), while observations are made over much smaller areas (e.g. 10 by 10 km for MODIS, even smaller for ground sites). Model results are always available in contrast to observations that are intermittent due to orbital constraints, retrieval limitations and instrument failure/maintenance. These twin issues of temporal sampling and spatial aggregation are relevant for any observation, be it remotely sensed, or in-situ. We ask this question: will a perfect model agree with perfect observations? The short answer is: unlikely. Using two different modelling frame-works (year-long global model runs collocated with actual observations and month-long high resolution regional models runs) we show that significant errors can be introduced in a model to observation comparison due to different spatio-temporal sampling. These sampling errors are typically larger than observational errors and are of comparable size as true model errors. While the temporal sampling issue can be dealt with by properly resampling model data to observation times, the spatial aggregation issue introduces noise into the comparison. We propose and evaluate several strategies for mitigating this noise. The most succesfull strategy is further temporal averaging of the data. However, this seems to have a less benefical effect on surface in-situ observations than on remotely sensed column-integrated measurements. For instance, monthly averaged black carbon mass concentrations measured at ground sites still allow significant (~ 30%) noise into the comparison. Furthermore, flight campaign data, by its nature, are not open to long-term (monthly, yearly) averaging and allow sampling errors of 50% or more in black carbon mass concentrations. Other observables (AOT, extinction profiles, number densities, PM2.5, CCN) will also be discussed.

  19. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  20. A global, real-time flood monitoring model

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-07-01

    Floods kill thousands of people and cause billions of dollars in damage each year, and many floods occur in areas of the world that lack resources for flood monitoring and forecasting systems. Wu et al. report on an experimental real-time global flood monitoring system that employs a widely used land surface model coupled with a hierarchical dominant river tracing-based runoff routing model and satellite-based precipitation data to provide streamflow and flood detection/estimation information over most of the globe every 3 hours.

  1. Current plate motions. [continental groupings and global modelling

    NASA Technical Reports Server (NTRS)

    Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.

    1990-01-01

    A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.

  2. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  3. Statistical modeling of global geogenic arsenic contamination in groundwater.

    PubMed

    Amini, Manouchehr; Abbaspour, Karim C; Berg, Michael; Winkel, Lenny; Hug, Stephan J; Hoehn, Eduard; Yang, Hong; Johnson, C Annette

    2008-05-15

    Contamination of groundwaters with geogenic arsenic poses a major health risk to millions of people. Although the main geochemical mechanisms of arsenic mobilization are well understood, the worldwide scale of affected regions is still unknown. In this study we used a large database of measured arsenic concentration in groundwaters (around 20,000 data points) from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. A novel rule-based statistical procedure was used to combine the physical data and expert knowledge to delineate two process regions for arsenic mobilization: "reducing" and "high-pH/ oxidizing". Arsenic concentrations were modeled in each region using regression analysis and adaptive neuro-fuzzy inferencing followed by Latin hypercube sampling for uncertainty propagation to produce probability maps. The derived global arsenic models could benefit from more accurate geologic information and aquifer chemical/physical information. Using some proxy surface information, however, the models explained 77% of arsenic variation in reducing regions and 68% of arsenic variation in high-pH/oxidizing regions. The probability maps based on the above models correspond well with the known contaminated regions around the world and delineate new untested areas that have a high probability of arsenic contamination. Notable among these regions are South East and North West of China in Asia, Central Australia, New Zealand, Northern Afghanistan, and Northern Mali and Zambia in Africa. PMID:18546706

  4. Aerosol impacts in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane P.; Brooks, Malcolm E.; Milton, Sean F.

    2010-05-01

    An accurate representation of the direct and indirect effect of aerosols is of growing concern for global numerical weather prediction (NWP). Increased scattering and absorption of incoming shortwave (SW) and outgoing longwave radiation (OLR) fields due to the presence of aerosol layers in the atmosphere modifies the atmospheric heating profile and can affect large-scale circulation patterns. The current representation of aerosols in the global NWP configuration of the Met Office Unified ModelTM (MetUM) is based on a simple aerosol climatology (Cusack et al., 1998). Profiles of water soluble dust, soot, oceanic and stratospheric sulphate aerosols are described separately for land and ocean surfaces and are distributed over the boundary layer, free troposphere and stratosphere (sulphates only). While this improved the reflected SW radiative bias at the top-of-atmosphere (TOA), there is evidence that the climatology is too absorbing leading to a temperature bias in the lower troposphere of approximately 0.5 K/day. Furthermore, the omission of the scattering and absorption properties of mineral dust and biomass burning aerosol particles in particular, is believed to be the principal cause of significant model biases (in the region of 50-56 W m-2) in both the model OLR at the TOA (Haywood et al., 2005) and the surface SW radiation fields (Milton et al., 2008). One of the objectives of the Global Aerosols (G-AER) component of the MACC (Monitoring Atmospheric Composition and Climate) project is to evaluate the impact of an improved aerosol representation on the performance of global NWP models. In a stepwise approach of increasing the aerosol complexity in the MetUM, the Cusack climatology is being replaced by the CLASSIC (Coupled Large-scale Aerosol Simulator for Studies in Climate) aerosol scheme, developed for the HadGEM (Hadley Centre Global Environmental Model) climate model. CLASSIC includes representations of external mixtures of sulphate, black carbon, organic

  5. Global-scale regionalization of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; van Dijk, Albert; de Roo, Ad; Miralles, Diego; Schellekens, Jaap; McVicar, Tim; Bruijnzeel, Sampurno

    2016-04-01

    Current state-of-the-art models typically applied at continental to global scales (hereafter called macro-scale) tend to use a priori parameters, resulting in suboptimal streamflow (Q) simulation. For the first time, a scheme for regionalization of model parameters at the global scale was developed. We used data from a diverse set of 1787 small-to-medium sized catchments (10--10 000~km^2) and the simple conceptual HBV model to set up and test the scheme. Each catchment was calibrated against observed daily Q, after which 674 catchments with high calibration and validation scores, and thus presumably good-quality observed Q and forcing data, were selected to serve as donor catchments. The calibrated parameter sets for the donors were subsequently transferred to 0.5° grid cells with similar climatic and physiographic characteristics, resulting in parameter maps for HBV with global coverage. For each grid cell, we used the ten most similar donor catchments, rather than the single most similar donor, and averaged the resulting simulated Q, which enhanced model performance. The 1113 catchments not used as donors were used to independently evaluate the scheme. The regionalized parameters outperformed spatially-uniform (i.e., averaged calibrated) parameters for 79~% of the evaluation catchments. Substantial improvements were evident for all major Köppen-Geiger climate types and even for evaluation catchments >5000~km distance from the donors. The median improvement was about half of the performance increase achieved through calibration. HBV using regionalized parameters outperformed nine state-of-the-art macro-scale models, suggesting these might also benefit from the new regionalization scheme. The produced HBV parameter maps including ancillary data are available via http://water.jrc.ec.europa.eu/HBV/.

  6. Global-scale regionalization of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Beck, Hylke E.; van Dijk, Albert I. J. M.; de Roo, Ad; Miralles, Diego G.; McVicar, Tim R.; Schellekens, Jaap; Bruijnzeel, L. Adrian

    2016-05-01

    Current state-of-the-art models typically applied at continental to global scales (hereafter called macroscale) tend to use a priori parameters, resulting in suboptimal streamflow (Q) simulation. For the first time, a scheme for regionalization of model parameters at the global scale was developed. We used data from a diverse set of 1787 small-to-medium sized catchments (10-10,000 km2) and the simple conceptual HBV model to set up and test the scheme. Each catchment was calibrated against observed daily Q, after which 674 catchments with high calibration and validation scores, and thus presumably good-quality observed Q and forcing data, were selected to serve as donor catchments. The calibrated parameter sets for the donors were subsequently transferred to 0.5° grid cells with similar climatic and physiographic characteristics, resulting in parameter maps for HBV with global coverage. For each grid cell, we used the 10 most similar donor catchments, rather than the single most similar donor, and averaged the resulting simulated Q, which enhanced model performance. The 1113 catchments not used as donors were used to independently evaluate the scheme. The regionalized parameters outperformed spatially uniform (i.e., averaged calibrated) parameters for 79% of the evaluation catchments. Substantial improvements were evident for all major Köppen-Geiger climate types and even for evaluation catchments > 5000 km distant from the donors. The median improvement was about half of the performance increase achieved through calibration. HBV with regionalized parameters outperformed nine state-of-the-art macroscale models, suggesting these might also benefit from the new regionalization scheme. The produced HBV parameter maps including ancillary data are available via www.gloh2o.org.

  7. Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Yin, Yi; Friedlingstein, Pierre; Sitch, Stephen; Ahlström, Anders; Guimberteau, Matthieu; Huntingford, Chris; Levis, Sam; Levy, Peter E.; Huang, Mengtian; Li, Yue; Li, Xiran; Lomas, Mark R.; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning; Zhao, Fang; Wang, Lei

    2015-08-01

    In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.

  8. Investigating global brown carbon from both measurements and models

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.

    2015-12-01

    Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. BrC properties and the resulting radiative effects are highly uncertain, limiting our ability to estimate near-term and regional climate forcing. Since both the source and optical properties of BrC are not well understood, it is challenging to develop a reliable model frameworks for BrC. On the other hand, field and laboratory measurements of BrC are rare and provide limited constraints. BrC absorption exhibits strong spectral dependence, which differs from black carbon (BC), the other important fine aerosol absorber. Based on this property, we develop an innovative approach to derive BrC absorption from multi-wavelength absorption measurements. By analyzing the Aerosol Absorption Optical Depth (AAOD) data from global AERONET network, we find that the optical properties of BrC are connected to the BC/OA ratio, as suggested by recent work. In view of this finding, we develop and discuss a series of different methods to simulate BrC absorption in the GEOS-Chem global model and estimate an associated range for global BrC burden and direct radiative forcing (DRF).

  9. Spatially-explicit models of global tree density

    PubMed Central

    Glick, Henry B.; Bettigole, Charlie; Maynard, Daniel S.; Covey, Kristofer R.; Smith, Jeffrey R.; Crowther, Thomas W.

    2016-01-01

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services. PMID:27529613

  10. Spatially-explicit models of global tree density.

    PubMed

    Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W

    2016-01-01

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services. PMID:27529613

  11. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  12. Evaluating tropical cyclogenesis forecasts in four global models

    NASA Astrophysics Data System (ADS)

    Halperin, D.; Fuelberg, H. E.; Hart, R. E.; Cossuth, J.; Truchelut, R.

    2011-12-01

    Tropical cyclone (TC) forecasts rely heavily on output from numerical models. Each model in the suite of models used by forecasters has its own strengths and weaknesses. Some research has investigated the skill of the various models with respect to track, with the assumption that a TC already exists. However, little research has considered how well (or poorly) global models forecast TC genesis. A few studies have considered the Western North Pacific Basin, but there have been numerous upgrades to the numerical models since then. One recent study examined the North Atlantic Basin, but it analyzed only a small sample of storms. This paper will analyze TC cyclogenesis in four global models (GFS, NOGAPS, UKMET, and CMC) over seven seasons (2004-2010) in the North Atlantic Basin. All model indicated TCs will be counted and classified as a hit, miss, or false alarm. The method of finding TCs in the model environment is based on a mixture of methods used previously in the literature. Hits are defined as when a model predicts genesis within 24 hours of the National Hurricane Center best track genesis time and within five degrees latitude and longitude of the best track genesis location. False alarm case 1 is defined as when the model is predicting genesis at a location where a TC already exists in the best track, but the timing of genesis is off (i.e., more than 24 hours from the best track genesis time). False alarm case 2 is defined as model indicated TCs that never develop. Results will show which model best predicted TC genesis (with the acknowledgement that the "best" model can change from year to year) and whether recent upgrades to the models have yielded improved TC genesis forecasts. Basic statistics will be conducted on the results, including skill scores. The results will be subdivided into geographical regions and analyzed spatially and temporally. This may provide insight regarding regions where a model performs best and whether forecast skill decreases with

  13. Global scale modeling of riverine sediment loads: tropical rivers in a global context

    NASA Astrophysics Data System (ADS)

    Cohen, Sagy; Syvitski, James; Kettner, Albert

    2015-04-01

    A global scale riverine sediment flux model (termed WBMsed) is introduced. The model predicts spatially and temporally explicit water, suspended sediment and nutrients flux in relatively high resolutions (6 arc-min and daily). Modeled riverine suspended sediment flux through global catchments is used in conjunction with observational data for 35 tropical basins to highlight key basin scaling relationships. A 50 year, daily model simulation illuminates how precipitation, relief, lithology and drainage basin area affect sediment load, yield and concentration. Tropical river systems, wherein much of a drainage basin experiences tropical climate are strongly influenced by the annual and inter-annual variations of the Inter-tropical Convergence Zone (ITCZ) and its derivative monsoonal winds, have comparatively low inter-annual variation in sediment yield. Rivers draining rainforests and those subjected to tropical monsoons typically demonstrate high runoff, but with notable exceptions. High rainfall intensities from burst weather events are common in the tropics. The release of rain-forming aerosols also appears to uniquely increase regional rainfall, but its geomorphic manifestation is hard to detect. Compared to other more temperate river systems, climate-driven tropical rivers do not appear to transport a disproportionate amount of particulate load to the world's oceans, and their warmer, less viscous waters are less competent. Multiple-year hydrographs reveal that seasonality is a dominant feature of most tropical rivers, but the rivers of Papua New Guinea are somewhat unique being less seasonally modulated. Local sediment yield within the Amazon is highest near the Andes, but decreases towards the ocean as the river's discharge is diluted by water influxes from sediment-deprived rainforest tributaries

  14. Bacteria in the ECHAM5-HAM global climate model

    NASA Astrophysics Data System (ADS)

    Sesartic, A.; Lohmann, U.; Storelvmo, T.

    2012-09-01

    Some bacteria are among the most active ice nuclei found in nature due to the ice nucleation active proteins on their surface, which serve as active sites for ice nucleation. Their potential impact on clouds and precipitation is not well known and needs to be investigated. Bacteria as a new aerosol species were introduced into the global climate model (GCM) ECHAM5-HAM. The inclusion of bacteria acting as ice nuclei in a GCM leads to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path are simulated, specifically in the boreal regions where tundra and forests act as sources of bacteria. Although bacteria contribute to heterogeneous freezing, their impact is reduced by their low numbers compared to other heterogeneous IN. This result confirms the outcome of several previous studies.

  15. Global solutions to a chemotaxis model with consumption of chemoattractant

    NASA Astrophysics Data System (ADS)

    Wang, Liangchen; Mu, Chunlai; Hu, Xuegang

    2016-08-01

    This paper is devoted to the following chemotaxis system u_t=nabla\\cdot(D(u)nabla u)-nabla\\cdot(S(u)nabla v),quad &xin Ω,quad t>0, v_t=Δ v-uv,quad &xinΩ,quad t>0, under homogeneous Neumann boundary conditions in a smooth bounded domain {Ωsubset {R}^n} ({n≥2}), not necessarily being convex. There are some constants {c_D > 0}, {c_S > 0}, {min{R}} and {qin{R}} such that D(u) ≥ c_D(u+1)^{m-1} quad{and} quad S(u)≤ c_S(u+1)^{q-1}quad for all u≥0. If {q < m+n+2/2n}, it is shown that the model possesses a unique global classical solution which is uniformly bounded; if {q < m/2+n+2/2n}, the global existence of solution is established.

  16. The Global Modeling Initiative Assessment Model: Model Description, Integration and Testing of the Transport Shell

    SciTech Connect

    Rotman, D.A.; Tannahill, J.R.; Kinnison, D.E.; Connell, P.S.; Bergmann, D.; Proctor, D.; Rodriquez, J.M.; Lin, S.J.; Rood, R.B.; Prather, M.J.; Rasch, P.J.; Considine, D.B.; Ramaroson, R.; Kawa, S.R.

    2000-04-25

    We describe the three dimensional global stratospheric chemistry model developed under the NASA Global Modeling Initiative (GMI) to assess the possible environmental consequences from the emissions of a fleet of proposed high speed civil transport aircraft. This model was developed through a unique collaboration of the members of the GMI team. Team members provided computational modules representing various physical and chemical processes, and analysis of simulation results through extensive comparison to observation. The team members' modules were integrated within a computational framework that allowed transportability and simulations on massively parallel computers. A unique aspect of this model framework is the ability to interchange and intercompare different submodules to assess the sensitivity of numerical algorithms and model assumptions to simulation results. In this paper, we discuss the important attributes of the GMI effort, describe the GMI model computational framework and the numerical modules representing physical and chemical processes. As an application of the concept, we illustrate an analysis of the impact of advection algorithms on the dispersion of a NO{sub y}-like source in the stratosphere which mimics that of a fleet of commercial supersonic transports (High-Speed Civil Transport (HSCT)) flying between 17 and 20 kilometers.

  17. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  18. Importance of Sea Ice for Validating Global Climate Models

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.

    1997-01-01

    Reproduction of current day large-scale physical features and processes is a critical test of global climate model performance. Without this benchmark, prognoses of future climate conditions are at best speculation. A fundamental question relevant to this issue is, which processes and observations are both robust and sensitive enough to be used for model validation and furthermore are they also indicators of the problem at hand? In the case of global climate, one of the problems at hand is to distinguish between anthropogenic and naturally occuring climate responses. The polar regions provide an excellent testing ground to examine this problem because few humans make their livelihood there, such that anthropogenic influences in the polar regions usually spawn from global redistribution of a source originating elsewhere. Concomitantly, polar regions are one of the few places where responses to climate are non-anthropogenic. Thus, if an anthropogenic effect has reached the polar regions (e.g. the case of upper atmospheric ozone sensitivity to CFCs), it has most likely had an impact globally but is more difficult to sort out from local effects in areas where anthropogenic activity is high. Within this context, sea ice has served as both a monitoring platform and sensitivity parameter of polar climate response since the time of Fridtjof Nansen. Sea ice resides in the polar regions at the air-sea interface such that changes in either the global atmospheric or oceanic circulation set up complex non-linear responses in sea ice which are uniquely determined. Sea ice currently covers a maximum of about 7% of the earth's surface but was completely absent during the Jurassic Period and far more extensive during the various ice ages. It is also geophysically very thin (typically <10 m in Arctic, <3 m in Antarctic) compared to the troposphere (roughly 10 km) and deep ocean (roughly 3 to 4 km). Because of these unique conditions, polar researchers regard sea ice as one of the

  19. CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris

    2010-05-01

    Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also

  20. Global dust model intercomparison in AeroCom phase I

    SciTech Connect

    Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Fillmore, D.; Ghan, S.; Ginoux, P.; Grini, A.; Horowitz, L.; Koch, D.; Krol, M. C.; Landing, W.; Liu, X.; Mahowald, N.; Miller, R.; Morcrette, J. -J.; Myhre, G.; Penner, J.; Perlwitz, J.; Stier, P.; Takemura, T.; Zender, C. S.

    2011-08-01

    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they

  1. Ionospheric potential variability in global electric circuit models (Invited)

    NASA Astrophysics Data System (ADS)

    Mareev, E.; Volodin, E. M.; Kalinin, A.; Sllyunyaev, N.

    2013-12-01

    The ionospheric potential (IP) represents the electric voltage between the Earth's surface and the lower ionosphere and may be measured with a sufficient accuracy using the balloon soundings over the lowest 15-20 km. This parameter can serve as a global index relating the state of the global electric circuit (GEC) to the planetary climate. Exploring the GEC as a diagnostic tool for climate studies requires an accurate modeling of the IP stationary state and its dynamics, while a question of secular trend of the IP is still under discussion (Markson, 2007; Williams, 2009; Williams and Mareev, 2013). This paper addresses a possibility of correct calculation of the IP in 3D models of the GEC and its adequate parameterization to be used in General Circulation Models (GCM). Our approach is based on the use the integral representation for the contribution of charging currents, supporting the generators (in particular, electrified clouds) in the GEC, into the ionospheric potential (Kalinin et al., 2011; Mareeva et al., 2011). Simple enough analytical expressions for IP induced by the charging electric currents are suggested, including the contribution of the Austausch generator. We have developed also the spherical numerical model of the GEC and applied it for IP calculation for different-type cloud contribution into the circuit. A suggested IP parameterization is appropriate for the use in climate-model simulations (Mareev and Volodin, 2011). We use a high-resolution GCM of the atmosphere and ocean INMCM4.0 for the modeling the GEC. The main characteristics of the model are: atmosphere - 2x1.5 degrees in longitude and latitude, 21 levels; ocean - 1x0.5 degrees in longitude and latitude, 40 levels. We have taken into account quasi-stationary currents of electrified clouds as principal contributors into the DC global circuit. One of the most important aspects of this approach is an account for all the electrified clouds- both thunderstorms and electrified shower cloud. The

  2. Glass viscosity calculation based on a global statistical modelling approach

    SciTech Connect

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  3. A global scale mechanistic model of the photosynthetic capacity

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ali, A. A.; Fisher, R.; Wullschleger, S. D.; Rogers, A.; McDowell, N. G.; Wilson, C. J.

    2015-12-01

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc,max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25oC) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55% of the variation in observed Vc,max25 and 65% of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc,max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc,max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  4. A global scale mechanistic model of the photosynthetic capacity

    NASA Astrophysics Data System (ADS)

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; Reich, P. B.; Wilson, C. J.

    2015-08-01

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 °C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  5. Local and global uncertainty analyses of a methane flame model.

    PubMed

    Zádor, Judit; Zsély, István Gy; Turányi, Tamás; Ratto, Marco; Tarantola, Stefano; Saltelli, Andrea

    2005-11-01

    Local and global uncertainty analyses of a flat, premixed, stationary, laminar methane flame model were carried out using the Leeds methane oxidation mechanism at lean (phi = 0.70), stoichiometric (phi = 1.00), and rich (phi = 1.20) equivalence ratios. Uncertainties of laminar flame velocity, maximal flame temperature, and maximal concentrations of radicals H, O, OH, CH, and CH(2) were investigated. Global uncertainty analysis methods included the Morris method, the Monte Carlo analysis with Latin hypercube sampling, and an improved version of the Sobol' method. Assumed probability density functions (pdf's) were assigned to the rate coefficients of all the 175 reactions and to the enthalpies of formation of the 37 species. The analyses provided the following answers: approximate pdf's and standard deviations of the model results, minimum and maximum values of the results at any physically realistic parameter combination, and the contribution of the uncertainty of each parameter to the uncertainty of the model result. The uncertainty of a few rate parameters and a few enthalpies of formation causes most of the uncertainty of the model results. Most uncertainty comes from the inappropriate knowledge of kinetic data, but the uncertainty caused by thermodynamic data is also significant. PMID:16833293

  6. Crystalline structure of accretion disks: Features of a global model

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. PlasmasPHPAEN1070-664X10.1063/1.1883667 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J.AJLEEY0004-637X10.1086/500315 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  7. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  8. Sensitivity analysis of a global aerosol model to understand how parametric uncertainties affect model predictions

    NASA Astrophysics Data System (ADS)

    Lee, L. A.; Carslaw, K. S.; Pringle, K. J.

    2012-04-01

    Global aerosol contributions to radiative forcing (and hence climate change) are persistently subject to large uncertainty in successive Intergovernmental Panel on Climate Change (IPCC) reports (Schimel et al., 1996; Penner et al., 2001; Forster et al., 2007). As such more complex global aerosol models are being developed to simulate aerosol microphysics in the atmosphere. The uncertainty in global aerosol model estimates is currently estimated by measuring the diversity amongst different models (Textor et al., 2006, 2007; Meehl et al., 2007). The uncertainty at the process level due to the need to parameterise in such models is not yet understood and it is difficult to know whether the added model complexity comes at a cost of high model uncertainty. In this work the model uncertainty and its sources due to the uncertain parameters is quantified using variance-based sensitivity analysis. Due to the complexity of a global aerosol model we use Gaussian process emulation with a sufficient experimental design to make such as a sensitivity analysis possible. The global aerosol model used here is GLOMAP (Mann et al., 2010) and we quantify the sensitivity of numerous model outputs to 27 expertly elicited uncertain model parameters describing emissions and processes such as growth and removal of aerosol. Using the R package DiceKriging (Roustant et al., 2010) along with the package sensitivity (Pujol, 2008) it has been possible to produce monthly global maps of model sensitivity to the uncertain parameters over the year 2008. Global model outputs estimated by the emulator are shown to be consistent with previously published estimates (Spracklen et al. 2010, Mann et al. 2010) but now we have an associated measure of parameter uncertainty and its sources. It can be seen that globally some parameters have no effect on the model predictions and any further effort in their development may be unnecessary, although a structural error in the model might also be identified. The

  9. Space geodetic techniques for global modeling of ionospheric peak parameters

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael

    The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.

  10. Global parameter estimation for thermodynamic models of transcriptional regulation.

    PubMed

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. PMID:23726942

  11. Systematic Errors of the Fsu Global Spectral Model

    NASA Astrophysics Data System (ADS)

    Surgi, Naomi

    Three 20 day winter forecasts have been carried out using the Florida State University Global Spectral Model to examine the systematic errors of the model. Most GCM's and global forecast models exhibit the same kind of error patterns even though the model formulations vary somewhat between them. Some of the dominant errors are a breakdown of the trade winds in the low latitudes, an over-prediction of the subtropical jets accompanied by an upward and poleward shift of the jets, an error in the mean sea-level pressure with over-intensification of the quasi-stationary oceanic lows and continental highs and a warming of the tropical mid and upper troposphere. In this study, a number of sensitivity experiments have been performed for which orography, model physics and initialization are considered as possible causes of these errors. A parameterization of the vertical distribution of momentum due to the sub-grid scale orography has been implemented in the model to address the model deficiencies associated with orographic forcing. This scheme incorporates the effects of moisture on the wave induced stress. The parameterization of gravity wave drag is shown to substantially reduce the large-scale wind and height errors in regions of direct forcing and well downstream of the mountainous regions. Also, a parameterization of the heat and moisture transport associated with shallow convection is found to have a positive impact on the errors particularly in the tropics. This is accomplished by the increase of moisture supply from the subtropics into the deep tropics and a subsequent enhancement of the secondary circulations. A dynamic relaxation was carried out to examine the impact of the long wave errors on the shorter wave. By constraining the long wave error, improvement is shown for wavenumbers 5-7 on medium to extended range time intervals. Thus, improved predictability of the transient flow is expected by applying this initialization procedure.

  12. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  13. Global transport of Asian dust revealed by NASA/CALIPSO and a global aerosol transport model

    NASA Astrophysics Data System (ADS)

    Eguchi, K.; Yumimoto, K.; Uno, I.; Takemura, T.

    2009-12-01

    Trans-Pacific transport of mineral dust and air pollutants originating from Asia to North America is well known. Eguchi et al. (2009, ACP) pointed out that the Taklimakan Desert supplies mineral dust for upper troposphere and can play an important role in intercontinental-scale dust transport. Asian dust is also detected from ice cores on Greenland and French Alps. The effects of Asian dust on cloud systems and the associated radiative forcing can extend over the Northern Hemisphere. In this study, we report the detailed structure of Asian dust during the global transport using integrated analysis of observations by CALIOP on-boarded NASA/CALIPSO satellite and a glocal aerosol transport model. We used the CALIOP Level 1B data products (ver. 2.01), containing the total attenuated backscatter coefficients at 532/1064 nm and the volume depolarization ratio at 532 nm. Dust extinction coefficients are then derived from the Fernald’s inversion method by setting the lidar ratio to S1=50 sr. As for a global aerosol transport model, we used the Spectral Radiation Transport Model for the Aerosol Species (SPRINTARS; Takemura et al., 2005, JGR). We performed a sensitivity experiment that aims at an analysis specified for a single dust event originating from the Taklimakan. The simulation was performed over May 2007. A sever dust storm occurred on 8-9 May 2007 in Taklimakan Desert. Dust cloud emitted during this dust storm is uplifted to altitude of 8-10 km and starts the travel of full circuit around the globe. It has a meridional width of 100-200 km. About one tenth of the original uplifted dust mass (8.1 Gg) is encircling the globe taking about 2 weeks. Because of its high transport height, the dust cloud almost unaffected by wet removal so that the decay of its concentration level is small. Over the western North Pacific of 2nd circuit, the dust cloud pulls down to the lower troposphere by anticyclonic down draft, and finally it settles on North Pacific because of wet

  14. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  15. Global middle Pliocene biome reconstruction: A data/model synthesis

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Valdes, Paul J.; Francis, Jane E.; Sellwood, Bruce W.

    2002-12-01

    The middle Pliocene warm interval (ca. 3 Ma BP) has been extensively studied. However, our knowledge concerning the global distribution of middle Pliocene biomes remains far from complete. This paper presents the results from a "first attempt" at simulating the distribution of different mid-Pliocene biomes using an advanced numerical general circulation climate model (Hadley Centre Atmospheric Model Version 3) and the BIOME 4 vegetation model. The modeling indicates that during the middle Pliocene the geographical coverage of tundra type biomes may have been significantly reduced compared with the present day in the Northern Hemisphere. High-latitude forests expand in the place of tundra forms of vegetation. Total area covered by forest increases for the Pliocene case compared with the present day. Arid deserts become less prevalent in the Pliocene scenario and are replaced by tropical xerophytic shrublands and savanna-type vegetation. These results compare favorably with geological data in general and with the U.S. Geological Survey's PRISM2 middle Pliocene vegetation reconstruction, although data/model inconsistencies are apparent. Although some of these inconsistencies relate to the weaknesses of the climate and biome model employed, others identify deficiencies in the extant geological data set or the interpretation of this data. This modeled biome reconstruction will serve as a useful vehicle for aiding in future comparisons between geological data on middle Pliocene biomes and model predictions.

  16. A global magnetic potential model for Venus' ionosphere

    NASA Astrophysics Data System (ADS)

    Walker, Peter Wykoff, II

    1999-11-01

    Venus represents the prototype for a class of objects whose interaction with the solar wind is characterized by the dominance of an ionospheric obstacle to the magnetized plasma. Though the interaction region between the bow shock and the ionopause boundary of Venus has been extensively studied and successfully modeled, the ionosphere itself, especially on the night side, has only been the subject of piecemeal models. These models either restrict themselves to two dimensions, or treat only one ionospheric phenomenon at a time. However, it is possible to combine the information from these models of the ionosphere into a coherent three dimensional model of the large-scale fields of the Venerean ionosphere. The model, which makes use of magnetic potentials to insure the proper continuity relations of field across boundaries and to insure the magnetic field is globally divergenceless, is developed by breaking the field into altitude-independent toroidal, poloidal, and flow- parallel components. These components are fit to terminator characteristics that can be specified by a very few number of parameters, and to an approximate adherence to Newtonian pressure balance at the dayside ionopause. Finally, the altitude profiles of the field are inserted into the model as the potentials are renormalized and fit to a more exacting ionopause boundary condition on the dayside determined by a gasdynamic treatment of the magnetosheath. In addition, methods of applying the model to similar objects are discussed.

  17. Selecting Meteorological Input for the Global Modeling Initiative Assessments

    NASA Technical Reports Server (NTRS)

    Strahan, Susan; Douglass, Anne; Prather, Michael; Coy, Larry; Hall, Tim; Rasch, Phil; Sparling, Lynn

    1999-01-01

    The Global Modeling Initiative (GMI) science team has developed a three dimensional chemistry and transport model (CTM) to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. An important goal of the GMI is to test modules for numerical transport, photochemical integration, and model dynamics within a common framework. This work is focussed on the dependence of the overall assessment on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere were available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS-DAS), and the Goddard Institute for Space Studies general circulation model (GISS-2'). Objective criteria were established by the GMI team to evaluate which of these three data sets provided the best representation of trace gases in the stratosphere today. Tracer experiments were devised to test various aspects of model transport. Stratospheric measurements of long-lived trace gases were selected as a test of the CTM transport. This presentation describes the criteria used in grading the meteorological fields and the resulting choice of wind fields to be used in the GMI assessment. This type of objective model evaluation will lead to a higher level of confidence in these assessments. We suggest that the diagnostic tests shown here be used to augment traditional general circulation model evaluation methods.

  18. Studies of climate dynamics with innovative global-model simulations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoming

    Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate

  19. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  20. Global dynamics of delay recruitment models with maximized lifespan

    NASA Astrophysics Data System (ADS)

    El-Morshedy, Hassan A.; Röst, Gergely; Ruiz-Herrera, Alfonso

    2016-06-01

    We study the dynamics of the differential equation u'(t)=-γ u(t)+ b f(u(t-τ))- c f(u(t-σ)) with two delayed terms, representing a positive and a negative feedback. We prove delay-dependent and absolute global stability results for the trivial and for the positive equilibrium. Our theorems provide new mathematical results as well as novel insights for several biological systems, including three-stage populations, neural models with inhibitory and excitatory loops, and the blood platelet model of Bélair and Mackey. We show that, somewhat surprisingly, the introduction of a removal term with fixed delay in population models simplifies the dynamics of the equation.

  1. HIBAYES: Global 21-cm Bayesian Monte-Carlo Model Fitting

    NASA Astrophysics Data System (ADS)

    Zwart, Jonathan T. L.; Price, Daniel; Bernardi, Gianni

    2016-06-01

    HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.

  2. Global modeling of organic aerosol: the importance of reactive nitrogen

    NASA Astrophysics Data System (ADS)

    Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H.

    2010-09-01

    Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent terpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14-15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8-9 Tg/yr from isoprene.

  3. Toward Submesocale Ocean Modelling and Observations for Global Ocean Forecast.

    NASA Astrophysics Data System (ADS)

    Drillet, Y.

    2014-12-01

    Mercator Ocean is the French oceanographic operational center involved in the development an operation of global high resolution ocean forecasting systems; it is part of the European Copernicus Marine service initiated during MyOcean project. Mercator Ocean currently delivers daily 1/12° global ocean forecast based on the NEMO model which allows for a good representation of mesoscale structures in main areas of the global ocean. Data assimilation of altimetry provides a precise initialization of the mesoscale structures while in situ observations, mainly based on the ARGO network, and satellite Sea Surface Temperature constrain water mass properties from the surface to intermediate depths. One of the main improvements scheduled in the coming years is the transitioning towards submesoscale permitting horizontal resolution (1/36°). On the basis of numerical simulations in selected areas and standard diagnostics developed to validate operational systems, we will discuss : i) The impact of the resolution increase at the basin scale. ii) Adequacy of numerical schemes, vertical resolution and physical parameterization. iii) Adequacy of currently implemented data assimilation procedures in particular with respect to new high resolution data set such as SWOT.

  4. Adaptable Information Models in the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Buddenberg, A.; Aulenbach, S.; Wolfe, R.; Goldstein, J.

    2014-12-01

    The US Global Change Research Program has sponsored the creation of the Global Change Information System () to provide a web based source of accessible, usable, and timely information about climate and global change for use by scientists, decision makers, and the public. The GCIS played multiple roles during the assembly and release of the Third National Climate Assessment. It provided human and programmable interfaces, relational and semantic representations of information, and discrete identifiers for various types of resources, which could then be manipulated by a distributed team with a wide range of specialties. The GCIS also served as a scalable backend for the web based version of the report. In this talk, we discuss the infrastructure decisions made during the design and deployment of the GCIS, as well as ongoing work to adapt to new types of information. Both a constrained relational database and an open ended triple store are used to ensure data integrity while maintaining fluidity. Using natural primary keys allows identifiers to propagate through both models. Changing identifiers are accomodated through fine grained auditing and explicit mappings to external lexicons. A practical RESTful API is used whose endpoints are also URIs in an ontology. Both the relational schema and the ontology are maleable, and stability is ensured through test driven development and continuous integration testing using modern open source techniques. Content is also validated through continuous testing techniques. A high degres of scalability is achieved through caching.

  5. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  6. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  7. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  8. Modelling of the Global Geopotential Energy & Stress Field

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Nielsen, S. B.

    2012-04-01

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid does not suppress only the deeper sources. The age-dependent signal of the oceanic lithosphere, for instance, is of long wave length and a prominent representative of in-plane stress, derived from the horizontal gradient of isostatic Geoid anomalies and responsible for the ridge push effect. Therefore a global lithospheric density model is required in order to isolate the shallow Geoid signal and calculate the stress pattern from isostatically compensated lithospheric sources. We use a linearized inverse method to fit a lithospheric reference model to observations such as topography and surface heat flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications.

  9. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  10. Science of Global Climate Modeling: Confirmation from Discoveries on Mars

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2012-10-01

    As early as 1993, analysis of obliquity changes on Mars revealed irregular cycles of high excursion, over 45°1. Further obliquity analyses indicated that insolation and climatic conditions vary with time, with the four most recent episodes of obliquity >45° occurring about 5.5, 8, 9, and 15 My.2 Various researchers applied global climate models, using Martian parameters and obliquity changes. The models (independent of Martian geomorphological observations) indicate exceptional climate conditions during the high-obliquity episodes at >45°3,4, with localized massive ice deposition effects east of Hellas and on the west slopes of Tharsis.5 At last year’s DPS my co-authors and I detailed evidence of unusual active glaciation in Greg crater, near the center of the predicted area of ice accumulation during high obliquity.6 We found that the timescale of glacial surface layer activity matches the general 5-15 My timescale of the last episodes of high obliquity and ice deposition. Radar results confirm ice deposits in debris aprons concentrated in the same area.7 Less direct evidence has also been found for glacial ice deposits in the west Tharsis region.8 Here I emphasize that if the models can be adjusted to Mars and then successfully indicate unusual, specific features that we see there, it is an argument for the robustness of climate modeling in general. In recent years we have see various public figures casting doubt on the validity of terrestrial global modeling. The successful match of Martian climate modeling with direct Martian geological and chronometric observations provides an interesting and teachable refutation of the attacks on climate science. References: 1. Science 259:1294-1297; 2. LPSC XXXV, Abs. 1600; 3. Nature 412:411-413; 4. Science 295:110-113; 5. Science 311:368-371; 6. EPSC-DPS Abs. 1394; 7. Science 322:1235-1238; 8. Nature 434:346-351.

  11. Global Analysis, Interpretation, and Modelling: First Science Conference

    NASA Technical Reports Server (NTRS)

    Sahagian, Dork

    1995-01-01

    Topics considered include: Biomass of termites and their emissions of methane and carbon dioxide - A global database; Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems; Estimation of methane emission from rice paddies in mainland China; Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling; Potential role of vegetation feedback in the climate sensitivity of high-latitude regions - A case study at 6000 years B.P.; Interannual variation of carbon exchange fluxes in terrestrial ecosystems; and Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions.

  12. The Role of Ionosondes in Global Ionospheric Modeling

    NASA Astrophysics Data System (ADS)

    McNamara, L. F.

    2010-12-01

    The central thrust of this paper is that the assimilation of ionosonde profiles into a global model of the ionosphere can have only limited regional effects. A large part of the globe will still be represented by profiles given by the background ionosphere model. Thus while ionosonde profiles can be assimilated in real time, another equally important use for them will be for off-line validation of the background ionosphere model. The Global Assimilation of Ionospheric Measurement (GAIM) model used by the Air Force Weather Agency (AFWA) is the Gauss-Markov version of the Utah State University GAIM model (GAIM-GM). Among other data types such as slant TEC from GPS sites, GAIM-GM will assimilate plasma frequency profiles derived from vertical incidence ionograms. In fact, ionosonde profiles up to the height of the F2 maximum (hmF2) provide the only direct assimilation data for that height range. Observations such as TEC give only integrated quantities, the bulk of which comes from above hmF2. Each ionosonde can be considered to represent the ionosphere below hmF2 out to a distance equal to some correlation length, which can optimistically be set to ~1000 km. Given the limited number of ionosondes contributing a profile at any given time, the global coverage provided by ionosondes can therefore at best be described as sparse. This means that the GAIM-GM profiles over most of the Earth will not be very different from those of the background physics-based model, which is the Ionospheric Forecast Model (IFM). If the GAIM-GM profiles below hmF2 are to be used for HF applications such as OTHR Coordinate Registration, it is essential that the IFM produce reliable plasma frequency profiles. As illustrated in this paper, comparisons of the IFM profiles with ionogram profiles have shown that there are systematic errors in the IFM profiles. These errors indicate limitations of the underlying physics used by the IFM. The paper calls for a concerted effort to provide reliable

  13. Sensitivity of global model prediction to initial state uncertainty

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo

    The sensitivity of global and North American forecasts to uncertainties in the initial conditions is studied. The Utah Global Model is initialized with reanalysis data sets obtained from the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium- Range Weather Forecasts (ECMWF). The differences between these analyses provide an estimate of initial uncertainty. The influence of certain scales of the initial uncertainty is tested in experiments with initial data change from NCEP to ECMWF reanalysis in a selected spectral band. Experiments are also done to determine the benefits of targeting local regions for forecast errors over North America. In these tests, NCEP initial data are replaced by ECMWF data in the considered region. The accuracy of predictions with initial data from either reanalysis only differs over the mid-latitudes of the Southern Hemisphere, where ECMWF initialized forecasts have somewhat greater skill. Results from the spectral experiments indicate that most of this benefit is explained by initial differences of the longwave components (wavenumbers 0-15). Approximately 67% of the 120-h global forecast difference produced by changing initial data from ECMWF to NCEP reanalyses is due to initial changes only in wavenumbers 0-15, and more than 85% of this difference is produced by initial changes in wavenumbers 0-20. The results suggest that large-scale errors of the initial state may play a more prominent role than suggested in some singular vector analyses, and favor global observational coverage to resolve the long waves. Results from the regional targeting experiments indicate that for forecast errors over North America, a systematic benefit comes only when the ``targeted'' region includes most of the north Pacific, pointing again at large scale errors as being prominent, even for midrange predictions over a local area.

  14. eWaterCycle: A high resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  15. Global modelling of climate processes at high resolution - from one model towards multi-model

    NASA Astrophysics Data System (ADS)

    Roberts, Malcolm J.; Mizielinski, Matthew; Strachan, Jane; Vidale, Pier Luigi; Demory, Marie-Estelle; Schiemann, Reinhard; Haarsma, Rein

    2015-04-01

    A traceable hierarchy of global climate models, with atmosphere resolutions (using the Met Office Unified Model) ranging from 130km to 12km, with a subset of these coupled to ¼˚ ocean (NEMO), have been developed in order to study the impact of improved representation of small scale processes on the mean climate, its variability and extremes. An ensemble of 25km atmosphere integrations, using time on the European PrACE supercomputer HERMIT, and integrations with the 12km atmosphere model in which the convective parameterization has been switched off, have also been completed. In addition, a 10 year global coupled simulation with an eddy-resolving 1/12˚ ocean has recently been completed. The UPSCALE project completed an ensemble of 25km atmosphere integrations for both present day and idealised future climate, together with lower resolution models for comparison. For an increasing range of processes, we are attempting to assess the resolution at which the process and their impact on the mean climate are adequately represented. Example processes include tropical cyclones, large-scale hydrological transports and tropical precipitation. Building on this work, several 12km simulations have been performed in which the convective parameterization has been either reduced in effect or switched off and replaced by a sub-grid scale turbulence model. The impact on aspects of the simulation, such as the diurnal cycle and propagation of convective systems, will be discussed. The recently completed coupled simulation with an eddy-resolving ocean is being analysed to understand aspects of coupling and flux exchanges, in particular whether the ocean has a stronger driving influence on the atmosphere once it is able to reasonably resolve its fundamental dynamical processes. The above work is primarily based on analysis from one model, whereas robust understanding comes from analysis of multi-model ensembles. The proposed HighResMIP inter-comparison as part of CMIP6 (led by Rein

  16. Global Models for the National Research University: Adoption and Adaptation in Indonesia and Malaysia

    ERIC Educational Resources Information Center

    Beerkens, Eric

    2010-01-01

    This paper analyses the way in which global university models are adopted in research universities in Indonesia and Malaysia. It first provides the global context in which these models have evolved and the processes through which they spread. How these global models interact with local policies and institutions is the topic of the empirical part…

  17. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  18. Permafrost carbon cycles under multifactor global change: a modeling analysis

    NASA Astrophysics Data System (ADS)

    Li, J.; Natali, S.; Schaedel, C.; Schuur, E. A.; Luo, Y.

    2012-12-01

    Carbon dioxide (CO2) and methane (CH4) from permafrost zones are projected to be elevated under global change scenarios, but the magnitude and spatiotemporal variation of these greenhouse gas sources are still highly uncertain. Here we implement and evaluate the integration of a methane model into the Community Atmosphere-Biosphere Land Exchange model (CABLE v1.5 of CSIRO, Australia) in order to explore the carbon emissions under warming, elevated CO2 and altered precipitation. The weather data was obtained from a tundra site named eight mile lake in Alaska and the data of years 2004-2009 was used to tune and validate the model. First, data obtained from measurement were transformed to meet the input weather data required by the model. Second, model parameters regarding vegetation and soil were modified to accurately simulate the permafrost site. For example, we modified the resistivity of soil in the model so that the modeled energy balance was found to match with the observations. Currently, the modeled NPP are relatively higher but soil temperature is lower than the observations. Third, a new methane module is being integrated into the model. We simulate the methane production, oxidation and emission processes (ebullition, diffusion and plant-aided transport). We test new functions for soil pH and redox potential that impact microbial methane production and oxidation in soils. We link water table position (WTP) with the available amount of decomposable carbon for methanogens, in combination with spatially explicit simulation of soil temperature. We also validated the model and resolved the discrepancy between the model and observation. In this presentation, we will describe results of simulations to forecast CO2 and CH4 fluxes under climate change scenarios.

  19. The Global Earthquake Model and Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Smolka, A. J.

    2015-12-01

    Advanced, reliable and transparent tools and data to assess earthquake risk are inaccessible to most, especially in less developed regions of the world while few, if any, globally accepted standards currently allow a meaningful comparison of risk between places. The Global Earthquake Model (GEM) is a collaborative effort that aims to provide models, datasets and state-of-the-art tools for transparent assessment of earthquake hazard and risk. As part of this goal, GEM and its global network of collaborators have developed the OpenQuake engine (an open-source software for hazard and risk calculations), the OpenQuake platform (a web-based portal making GEM's resources and datasets freely available to all potential users), and a suite of tools to support modelers and other experts in the development of hazard, exposure and vulnerability models. These resources are being used extensively across the world in hazard and risk assessment, from individual practitioners to local and national institutions, and in regional projects to inform disaster risk reduction. Practical examples for how GEM is bridging the gap between science and disaster risk reduction are: - Several countries including Switzerland, Turkey, Italy, Ecuador, Papua-New Guinea and Taiwan (with more to follow) are computing national seismic hazard using the OpenQuake-engine. In some cases these results are used for the definition of actions in building codes. - Technical support, tools and data for the development of hazard, exposure, vulnerability and risk models for regional projects in South America and Sub-Saharan Africa. - Going beyond physical risk, GEM's scorecard approach evaluates local resilience by bringing together neighborhood/community leaders and the risk reduction community as a basis for designing risk reduction programs at various levels of geography. Actual case studies are Lalitpur in the Kathmandu Valley in Nepal and Quito/Ecuador. In agreement with GEM's collaborative approach, all

  20. Global model for high pressure electronegative radio-frequency discharges

    SciTech Connect

    Lee, Y.T.; Lieberman, M.A.; Lichtenberg, A.J.; Bose, F.; Baltes, H.; Patrick, R.

    1997-01-01

    We develop a global model for high pressure (0.1{endash}1 Torr) electronegative rf discharges and apply it to model a capacitively driven plasma etcher. The molecular gases considered consist of either pure chlorine species or a mixture of chlorine and helium species. The charged and neutral heavy particle densities together with the electron density and electron temperature are calculated by using the equations of particle balance and power balance for the input discharge parameters rf power or rf current, inlet pressure, gas flow rates, reactor diameter, and gap spacing. The power is deposited in the electrons via ohmic heating and in those ions accelerated across the dc sheath potential. The voltage across the sheath is calculated self-consistently with the densities and the electron temperature by using a collisional Child law sheath model. Analytic scaling laws for the dependence of charged and neutral particle densities, electron temperature, rf voltage and current, sheath width, and plasma impedance on pressure and absorbed rf power are presented and used to explain the numerical results obtained from the global model. The model results are compared to recent experimental measurements in a chlorine discharge over a range of absorbed power P{sub abs}=20{endash}180W at an inlet pressure p{sub in}=0.4 Torr and a range of pressure 0.1{endash}1.6 Torr with a fixed input power of 100 W. We obtain reasonable agreement for P{sub abs}{lt}200W and for 0.2 Torr{lt}p{sub in}{lt}1Torr. {copyright} {ital 1997 American Vacuum Society.}

  1. Soil Reflectance Modeling With A Global Spectral Library: Refinement of The Price Soil Reflectance Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Fang, H.

    2012-12-01

    Modeling soil reflectance is important to describe the soil-vegetation radiation field and to retrieve canopy characteristics from remote sensing data. The Price soil reflectance model has been widely used in canopy reflectance modeling thanks to its simplicity and effectiveness. In order to improve the model generality and applicability, this study refines the Price soil reflectance model using a global spectral library and further proposes a novel soil reflectance model. The global soil spectral library was combined from six datasets, containing 6,971 soil samples around the world, with a 10nm interval from 450 to 2350 nm. A recalibrated Price model (CPM) was developed using the same algorithm used by standard Price model (SPM) to obtain globally representative fitting functions. Moreover, a new matrix decomposition method (MDM) was developed to decrease the reflectance simulation errors by considering the spectra curve shapes. Three tune parameters are sufficient to model global soil spectra using MDM, which achieves the highest accuracy with an absolute error less than 0.02 and relative error less than 5%. CPM and SPM have larger simulation errors, for which the RMSE/RRMSE are 0.029/7.5% and 0.068/16.8%, respectively. For both SPM and CPM, relatively large error variations are shown over wavelengths, because only three selected bands are used in the models. MDM exhibits a relatively stable performance in the whole spectral domain. Moreover, MDM reconstructs very well the general shapes of the five types of soil reflectance curves, and thus leads to a lower misclassification rate. Overall, both CPM and MDM outperform SPM and have a potential for global soil reflectance modeling. Density scatter plots between the measured reflectances in the global soil spectral library and the simulated reflectances using SPM (a), CPM (b) and MDM (c). Comparison of measured and simulated reflectances for five typical curves.

  2. Gas/Aerosol partitioning: a simplified method for global modeling

    NASA Astrophysics Data System (ADS)

    Metzger, S. M.

    2000-09-01

    The main focus of this thesis is the development of a simplified method to routinely calculate gas/aerosol partitioning of multicomponent aerosols and aerosol associated water within global atmospheric chemistry and climate models. Atmospheric aerosols are usually multicomponent mixtures, partly composed of acids (e.g. H2SO4, HNO3), their salts (e.g. (NH4)2SO4, NH4NO3, respectively), and water. Because these acids and salts are highly hygroscopic, water, that is associated with aerosols in humid environments, often exceeds the total dry aerosol mass. Both the total dry aerosol mass and the aerosol associated water are important for the role of atmospheric aerosols in climate change simulations. Still, multicomponent aerosols are not yet routinely calculated within global atmospheric chemistry or climate models. The reason is that these particles, especially volatile aerosol compounds, require a complex and computationally expensive thermodynamical treatment. For instance, the aerosol associated water depends on the composition of the aerosol, which is determined by the gas/liquid/solid partitioning, in turn strongly dependent on temperature, relative humidity, and the presence of pre-existing aerosol particles. Based on thermodynamical relations such a simplified method has been derived. This method is based on the assumptions generally made by the modeling of multicomponent aerosols, but uses an alternative approach for the calculation of the aerosol activity and activity coefficients. This alternative approach relates activity coefficients to the ambient relative humidity, according to the vapor pressure reduction and the generalization of Raoult s law. This relationship, or simplification, is a consequence of the assumption that the aerosol composition and the aerosol associated water are in thermodynamic equilibrium with the ambient relative humidity, which determines the solute activity and, hence, activity coefficients of a multicomponent aerosol mixture

  3. Total Storm Conduction Currents Derived Using a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kalb, C. P.; Deierling, W.; Peterson, M. J.; Liu, C.

    2015-12-01

    Electrified clouds are known to play a major role in the global electric circuit. These clouds produce upward currents from the top of thunderstorms which help maintain the potential difference between earth's surface and the upper atmosphere. Previously, currents for different types of electrified clouds were estimated from overflights of the NASA ER-2 aircraft and compared with radar derived dynamical and microphysical properties. In this study, model output from two simulations of the Community Earth System Model (CESM) are compared with conduction currents and other data derived from the lightning imaging sensor (LIS) and precipitation radar (RP) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The intention is to determine CESM's skill at representing these microphysical and dynamical properties of storms as well as to infer the global distributions of conduction currents over different spatial scales. Several variables from CESM were examined, including convective mass flux, in cloud ice water path, and convective precipitation. All three variables show a relationship with the derived currents based on TRMM measurements, yet these vary across different regimes and spatial scales. As will be shown, using the derived relationships, the total conduction current from CESM represents averaged diurnal variations of the fair weather electric field well. Also, averaged annual, monthly and diurnal variations of conduction currents will be shown for different regions of the world.

  4. The near‐global mesospheric potassium layer: Observations and modeling

    PubMed Central

    Dawkins, E. C. M.; Chipperfield, M. P.; Feng, W.

    2015-01-01

    Abstract The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near‐global K layer for the first time. The satellite data (2004 to mid‐2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root‐mean‐square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined. PMID:27478716

  5. Observational and modeling constraints on global anthropogenic enrichment of mercury.

    PubMed

    Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M

    2015-04-01

    Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling. PMID:25750991

  6. Predictability of cloud fraction in global NWP models

    NASA Astrophysics Data System (ADS)

    Haiden, Thomas

    2015-04-01

    Accurate prediction of cloudiness is crucial in weather forecasting. Clouds exert a strong feedback on atmospheric flow by modulating energy fluxes and heating rates. Errors in low cloudiness contribute significantly to 2-m temperature errors in the short and medium range. It is investigated how the predictability of cloud fraction depends on cloud type and cloud fraction in different global models using ECMWF's high-resolution and ensemble forecasts, as well as the THORPEX Interactive Grand Global Ensemble (TIGGE) dataset. Results indicate that the skill of a probabilistic forecast of cloudiness exceeds that of a deterministic forecast already at shorter lead times than typically found for other surface or upper-air parameters. Systematic errors in forecasted cloud fraction distributions in different cloud regimes are analyzed in the Atlantic-Euro-African domain using Climate Monitoring Satellite Application Facility (CM SAF) data. Model development at ECMWF has been able to reduce systematic and non-systematic errors in the forecast of cloudiness over the last decade. However, gains in skill have been smaller than for other parameters, possible causes of which are discussed. A significant potential for improvement of forecasts of low cloudiness (stratocumulus, stratus) is identified.

  7. Development of a new Global RAdiation Belt model: GRAB

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Ecoffet, Robert; Bourdarie, Sébastien; Boscher, Daniel; Standarovski, Denis

    2016-07-01

    The well known AP8 and AE8 NASA models are commonly used in the industry to specify the radiation belt environment. Unfortunately, there are some limitations in the use of these models, first due to the covered energy range, but also because in some regions of space, there are discrepancies between the predicted average values and the measurements. Therefore, our aim is to develop a radiation belt model, covering a large region of space and energy, from LEO altitudes to GEO and above, and from plasma to relativistic particles. The aim for the first version is to correct the AP8 and AE8 models where they are deficient or not defined. At geostationary, we developed ten years ago for electrons the IGE-2006 model which was proven to be more accurate than AE8, and used commonly in the industry, covering a broad energy range, from 1keV to 5MeV. From then, a proton model for geostationary orbit was also developed for material applications, followed by the OZONE model covering a narrower energy range but the whole outer electron belt, a SLOT model to asses average electron values for 2model, which provides high energy proton flux values at low altitudes. As most of these models were developed using more than a solar cycle of measurements, these measurements being checked, cross calibrated and filtered, we have no doubt that the obtained averages are more accurate than AP8 and AE8 for these particular locations. These local models were validated along different orbit with independent data sets or effect measurements. We will use a cache file system to switch between models, in order to obtain at each location in space and energy point the most reliable value. Of course, the way the model is developed is well suited to add new local developments or to include international partnership. This model will be called the GRAB model, as Global Radiation Belt model. We will present first beta version during this conference.

  8. PyGSM: Python interface to the Global Sky Model

    NASA Astrophysics Data System (ADS)

    Price, Danny C.

    2016-03-01

    PyGSM is a Python interface for the Global Sky Model (GSM, ascl:1011.010). The GSM is a model of diffuse galactic radio emission, constructed from a variety of all-sky surveys spanning the radio band (e.g. Haslam and WMAP). PyGSM uses the GSM to generate all-sky maps in Healpix format of diffuse Galactic radio emission from 10 MHz to 94 GHz. The PyGSM module provides visualization utilities, file output in FITS format, and the ability to generate observed skies for a given location and date. PyGSM requires Healpy, PyEphem (ascl:1112.014), and AstroPy (ascl:1304.002).

  9. Signal classification using global dynamical models, Part I: Theory

    SciTech Connect

    Kadtke, J.; Kremliovsky, M.

    1996-06-01

    Detection and classification of signals is one of the principal areas of signal processing, and the utilization of nonlinear information has long been considered as a way of improving performance beyond standard linear (e.g. spectral) techniques. Here, we develop a method for using global models of chaotic dynamical systems theory to define a signal classification processing chain, which is sensitive to nonlinear correlations in the data. We use it to demonstrate classification in high noise regimes (negative SNR), and argue that classification probabilities can be directly computed from ensemble statistics in the model coefficient space. We also develop a modification for non-stationary signals (i.e. transients) using non-autonomous ODEs. In Part II of this paper, we demonstrate the analysis on actual open ocean acoustic data from marine biologics. {copyright} {ital 1996 American Institute of Physics.}

  10. Uncertainty in runoff based on Global Climate Model precipitation and temperature data - Part 1: Assessment of Global Climate Models

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2014-05-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3) GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCM (Center for Climate System Research (The University of Tokyo), National Institute for

  11. Modeling global macroclimatic constraints on ectotherm energy budgets

    SciTech Connect

    Grant, B.W.; Porter, W.P.

    1992-12-31

    The authors describe a mechanistic individual-based model of how global macroclimatic constraints affect the energy budgets of ectothermic animals. The model uses macroclimatic and biophysical characters of the habitat and organism and tenets of heat transfer theory to calculate hourly temperature availabilities over a year. Data on the temperature dependence of activity rate, metabolism, food consumption and food processing capacity are used to estimate the net rate of resource assimilation which is then integrated over time. They present a new test of this model in which they show that the predicted energy budget sizes for 11 populations of the lizard Sceloporus undulates are in close agreement with observed results from previous field studies. This demonstrates that model tests rae feasible and the results are reasonable. Further, since the model represents an upper bound to the size of the energy budget, observed residual deviations form explicit predictions about the effects of environmental constraints on the bioenergetics of the study lizards within each site that may be tested by future field and laboratory studies. Three major new improvements to the modeling are discussed. They present a means to estimate microclimate thermal heterogeneity more realistically and include its effects on field rates of individual activity and food consumption. Second, they describe an improved model of digestive function involving batch processing of consumed food. Third, they show how optimality methods (specifically the methods of stochastic dynamic programming) may be included to model the fitness consequences of energy allocation decisions subject to food consumption and processing constraints which are predicted from the microclimate and physiological modeling.

  12. Modelling Freshwater Resources at the Global Scale: Challenges and Prospects

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Douville, Hervé; Güntner, Andreas; Müller Schmied, Hannes; Wada, Yoshihide

    2016-03-01

    Quantification of spatially and temporally resolved water flows and water storage variations for all land areas of the globe is required to assess water resources, water scarcity and flood hazards, and to understand the Earth system. This quantification is done with the help of global hydrological models (GHMs). What are the challenges and prospects in the development and application of GHMs? Seven important challenges are presented. (1) Data scarcity makes quantification of human water use difficult even though significant progress has been achieved in the last decade. (2) Uncertainty of meteorological input data strongly affects model outputs. (3) The reaction of vegetation to changing climate and CO2 concentrations is uncertain and not taken into account in most GHMs that serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to changing climate have yet to be identified. (5) More accurate estimates of monthly time series of water availability and use are needed to provide good indicators of water scarcity. (6) Integration of gradient-based groundwater modelling into GHMs is necessary for a better simulation of groundwater-surface water interactions and capillary rise. (7) Detection and attribution of human interference with freshwater systems by using GHMs are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding prospects for progress, we propose to decrease the uncertainty of GHM output by making better use of in situ and remotely sensed observations of output variables such as river discharge or total water storage variations by multi-criteria validation, calibration or data assimilation. Finally, we present an initiative that works towards the vision of hyperresolution global hydrological modelling where GHM outputs would be provided at a 1-km resolution with reasonable accuracy.

  13. Modelling Freshwater Resources at the Global Scale: Challenges and Prospects

    NASA Technical Reports Server (NTRS)

    Doll, Petra; Douville, Herve; Guntner, Andreas; Schmied, Hannes Muller; Wada, Yoshihide

    2015-01-01

    Quantification of spatially and temporally resolved water flows and water storage variations for all land areas of the globe is required to assess water resources, water scarcity and flood hazards, and to understand the Earth system. This quantification is done with the help of global hydrological models (GHMs). What are the challenges and prospects in the development and application of GHMs? Seven important challenges are presented. (1) Data scarcity makes quantification of human water use difficult even though significant progress has been achieved in the last decade. (2) Uncertainty of meteorological input data strongly affects model outputs. (3) The reaction of vegetation to changing climate and CO2 concentrations is uncertain and not taken into account in most GHMs that serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to changing climate have yet to be identified. (5) More accurate estimates of monthly time series of water availability and use are needed to provide good indicators of water scarcity. (6) Integration of gradient-based groundwater modelling into GHMs is necessary for a better simulation of groundwater-surface water interactions and capillary rise. (7) Detection and attribution of human interference with freshwater systems by using GHMs are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding prospects for progress, we propose to decrease the uncertainty of GHM output by making better use of in situ and remotely sensed observations of output variables such as river discharge or total water storage variations by multi-criteria validation, calibration or data assimilation. Finally, we present an initiative that works towards the vision of hyper resolution global hydrological modelling where GHM outputs would be provided at a 1-km resolution with reasonable accuracy.

  14. Plasmaspheric Density Troughs: Global IMAGE EUV Observations and Analysis via Global Core Plasma Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    To date, the IMAGE EUV camera has observed several plasmaspheric density trough features inside the plasmapause under a wide range of geomagnetic activity. From the perspective of EUV, a density trough feature appears as a channel of diminished pixel counts which spans a width of L-shell (DELTA L) and magnetic local time (MLT) inside the plasmapause. Plasmaspheric density troughs are found to be morphologically complex possessing considerable spatial and temporal variability. We present an analysis of the evolution of trough DELTA L and MLT extent as functions of associated D (sub ST) and K (sub p) history. Trough features range in size from 0.16 less than or equal to DELTA L less than or equal to 1.2 with azimuthal extent from 1500 less than or equal to MLT less than or equal to 1200. All cases of plasmaspheric density troughs studied to date appear to have evolved as a result of the inner edge of the afternoon/evening plasma drainage plume being wrapped around through the nightside plasmasphere. The structure of plasmaspheric density trough features is further probed by analyzing simulated EUV images produced by forward modeling artificially introduced regions of depleted density into both static and dynamic global core plasmaspheric models. Forward modeling suggests that (1) L-shell refilling of density troughs during storm recovery can be modeled as filling from the ionosphere toward the equator (i.e., bottom-up refilling), and (2) that an erosion process is operating within flux tubes beyond the outer L-shell wall of the observed density troughs.

  15. ENLIL Global Heliospheric Modeling as a Context For Multipoint Observations

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Odstrcil, Dusan; Luhmann, Janet; Bain, Hazel; Li, Yan; Schwadron, Nathan; Gorby, Matt; Thompson, Barbara; Jian, Lan; Möstl, Christian; Rouillard, Alexis; Davies, Jackie; Temmer, Manuela; Rastaetter, Lutz; Taktakishvili, Aleksandre; MacNeice, Peter; Kuznetsova, Maria

    2016-04-01

    We present heliospheric simulation case studies using recent enhancements to WSA--ENLIL+Cone (version 2.8) at the Community Coordinated Modeling Center (CCMC). The global 3D MHD ENLIL model provides a time-dependent description of the background solar wind plasma and magnetic field using a sequence of WSA coronal model maps as input at the inner boundary of 21.5 Rs. A homogeneous, over-pressured hydrodynamic plasma cloud is launched through the inner boundary of the heliospheric computational domain and into the background solar wind. Multipoint observations help constrain simulations and this modeling system provides global context and arrival times of the solar wind streams and CMEs at Earth, planets, and spacecraft. Additionally, one can extract the magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. ENLIL "likelihood/all-clear" forecasting maps provide expected intensity, timing/duration of events at locations throughout the heliosphere with "possible SEP affected areas" color-coded based on shock strength. ENLIL simulations are also useful to drive SEP models such as the Solar Energetic Particle Model (SEPMOD) (Luhmann et al. 2007, 2010) and Energetic Particle Radiation Environment Module (EPREM) (Schwadron et al., 2010). SEPMOD injects protons onto a sequence observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EPREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. Studies have shown that accurate descriptions of the heliosphere, and hence modeled CME arrival times and SEPs, are achieved by ENLIL only when the background solar wind is well-reproduced and CME parameters are accurate. It is essential to include all of the relevant CMEs and

  16. Students' Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent?

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-02-01

    It is argued that knowledge about models is an important part of a profound understanding of Nature of Science. Consequently, researchers have developed different `levels of understanding' to analyse students', teachers', or experts' comprehension of this topic. In some approaches, global levels of understanding have been developed which mirror the idea of an understanding of models and modelling as a whole. Opposed to this, some authors have developed levels of understanding for distinct aspects concerning models and modelling in science (i.e. aspect-dependent levels). This points to an important issue for science education research since global conceptualisations might lead to less differentiated assessments and interventions than aspect-dependent ones. To contribute to this issue, the article summarises conceptualisations of both global and aspect-dependent levels of understanding models and modelling that have been developed in science education. Further, students' understanding of the aspects nature of models, multiple models, purpose of models, testing models, and changing models has been assessed ( N = 1,180; 11 to 19 years old; secondary schools; Berlin, Germany). It is discussed to what extent the data support the notion of global or aspect-dependent levels of understanding models and modelling in science. The results suggest that students seem to have a complex and at least partly inconsistent pattern of understanding models. Furthermore, students with high nonverbal intelligence and good marks seem to have a comparatively more consistent and more elaborated understanding of models and modelling than weaker students. Recommendations for assessment in science education research and teaching practice are made.

  17. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level

  18. Challenges and Opportunities in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that

  19. The Role of GONG observations in Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Downs, Cooper; Lionello, Roberto; Caplan, Ronald M.; Riley, Pete; Mikić, Zoran; Arge, Nick; Henney, Carl

    2015-04-01

    The solar magnetic field is an essential aspect of any predictive model of the solar corona. For many years, the magnetic field has been measured most reliably in the photosphere. So-called ``synoptic'' maps of the photospheric field (actually built up from magnetograms acquired over the course of the solar rotation) are or have been available from a number of ground- and space-based observatories, including the Global Oscillation Network Group (GONG). MHD models of the solar corona have typically used these maps to develop boundary conditions. GONG data is unique among the ground-based observatories in (1) providing magnetogams at a high-cadence (2) providing 24 hour coverage and (3) supplying helioseismic data that can be used to provide estimates of new active regions that have emerged on the far side of the Sun. These three elements are especially important as MHD models attempt to address the time-dependent nature of the corona. In this talk we describe how the combination of flux transport models driven by GONG data, along with estimates of far side active region emergence, can be used in coronal MHD modeling and the advantages gained from this approach. Work supported by AFOSR, NASA, and NSF.

  20. Incorporating organic soil into a global climate model

    NASA Astrophysics Data System (ADS)

    Lawrence, David M.; Slater, Andrew G.

    2008-02-01

    Organic matter significantly alters a soil’s thermal and hydraulic properties but is not typically included in land-surface schemes used in global climate models. This omission has consequences for ground thermal and moisture regimes, particularly in the high-latitudes where soil carbon content is generally high. Global soil carbon data is used to build a geographically distributed, profiled soil carbon density dataset for the Community Land Model (CLM). CLM parameterizations for soil thermal and hydraulic properties are modified to accommodate both mineral and organic soil matter. Offline simulations including organic soil are characterized by cooler annual mean soil temperatures (up to ˜2.5°C cooler for regions of high soil carbon content). Cooling is strong in summer due to modulation of early and mid-summer soil heat flux. Winter temperatures are slightly warmer as organic soils do not cool as efficiently during fall and winter. High porosity and hydraulic conductivity of organic soil leads to a wetter soil column but with comparatively low surface layer saturation levels and correspondingly low soil evaporation. When CLM is coupled to the Community Atmosphere Model, the reduced latent heat flux drives deeper boundary layers, associated reductions in low cloud fraction, and warmer summer air temperatures in the Arctic. Lastly, the insulative properties of organic soil reduce interannual soil temperature variability, but only marginally. This result suggests that, although the mean soil temperature cooling will delay the simulated date at which frozen soil begins to thaw, organic matter may provide only limited insulation from surface warming.

  1. Time-Dependent Model of the Global Electric Circuit

    NASA Astrophysics Data System (ADS)

    Mallios, S. A.; Pasko, V. P.

    2013-12-01

    The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weekly-ionized plasma at around 80 km altitude [e.g., Rycroft et al., Space Sci. Rev., 137(1-4), pp. 83-105, 2008]. In the absence of any source, the GEC behaves as a leaky spherical capacitor, with the ground being the negative charged plate and the ionosphere the positive one, which discharges through the weakly conducting atmosphere creating fair-weather current, which is about 1 kA integrated over the entire Earth surface [e.g., Bering et al., Physics Today, Oct., 24-30, 1998]. It is accepted that thunderstorms are the main generators in the GEC [e.g., Williams, Atmospheric Research, 91, 140, 2009; Mareev, Physics Uspekhi, 53, 504, 2010]. In this current work, we developed a two-dimensional cylindrical time-dependent model, which calculates the quasi-electrostatic fields created by the slow accumulation of the charge in the cloud, by taking into account the Maxwellian relaxation of the charges in the conducting atmosphere. The model is capable of simulating the whole volume of the GEC and thus it has the same electrical properties as the three-dimensional spherical system. Two different kinds of boundary conditions (Dirichlet and homogeneous Neumann boundary conditions) were used in order to describe the global circulation of the current, and it has been found that both of them give the same results regarding the general contribution of a storm to the GEC. We present results regarding the response of the fair weather region to lightning transients that occur in the thunderstorm, and in the steady state limit the results of the time-dependent model are compared to static GEC solutions similar to those reported previously by Tzur and Roble [JGR, 90, 5989, 1985].

  2. A global predictive model of carbon in mangrove soils

    NASA Astrophysics Data System (ADS)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  3. Modelling global nutrient retention by river damming: Phosphorus and silicon

    NASA Astrophysics Data System (ADS)

    Maavara, Taylor; Dürr, Hans; Van Cappellen, Philippe

    2014-05-01

    The phosphorus to silicon (P:Si) nutrient ratio is a key variable affecting ecosystem health in many aquatic environments. River damming represents a major anthropogenic perturbation of natural material flows along the aquatic continuum, with the potential to profoundly modify absolute and relative nutrient availabilities in surface waters. In this study, a multi-tiered approach for estimating global nutrient retention in man-made reservoirs is presented. We illustrate its application to the global riverine flux of reactive Si, using a database of dissolved reactive Si (DSi) budgets for 24 natural lakes and 22 artificial reservoirs. The database includes information on bedrock geology, surface water pH, water residence time, reservoir age and function, climate, and trophic status. Statistical analyses (ANOVA, t-test, PCA, linear plus non-linear regressions) are used to identify the best predictors of DSi retention and delineate how reservoir properties modulate nutrient dynamics. Results indicate that (1) reservoirs retain significantly less DSi than natural lakes, and (2) the water residence time, reservoir age and function (e.g., hydroelectrical production, irrigation, flood control) are the main system variables controlling DSi retention by dams. Next, a biogeochemical Si model is used to reproduce the previously derived statistical trends for DSi retention. Calibration of the model yields a relationship that enables one to predict annual in-reservoir siliceous productivity as a function of the external reactive Si supply. The model further accounts for the transition from reservoirs where reactive Si retention is primarily due to burial of allochtonous Si to those where in-reservoir DSi uptake by diatoms dominates. Finally, the statistical and mechanistic relationships are extrapolated to estimate that 25-28 Tg SiO2 yr-1 are retained worldwide by dams, or 7% of the annual reactive Si load to watersheds. We are currently applying the same multi-tiered approach

  4. An individuality model for online signatures using global Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Kholmatov, Alisher; Yanikoglu, Berrin

    2008-03-01

    The discriminative capability of a biometric is based on its individuality/uniqueness and is an important factor in choosing a biometric for a large-scale deployment. Individuality studies have been carried out rigorously for only certain biometrics, in particular fingerprint and iris, while work on establishing handwriting and signature individuality has been mainly on feature level. In this study, we present a preliminary individuality model for online signatures using the Fourier domain representation of the signature. Using the normalized Fourier coefficients as global features describing the signature, we derive a formula for the probability of coincidentally matching a given signature. Estimating model parameters from a large database and making certain simplifying assumptions, the probability of two arbitrary signatures to match in 13 of the coefficients is calculated as 4.7x10 -4. When compared with the results of a verification algorithm that parallels the theoretical model, the results show that the theoretical model fits the random forgery test results fairly well. While online signatures are sometimes dismissed as not very secure, our results show that the probability of successfully guessing an online signature is very low. Combined with the fact that signature is a behavioral biometric with adjustable complexity, these results support the use of online signatures for biometric authentication.

  5. Calibration and testing or models of the global carbon cycle

    SciTech Connect

    Emanuel, W.R.; Killough, G.G.; Shugart, H.H. Jr.

    1980-01-01

    A ten-compartment model of the global biogeochemical cycle of carbon is presented. The two less-abundant isotopes of carbon, /sup 13/C and /sup 14/C, as well as total carbon, are considered. The cycling of carbon in the ocean is represented by two well-mixed compartments and in the world's terrestrial ecosystems by seven compartments, five which are dynamic and two with instantaneous transfer. An internally consistent procedure for calibrating this model against an assumed initial steady state is discussed. In particular, the constraint that the average /sup 13/C//sup 12/C ratio in the total flux from the terrestrial component of the model to the atmosphere be equal to that of the steady-state atmosphere is investigated. With this additional constraint, the model provides a more accurate representation of the influence of the terrestrial system on the /sup 13/C//sup 12/C ratio of the atmosphere and provides an improved basis for interpreting records, such as tree rings, reflecting historical changes in this ratio.

  6. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  7. Investigating model deficiencies in the global budget of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Keller, C. A.; Turner, A. J.; Mahieu, E.; Franco, B.; Fischer, E. V.

    2015-12-01

    Many locations in the Northern Hemisphere show a statistically-significant sharp increase in measurements of ethane (C2H6) since 2009. It is hypothesized that the recent massive growth of shale gas exploitation in North America could be the source of this change. However, state-of-the-science chemical transport models are currently unable to reproduce the hemispheric burden of C2H6 or the recent sharp increase, pointing to a potential problem with current emission inventories. To resolve this, we used space-borne CH4 observations from the Greenhouse Gases Observing SATellite (GOSAT) to derive C2H6 emissions. By using known emission ratios to CH4, we estimated emissions of C2H6 from oil and gas activities, biofuels, and biomass burning over North America. The GEOS-Chem global chemical transport model was used to simulate atmospheric abundances of C2H6 with the new emissions estimates. The model is able to reproduce Northern Hemisphere surface concentrations. However, the model significantly under-predicts the amount of C2H6 throughout the column and the observed Northern Hemispheric gradient as diagnosed by comparisons to aircraft observations from the Hiaper Pole-to-Pole (HIPPO) Campaign.

  8. Global phase diagram of a doped Kitaev-Heisenberg model

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The global phase diagram of a doped Kitaev-Heisenberg model is studied using an $SU(2)$ slave-boson mean-field method. Near the Kitaev limit, $p$-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {\\it et al.} [Phys. Rev. B {\\bf 86}, 085145 (2012)] irrespective of the sign of the Kitaev interaction. By further doping, a $d$-wave superconducting state appears when the Kitaev interaction is antiferromagnetic, while another $p$-wave superconducting state appears when the Kitaev interaction is ferromagnetic. This $p$-wave superconducting state does not break the time-reversal symmetry as reported by Hyart {\\it et al.} [Phys. Rev. B {\\bf 85}, 140510 (2012)], and such a superconducting state also appears when the antiferromagnetic Kitaev interaction and the ferromagnetic Heisenberg interaction compete. This work, thus, demonstrates the clear difference between the antiferromagnetic Kitaev model and the ferromagnetic Kitaev model when carriers are doped while these models are equivalent in the undoped limit, and how novel superconducting states emerge when the Kitaev interaction and the Heisenberg interaction compete.

  9. Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.

  10. Driving Mesoscale Processes with Global Data Assimilative Models (Invited)

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Datta-Barua, S.

    2013-12-01

    Global large scale ionosphere-thermosphere (IT) data assimilation methods have evolved to the point where they are able to estimate several IT state variables simultaneously over the entire globe.The large scale state variables estimated by data assimilative techniques can then be used to drive physical models of mesoscale and small scale processes. This allows for the possibility of being able to accurately predict mesoscale and small scale processes and structures from knowledge of the large scale driving physics. However, the accuracy of any such predictions will depend a) upon the accuracy of the estimated large scale state variables from data assimilation as well as b) the accuracy of the mesoscale and small scale models. In this presentation, we will focus upon the current capability of the data assimilation models IDA4D and EMPIRE to accurately estimate large scale IT state variables at equatorial latitudes. We will then discuss how these large scale state variables can be used to drive mesoscale models of the equatorial ionosphere and thermosphere. Results will be presented of large scale estimates of equatorial electron density and electric potential from analysis of IDA4D/EMPIRE and ingestion of C/NOFS observations

  11. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1993-01-01

    The purpose of this work is to estimate sampling errors of area-time averaged rain rate due to temporal samplings by satellites. In particular, the sampling errors of the proposed low inclination orbit satellite of the Tropical Rainfall Measuring Mission (TRMM) (35 deg inclination and 350 km altitude), one of the sun synchronous polar orbiting satellites of NOAA series (98.89 deg inclination and 833 km altitude), and two simultaneous sun synchronous polar orbiting satellites--assumed to carry a perfect passive microwave sensor for direct rainfall measurements--will be estimated. This estimate is done by performing a study of the satellite orbits and the autocovariance function of the area-averaged rain rate time series. A model based on an exponential fit of the autocovariance function is used for actual calculations. Varying visiting intervals and total coverage of averaging area on each visit by the satellites are taken into account in the model. The data are generated by a General Circulation Model (GCM). The model has a diurnal cycle and parameterized convective processes. A special run of the GCM was made at NASA/GSFC in which the rainfall and precipitable water fields were retained globally for every hour of the run for the whole year.

  12. A New Global Core Plasma Model of the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Comfort, R. H.; Craven, P. D.

    2014-01-01

    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, make possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented. Specifically shown here are the inner-plasmasphere RIMS measurements, radial fits to densities and temperatures for H(+), He(+), He(++), O(+), and O(+) and the error associated with these initial simple fits. Also shown are more subtle dependencies on the f10.7 P-value (see Richards et al. [1994]).

  13. An empirical model for global earthquake fatality estimation

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David

    2010-01-01

    We analyzed mortality rates of earthquakes worldwide and developed a country/region-specific empirical model for earthquake fatality estimation within the U. S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system. The earthquake fatality rate is defined as total killed divided by total population exposed at specific shaking intensity level. The total fatalities for a given earthquake are estimated by multiplying the number of people exposed at each shaking intensity level by the fatality rates for that level and then summing them at all relevant shaking intensities. The fatality rate is expressed in terms of a two-parameter lognormal cumulative distribution function of shaking intensity. The parameters are obtained for each country or a region by minimizing the residual error in hindcasting the total shaking-related deaths from earthquakes recorded between 1973 and 2007. A new global regionalization scheme is used to combine the fatality data across different countries with similar vulnerability traits. [DOI: 10.1193/1.3480331

  14. ACE2 Global Digital Elevation Model : User Analysis

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Berry, P. A. M.; Benveniste, J.

    2013-12-01

    Altimeter Corrected Elevations 2 (ACE2), first released in October 2009, is the Global Digital Elevation Model (GDEM) created by fusing the high accuracy of over 100 million altimeter retracked height estimates, derived primarily from the ERS-1 Geodetic Mission, with the high frequency content available within the near-global Shuttle Radar Topography Mission. This novel ACE2 GDEM is freely available at 3”, 9”, 30” and 5' and has been distributed via the web to over 680 subscribers. This paper presents the results of a detailed analysis of geographical distribution of subscribed users, along with fields of study and potential uses. Investigations have also been performed to determine the most popular spatial resolutions and the impact these have on the scope of data downloaded. The analysis has shown that, even though the majority of users have come from Europe and America, a significant number of website hits have been received from South America, Africa and Asia. Registered users also vary widely, from research institutions and major companies down to individual hobbyists looking at data for single projects.

  15. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  16. Integration of nitrogen dynamics into a global terrestrial ecosystem model

    SciTech Connect

    Yang, Xiaojuan; Wittig, Victoria; Jain, Atul; Post, Wilfred M

    2009-01-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organicNstorage are in tundra (1.24 KgNm2) and desert soil (0.06 Kg N m2). The vegetation N storage is highest in tropical forests (0.5 Kg N m2), and lowest in tundra and desert (<0.03 Kg N m2). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM

  17. A model of global citizenship: antecedents and outcomes.

    PubMed

    Reysen, Stephen; Katzarska-Miller, Iva

    2013-01-01

    As the world becomes increasingly interconnected, exposure to global cultures affords individuals opportunities to develop global identities. In two studies, we examine the antecedents and outcomes of identifying with a superordinate identity--global citizen. Global citizenship is defined as awareness, caring, and embracing cultural diversity while promoting social justice and sustainability, coupled with a sense of responsibility to act. Prior theory and research suggest that being aware of one's connection with others in the world (global awareness) and embedded in settings that value global citizenship (normative environment) lead to greater identification with global citizens. Furthermore, theory and research suggest that when global citizen identity is salient, greater identification is related to adherence to the group's content (i.e., prosocial values and behaviors). Results of the present set of studies showed that global awareness (knowledge and interconnectedness with others) and one's normative environment (friends and family support global citizenship) predicted identification with global citizens, and global citizenship predicted prosocial values of intergroup empathy, valuing diversity, social justice, environmental sustainability, intergroup helping, and a felt responsibility to act for the betterment of the world. The relationship between antecedents (normative environment and global awareness) and outcomes (prosocial values) was mediated by identification with global citizens. We discuss the relationship between the present results and other research findings in psychology, the implications of global citizenship for other academic domains, and future avenues of research. Global citizenship highlights the unique effect of taking a global perspective on a multitude of topics relevant to the psychology of everyday actions, environments, and identity. PMID:22804560

  18. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  19. A Multi-Tier Provenance Model for Global Climate Research

    SciTech Connect

    Stephan, Eric G.; Halter, Todd D.; Gibson, Tara D.; Beagley, Nathaniel; Schuchardt, Karen L.

    2009-08-19

    Global climate researchers rely upon many forms of sensor data and analytical methods to help profile subtle changes in climate conditions. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program provides researchers with curated products called Value Added Products (VAPs) resulting from continuous instrumentation streams, data fusion, and analytical profiling. To provide these projects the ARM operations and research teams rely upon a number of techniques to ensure strict quality control and quality assurance codes are maintained. End users in the climate research community are highly interested in obtaining as much causal evidence as possible and currently either not all the evidence are easily attainable or easily identifiable without significant effort. Our research interests are to identify a provenance model that serves both the producers and consumers of the VAP maintaining the quality assurance/quality control standards and tailored to meeting the individual researcher’s needs.

  20. Empirical Analysis and Modeling of the Global Economic System

    NASA Astrophysics Data System (ADS)

    Duan, Wen-Qi; Sun, Bo-Liang

    2009-09-01

    In the global economic system, each economy stimulates the growth of its gross domestic products (GDP) by increasing its international trade. Using a fluctuation analysis of the flux data of GDP and foreign trade, we find that both GDP and foreign trade are dominated by external force and driven by each other. By excluding the impact of the associated trade dependency degree, GDP and the total volume of foreign trade collapse well into a power-law function. The economy's total trade volume scales with the number of trade partners, and it is distributed among its trade partners in an exponential form. The model which incorporated these empirical results can integrate the growth dynamics of GDP and the interplay dynamics between GDP and weighted international trade networks simultaneously.

  1. Global ballistic acceleration in a bouncing-ball model.

    PubMed

    Kroetz, Tiago; Livorati, André L P; Leonel, Edson D; Caldas, Iberê L

    2015-07-01

    The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system. PMID:26274245

  2. Efficient data IO for a Parallel Global Cloud Resolving Model

    SciTech Connect

    Palmer, Bruce J.; Koontz, Annette S.; Schuchardt, Karen L.; Heikes, Ross P.; Randall, David A.

    2011-11-26

    Execution of a Global Cloud Resolving Model (GCRM) at target resolutions of 2-4 km will generate, at a minimum, 10s of Gigabytes of data per variable per snapshot. Writing this data to disk without creating a serious bottleneck in the execution of the GCRM code while also supporting efficient post-execution data analysis is a significant challenge. This paper discusses an Input/Output (IO) application programmer interface (API) for the GCRM that efficiently moves data from the model to disk while maintaining support for community standard formats, avoiding the creation of very large numbers of files, and supporting efficient analysis. Several aspects of the API will be discussed in detail. First, we discuss the output data layout which linearizes the data in a consistent way that is independent of the number of processors used to run the simulation and provides a convenient format for subsequent analyses of the data. Second, we discuss the flexible API interface that enables modelers to easily add variables to the output stream by specifying where in the GCRM code these variables are located and to flexibly configure the choice of outputs and distribution of data across files. The flexibility of the API is designed to allow model developers to add new data fields to the output as the model develops and new physics is added and also provides a mechanism for allowing users of the GCRM code itself to adjust the output frequency and the number of fields written depending on the needs of individual calculations. Third, we describe the mapping to the NetCDF data model with an emphasis on the grid description. Fourth, we describe our messaging algorithms and IO aggregation strategies that are used to achieve high bandwidth while simultaneously writing concurrently from many processors to shared files. We conclude with initial performance results.

  3. Towards a Global Model of the Zodiacal Cloud

    NASA Astrophysics Data System (ADS)

    Espy, Ashley J.; Dermott, S.; Kehoe, T. J.

    2006-09-01

    The Zodiacal Cloud, the debris disk of our own solar system, is still the subject of much debate as to the source of its particles, i.e., what are the relative contributions of asteroidal and cometary material to the cloud. The Zodiacal Cloud consists of a broad, low-frequency background, with superimposed high-frequency dust bands, which are the key to deciphering the relative contributions, since they are known to be asteroidal and associated with specific, young, asteroid families, such as Veritas and Karin. The dust bands only exist outside 2AU due to the secular resonance at 2AU dispersing the fine structure of the dust bands into the background cloud. Thus, the bands represent only the tip-of-the-iceberg of the total asteroidal contribution to the cloud, the extent of which can be found by investigating the dynamical and collisional evolution of the asteroidal family dust particles. Through this evolution of particles, we can model the observed line-of-sight dust band flux profiles, which are scans of ecliptic latitude. The models are based on the dynamics, and compared to filtered observations to constrain the models. The effects of collisions, size-frequency distribution, distribution of cross sectional area with semi-major axis, and the total area are the parameters that are varied and constrained. There is a wealth of archival data, including IRAS, COBE, and MSX, as well as the upcoming Spitzer data, which both overlap and extend over a wide range of ecliptic longitudes, wavebands, and solar elongations. We will use the parameters constrained by the observational data, to extend the model to the background cloud, yielding a global model of the asteroidal contribution to the cloud. We present current models and parameters, as well as a preliminary determination of the asteroidal contribution to the Zodiacal cloud.

  4. Modeling plasma pressure anisotropy's effect on Saturn's global magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Tilley, M.; Harnett, E. M.; Winglee, R.

    2014-12-01

    A 3D multi-fluid, multi-scale plasma model with a complete treatment of plasma pressure anisotropy is employed to study global magnetospheric dynamics at Saturn. Cassini has observed anisotropies in the Saturnian magnetosphere, and analyses have showed correlations between anisotropy and plasma convection, ring current structure and intensity, confinement of plasma to the equatorial plane, as well as mass transport to the outer magnetosphere. The energization and transport of plasma within Saturn's magnetosphere is impactful upon the induced magnetic environments and atmospheres of potentially habitable satellites such as Enceladus and Titan. Recent efforts to couple pressure anisotropy with 3D multi-fluid plasma modeling have shown a significant move towards matching observations for simulations of Earth's magnetosphere. Our approach is used to study the effects of plasma pressure anisotropy on global processes of the Saturnian magnetosphere such as identifying the effect of pressure anisotropy on the centrifugal interchange instability. Previous simulation results have not completely replicated all aspects of the structure and formation of the interchange 'fingers' measured by Cassini at Saturn. The related effects of anisotropy, in addition to those mentioned above, include contribution to formation of MHD waves (e.g. reduction of Alfvén wave speed) and formation of firehose and mirror instabilities. An accurate understanding of processes such as the interchange instability is required if a complete picture of mass and energy transport at Saturn is to be realized. The results presented here will detail how the inclusion of a full treatment of pressure anisotropy for idealized solar wind conditions modifies the interchange structure and shape of the tail current sheet. Simulation results are compared to observations made by Cassini.

  5. TOPEX/POSEIDON tides estimated using a global inverse model

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.

    1994-01-01

    Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better

  6. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D

  7. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.; Logan, Jennifer A.; Field, Brendan D.; Fiore, Arlene M.; Li, Qin-Bin; Liu, Hong-Yu; Mickley, Loretta J.; Schultz, Martin G.

    2001-01-01

    We present a first description and evaluation of GEOS-CHEM, a global three-dimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NOx-hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2-3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 plus or minus 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are approximately 20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10-30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source

  8. Modelling 1-minute directional observations of the global irradiance.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  9. Simulation of 3D Global Wave Propagation Through Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.

    2005-12-01

    This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.

  10. Global emissions and models of photochemically active compounds

    SciTech Connect

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-05-20

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1{degree} {times} 1{degree} grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings.

  11. A Global Magnetic Topology Model for Magnetic Clouds. III

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2014-03-01

    In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (∇p ≠ 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.

  12. Global Magnetospheric Simulations: coupling with ionospheric and solar wind models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Olshevskyi, Vyacheslav; Amaya, Jorge; Deca, Jan; Markidis, Stefano; Vapirev, Alexander

    2013-04-01

    We present results on the global fully kinetic model of the magnetosphere of the Earth. The simulations are based on the iPic3D code [1] that treats kinetically all plasma species solving implicitly the equations of motion for electrons and ions, coupled with the Maxwell equations. We present results of our simulations and discuss the coupling at the inner boundary near the Earth with models of the ionosphere and at the outer boundary with models of the arriving solar wind. The results are part of the activities of the Swiff FP7 project: www.swiff.eu [1] Stefano Markidis, Giovanni Lapenta, Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Mathematics and Computers in Simulation, Volume 80, Issue 7, March 2010, Pages 1509-1519, ISSN 0378-4754, 10.1016/j.matcom.2009.08.038 [2] Giovanni Lapenta, Particle simulations of space weather, Journal of Computational Physics, Volume 231, Issue 3, 1 February 2012, Pages 795-821, ISSN 0021-9991, 10.1016/j.jcp.2011.03.035.

  13. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  14. A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. II

    SciTech Connect

    Hidalgo, M. A.

    2013-04-01

    In the present work, we extensively used our analytical approach to the global magnetic field topology of magnetic clouds (MCs), introduced in a previous paper, in order to show its potential and to study its physical consistency. The model assumes toroidal topology with a non-uniform (variable maximum radius) cross-section along them. Moreover, it has a non-force-free character and also includes the expansion of its cross-section. As is shown, the model allows us, first, to analyze MC magnetic structures-determining their physical parameters-with a variety of magnetic field shapes, and second, to reconstruct their relative orientation in the interplanetary medium from the observations obtained by several spacecraft. Therefore, multipoint spacecraft observations give the opportunity to infer the structure of this large-scale magnetic flux rope structure in the solar wind. For these tasks, we use data from Helios (A and B), STEREO (A and B), and Advanced Composition Explorer. We show that the proposed analytical model can explain quite well the topology of several MCs in the interplanetary medium and is a good starting point for understanding the physical mechanisms under these phenomena.

  15. Enhanced global mathematical model for studying cerebral venous blood flow.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-10-17

    Here we extend the global, closed-loop, mathematical model for the cardiovascular system in Müller and Toro (2014) to account for fundamental mechanisms affecting cerebral venous haemodynamics: the interaction between intracranial pressure and cerebral vasculature and the Starling-resistor like behaviour of intracranial veins. Computational results are compared with flow measurements obtained from Magnetic Resonance Imaging (MRI), showing overall satisfactory agreement. The role played by each model component in shaping cerebral venous flow waveforms is investigated. Our results are discussed in light of current physiological concepts and model-driven considerations, indicating that the Starling-resistor like behaviour of intracranial veins at the point where they join dural sinuses is the leading mechanism. Moreover, we present preliminary results on the impact of neck vein strictures on cerebral venous hemodynamics. These results show that such anomalies cause a pressure increment in intracranial cerebral veins, even if the shielding effect of the Starling-resistor like behaviour of cerebral veins is taken into account. PMID:25169660

  16. A global magnetic topology model for magnetic clouds. III

    SciTech Connect

    Hidalgo, M. A.

    2014-03-20

    In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (∇p ≠ 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.

  17. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and

  18. Global Modeling, Field Campaigns, Upscaling and Ray Desjardins

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.

    2012-01-01

    In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers.

  19. An exploration of Saturn's stratospheric dynamics through Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Millour, Ehouarn; Sylvestre, Mélody; Thierry, Fouchet; Meurdesoif, Yann; Thomas, Dubos

    2014-11-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons’ distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth’s middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn’s atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge

  20. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  1. Global sensitivity analysis of the radiative transfer model

    NASA Astrophysics Data System (ADS)

    Neelam, Maheshwari; Mohanty, Binayak P.

    2015-04-01

    With the recently launched Soil Moisture Active Passive (SMAP) mission, it is very important to have a complete understanding of the radiative transfer model for better soil moisture retrievals and to direct future research and field campaigns in areas of necessity. Because natural systems show great variability and complexity with respect to soil, land cover, topography, precipitation, there exist large uncertainties and heterogeneities in model input factors. In this paper, we explore the possibility of using global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties in model inputs on zero order radiative transfer (ZRT) model and to quantify interactions between parameters. GSA technique is based on decomposition of variance and can handle nonlinear and nonmonotonic functions. We direct our analyses toward growing agricultural fields of corn and soybean in two different regions, Iowa, USA (SMEX02) and Winnipeg, Canada (SMAPVEX12). We noticed that, there exists a spatio-temporal variation in parameter interactions under different soil moisture and vegetation conditions. Radiative Transfer Model (RTM) behaves more non-linearly in SMEX02 and linearly in SMAPVEX12, with average parameter interactions of 14% in SMEX02 and 5% in SMAPVEX12. Also, parameter interactions increased with vegetation water content (VWC) and roughness conditions. Interestingly, soil moisture shows an exponentially decreasing sensitivity function whereas parameters such as root mean square height (RMS height) and vegetation water content show increasing sensitivity with 0.05 v/v increase in soil moisture range. Overall, considering the SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02 fields to be energy rich environment (due to lower SM and wide ranges of TSURF), our results indicate that first order as well as interactions between the parameters change with water and energy rich environments.

  2. GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL

    NASA Technical Reports Server (NTRS)

    Johnson, D.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate

  3. Evaluating groundwater depletion as computed by a global water model

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix

    2013-04-01

    When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time

  4. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  5. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  6. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  7. The ASTER Global Digital Elevation Model (GDEM) -for societal benefit -

    NASA Astrophysics Data System (ADS)

    Hato, M.; Tsu, H.; Tachikawa, T.; Abrams, M.; Bailey, B.

    2009-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the Ministry of Economy, Trade and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA) under the agreement of contribution to GEOSS and a public release was started on June 29th. ASTER GDEM can be downloaded to users from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA’s Land Processes Distributed Active Archive Center (LP DAAC) free of charge. The ASTER instrument was built by METI and launched onboard NASA’s Terra spacecraft in December 1999. It has an along-track stereoscopic capability using its near infrared spectral band (NIR) and its nadir-viewing and backward-viewing telescopes to acquire stereo image data with a base-to-height ratio of 0.6. The ASTER GDEM was produced by applying newly-developed automated algorithm to more than 1.2 million NIR data Produced DEMs of all scene data was stacked after cloud masking and finally partitioned into 1° x 1°unit (called ‘tile’) data for convenience of distribution and handling by users. Before start of public distribution, ERSDAC and USGS/NASA together with many volunteers did validation and characterization by using a preliminary product of the ASTER GDEM. As a result of validation, METI and NASA evaluated that Version 1 of the ASTER GDEM has enough quality to be used as “experimental” or “research grade” data and consequently decided to release it. The ASTER GDEM covering almost all land area of from 83N to 83S on the earth represents as an important contribution to the global earth observation community. We will show our effort of development of ASTER GDEM and its accuracy and character.

  8. Lagrangian modeling of global atmospheric methane (1990-2012)

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  9. A Global Flood Model in the Context of the Global Assessment Report 2015: methodology presentation and discussion

    NASA Astrophysics Data System (ADS)

    Rudari, Roberto; Campo, Lorenzo; Silvestro, Francesco; Herold, Christian

    2015-04-01

    The Global Assessment Report (GAR) is a major initiative of the UN International Strategy for Disaster Reduction (UNISDR). It contributes to the achievement of the Hyogo Framework of Action (HFA) through monitoring risk patterns and trends and progress in disaster risk reduction and by providing guidance, to governments and non-governmental actors alike, on why and how they can, together, reduce disaster risks. Among its goals is an enhanced Global Risk Model, addressing gaps in current knowledge on risk patterns and trends and providing accurate and credible information for the global disaster risk reduction community. Within this goal the present work aimed at improving the Global Flood Model. The contribution will focus on the Hazard maps definition starting form a combination of stream-flow gauges frequency analysis and Hydrologic-hydraulic modelling. The Hazard maps produced by the Global Flood Model are not considering flood defences and are therefore not suitable as such for risk parameters computations; a post-processing procedure to consider flood defences is proposed and applied. The Hazard maps are then used to produce a full set of Possible Flood scenarios in order to compute PML curves. Results are discussed with reference to some example countries highlighting advantages and limitations of the approach undertaken.

  10. Global asymptotic stability of plant-seed bank models.

    PubMed

    Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte

    2014-07-01

    Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank. PMID:23712394

  11. Global model of an iodine gridded plasma thruster

    NASA Astrophysics Data System (ADS)

    Grondein, P.; Lafleur, T.; Chabert, P.; Aanesland, A.

    2016-03-01

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identical conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.

  12. A Global Magnetic Topology Model for Magnetic Clouds. IV.

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2016-05-01

    In the first paper of this series, we introduced a global topology model for the study of magnetic clouds (MCs), fitting it to the experimental magnetic field components and obtaining, for example, the orientation of the axis of the MCs in the interplanetary medium. In the third paper, we extended the model to include theoretical hydrostatic plasma pressure, also incorporating it in the fitting procedure. The present work is complementary to the previous ones, now incorporating the proton current density as deduced from the continuity equation. In particular, we are interested in the component of the proton current density parallel to the magnetic field lines of the MC, {\\boldsymbol{j}} \\parallel , because the perpendicular component is expected to have information similar to the plasma pressure. Under all of these conditions, our fitting procedure now involves simultaneous analysis of the three components of the magnetic field, the trace of the plasma pressure, and the parallel proton current density. This provides us with more information about the physical mechanisms taking place inside MCs, thus helping us to understand the propagation and evolution of these structures in the interplanetary medium.

  13. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  14. Modeling of Urban Heat Island at Global Scale

    NASA Astrophysics Data System (ADS)

    KC, B.; Ruth, M.

    2015-12-01

    Urban Heat Island (UHI) is the temperature difference between urban and its rural background temperature. At the local level, the choice of building materials and urban geometry are vital in determining the UHI magnitude of a city. At the city scale, economic growth, population, climate, and land use dynamics are the main drivers behind changes in UHIs. The main objective of this paper is to provide a comprehensive assessment of UHI based on these "macro variables" at regional and global scale. We based our analysis on published research for Europe, North America, and Asia, reporting data for 83 cities across the globe with unique climatic, economic, and environmental conditions. Exploratory data analysis including Pearson correlation was performed to explore the relationship between UHI and PM2.5 (particulate matter with aerodynamic diameter ≤5 microns), PM10 (particulate matter with aerodynamic diameter ≤10 microns), vegetation per capita, built area, Gross Domestic Product (GDP), population density and population. Additionally, dummy variables were used to capture potential influences of climate types (based on Koppen classifications) and the ways by which UHI was measured. We developed three linear regression models, one for each of the three continents (Asia, Europe, and North America) and one model for all the cities across these continents. This study provides a unique perspective for predicting UHI magnitudes at large scales based on economic activity and pollution levels of a city, which has important implications in urban planning.

  15. Modeling selective pressures on phytoplankton in the global ocean.

    PubMed

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-01-01

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and

  16. An empirical model for probabilistic decadal prediction: A global analysis

    NASA Astrophysics Data System (ADS)

    Suckling, Emma; Hawkins, Ed; Eden, Jonathan; van Oldenborgh, Geert Jan

    2016-04-01

    Empirical models, designed to predict land-based surface variables over seasons to decades ahead, provide useful benchmarks for comparison against the performance of dynamical forecast systems; they may also be employable as predictive tools for use by climate services in their own right. A new global empirical decadal prediction system is presented, based on a multiple linear regression approach designed to produce probabilistic output for comparison against dynamical models. Its performance is evaluated for surface air temperature over a set of historical hindcast experiments under a series of different prediction `modes'. The modes include a real-time setting, a scenario in which future volcanic forcings are prescribed during the hindcasts, and an approach which exploits knowledge of the forced trend. A two-tier prediction system, which uses knowledge of future sea surface temperatures in the Pacific and Atlantic Oceans, is also tested, but within a perfect knowledge framework. Each mode is designed to identify sources of predictability and uncertainty, as well as investigate different approaches to the design of decadal prediction systems for operational use. It is found that the empirical model shows skill above that of persistence hindcasts for annual means at lead times of up to ten years ahead in all of the prediction modes investigated. Small improvements in skill are found at all lead times when including future volcanic forcings in the hindcasts. It is also suggested that hindcasts which exploit full knowledge of the forced trend due to increasing greenhouse gases throughout the hindcast period can provide more robust estimates of model bias for the calibration of the empirical model in an operational setting. The two-tier system shows potential for improved real-time prediction, given the assumption that skilful predictions of large-scale modes of variability are available. The empirical model framework has been designed with enough flexibility to

  17. Students' Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent?

    ERIC Educational Resources Information Center

    Krell, Moritz; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    It is argued that knowledge about models is an important part of a profound understanding of Nature of Science. Consequently, researchers have developed different "levels of understanding" to analyse students', teachers', or experts' comprehension of this topic. In some approaches, "global" levels of…

  18. Quasi-Stationary Global Auroral Ionospheric Model: E-layer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Vera; Gordeev, Evgeny; Kotikov, Andrey; Makarova, Ludmila; Shirochkov, Aleksander

    2014-05-01

    E-layer Auroral Ionospheric Model (E-AIM) is developed to provide temporal and spatial density distribution of the main ionosphere neutral species (NO, N(4S),N(2D)), and ions (N2+, NO+,O2+,O+) in the altitude range from 90 to 150 km. NRLMSISE-00 model [Picone et al., JGR 2003] is used for neutral atmosphere content and temperature determination, that is the input for the E-AIM model. The E-AIM model based on chemical equilibrium state in E-layer that reaches in chemical reactions between ionospheric species considering solar radiation ionization source, superposed with sporadic precipitation of magnetospheric electrons. The chemical equilibrium state in each location under specific solar and geomagnetic activity conditions reaches during numerical solution of the continuity equations for the neutrals and ions using the high-performance Gear method [Gear, 1971] for ordinary differential equation (ODE) systems. Applying the Gear method for solving stiff ODE system strongly reduce the computation time and machine resources comparing to widely used methods and provide an opportunity to calculate the global spatial E-layer ion content distribution. In contrast to the mid-latitude ionosphere, structure and dynamics of the auroral zone ionosphere (φ ≡ 60-75° MLat) associated not only with shortwave solar radiation. Precipitating magnetospheric particle flux is the most important ionization source and is the main cause of E-layer disturbances. Precipitated electrons with initial energies of 1 - 30 keV influence the auroral ionosphere E-layer. E-AIM model can estimate ionization rate corresponds to auroral electron precipitation in two different ways: 1. with direct electron flux satellite data; 2. with differential energy spectrum reconstructed from OVATION-Prime empirical model [Newell, JGR 2009] average values, that allows to estimate ionosphere ion content for any time and location in the auroral zone. Comparison of E-AIM results with direct ionospheric observations

  19. Stochastic resonance on a global atmospheric circulation model

    NASA Astrophysics Data System (ADS)

    Perez-Munuzuri, V.; Deza, R.; Fraedrich, K.; Kirk, E.; Lunkeit, F.

    2003-04-01

    Seeking for alternative sources of the observed climatic variability, and in the spirit of both classic (Nicolis, 1982; Benzi et al., 1982) and recent work (Ganopolski and Rahmstorg, 2002; Vélez-Belch&{acute;i} et al., 2001), we have added a space-independent, Gaussian and uncorrelated stochastic perturbation with amplitude eta, to the temperature equation of a simplified atmospheric global circulation model, the so-called PUMA (Portable University Model of the Atmosphere) (Frisius et al., 1998; Pérez-Muñuzuri et al., 2003). In the latter model, diabatic processes are parameterized by a Newtonian cooling term with typical timescale τ_c, whose reference temperature profile T_R(λ,μ,σ;t) (representing the ``equilibrium'' profile induced by solar heating) is given by T_R=overline{T}_R(λ,μ,σ)+ hat{T}_R \\cos[(2pi/Tac)t+Pac]. We show that the time averages of several forecasting magnitudes (like temperature and horizontal vorticity) at a point on the 300 hPa surface, undergo a non-monotonic behavior with regard to eta. Moreover, the normalized variance R=sqrt{-^2}/ of the interval t_p between the passage at the point of cyclonic and anticyclonic circulation regions exhibits an ``anticoherence resonance'' effect, thus maximizing climatic variability for some intermediate value of eta. A theoretical explanation is advanced in terms of activated processes with competing time scales. begin{itemize} C. Nicolis, Tellus 34, 1 (1982); Benzi et al., Tellus 34, 10 (1982). A. Ganopolski and S. Rahmstorg, Phys. Rev. Lett. 88, 038501 (2002); P. Vélez-Belch&{acute;i} et al., Geophys. Res. Lett. 28, 2053 (2001). T. Frisius, F. Lunkeit, K. Fraedrich and I.N. James. Q.J.R. Meteorol. Soc. 124, 1019 (1998); V. Pérez-Muñuzuri et al. Nonlin. Proc. Geophys. (submitted) (2003).

  20. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  1. Tropospheric energy cascades in a global circulation model

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Becker, Erich

    2010-05-01

    The global horizontal kinetic energy (KE) spectrum and its budget are analyzed using results from a mechanistic GCM. The model has a standard spectral dynamical core with very high vertikal resolution up to the middle stratosphere (T330/L100). As a turbulence model we combine the Smagorinsky scheme with an energy conserving hyperdiffusion that is applied for the very smallest resolved scales. The simulation confirms a slope of the KE spectrum close to -3 in the synoptic regime where the KE is dominated by vortical modes. Towards the mesoscales the spectrum flattens and assumes a slope close to -5/3. Here divergent modes become increasingly important and even dominate the KE. Our complete analysis of the sinks and sources in the spectral KE budget reveals the overall energy fluxes through the spectrum. For the upper troposphere, the change of KE due to horizontal advection is negative for large synoptic scales. It is positive for the planetary scale, as expected, and for the mesoscales as well. This implies that the mesoscales, which include the dynamical sources of tropospheric gravity waves, are in fact sustained by the energy injection at the baroclinic scale (forward energy cascade). We find an enstrophy cascade in accordance with 2D turbulence, but zero downscaling of energy due to the vortical modes alone. In other words, the forward energy cascade in the synoptic and mesoscale regime is solely due to the divergent modes and their nonlinear interaction with the vortical modes. This picture, derived form a mechanistic model, not only lends further evidence for a generally forward energy cascade in the upper tropospheric away from the baroclinic scale. It also extends the picture proposed earlier by Tung and Orlando: The transition from a -3 to a -5/3 slope in the tropospheric macroturbulence spectrum reflects the fact, that the energy cascade due to the horizontally divergent (3D) modes is hidden behind the (2D) enstrophy cascade in the synoptic regime but

  2. An improved global zenith tropospheric delay model GZTD2 considering diurnal variations

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Hu, Yufeng; Yu, Chen; Zhang, Bao; Guo, Jianjian

    2016-05-01

    The zenith tropospheric delay (ZTD) is an important atmospheric parameter in the wide application of global navigation satellite systems (GNSS) technology in geoscience. Given that the temporal resolution of the current global zenith tropospheric delay model (GZTD) is only 24 h, an improved model, GZTD2, has been developed by taking the diurnal variations into consideration and modifying the model expansion function. The data set used to establish this model is the global ZTD grid data provided by Global Geodetic Observing System (GGOS) Atmosphere spanning from 2002 to 2009. We validated the proposed model with respect to ZTD grid data from GGOS Atmosphere, which was not involved in modeling, as well as International GNSS Service (IGS) tropospheric product. The obtained results of ZTD grid data show that the global average bias and root mean square (rms) for the GZTD2 model are 0.2 and 3.8 cm, respectively. The global average bias is comparable to that of the GZTD model, but the global average rms is improved by 3 mm. The bias and rms are far better than the EGNOS model and the UNB series models. The testing results from global IGS tropospheric product show the bias and rms (-0.3 and 3.9 cm) of the GZTD2 model are superior to that of GZTD (-0.3 and 4.2 cm), suggesting higher accuracy and reliability compared to the EGNOS model, as well as the UNB series models.

  3. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    SciTech Connect

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of NPP for 0.5{sup o

  4. Modeling Key Malaria Drugs' Impact on Global Health: A Reason to Invest in the Global Health Impact Index.

    PubMed

    Hassoun, Nicole

    2016-05-01

    Millions of people cannot access good quality essential medicines they need for some of the world's worst diseases like malaria. The World Health Organization estimates that, in 2013, 198 million people became sick with malaria and 584,000 people died of the disease, while the Institute for Health Metrics Evaluation estimates that there were 164,929,872 cases of malaria in 2013 and 854,568 deaths in 2013. There are many attempts to model different aspects of the global burden of tropical diseases like malaria, but it is also important to measure success in averting malaria-related death and disability. This perspective proposes investing in a systematic effort to measure the benefits of health interventions for malaria along the lines of a model embodied in the Global Health Impact Index (global-health-impact.org). PMID:26856915

  5. A dynamic subgrid-scale eddy viscosity model with a global model coefficient

    NASA Astrophysics Data System (ADS)

    Park, Noma; Lee, Sungwon; Lee, Jungil; Choi, Haecheon

    2006-12-01

    In the present study, a dynamic subgrid-scale eddy viscosity model is proposed for large eddy simulation of turbulent flows in complex geometry. A subgrid-scale eddy viscosity model recently proposed by Vreman [Phys. Fluids 16, 3670 (2004)] which guarantees theoretically zero subgrid-scale dissipation for various laminar shear flows, is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. A dynamic procedure of determining the model coefficient is proposed based on the "global equilibrium" between the subgrid-scale dissipation and the viscous dissipation. An important feature of the proposed procedure is that the model coefficient determined is globally constant in space but varies only in time. A posteriori tests of the proposed dynamic model are conducted through large eddy simulations of forced isotropic turbulence at Reλ=103, turbulent channel flows at Reτ=180 and 590, flow over a circular cylinder at Red=3900, and flows over a sphere at Red=3700 and 104. The proposed dynamic model produces excellent performance for all flows considered. As shown in the present paper, the proposed model is robust and it can be readily applied to complex flows without homogeneous direction.

  6. New Ganymede control point network and global shape model

    NASA Astrophysics Data System (ADS)

    Zubarev, A.; Nadezhdina, I.; Oberst, J.; Hussmann, H.; Stark, A.

    2015-11-01

    We computed a 3D control point network for Ganymede using combinations of 126 Voyager-1 and -2 and 87 Galileo images, benefiting from reconstructed trajectory data for the three spacecraft and a more complete Galileo image data base than was available for earlier studies. Using more than 3000 control point coordinates, we determine global shape parameters, including mean radius, spheroid- and ellipsoidal axes, and make tests for various equilibrium shape models, constrained by the most recent estimates for gravity field parameters. We confirm that Ganymede has a pronounced ellipsoidal shape, approximately aligned with the Jupiter-direction, in agreement with Ganymede being in tidal equilibrium. The point heights, suffering from large individual errors, do not reveal any large-scale topography below our typical error levels (97% <5 km). By analysis of data residuals we search for, but cannot detect Ganymede longitudinal forced librations. We conclude that libration amplitudes cannot be larger than 0.1° (corresponding to a lateral displacement of 4.6 km at the equator).

  7. Improving models to predict phenological responses to global change

    SciTech Connect

    Richardson, Andrew D.

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  8. A Global Error Model for Satellite Precipitation Products

    NASA Astrophysics Data System (ADS)

    Maggioni, V.; Sapiano, M.; Adler, R. F.; Huffman, G. J.

    2014-12-01

    The PUSH (Precipitation Uncertainties for Satellite Hydrology) error scheme is presented to provide global estimates of errors for high time resolution, merged precipitation products. Each of the following four scenarios is explored and explicitly modeled: correct no-precipitation detection (both satellite and gauges detect no precipitation), missed precipitation (satellite records a zero, but it is incorrect), false alarm (satellite detects precipitation, but the reference is zero), and hit (both satellite and gauges detect precipitation). Previous studies have shown that PUSH was able to reproduce the probability density functions of the benchmark precipitation, to capture missed precipitation and false detection uncertainties, and to reproduce the spatial pattern of the error over the Oklahoma region. This study shows how this framework can be generalized to other regions of the world, based on information that is available anywhere anytime. This will be exceptionally crucial in un-gauged regions of the world, where satellite retrievals represent the only available precipitation estimate on which hydrological applications (e.g., flood forecasting) and water resources management can rely. A methodology to discern the systematic and random components of the error is also investigated.

  9. Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry

    NASA Technical Reports Server (NTRS)

    Joosten, Kent

    1987-01-01

    At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.

  10. Polar Lows in Reanalyses and High Resolution Global Climate Models

    NASA Astrophysics Data System (ADS)

    Shaffrey, Len; Zappa, Giuseppe; Hodges, Kevin; Vidale, Pier Luigi

    2015-04-01

    Polar lows are maritime meso-cyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the ERA-Interim (ERAI) reanalysis to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008-2011. The operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying objective identification criteria, about 55% of the satellite observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implications of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed. The ability of the Met Office HadGEM3 global climate model at different horizontal resolutions (150km, 60km and 25km) to capture Polar Lows will also be discussed.

  11. Understanding Solar Torsional Oscillations from Global Dynamo Models

    NASA Astrophysics Data System (ADS)

    Guerrero, G.; Smolarkiewicz, P. K.; de Gouveia Dal Pino, E. M.; Kosovichev, A. G.; Mansour, N. N.

    2016-09-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  12. Early breakup of Gondwana: constraints from global plate motion models

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Zahirovic, Sabin; Williams, Simon; Whittaker, Joanne; Gibbons, Ana; Muller, Dietmar; Brune, Sascha; Heine, Christian

    2015-04-01

    Supercontinent break-up and amalgamation is a fundamental Earth cycle, contributing to long-term sea-level fluctuations, species diversity and extinction events, long-term greenhouse-icehouse cycles and changes in the long-wavelength density structure of the mantle. The most recent and best-constrained example involves the fragmentation of Gondwana, starting with rifting between Africa/Madagascar and Antarctica in the Early Jurassic and ending with the separation of the Lord Howe microcontinental blocks east of Australia in the Late Cretaceous. Although the first order configuration of Gondwana within modern reconstructions appears similar to that first proposed by Wegener a century ago, recent studies utilising a wealth of new geophysical and geological data provide a much more detailed picture of relative plate motions both during rifting and subsequent seafloor spreading. We present our latest global plate motion model that includes extensive, new regional analyses. These include: South Atlantic rifting, which started at 150 Ma and propagated into cratonic Africa by 145 Ma (Heine et al., 2013); rifting and early seafloor spreading between Australia, India and Antarctica, which reconciles the fit between Broken Ridge-Kergulean Plateau and the eastern Tasman region (Whittaker et al., 2013); rifting of continental material from northeastern Gondwana and its accretion onto Eurasia and SE Asia including a new model of microcontinent formation and early seafloor spreading in the eastern Indian Ocean (Gibbons et al., 2012; 2013; in review; Williams et al., 2013; Zahirovic et al., 2014); and a new model for the isolation of Zealandia east of Australia, with rifting initiating at 100 Ma until the start of seafloor spreading in the Tasman Sea at ~85 Ma (Williams et al., in prep). Using these reconstructions within the open-source GPlates software, accompanied by a set of evolving plates and plate boundaries, we can explore the factors that govern the behavior of plate

  13. Accuracy assessment of the global ionospheric model over the Southern Ocean based on dynamic observation

    NASA Astrophysics Data System (ADS)

    Luo, xiaowen

    2016-04-01

    The global ionospheric model based on the reference stations of the Global Navigation Satellite System (GNSS) of the International GNSS Services is presently the most commonly used products of the global ionosphere. It is very important to comprehensively analyze and evaluate the accuracy and reliability of the model for the reasonable use of this kind of ionospheric product. This work is different to the traditional performance evaluation of the global ionosphere model based on observation data of ground-based static reference stations. The preliminary evaluation and analysis of the the global ionospheric model was conducted with the dynamic observation data across different latitudes over the southern oceans. The validation results showed that the accuracy of the global ionospheric model over the southern oceans is about 5 TECu, which deviates from the measured ionospheric TEC by about -0.6 TECu.

  14. High resolution global climate modelling from the UPSCALE simulation campaign

    NASA Astrophysics Data System (ADS)

    Vidale, Pier-Luigi; Roberts, Malcolm; Mizielinski, Matthew; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane

    2014-05-01

    A traceable hierarchy of global climate models (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130km to 25km, has been developed in order to study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes. Five-member ensembles of atmosphere-only integrations were completed at these resolutions, each 27 years in length, using both present day forcing and a future climate scenario. These integrations, collectively known as the "UPSCALE campaign", were completed using time provided by the European PrACE project on supercomputer HERMIT (HLRS Stuttgart). A wide variety of processes are being studied to assess these integrations, in particular with regards to the role of resolution. Tropical cyclone characteristics are shown to improve as resolution is increased (in terms of spatial extent, frequency, structure and variability), particularly in the Atlantic basin, where ensemble correlations with observed interannual variability approach 0.8. Mid-latitude Atlantic jet positioning improves in some seasons, although the spread between ensemble members has a similar magnitude to the spread between ensembles means at resolution. The simulation of decadal trends in Sahel rainfall also improve as resolution is increased, which is very likely linked to processes such as African Easterly Waves. The simulation of polar lows and other processes also become more realistic in the higher resolution simulations. Some aspects of the relationship between the improved simulation of the current climate, and how this impacts on changes in the future climate, will also be discussed. In particular tropical cyclone frequency decreases robustly in the Southern Hemisphere, but changes in the Northern Hemisphere are more basin-dependent, with a decrease in the Atlantic but a shift in tracks in the Pacific.

  15. Approach to equilibrium in accelerated global oceanic models

    SciTech Connect

    Danabasoglu, G.; McWilliams, J.C.; Large, W.G.

    1996-05-01

    The approach to equilibrium of a coarse-resolution, seasonally forced, global oceanic general circulation model is investigated, considering the effects of a widely used acceleration technique that distorts the dynamics by using unequal time steps in the governing equations. A measure of the equilibration time for any solution property is defined as the time it takes to go 90% of the way from its present value to its equilibrium value. This measure becomes approximately time invariant only after sufficiently long integration. It indicates that the total kinetic energy and most mass transport rates attain equilibrium within about 90 and 40 calendar years, respectively. The upper-ocean potential temperature and salinity equilibrium times are about 480 and 380 calender years, following 150- and 20-year initial adjustments, respectively. In the abyssal ocean, potential temperature and salinity equilibration take about 4500 and 3900 calender years, respectively. These longer equilibration times are due to the slow diffusion of tracers both along and across the isopycnal surfaces in stably stratified regions, and these times vary with the associated diffusivities. An analysis of synchronous (i.e., not accelerated) integrations shows that there is a complex interplay between convective, advective, and diffusive timescales. Because of the distortion by acceleration of the seasonal cycle, the solutions display some significant adjustments upon switching to synchronous integration. However, the proper seasonal cycle is recovered within five years. Provided that a sufficient equilibrium state has been achieved with acceleration, the model must be integrated synchronously for only about 15 years thereafter to closely approach synchronous equilibrium. 16 refs., 11 figs., 1 tab.

  16. Uncertainties of Nitrogen Fixation in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Steinkamp, Joerg; Werner, Christian; Weber, Bettina; Hickler, Thomas

    2015-04-01

    Nitrogen is an essential nutrient for life on earth. However, most of it is in the form of dinitrogen (N2) unutilizable to life and only few organisms are able to break the triple bond, fix the nitrogen and thus make it available for cycling in the biosphere through "fixation". In most state-of-the-art dynamic global vegetation models (DGVMs) including a nitrogen cycle, N fixation is simulated by the Cleveland et al. (1999) algorithm (O-CN, LPJ-GUESS, CLM), that correlates annual N fixation to evapotranspiration rates or net primary production. Nevertheless, this algorithm has two major uncertainties, which are investigated by us: 1. The algorithm is based on annual fixation rates that are then applied uniformly throughout the year. However, in nature nitrogen fixation is an expensive process, which occurs only under favorable conditions. Here we compare the annual fixation values evenly distributed over the year with daily-derived fixation values based on a modified version of the Cleveland algorithm. We postulate that in higher latitudinal regions with seasonal climate as well as in regions with a distinct dry/wet season, modeled growth is enhanced by daily derived values compared to evenly distributed values, whereas in tropical regions hardly any difference will be visible. 2. One distinguishes between symbiotic and unsymbiotic nitrogen fixation, where the first one is associated with higher plants as symbionts supplying the fixers with carbohydrates, whereas the second, unsymbiotic is performed by so-called cryptogamic covers (CC). We found that the fixation by CC is underrepresented by the Cleveland algorithm, and a correction thus leads to enhanced growth in forested regions of higher latitudes that feature substantial CC fractions. Overall, the improvements of the algorithm proposed by us are expected to better reflect the reality of nitrogen fixation and cause an increased growth of vegetation, especially in higher northern latitudes.

  17. Drought Duration Biases in Current Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  18. GEM1: First-year modeling and IT activities for the Global Earthquake Model

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Giardini, D.; Wiemer, S.

    2009-04-01

    GEM is a public-private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) to build an independent standard for modeling and communicating earthquake risk worldwide. GEM is aimed at providing authoritative, open information about seismic risk and decision tools to support mitigation. GEM will also raise risk awareness and help post-disaster economic development, with the ultimate goal of reducing the toll of future earthquakes. GEM will provide a unified set of seismic hazard, risk, and loss modeling tools based on a common global IT infrastructure and consensus standards. These tools, systems, and standards will be developed in partnership with organizations around the world, with coordination by the GEM Secretariat and its Secretary General. GEM partners will develop a variety of global components, including a unified earthquake catalog, fault database, and ground motion prediction equations. To ensure broad representation and community acceptance, GEM will include local knowledge in all modeling activities, incorporate existing detailed models where possible, and independently test all resulting tools and models. When completed in five years, GEM will have a versatile, penly accessible modeling environment that can be updated as necessary, and will provide the global standard for seismic hazard, risk, and loss models to government ministers, scientists and engineers, financial institutions, and the public worldwide. GEM is now underway with key support provided by private sponsors (Munich Reinsurance Company, Zurich Financial Services, AIR Worldwide Corporation, and Willis Group Holdings); countries including Belgium, Germany, Italy, Singapore, Switzerland, and Turkey; and groups such as the European Commission. The GEM Secretariat has been selected by the OECD and will be hosted at the Eucentre at the University of Pavia in Italy; the Secretariat is now formalizing the creation of the GEM Foundation. Some of GEM's global

  19. An Empirical Cumulus Parameterization Scheme for a Global Spectral Model

    NASA Technical Reports Server (NTRS)

    Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.

    2004-01-01

    Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This

  20. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; Zeng, Xubin; Troch, Peter A.; Niu, Guo-Yue; Williams, Zachary; Brunke, Michael A.; Gochis, David

    2016-03-01

    Earth's terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsec (˜1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. We anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models. This article was corrected on 2 FEB 2016. See the end of the full text for details.

  1. Local model of a scientific collaboration in physics network compared with the global model

    NASA Astrophysics Data System (ADS)

    Roohi, A. A.; Shirazi, A. H.; Kargaran, A.; Jafari, G. R.

    2010-12-01

    We have constructed a collaboration network for physicists based in Iran working in different disciplines. By discussing properties like collaborators per author, shortest path, betweenness, and the concept of power in networks for this local model, and comparing with the global model, we understand how a developing country in the Middle East is contributing to the scientific growth in the world statistically. In this comparison, we found some properties of the local model which were not in accordance with the standard global society of science, which should be considered in developing the future policies. Our results show significant differences in factors like the degree and the diameter of the networks. Even though the diversity of disciplines is low in contrast with the rest of the world according to the diameter of networks, people are reluctant to collaborate as their degree shows.

  2. Global water resources modeling with an integrated model of the social-economic-environmental system

    NASA Astrophysics Data System (ADS)

    Davies, Evan G. R.; Simonovic, Slobodan P.

    2011-06-01

    Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.

  3. Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models

    NASA Astrophysics Data System (ADS)

    Wang, Xinguo; Holt, William E.; Ghosh, Attreyee

    2015-12-01

    With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.

  4. Modelling continental deformation within global plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Williams, S.; Whittaker, J.; Heine, C.; Müller, P.

    2010-12-01

    A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting

  5. Emerging Internationalisation Models in an Uneven Global Terrain: Findings from a Global Survey

    ERIC Educational Resources Information Center

    Maringe, F.; Foskett, N.; Woodfield, S.

    2013-01-01

    We know little about how internationalisation processes are understood, rationalised and prioritised in different parts of the world. A global survey of internationalisation in universities was undertaken at the University of Southampton to fill this gap. Its purpose was to discover how strategic leaders in universities in different parts of the…

  6. Global Similarity Accounts of Embedded-Category Designs: Tests of the Global Matching Models

    ERIC Educational Resources Information Center

    Maguire, Angela M.; Humphreys, Michael S.; Dennis, Simon; Lee, Michael D.

    2010-01-01

    This paper addresses two Global Matching predictions in embedded-category designs: the within-category choice advantage in forced-choice recognition (superior discrimination for test choices comprising a same-category distractor); and the category length effect in forced-choice and old/new recognition (a loss in discriminability with increases in…

  7. Forcing a Global, Offline Land Surface Modeling System with Observation-Based Fields

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Houser, Paul R.; Jambor, U.; Gottschalck, J.; Radakovich, J.; Arsenault, K.; Meng, C.-J.; Mitchell, K. E.

    2002-01-01

    The Global Land Data Assimilation System (GLDAS) drives multiple uncoupled land surface models in order to produce optimal output fields of surface states in near-real time, globally, at 1/4 degree spatial resolution. These fields are then made available for coupled atmospheric model initialization and further research. One of the unique aspects of GLDAS is its ability to ingest both modeled and observation-derived forcing for running global scale land surface models. This paper compares results of runs forced by modeled and observed precipitation and shortwave radiation fields. Differences are examined and the impact of the observations on model skill is assessed.

  8. Boundary Condition Transfer from Global Atmospheric Model to Local Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, B.; Liu, Z.; Yamazaki, D.; Sanders, B.; Oki, T.; Famiglietti, J.

    2012-04-01

    Flooding is one of the most common natural disasters. It has been a matter of concern and interest in the history of Hydrology. Various methodologies have been developed to approach the issue. Since the capability of models and available data have not been enough, in general, using site-specific fine-tuned models and/or establishing a flood inundation map as a non-structural measure have been used in local societies, in order to predict and prevent damage from abnormal flooding over the design criteria of hydraulic structures. However, under changing climate, the global hydrologic cycle has been altered and the spatiotemporal pattern of natural extremes also has been modified, which reduces the credence of the estimated model parameters and inundation maps based on historical records. In this study, the transfer of information between different spatiotemporal scales from global through local is evaluated. The proposed modeling framework uses multiple modeling system and observational datasets, which are tested in different sites including the Amazon and the San Gabriel River. The Japanese 25-year Reanalysis (JRA-25) data is used to retrieve reliable large scale climate variability. Monthly bias in the reanalysis precipitation field is corrected using ensemble products of global observations such as GPCC and PREC/L. The Shuttle Radar Topography Mission (SRTM) and National Hydrography Dataset Plus (NHD+) are exploited to describe topography in regional and local simulations. The BreZo hydrodynamic model which solves 2 dimensional shallow-water equations to predict flood wave propagation is employed in local high resolution (~100m) simulations. Regional scale hydrologic simulations are compiled using the Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO) with Catchment-based Macro-scale Floodplain model (CaMa-Flood) and the Catchment-Based Hydrologic and Routing Modeling System (CHARMS) coupled with the Community Land Model (CLM) 3.5.

  9. A model of CO-CH4 global transport/chemistry. I - Chemistry model

    NASA Technical Reports Server (NTRS)

    Peters, L. K.; Kitada, T.

    1980-01-01

    A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.

  10. A modelling study of the atmospheric chemistry of DMS using the global model, STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Gillespie, S. M. P.; Razis, B.; Xiao, P.; Davies-Coleman, M. T.; Percival, C. J.; Derwent, R. G.; Dyke, J. M.; Ghosh, M. V.; Lee, E. P. F.; Shallcross, D. E.

    2016-02-01

    The tropospheric chemistry of dimethylsulfide (DMS) is investigated using a global three-dimensional chemical transport model, STOCHEM with the CRIv2-R5 chemistry scheme. The tropospheric distribution of DMS and its removal at the surface by OH abstraction, OH addition, NO3 oxidation, and BrO oxidation is modelled. The study shows that the lifetime and global burden of DMS is ca. 1.2 days and 98 Gg S, respectively. Inclusion of BrO oxidation resulted in a reduction of the lifetime (1.0 day) and global burden (83 Gg S) of DMS showing that this reaction is important in the DMS budget. The percentage contribution of BrO oxidation to the total removal of DMS is found to be only 7.9% that is considered a lower limit because the study does not include an inorganic source of bromine from sea-salt. BrO oxidation contributed significantly in the high latitudes of the southern hemisphere (SH). Inclusion of DMS removal by Cl2 showed that potentially a large amount of DMS is removed via this reaction specifically in the remote SH oceans, depending on the flux of Cl2 from the Southern Ocean. Model DMS levels are evaluated against measurement data from six different sites around the globe. The model predicted the correct seasonal cycle for DMS at all locations and correlated well with measurement data for most of the periods.

  11. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  12. Research highlights of the global modeling and simulation branch for 1986-1987

    NASA Technical Reports Server (NTRS)

    Baker, Wayman (Editor); Susskind, Joel (Editor); Pfaendtner, James (Editor); Randall, David (Editor); Atlas, Robert (Editor)

    1988-01-01

    This document provides a summary of the research conducted in the Global Modeling and Simulation Branch and highlights the most significant accomplishments in 1986 to 1987. The Branch has been the focal point for global weather and climate prediction research in the Laboratory for Atmospheres through the retrieval and use of satellite data, the development of global models and data assimilation techniques, the simulation of future observing systems, and the performance of atmospheric diagnostic studies.

  13. Modeling international cooperation for the global environmental problematique

    SciTech Connect

    Sadeh, E.

    1997-12-31

    The focus of this study is on international cooperative decision-making related to global change issues concerning stratospheric ozone depletion and global climate warming. Such anthropogenic alteration of the Earth`s biosphere has given rise to a global environmental problematique that is demarcated by two dimensions. The first dimension is that global environmental Issues are demarcated by international environmental commons. Commons are defined as physical or biological systems that lie outside the jurisdiction of any individual state and are valued environmental resources globally. A second dimension pertains to tile collective action problem which results from a {open_quotes}tragedy of the commons.{close_quotes} According to traditional realist conception of international relations, that states behave in their rational self-interest, a {open_quotes}tragedy of the commons{close_quotes} ensues. The tragedy is a function of damage to the global environment, such as the production of economic resources that release greenhouse gases into the Earth`s biosphere, that is nonappropriable. Commons resources relative to the Earth`s biosphere are not limitless. At issue, is the realization of sustainable economic development promoted by cooperative political patterns that mitigate the negative consequences of this tragedy.

  14. The GISS model of the global atmosphere. [Goddard Institute for Space Studies numerical model

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Stone, P. H.; Halem, M.; Hansen, J. E.; Hogan, J. S.; Druyan, L. M.; Quirk, W. J.; Russell, G.; Lacis, A. A.; Tenenbaum, J.

    1974-01-01

    A description and numerical results are presented for a global atmospheric circulation model developed at the Goddard Institute for Space Studies (GISS). The model version described is a 9-level primitive-equation model in sigma coordinates. It includes a realistic distribution of continents, oceans and topography. Detailed calculations of energy transfer by solar and terrestrial radiation make use of cloud and water vapor fields calculated by the model. The model hydrologic cycle includes two precipitation mechanisms: large-scale supersaturation and a parameterization of subgrid-scale cumulus convection. Results are presented both from a comparison of the 13th to the 43rd days (January) of one integration with climatological statistics, and from five short-range forecasting experiments. In the extended integration, the near-equilibrium January-mean model atmosphere exhibits an energy cycle in good agreement with observational estimates, together with generally realistic zonal mean fields of winds, temperature, humidity, transports, diabatic heating, evaporation, precipitation, and cloud cover.

  15. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    NASA Astrophysics Data System (ADS)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-10-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of

  16. Modelling global freshwater resources using WaterGAP 2.2 - model overview, selected results and applications

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Adam, Linda; Döll, Petra; Eisner, Stephanie; Flörke, Martina; Güntner, Andreas; Kynast, Ellen; Portmann, Felix T.; Riedel, Claudia; Schneider, Christoph; Song, Qi; Wattenbach, Martin; Zhang, Jing

    2014-05-01

    The estimation of global freshwater flows and storages and their dynamics is essential for the assessment of historical and future water availability both for mankind and ecosystems. WaterGAP 2 is a state-of-the-art water model covering the entire global land area (except Antarctica) on a 0.5° by 0.5° grid. WaterGAP consists of a set of water use models and a hydrological model. Five global water use models representing the sectors irrigation, domestic water demand, manufacturing industries, livestock farming and cooling of thermal power plants inform the sub-model GWSWUSE which calculates net water abstractions distinguishing surface water and groundwater sources. Water flows and storages are simulated by the WaterGAP Global Hydrology Model (WGHM). WGHM is calibrated against measured discharge for basins covering around 50 % of global land area. Since the original development of WaterGAP in the late 1990s, new input data and refined process algorithms have led to a significant improvement of the results. We present the current version WaterGAP 2.2 including selected results (e.g. discharge seasonality, water storage) and the global water balance for the time period 1971-2000. In addition, some examples of the application of WaterGAP output, e.g. within the GRACE community and for global environmental assessments are shown, reflecting the importance of global hydrology modeling in our globalized world.

  17. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  18. Evaluating soil carbon in global climate models: benchmarking, future projections, and model drivers

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2012-12-01

    The carbon cycle plays a critical role in how the climate responds to anthropogenic carbon dioxide. To evaluate how well Earth system models (ESMs) from the Climate Model Intercomparison Project (CMIP5) represent the carbon cycle, we examined predictions of current soil carbon stocks from the historical simulation. We compared the soil and litter carbon pools from 17 ESMs with data on soil carbon stocks from the Harmonized World Soil Database (HWSD). We also examined soil carbon predictions for 2100 from 16 ESMs from the rcp85 (highest radiative forcing) simulation to investigate the effects of climate change on soil carbon stocks. In both analyses, we used a reduced complexity model to separate the effects of variation in model drivers from the effects of model parameters on soil carbon predictions. Drivers included NPP, soil temperature, and soil moisture, and the reduced complexity model represented one pool of soil carbon as a function of these drivers. The ESMs predicted global soil carbon totals of 500 to 2980 Pg-C, compared to 1260 Pg-C in the HWSD. This 5-fold variation in predicted soil stocks was a consequence of a 3.4-fold variation in NPP inputs and 3.8-fold variability in mean global turnover times. None of the ESMs correlated well with the global distribution of soil carbon in the HWSD (Pearson's correlation <0.40, RMSE 9-22 kg m-2). On a biome level there was a broad range of agreement between the ESMs and the HWSD. Some models predicted HWSD biome totals well (R2=0.91) while others did not (R2=0.23). All of the ESM terrestrial decomposition models are structurally similar with outputs that were well described by a reduced complexity model that included NPP and soil temperature (R2 of 0.73-0.93). However, MPI-ESM-LR outputs showed only a moderate fit to this model (R2=0.51), and CanESM2 outputs were better described by a reduced model that included soil moisture (R2=0.74), We also found a broad range in soil carbon responses to climate change

  19. A THREE-DIMENSIONAL MODEL ASSESSMENT OF THE GLOBAL DISTRIBUTION OF HEXACHLOROBENZENE

    EPA Science Inventory

    The distributions of persistent organic pollutants (POPs) in the global environment have been studied typically with box/fugacity models with simplified treatments of atmospheric transport processes1. Such models are incapable of simulating the complex three-dimensional mechanis...

  20. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    SciTech Connect

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-03-10

    would extend the spirit of President Eisenhower's ''Atoms for Peace'' vision toward solving some of the major international problems of the 21st Century--global climate change and the creation of a peaceful and stable world political regime. Needless to say, this is a very complex problem, encompassing all of the issues involved in nuclear power--economics, proliferation, waste management and safety--and a myriad of public and diplomatic policy issues as well. To gain a better understanding of the leasing concept we have built an interactive system dynamics model, Multinuke, using STELLA software. (STELLA is particularly useful for this type of analysis because of its capability to create user-friendly interfaces.) Multinuke simulates two separate nuclear entities and possible interactions between them, and therefore can be used to investigate the fuel-leasing concept. In this paper we will apply the results of Multinuke to a few simplified scenarios to help understand how fuel leasing might affect the future global growth of nuclear power, proliferation concern and spent fuel management.

  1. Uncertainty of establishment scheme in the Community Land Model-Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Song, X.; Zeng, X.

    2010-12-01

    Dynamic global vegetation models are very important tools to simulate and predict the relationship between terrestrial ecosystem processes and climate change. They usually consist of several main sub-models, such as establishment, growth, mortality due to stress, competition, reproductive and so forth. In this study, we focus on the establishment sub-model. Establishment sub-model describes the processes of germination of tree seeds and establishment of seedlings. However, due to the complexity of the ecological process and the lack of observation data, current DGVMs use different parameterization schemes of establishment, and the uncertainties of these establishment scheme as well as their impacts on vegetation distribution remain largely unknown. Our work is to introduce several new different establishment schemes, each based on different physical and ecological considerations, into a modified Community Land Model - Dynamic Global Vegetation Model (CLM-DGVM). The sensitivities of the vegetation distribution to different establishment schemes and some essential parameters in the schemes are investigated in different vegetation zones. Our research indicates that establishment scheme has remarkable effects not only on the percent of coverage and population density of different plant functional types (PFTs) but also the community structure such as coexistence of PFTs and even the dominant vegetation. Such changes will alter the ecosystem functioning, and hence have further impacts on climate through the vegetation-atmosphere feedback.

  2. The use of GRACE satellite data to validate the global hydrological cycle as simulated by a global climate model

    NASA Astrophysics Data System (ADS)

    Boening, Carmen; Demory, Marie-Estelle; Vidale, Pier Luigi; Wiese, David; Roberts, Malcolm; Schiemann, Reinhard; Mizielinski, Matthew; Watkins, Michael

    2015-04-01

    This study investigates the use of the Gravity Recovery and Climate Experiment (GRACE) data to validate the global hydrological cycle as simulated by an atmospheric General Circulation Model (GCM), particularly the transport of water from the ocean to the land and vice-versa. Until GRACE, no other observational data were available for such a robust assessment. Usually, moisture transport is calculated by using the water balance equations (e.g. Precipitation-Evaporation), or by using reanalysis data, which are known to have major issues related to the hydrological cycle. By comparing the decade-long record of Earth's gravity field variations measured by GRACE with the terrestrial water storage simulated by GCMs, we can compare the amplitude of the variability in water transport at inter-annual to decadal time scales at global and regional scales. This is an innovative approach to assess GCMs and understand the processes underlying changes in the water cycle. It is by improving our understanding of the mechanisms involved in the hydrological cycle that we will be able to build confidence in model simulations of the evolution of the hydrological cycle with climate change. We make use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, for which five-member ensembles of 27-year, atmosphere-only integrations are available, using present-day forcing. We show here the ability of this climate model, at any resolution, to simulate the inter-annual variability of terrestrial water storage, compared to GRACE. We particularly find that the model is able to capture the regional distribution of changes in terrestrial water transport during El Nino Southern Oscillation events, implying its ability to import more or less water over land during a La Nina or an El

  3. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  4. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  5. Inverse modeling of atmospheric mercury emissions using a global chemical transport model and surface observations

    NASA Astrophysics Data System (ADS)

    Song, S.; Selin, N. E.

    2012-12-01

    We use inverse modeling in combination with worldwide observational data to constrain atmospheric mercury fluxes and associated uncertainties from anthropogenic and natural sources. Though atmospheric transport is a critical pathway of global mercury transport, large uncertainties exist in estimating the magnitudes and temporal variabilities of mercury emissions to the atmosphere from both natural and anthropogenic processes. Previous estimations have primarily used a so-called "bottom-up" approach, which extrapolates the few direct measurements to larger regions or uses simplified process models to estimate fluxes. Here, we apply a "top-down" or inverse modeling approach. Worldwide surface observations of total gaseous mercury (TGM) and simulations from a global chemical transport model (GEOS-Chem version 9-01-02 with a 2 by 2.5 degree horizontal resolution) are combined to estimate mercury fluxes. Time-invariant anthropogenic emission and seasonally varying fluxes (e.g., ocean evasion, biomass burning, and soil volatilization) are optimally estimated by Kalman filter between 2005 and 2009 at a monthly time resolution. The reference source spatial distributions are shown in Figure 1. We collected data from 16 measurement sites with high precision and frequency, covering most active stations during our period of study. The observations and reference model outputs at 4 representative sites are compared in Figure 2. We test the inverse model by comparing model-measurement fits between the reference model and optimized emissions.igure 1. Mercury reference source spatial distributions. Annually averaged patterns are shown in log scale. igure 2. Comparison of TGM monthly mean observations between observations (black, shown with standard deviations) and reference model results (red) at 4 representative sites.

  6. Towards systematic evaluation of crop model outputs for global land-use models

    NASA Astrophysics Data System (ADS)

    Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr

    2016-04-01

    Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include

  7. Situation Model Updating in Young and Older Adults: Global versus Incremental Mechanisms

    PubMed Central

    Bailey, Heather R.; Zacks, Jeffrey M.

    2015-01-01

    Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory. PMID:25938248

  8. World Culture with Chinese Characteristics: When Global Models Go Native

    ERIC Educational Resources Information Center

    Schulte, Barbara

    2012-01-01

    Just as the world has increasingly been compressed over recent decades through transnationally engaged actors or "carriers" such as mobile experts, international organisations, and seemingly globalised bodies of knowledge, so have China's politicians and academics increasingly "gone global" in various fields of social action, including education.…

  9. MODELING THE IMPACT OF AIR POLLUTION ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Tropospheric ozone (O3) and aerosols have major effects on climate and are the two air pollutants of most concern in the developed world. O3 is a major greenhouse gas (GHG) and light-absorbing aerosols such as black carbon (BC) also contribute to global warm...

  10. Model for Infusing a Global Perspective into the Curriculum.

    ERIC Educational Resources Information Center

    Thorne, Bonnie Baker, Comp.; And Others

    Global education is an approach to learning that transcends national boundaries and involves the interconnection of cultural, ecological, economic, political and technological systems. This perspective promotes multicultural sensitivity that enables young people to see more clearly their own responsibilities and opportunities in today's world.…

  11. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  12. The global reference atmospheric model, mod 2 (with two scale perturbation model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.

    1976-01-01

    The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.

  13. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  14. A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect

    NASA Astrophysics Data System (ADS)

    Ichii, Kazuhito; Matsui, Yohei; Murakami, Kazutaka; Mukai, Toshikazu; Yamaguchi, Yasushi; Ogawa, Katsuro

    2003-04-01

    A simple Earth system model, the Four-Spheres Cycle of Energy and Mass (4-SCEM) model, has been developed to simulate global warming due to anthropogenic CO2 emission. The model consists of the Atmosphere-Earth Heat Cycle (AEHC) model, the Four Spheres Carbon Cycle (4-SCC) model, and their feedback processes. The AEHC model is a one-dimensional radiative convective model, which includes the greenhouse effect of CO2 and H2O, and one cloud layer. The 4-SCC model is a box-type carbon cycle model, which includes biospheric CO2 fertilization, vegetation area variation, the vegetation light saturation effect and the HILDA oceanic carbon cycle model. The feedback processes between carbon cycle and climate considered in the model are temperature dependencies of water vapor content, soil decomposition and ocean surface chemistry. The future status of the global carbon cycle and climate was simulated up to the year 2100 based on the "business as usual" (IS92a) emission scenario, followed by a linear decline in emissions to zero in the year 2200. The atmospheric CO2 concentration reaches 645 ppmv in 2100 and a peak of 760 ppmv approximately in the year 2170, and becomes a steady state with 600 ppmv. The pr